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ABSTRACT

Design and Feasibility Testing for a Ground-based, Three-dimensional,

Ultra-high-resolution, Synthetic Aperture Radar

to Image Snowpacks

Stephen J. Preston

Department of Electrical and Computer Engineering

Master of Science

This thesis works through the design of a radar-based system for imaging snowpacks
remotely and over large areas to assist in avalanche prediction. The key to such a system
is the ability to image volumes of snow at shallow, spatially-varying angles of incidence.
To achieve this prerequisite, the design calls for a ground-based Synthetic Aperture Radar
(SAR) capable of generating three-dimensional, ultra-high-resolution images of a snowpack.
To arrive at design parameters for this SAR, the thesis works through relevant principles
in avalanche mechanics, alpine-snowpack geophysics, and electromagnetic scattering theory.
The thesis also works through principles of radar, SAR, antenna, and image processing
theory to this end. A preliminary system is implemented to test the feasibility of the over-
all design. The preliminary system demonstrates ultra-high-resolution, three-dimensional
imaging capabilities and the ability to image the volume of multiple alpine snowpacks. Im-
ages of these snowpacks display the structural patterns indicative of different layers in the
snowpacks. Possible attributions of the patterns to physical properties in the snowpack are
explored, but conclusions are not arrived at. Finally, lessons from the implementation of
this preliminary system are discussed in terms of opportunities to be capitalized upon and
problems to be overcome in future systems that more faithfully realize the complete design
set forth in the thesis.

Keywords: ground-based SAR, utlra-high resolution, three-dimensional imaging, volume
imaging, snowpack, avalanche
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Chapter 1

Introduction

Improved avalanche prediction requires the ability to assess shear stresses and strengths

between multiple layers, or strata, in a snowpack across large areas, often in remote loca-

tions or hazardous terrain. Shear forces and shear strengths are derivative of properties of

the snowpack, such as density, porosity, grain/crystal size, grain/crystal shape, cluster size,

cluster distribution, and water content. Presently, these physical properties are measured

locally, by means of a snow pit. This procedure is time consuming, labor intensive, and

potentially dangerous. Furthermore, physical properties within a snowpack are notorious

for varying widely over small areas due to rapidly varying micro-climates in mountainous

terrain [1]. Presently, educated guesses as to physical properties over the large areas covered

by slopes on which avalanches occur must be based on experience, weather, topology, snow-

pack history, and a wide array of additional factors. More objective methods for remotely

quantifying physical properties over these large areas are needed.

The ability of radar to penetrate a snowpack over a large area and to detect varying

electromagnetic and geometric properties within a snowpack makes radar a likely candidate

to meet this need. Physical properties important to assessing avalanche risk have charac-

teristic dielectric, conductive, geometric and magnetic properties. Insofar as the response of

certain wavelengths transmitted by a radar system can be correlated to these physical prop-

erties, the radar system may provide a means to remotely collect data over large areas to

quantify snowpack properties. Data analysis can then be used to predict avalanches and to

create images of snowpack structures important to avalanche prediction. Toward this end,

this thesis proposes a radar system capable of ultra-high-resolution (measured in inches),

three-dimensional, volume imaging and demonstrates a preliminary system testing aspects

of the feasibility of the overall design.
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1.1 Previous Studies

Several studies demonstrate the ability of radar systems to probe a snowpack to re-

veal properties such as thickness, density, snow-water equivalency, and particular aspects

of snowpack stratigraphy by distinguishing between certain layers in the snowpack. How-

ever, these previous studies rely primarily upon boundary reflections from within the snow-

pack [1], [2], [3], [4], [5], [6], [7], [8], [9], [10].

Different layers within a snowpack have changing electromagnetic and geometric prop-

erties. The layer boundaries produce specular reflections that are similar to light bouncing

off a shiny surface. These specular reflections can return electromagnetic energy, with infor-

mation about the snowpack, back to a radar system. Depending on the angle of incidence,

specular reflections can also re-direct electromagnetic energy away from the radar system.

To capture information from boundary reflections, radar systems must launch waves into a

snowpack at nadir so that the direction of wave propagation is normal to snowpack layers.

Additionally, previous studies rely on range distances to locate the source of reflections

within the snowpack. For range distances to accurately convey location information, the

orientation of the range axis must be known or assumed. An assumption that the radar

system is oriented with the range axis normal to the snowpack allows range to be used to

directly map reflections to locations within the strata of a snowpack.

In practice, therefore, the radar system must accommodate the snowpack in its ori-

entation. For this reason, previous studies positioned radar systems directly on top of the

snowpack, for example, on a sled [5], [8], or beneath a low-hovering helicopter [8]. Only with

great difficulty, large amounts of time, and even some danger, can such systems cover the

large areas necessary to make their data provide something not offered by a simple snow pit.

The slopes and the continuously varying, rugged, mountainous terrain on which snowpacks

repose, conspire against the endeavor.

Additionally, previous studies primarily peer into snowpacks to acquire information

unrelated to avalanche prediction. Such studies seek to determine the thickness of a snow-

pack, its snow-water equivalence [5], or to better understand the data from space-born syn-

thetic aperture radars, as that data pertains to snow and ice sheets covering the earth’s

surface [9]. As a result, such studies talk about reflections based on snow properties, such as

2



density, that can only be correlated more indirectly with properties that are more important

to avalanche formation. Even those rarer studies, interested in snow stratigraphy, focus on

these secondary properties [10]. Furthermore, in these studies, backscatter is primarily a

function of specular reflection, not the actual volumes of snow. A new system is needed that

does not rely on boundary reflections and assumptions about the orientation of the range

axis with respect to the snowpack, but on reflection from snow volumes. Such a system

would open the possibility of capitalizing upon the abilities of radar to quickly gather data

over large areas remotely.

In sum, the literature indicates research is needed to determine what kind of signals

can be expected, not from electromagnetic boundaries, but from volumes of snow bearing

different properties. This research would not only be helpful for the secondary properties

discussed in previous studies, but much more so for properties like the shape and size of snow

grains, snowpack porosity, and the distribution of water content that are more closely related

to avalanche formation. Research also needs to take place to determine the wavelengths most

suited to provide characteristic returns for the primary properties of interest for avalanche

prediction.

1.2 Contribution

This thesis contributes to the body of published work on the remote sensing appli-

cations of radar by advancing, and in certain aspects initiating, discussions necessary to

determine the feasibility of a radar-based system to remotely collect data over large areas

that can be used to assist in avalanche prediction. It brings together relevant knowledge

of avalanche formation and geophysical knowledge of alpine snowpacks as a basis for the

design of such a system. The thesis explores known scattering mechanisms to discuss how

avalanche-relevant properties of alpine snowpacks might be recognized, which wavelengths

are best suited to provide this information, and to establish preliminary system requirements.

The design of a remote, radar-based system for snowpack imaging is outlined. In the

process, the theory behind a synthetic aperture radar capable of imaging volumes, in three-

dimensions, at large distances, and with ultra-high resolution is presented. Several design

considerations for such a synthetic aperture radar are also highlighted and worked through.
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Although the full system design is not implemented, a preliminary system capable

of testing some of its assumptions is designed and implemented as a first step toward a

more comprehensive system. Results include the demonstration of a ground-based Synthetic

Aperture Radar (SAR) capable of three-dimensional, ultra-high resolution images. Three-

dimensional, volume images of snowpacks are demonstrated. The images suggest patterns

consistent with layered snowpack structures. Physical explanations for these patterns consis-

tent with properties measured in the snowpack are possible, but remain inconclusive. These

demonstrations raise and address other issues, like concerns about ground signals and scan

times that require experience with volume images of snow to encounter.

1.3 Outline

The organization of this thesis comprises 7 chapters. The first is this introduc-

tion. Chapter 2 provides background to understand design considerations for radar-based

avalanche prediction systems. The chapter discusses the mechanics behind avalanche for-

mation. The reoccurring strata, or layers, within an alpine snowpack that cause avalanches

are identified. The properties of these layers and the geophysics responsible for their forma-

tion are explained with an eye toward understanding how the layers may be detected and

assessed by a radar-based system in ways that account for the whole mechanical system of

a snowpack. Chapter 2 also provides fundamentals necessary to access additional avalanche

research relevant to radar-based prediction systems.

Chapter 3 explains backscatter mechanisms that play a role in reflections from an

alpine snowpack. The chapter presents backscatter models for snow and explains their defi-

ciencies for avalanche prediction. The chapter uses these explanations and presentations to

make design determinations, such as transmission wavelengths, and to propose further stud-

ies into the backscatter responses from different avalanche-relevant properties in a snowpack.

Chapter 4 outlines the design of a remote, radar-based system capable of collecting

data about avalanche-relevant properties over large areas. Chapter 4 sets forth the pre-

requisites and requirements for common radar parameters for the design. The design calls

for a SAR capable of imaging volumes, in three-dimensions, and with ultra-high resolution.

Chapter 4 sets forth principles in the theory of radar, synthetic apertures, antennas, and
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image processing algorithms and uses those principles to work out the theory behind the

three-dimensional SAR system proposed. Several design considerations for the system are

examined.

Chapter 5 explains why direct implementation of the system designed in Chapter 4

is impractical in current circumstances, proposing, instead, a set of goals for a preliminary

system to assess the feasibility of the more comprehensive system proposed in the previous

chapters. The chapter recounts the creation of a platform capable of scanning a frequency-

modulated radar over a grid of dimensions 180 cm x 180 cm, the selection of a C-band

radar to mount on that platform, additional infrastructure and accommodations necessary

to combine these components, and how the preliminary system meets the design goals.

Chapter 6 provides the results from some of the many experiments performed with

the preliminary system. The results include a demonstration of the ability to create three-

dimensional, ultra-high-resolution images. A discussion follows about what the resolution

offers in terms of snowpack imaging and the problems that might arise from bleeding exhib-

ited in the images from the corner reflectors used in the demonstration.

Chapter 6 also discusses the demonstration of three-dimensional, volume images of

snowpacks from two different field deployments—something previously un-demonstrated, to

the authors knowledge, and an assumption upon which the design set forth in the preceding

chapters relies. Analysis of the images from the two deployments suggests layered structures

that extend over large areas in the snowpack. Attempts are made to attribute measure-

ments of physical properties in the snowpack, such as water content and snow density, to

these proposed layers. Consistent accounts for the attributions can be made, but the at-

tributions remain inconclusive. The chapter also provides additional discussion of several

lessons learned from the images produced from the demonstrations, lessons about bleeding,

antenna beam patterns, the concern of ground signals, heating of the snowpack, and other

subjects.

Chapter 7 concludes the thesis by reviewing the lessons learned from the design

process and the results from the preliminary system. These lessons are used to inform

adjustments that are proposed to the preliminary system for future experiments to better

assess the feasibility of the system proposed in Chapter 4. In the wake of these lessons,
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opinions are expressed as to the likelihood of a radar-based system to assist in avalanche

prediction with the collection of data about alpine snowpack properties remotely and over

large areas.
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Chapter 2

Relevant Snow and Avalanche Basics

2.1 Avalanche Mechanics

Gravity continually acts upon a snowpack. The resultant force FG at a particular

location within a snowpack is the product of the mass M of the overburdening snow and the

acceleration provided by gravity G,

FG = MG. (2.1)

The slope of the snowpack bifurcates the gravitational force into a compressive force

and a shear force. The shear force acts parallel to the angle of the snowpack slope Θ. The

compressive force acts perpendicular to the slope and to the snowpack, as shown in Fig. 2.1.

Both the shear force FS and the compressive force FC are derived from the gravitational

force FG,

FS = FG sin θ, (2.2)

FC = FG cos θ. (2.3)

Compressive and shear forces deform a snowpack as ice grains in the porous material

slide past one another. The resultant compressive deformation increases the density of

the snowpack, increasing the number and the strength of the bonds between crystals over

time. Compressive deformation makes the snowpack more stable. However, as the snowpack

becomes more dense, compressive deformation slows. The steeper a snowpack-bearing slope,

the less influential the compressive force becomes. Therefore, at slopes greater than about

25◦, most of the deformation occurs down slope as shear deformation.

Shear deformation decreases stability. During shear deformation, ice grains slide past

one another, breaking bonds between the grains. The rate of shear deformation varies with
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Figure 2.1: Shear FS and compressive FC components of the gravitational force FG on a
snowpack disposed on sloped terrain, with slope θ◦.

depth in the snowpack according to two factors: the depth-dependent shear force and the

depth-dependent snow strength properties, which act to counter shear force.

Cohesion and friction comprise the strength properties in question. Cohesion de-

scribes the ability of bonds between individual ice grains to resist shear deformation due

to the stress exerted by shear force. When the bonding strength between a large group of

adjacent ice grains is strong enough, a slab forms, usually in a layer. Once a slab forms,

deformation occurs primarily between the slab and adjacent layers. At this point, friction

plays a dominant role.

Friction is the strength property that describes the ability of grains within a slab not

to slide by adjacent grains above and below the slab. Friction also resists shear deformation.
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Friction depends on factors such as the texture of ice grains in a slab and in surrounding

layers, the weight at the boundary between layers, and water content at the boundary.

Importantly, the strength of bonds between similar grains comprising a slab is usually greater

than the strength of bonds between dissimilar grains at the upper and lower boundaries of

the slab. Therefore, the rate of shear deformation is greatest at the boundary between a

slab and an adjacent layer, when sufficient cohesion exists to produce a slab.

When shear deformation takes place, a certain portion of the resultant displacement

is elastic and recoverable. The remaining portion is plastic and unrecoverable. When the

rate of deformation is slow, the vast majority of the deformation is plastic. When the rate of

deformation increases, the elastic portion greatly increases, storing more and more potential

energy. If the elasticity of the snow is exceeded by too great a rate of increase, a catastrophic,

brittle fracture occurs, resulting in an avalanche.

The rate of shear deformation is increased by loading events. These loading events

may be, in the order in which they are likely to increase the rate of deformation, snow

accumulations from a snow storm, snow accumulation from wind deposition, loading caused

by the weight of a skier, or the explosive force of avalanche-control work. When no external

force is present to increase the rate of deformation, the rate of deformation may be increased

within the snowpack by imperfections in the snowpack, or by shear strain in its constitutive

ice grains.

Ordinarily, the rate of shear deformation must exceed about 100 times an idealized

rate of deformation in a typical snowpack at a representative incline to exceed the elasticity

of the snowpack and for catastrophic failure to occur. The concussive impact of explosives, or

the weight of a skier, however, are known for their ability to increase the rate of deformation

by more than this amount. For this reason, 95% of all slab avalanche victims trigger the

avalanches that overtake them [11].

Avalanches can be differentiated into two categories based on the two strength prop-

erties (cohesion and friction) discussed above. Sloughs, or loose avalanches, arise with a

breakdown in cohesion. Slab avalanches arise with a breakdown in friction.

Sloughs commonly occur in new snow that does not bond well with itself. Since these

avalanches often occur in the upper regions of the snowpack in relatively light, new fallen

9



snow, they tend to pose less threat to safety and property. Sloughs are often referred to as

point avalanches because they begin at a single point, fanning out and entraining surrounding

snow as they progress down slope.

Slab avalanches, however, commonly break free in deeper, denser snow upon a break-

down in the friction that prevents uncontrolled shear deformation at a boundary between

layers. Such avalanches often include several layers that have consolidated over time. Unlike

point avalanches, slab avalanches have a large fracture crown, which adds to their destructive

power. Often the breakdown in friction in such avalanches occurs upon a prior breakdown in

the cohesion of an underlying layer of weakness. As the weak layer crumbles, the slab over-

comes reactive force due to friction. Slab avalanches can be very dangerous and destructive.

Further discussion of avalanche mechanics can be found in references [11], [12], [13] and [14].

2.2 Snowpack Layers Associated with Avalanches

Cohesion and friction at various locations within a snowpack depend on the widely

varying characteristics of the constitutive elements of the snowpack. These constitutive el-

ements are ice grains, air, and water. At a given time, similar compositions of these basic

elements tend to exist in the same regions of the snowpack, forming layers of varying thick-

nesses. Cohesive properties vary from layer to layer, as do the friction properties between

different layers [15].

Several identifiable layers with well-defined characteristics, formed by commonly oc-

curring physical processes, consistently manifest themselves in seasonal snow packs. The

cohesive and friction properties associated with certain of these commonly occurring layers,

and/or the shear forces they generate, make these layers important to avalanche formation.

Layers of particular importance include layers comprising various categories of faceted ice

grains, crusts, and wind-deposited layers.

2.2.1 Faceted Snow

Layers of faceted grains are important to avalanche formation because the weak bond-

ing of faceted grains reduces cohesion within the layers and friction between adjacent layers.

Additionally, faceted layers belong to the group of “persistent forms” of snow, character-
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ized by their ability to contribute to avalanche formation over long periods of time. Once

a faceted layer forms, the layer, with all of its destabilizing influences, persists [13]. These

layers are also a concern because of the stealth of their formation during calm weather and

clear skies, often occurring imperceptively within the snowpack [11].

The weak bonding of faceted grains arises both from the manner of their growth and

from the ultimate shape they take. Faceted gains grow from a substrate of ice grains that

are usually less than a millimeter in size. These substrate grains, which make up a snow

pack, are the broken-down remnants of snow flakes. The grains fit loosely together in the

snowpack, resulting in large porous regions between ice grains that contain air, liquid water,

and water vapor.

Discounting the reducing and rounding effects of melting, the growth and shape of

ice grains surrounded by water vapor depends on whether water vapor sublimates from

or freezes to different regions of the surfaces of those grains. The surface of an ice grain

describes alternating concave and convex regions, with varyings degrees of concavity or

convexity. Whether water vapor sublimates from or freezes to a region at the surface of an

ice grain depends on whether the surface is concave or convex, the degree of the concavity

or convexity, and any motion of the water vapor relative to the region in question.

Motion of the water vapor relative to the surface of ice grains depends on the presence

and strength of a pressure gradient within the porous regions of the snowpack. Pressure

gradients describe the forces exerted per unit area by the water vapor acting to leave an area

densely populated with water vapor for an area that is less densely populated. Differences

in density from one area to another within the porous regions arise because an area at a

relatively high temperature holds more water vapor, making it more crowded, than an area

at a relatively low temperature. Hence, temperature gradients give rise to pressure gradients.

The pressure gradients push water vapor, giving it motion relative to ice grain surfaces.

The motion of water vapor relative to ice grain surfaces determines whether water

vapor freezes or sublimates predominantly according to one of two different possible regimes:

the equilibrium regime and the kinetic regime. Within the kinetic regime, the relative motion

of the water vapor determines the speed with which freezing and sublimating take place.
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Equilibrium and Kinetic Regimes

The equilibrium regime receives its name from the fact that in the absence of a

significant pressure gradient, the water vapor responsible for grain growth is said to be in

equilibrium. In the equilibrium regime, a small or non-existent temperature gradient does not

result in a significant pressure gradient that would push water vapor into motion. Freezing

and sublimation patterns characteristic of such an equilibrium describe the growth of ice

grains in the equilibrium regime.

Where water vapor is in equilibrium, water vapor tends to freeze at the surfaces

of concave regions and to sublimate from convex regions. In the process, concave regions

fill with ice and convex regions diminish in volume. Diminishing convex regions and fill-

ing concave regions produce more symmetrical, rounded grains. Simultaneously, shear and

compression deformation grind and polish ice grains over time, also acting to produce more

symmetrical and rounded grains. Figure 2.2 depicts the formation of such symmetrical and

rounded grains, commonly referred to as “rounds.”

The kinetic regime receives its name because of the way in which a water-vapor

pressure gradient sets particles in motion, giving them kinetic energy. In the kinetic regime,

a temperature gradient results in a pressure gradient large enough to push water vapor into

motion at rates fast enough for the characteristic freezing and sublimating patterns of the

kinetic regime to dominate. Where water vapor travels under the influence of a sufficient

amount of kinetic energy, water vapor tends to freeze at the surfaces of convex regions and

to sublimate from the surfaces of concave regions. Freezing and sublimating in the kinetic

regime, therefore, take place at regions with curvatures opposite to the regions where freezing

and sublimating take place in the equilibrium regime, as summarized in Table 2.1. In the

Table 2.1: Regions of Freezing and Sublimating in Equilibrium and Kinetic Regimes.
Regime Concave Region Convex Region
Equilibrium Freezing Sublimating
Kinetic Sublimating Freezing
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Figure 2.2: Progressive formation of a ”round” ice grain, indicating patterns of freezing and
sublimating in the Equilibrium regime.

process, convex regions grow and concave regions become more concave. Growing convex

regions and diminishing concave regions produce angular, pointed grains. Figure 2.3 depicts

the formation of such angular and pointed, i.e., faceted grains. Further discussion of the

equilibrium and kinetic regimes can be found in references [16], [17], [18], [19] [20] and [21].

Implications for Cohesion in Terms of Sintering/Bonding

Cohesion measures the strength derived from bonds between ice grains within a snow-

pack. Bonded clusters of ice grains, the formation of which is discussed below, catch and
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Figure 2.3: Progressive formation of a faceted ice grain, indicating patterns of freezing and
sublimating in the Kinetic regime.

hold one another in place by mechanical friction. The larger the clusters and the stronger

their bonds, the greater the ability of the clusters to hold ice grains in place. As stated

above, faceted grains result in weak cohesion relative to that of rounded grains because of

their ultimate shape and because of the manner of their growth.

The shape of faceted grains contributes in multiple ways to their weak cohesive prop-

erties. Bonds occur at the points of contact between ice grains. The greater the specific

surface area, i.e., the ratio of surface area to volume, of ice grains, the more opportunities

for contact and for bond forming. A spherical shape maximizes the ratio of surface area
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to volume. Hence, the symmetrical, rounded grains, “rounds,” produced in the equilibrium

regime have many points of contact at which they may form bonds one with another [11]

and [22].

Conversely, faceted grains have smaller specific surface areas, giving them less surface

area along which bonds can form. Additionally, the elongated pointed regions of faceted

grains tend to further separate the grains. More importantly, because these points are the

regions of faceted grains that extend most outward, they are generally the regions at which

contact is made with other grains and at which bonds can form. However, the elongated and

sharp ends of these points make the area of contact at which grains fuse together relatively

small compared to that of rounds, due to the nature of sintering, or bond formation between

grains.

Where two ice grains come in contact with another, sintering takes place, and bonds

form by a process known as grain-boundary diffusion. Grain-boundary diffusion can be

explained in terms of a simplifying, two-dimensional image of the progression of the formation

of a bond between two rounds. Such a two-dimensional image is depicted below in Fig. 2.4.

As depicted in Fig. 2.4, when two rounded grains come in contact, two fluted grooves describe

the space between the two grains, one opening upwards and the other downwards.

Considering either of these grooves, the stresses caused by the forces driving the two

grains together are greater at the point, or interior, of the groove—the region where contact

is made—than at the exterior, which opens out into the porous region, where no stresses

are present. This stress gradient causes water molecules within the grain to migrate from

regions of high stress to regions of low stress. As the water molecules migrate, the portions

of the grains in contact with each other increases, the bond strengthens, and the grains fuse

together.

The process of grain-boundary diffusion continues until the angle described by the

interior, or point, of the fluted groove reaches an equilibrium value of about 145◦, as shown

in Fig. 2.4. Rotating the groove around an axis between the center points of the two grains

describes a concave neck shape. As the angle described by the interior of the groove increases,

the neck becomes fatter and the contact area between grains increases, resulting in a stronger

15



Figure 2.4: Progressive, two-dimensional depiction of grain-boundary diffusion.

bond between the fused ice grains. (Additional discussion of grain-boundary diffusion is

provided in references [23] and [24].)

Grain-boundary diffusion also occurs between faceted grains. However, a little rea-

soning based on the demonstrated principles of grain-boundary diffusion, discussed above,

suggests that grain-boundary diffusion between faceted grains leads to weaker bonds. Grain-

boundary diffusion occurs most rapidly at grooves that describe highly acute angles and slows

to a stop as these angles increases to an obtuse value of 145◦. In faceted grains, the points at

which contact is often made result in grooves that are already obtuse, approaching the equi-
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Figure 2.5: Progressive, two-dimensional depiction of grain-boundary diffusion for faceted
grains.

librium value of 145◦ at which grain-boundary diffusion ceases. The obtuse angles described

by the grooves between faceted grains are depicted in Fig. 2.5. The little grain-boundary

diffusion that does take place before the equilibrium angle is reached does not much increase

the size of the point at which contact is made between grains, as shown in Fig. 2.5.

Rotating the groove at the end of the elongated points, after the equilibrium angle

is obtained, around an axis between the center points of the two grains, again describes a

concave neck shape. However, this neck is comparatively much skinnier than the concave

neck between round grains. The contact area of the skinny neck is also much less, resulting

in a bond that is weaker than the typical bond between rounded grains.

The manner of growth for faceted grains also makes important contributions to their

weak cohesive properties. As discussed above, in the equilibrium regime, water vapor freezes
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to concave regions and sublimates from convex regions. Water vapor freezing within the

concave necks that bond ice grains together increases the thickness of those necks and the

strength of those bonds.

Conversely, in the kinetic regime that dominates the growth of faceted grains, water

vapor sublimates from concave regions and freezes to convex regions. Water vapor sublimat-

ing from the already comparatively skinny concave necks that bond faceted grains makes

those necks even skinner and further decreases the strength of the bonds. Figure 2.6 depicts

a comparison between the thickening and strengthening of concave necks in the equilibrium

regime and the thinning and weakening in the kinetic regime.

Factors Determining Nature of Faceted Formation

Three critical factors determine the nature of faceted growth and the ultimate char-

acteristics of faceted grains. Those factors are, in order of importance, the nature of the

temperature gradient, the degree of porosity within the snowpack, and the level of water

vapor in the porous regions of the snowpack [11]. These factors are discussed below in order

from the least to the most important.

The level of water vapor influences the rate at which faceted growth occurs. High

levels of water vapor result in fast rates of faceted growth because the presence of greater

numbers of water molecules increases the amount of material that can freeze on grain surfaces.

High levels of water vapor are associated with high temperatures in the snow that cause

greater amounts of evaporation from water content and greater amounts of sublimation

from ice grains.

The degree of porosity within the snowpack determines how much faceted growth

can occur and how large faceted grains may become. Porosity is a measure of the ratio of

the volume of the porous regions of the snowpack, comprised of air, liquid water, and water

vapor, to the total volume of the snowpack. When the convex regions at which faceted

growth takes place run out of porous regions within which to grow, growth proceeds in ways

that increase the strength of bonds between grains. For this reason, measurements of the

porosity within a snowpack provide information about the potential for faceted growth and

a corresponding potential for cohesion degradation.
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Figure 2.6: Progressive impact of freezing patterns on concave bond necks in both the Equi-
librium regime (left) and the Kinetic regime (right).
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The most important factor determining the nature of faceted growth is the nature

of the temperature gradient. As discussed above, without a sufficient temperature gradient

to cause a sufficient pressure gradient, appreciable faceted growth does not occur. Once

the critical value of a temperature gradient necessary for faceted growth has been reached,

further increases in the temperature gradient serve to increase the rate of faceted growth.

Not only is the level of the temperature gradient important, but so are the orientation

of the temperature gradient, the history of the temperature gradient over time, and the

location of the temperature gradient within the snowpack. The way in which all of these

factors together consistently manifest themselves with respect to a seasonal snowpack result

in three different reoccurring and identifiable categories of faceted grains, each with unique

properties that are important to avalanche formation.

These three categories are, in order of the increasing likelihood with which they con-

tribute to avalanche formation: near-surface faceted grains, buried surface hoar, and depth

hoar. The formation of these different categories of faceted grains and their avalanche-

relevant properties can be explained in terms of the temperature gradients that create them.

An explanation of these three categories of faceted grains begins by a discussion of tempera-

ture gradients generally. The explanation then proceeds with an account, for each category

of faceted grain, of the ways in which the temperature gradient factors, outlined in the

previous paragraph, generate the avalanche-relevant properties of each category of faceted

grain.

The critical level of temperature gradient for faceted formation is usually around

10 C◦/m (1 C◦/10 cm), but depends on the amount of water vapor present and decreases

with higher levels of water vapor [11]. When the temperature gradient is below the critical

value at a particular point in the snowpack, the equilibrium regime dominates. When the

temperature gradient is at, or above this critical value, the kinetic regime dominates.

Within a snowpack, temperature gradients typically manifest themselves vertically

owing to heat sources—the atmosphere and the ground—at the top and at the bottom of

the snow pack. These heat sources act to increase and to decrease the temperature of the

snow. However, snow is a very porous material that traps a lot of air, making snow a good

insulator. As an insulator, snow resists changes in temperature imposed upon it by these
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Figure 2.7: Profiles of snowpack temperature with respect to depth in response to heat
transfers at sources located at the surface of the snowpack and at the ground.

heat sources. Resistance by snow to temperature change results in a graduated change,

with respect to snow depth, between a relatively warm temperature and a relatively cool

temperature. In this way temperature gradients, similar to those depicted in Fig. 2.7, arise.

Near-surface, Faceted Grains Near-surface, faceted grains reside within the upper

reaches of a seasonal snowpack. The temperature gradients which produce near-surface,

faceted grains arise as the insulating properties of a snowpack resist the diurnal fluctuations

in the atmospheric temperature above the snowpack. Such diurnal fluctuations in atmo-
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Figure 2.8: Photograph of faceted grain under magnification. Reprinted from [11].

spheric temperature are reflected in the snowpack in varying degrees, due to the insulating

properties of snow, as a function of depth, as depicted in Fig. 2.7.

As temperatures swing back and forth between night and day, so do the orientations

of the temperature gradients they produce. When the atmospheric temperature is hotter

than the temperature of the snowpack during the day, the temperature gradient is oriented

upward (higher temperatures exist higher in the snowpack), causing a pressure gradient that

drives water downward. When the atmospheric temperature is colder than the temperature

of the snowpack, the temperature gradient is oriented downward (higher temperatures exist

lower in the snowpack), causing a pressure gradient that drives water upward.

The orientation of the temperature gradient determines whether growth takes place

at the upper portion of grains or at the lower portion. Sometimes the convex regions of the

upside of grains grow; sometimes the convex regions of the underside grow. The alternating

cycles of growth produce elongated, angular structures with an appearance that contrasts to

the pyramidal appearance of depth hoar grains (discussed below and depicted in Fig. 2.10)

that grow in temperature gradients with a single orientation. The angular structures typical

of near-surface faceted grains are depicted in Fig. 2.8.
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These angular structures are the biggest cause of deadly avalanches [12]. Both the

shape and the manner of formation of these angular structures result in the classic weak

bonds, discussed above, that are typical of faceted grains. Diurnal fluctuations in atmo-

spheric temperatures at the surface of a snowpack often produce temperature gradients

strong enough to produce faceted growth, meaning that near-surface facets are commonly

present in the upper layers of a snowpack. Since these layers manifest near the surface of a

snowpack, there are fewer, if any, intervening layers to distribute loads experienced by a layer

of near-surface facets. Additionally, once the temperature gradients that form near-surface

facets dissipate, the angular structure persists for weeks, even months, making them a long

term factor contributing to avalanche danger. Additional discussion of the formation and

properties of near-surface facets is found in references [25] and [26].

Buried Surface Hoar Surface hoar is more correctly described as a crystalline structure

than as an ice grain. Surface hoar grows when the requisite temperature gradient exists at

the surface of a snowpack. The orientation of that temperature gradient is upward (higher

temperatures exist above the snowpack) with the relatively high temperatures in the air

above the snowpack and the relatively low temperatures at the snowpack surface. As water

vapor travels downward from the more densely populated regions of relatively higher tem-

peratures it encounters the cold surface of the snow where it freezes when the water vapor

pressure of the air is greater than the equilibrium vapor pressure of the ice.

Temperature gradient levels between 100 C◦/m to 300 C◦/m are associated with

surface hoar formation. The exact level of temperature gradient required for surface hoar

formation depends on the relative humidity of the atmosphere above the surface, which

usually must be greater than about 70%. The requisite temperature gradients are often

generated on clear nights that allow the surface of the snow to drop in temperature through

radiative, long-wave cooling [11].

Since the temperature gradients involved in surface hoar growth exist at the surface

of the snowpack, faceted growth takes place in the presence of an environment of essentially

100% porosity. As long as the critical level of temperature gradient exists for a particular

atmospheric humidity level, surface hoar crystals continue to grow. As a result, surface hoar
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Figure 2.9: Examples of surface hoar measured at 2 cm (left) and 5 mm (right).

crystals span a wide variety of sizes, ranging from less than a single millimeter to several

centimeters. Examples of 2 cm and 5 mm surface hoar crystals are depicted in Fig. 2.9. The

shape of their growth depends on the temperature-dependent type of crystallization that

occurs.

Once a layer of surface hoar becomes buried, the layer demonstrates weak cohesive

and friction properties as a result of the location and orientation of the thermal gradients in

which the layers form. The upward orientation of the temperature gradients, located at the

snowpack’s surface, cause surface hoar to grow upward into the air to form large, plate-like

structures. These large, plate-like structures are thin and fragile. They tend to be oriented

vertically with relatively large porous regions between them.

The vertical orientation of these thin, fragile structures and the large gaps between

them produce a layer with cohesive properties that are much weaker in response to shear
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forces than in response to compressive forces. Consequently, the deformation caused by the

load from overburdening layers manifests itself as shear deformation. In terms of mechanics,

shear deformation occurs much more readily as the shear loads required to rotate and topple,

or fracture, the vertically-oriented, widely spaced crystals is much lower than the compressive

loads required to crush the vertically-oriented crystals along their principal axis.

Toppling and fracturing surface hoar crystals can transfer gravitational potential en-

ergy into the toppling and fracturing of more surface hoar crystals. If the resultant de-

formation rate exceeds the elasticity within the surface hoar layer, the layer experiences a

shear fracture. The shear fracture results in a vertical collapse that often produces a loud

“whumph” sound that signals the beginning of an avalanche.

Surface hoar also has weak friction properties with adjacent layers. The large gaps

between the vertically oriented plates that make up a layer of surface hoar correspond to

large gaps between points of contact with adjacent layers. The fewer points of contact, the

less friction.

The larger surface hoar crystals become, the more fragile they become. The gaps

between crystals become larger, and the crystals have less buttressing support. The torque

acting to rotate the crystals also increases as the distance between the layers that they span

increases.

Compressive deformation typically packs ice grains in place within a snowpack, in-

creasing cohesion over time. The dearth of compressive deformation with surface hoar crys-

tals means that they undergo very little of the settling that would otherwise make them more

stable. Lack of settling and the large shapes of surface hoar crystals ensure that the desta-

bilizing effects of surface hoar persist for long periods. Reference [27] provides additional

information about surface hoar formation and characteristics.

Depth Hoar Depth hoar grains grow in temperature gradients that are conversely related

to the temperature gradients that produce surface hoar. As a result, the depth-hoar grains

produced by these conversely related temperature gradients have a vastly different appear-

ance. Nevertheless, layers comprised of depth-hoar grains, like layers comprised of surface

hoar, are much weaker in response to shear forces than in response to compressive forces.
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The temperature gradients involved in depth hoar formation are oriented downward

(higher temperatures exist lower in the snowpack) and exist at the base of the snowpack

(near the ground). The temperature gradients arise due to the heat source provided by the

ground, which traps heat, primarily stored up during warmer months and augmented by a

little geothermal energy, under an insulating blanket of snow. The ground warms the snow

immediately above to a temperature of 0 C◦/m. The insulating properties of snow resist

the warming of the ground to maintain colder and colder temperatures as distance increases

from the ground. The resulting temperature gradient is depicted along the lower part of the

temperature curve depicted in Fig. 2.7.

The downward-oriented temperature gradient causes water vapor to rise. As water

vapor rises, it comes in contact with the underside of ice grains, where it freezes at convex re-

gions. As the water vapor continually freezes at the base of the grains, a pyramidal structure

results. The base of this pyramidal structure takes on a hexagonal shape, consistent with

the hexagonal shape of ice crystals at the relevant temperatures. Since ice grain growth is

dominated by the kinetic regime, water vapor freezes at the outermost edges of the underside

of the ice grains, resulting in an ever increasing perimeter and a hollow center.

The hollow, hexagonal pyramids take on a stepped, or striated, outer surface. These

steps are also the result of the freezing and sublimating patterns characteristic of the kinetic

regime. Figure 2.10 depicts examples of the stepped, hexagonal, pyramidal shape of depth

hoar grains. Since these structures are hollow, they are often referred to as having a cup

shape.

The dimensions of depth hoar grains, whether from peak to base, or from one end of

the base to the other, commonly reach 5 mm and are known to achieve even greater values.

Depth hoar grains have the potential to achieve such large sizes because of the potential of the

temperature gradients that produce them to last for long periods of time and to return after

intervening hiatuses. Since warmth from the ground maintains the basal layer of a seasonal

snowpack at 0 C◦/m throughout the winter, as long as temperatures in the snowpack above

the basal layer are consistently low enough to produce a temperature gradient large enough

for the kinetic regime to dominate, depth hoar continues to grow. Cold temperatures occur
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Figure 2.10: Examples of faceted ice grains of the depth hoar category. Reprinted from [12].

more easily in layers above the warm ground layer when the atmosphere is closer to the

ground layer early in the season when the snowpack is not as thick [12].

The ultimate size achieved by depth hoar grains is often a function of the porosity of

the snowpack. To prevent the growth of depth hoar, early in the season, ski resorts, and other

entities exercised to avoid avalanches, often bootpack the lower layers of a seasonal snowpack

in sensitive areas. In this way, the porosity of the snowpack in the region where depth hoar

forms is reduced to a level that makes faceted growth difficult. Without sufficiently large

porous regions into which the convex regions of ice grains may grow, growth often occurs in

ways that increase the strength of bonds between grains, even in the presence of temperature

gradients where the kinetic regime dominates [11].

Like surface hoar, depth hoar produces an anisotropic response to loading. The pyra-

midal shape of these grains makes them strong against compressive loads. Consequently,

little settling takes place to increase stability within the snowpack. However, in response

to shear force, depth hoar manifests the characteristic weakness of faceted grains. As with

surface hoar, most deformation in depth hoar is transferred to shear deformation. Mechan-
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ically, depth hoar grains can be thought of as stacks of upside-down cups disposed with a

downward tilt and with weak and relatively few intervening bonds to hold them together.

In response to sufficient shear loads, the cups start to slide.

Of the three forms of faceted grains, depth hoar is the least likely to produce an

avalanche because of the location at which it forms within a snowpack. New, potentially

destabilizing loads, at the surface of the snowpack are distributed throughout the upper

layers of the snowpack. These new loads seldom reach down to the lower layers in ways that

threaten the stability of the depth hoar layers. However, a failure in a layer of depth hoar at

the base of a snowpack always produces a large and dangerous slide. Additional discussion

of the formation and properties of depth hoar is found in references [28] and [29].

2.2.2 Wind-deposited Snow

Wind-deposited snow acquires importance primarily because of the loading events it

produces. As wind transports snow across the snowpack, the force of the wind and collisions

with the snowpack break new fallen snow down to ice grains of as little as one-tenth their

former size. Older ice gains also lose volume. In the tumbling process, ice grains become

symmetrical. Wind and gravity tightly pack these small, rounded grains into place, resulting

in a layer of dense snow.

The density of wind-deposited snow, ranging from 300 Kg/m3 to 400 Kg/m3, can

easily exceed the density of newly fallen snow, ranging from 30 Kg/m3 to 100 Kg/m3, by

fourfold. The density of wind-deposited snow is also usually much greater than that of the

previous surface layer. A strong wind can rapidly deposit these dense snows onto a previous

surface layer, producing a potentially catastrophic loading event.

Wind-deposited snow can increase the load on a snowpack by a rate up to 10 times

that achievable by a snow storm. Such sudden load increases test the strength properties of

the snowpack. Wind deposits have been known to alter the status of a snowpack from safe

to avalanching in a matter of minutes [12].

In addition to the loading events, the cohesive nature of wind-deposited snows, with

their implications for friction properties within the snowpack, are important to avalanche

formation. The homogeneity, characteristics, and circumstances of deposition of wind de-
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posited snow layers result in cohesive slabs. The small, rounded ice grains that make up

wind deposits have lots of surface area at which bonds may be formed. Additionally, these

grains are packed tightly together by the wind that drives them into place. The cohesion

within wind slabs transfers much of the shear deformation that takes place because of shear

forces within the snowpack to the boundaries between wind slabs and inhomogeneous lay-

ers. Owing to common bonding incompatibilities between wind slabs and various types of

layers, relatively weak friction properties occur along these resulting boundaries. Additional

information on wind deposited snow is found in [11] and [12].

2.2.3 Crusts

Crusts that form on the surface of a snowpack are important to avalanche formation

because of the way they influence friction properties within the snowpack and because of the

way they contribute to the formation of faceted layers of snow. A crust is a thin layer, from

less than a centimeter to a few centimeters in thickness, of densely conglomerated ice that

forms on the surface of a snowpack due to the refreezing of wet snow. An example of a snow

crust is depicted in Fig. 2.11.

The wet snow that freezes to form a crust may become wet due to rain, or solar radi-

ation and/or atmospheric temperatures. All crusts are persistent, relatively dense, smooth,

and are good thermal conductors. These properties have implications for the friction be-

tween crusts and adjacent layers and the tendency of crusts to facilitate the formation of

faceted grains in adjacent layers. However, the cause of the wet snow substrate from which

a particular crust forms determines the degree to which a crust persists, is dense, and has

smooth surfaces.

Wet snow substrates caused by rain result in crusts that are more persistent, denser,

smoother, and are better thermal conductors than crusts that result from solar radiation

and/or atmospheric wet snow substrates. The wetter the substrate, the stronger these prop-

erties manifest themselves after freezing occurs. The greater the manifestation of these

crust properties within a particular crust, the less friction between the crust and adjacent

layers [12].

29



Figure 2.11: Example of a snow crust harvested from the top of a snowpack.

Smooth crusts decrease friction because they prevent the mechanical friction occurring

when the ice grains of adjacent layers co-mingle with and embed themselves within the

crust. Apart from an absence of mechanical friction, smooth surfaces present fewer locations

at which bonds can form. The otherwise weak bonding that occurs between crusts and

adjacent layers, however, can be strengthened by a skim of water at the surface in which

new snow can freeze.

Importantly, the high internal cohesion of dense crusts makes them a mechanical

discontinuity within the snowpack. This mechanical discontinuity concentrates shear defor-

mation within the snowpack to the layers immediately above and below the crust, increasing

the potential for avalanche formation. Additionally, dense crusts can act as a barrier along
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which water percolating down through the snowpack may collect, lubricate snow grains, and

reduce friction and cohesion [11].

Dense crusts facilitate the formation of faceted grains. The density of crusts gives

them a low permeability to water vapor, making them a barrier. The density of water vapor

builds up at the barrier, providing a rich environment for faceted grain growth along with

the requisite pressure gradients, [15] [30].

The high thermal conductivity of crusts also facilitates the formation of faceted grains.

When cold snow falls on top of wet snow, a temperature gradient sufficient to induce growth

in the kinetic regime can result as the latent heat in the wet show is transferred to the new

snow. Once the formerly wet snow freezes into a crust, the high thermal conductivity of the

crust maintains the temperature gradient by conducting heat from the relatively warm snow

pack up to the boundary with the newer, colder snow [31].

2.3 Water Content by Percentage Volume

When a sample of snow exists at a temperature completely below freezing throughout,

all water must be frozen. The sample is devoid of water content and, the snow is said to be

“dry.” Conversely, the longer a sample of snow exists at 0◦, or above, where melting occurs,

the higher the water content within the sample. However, determining the water content of

a snow sample is much more complicated than measuring the temperature of the ambient

environment.

Snow’s properties as an insulator influence the water content of seasonal snow pro-

foundly. The porosity of the snow, or the amount of air it traps, determines how insulated

a sample of snow is from the thermal sources at its surface and at its base, acting to either

increase or decrease the temperature of the snow. These insulating properties resist tem-

perature differentials and heat transfer between the ambient environment and the snowpack

and the warm ground and the snowpack.

Due to these insulating properties, daily changes in temperature take time to prop-

agate through the snowpack. Warmer ambient temperatures take time to propagate down

and melt ice grains to produce water content. Similarly, heat from the ground takes time to

propagate up and melt grains.
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As stated above, when the temperature of a snow sample, and not just the ambient

temperature, is below freezing throughout, the sample is dry and has no water content. Dry

snow can be identified in the field by its lack of cohesion. Dry snow will not form balls or

clumps when compacted together. However, when the temperature of the snow is at 0 C◦,

an amount of water content that depends on the duration of time that the temperature of

the snow has been at 0 C◦ is present in the snow.

Commonly, the percentage of that water content is classified as: (1) “moist,” (2)

“wet,” (3) “very wet,” and (4) “sludge.” A sample with 3% water content by volume or

less is referred to as moist. Moist snow can be recognized in the field because it is cohesive

and forms balls and clumps when compacted. However, the water content of wet snow is

not visible, even when the sample is magnified ten fold. A wet sample holds between 3% to

8% water content by volume. When magnified ten fold, the water content of a wet sample

becomes visible around the crystals that comprise the sample.

A very wet sample holds between 8% to 15% water content by volume. A very wet

sample can be recognized in the field because such a sample, when lightly squeezed, will

render water. Samples with more than 15% water content are considered sludge [11].

The four classifications of water content can be subsumed in two categories that define

the way in which the water content is distributed in a sample of snow. The distribution of

water content in the moist (less than 3%) and wet (3% to 8%) classifications is distributed

according to what is termed the pendular regime. Higher water contents in the very wet

(8% to 15%) and in the sludge (greater than 15%) classifications are distributed according

to the funicular regime. The four categories of water content and the two categories of water

distribution are summarized in Table 2.2.

Table 2.2: Water Content Categories in Relation to Water Distribution Regimes.
Category Water Content Distribution Regime
Moist 0% to 3% Pendular
Wet 3% to 8%
Very wet 8% to 15% Funicular
Sludge more than 15%

32



2.3.1 Distribution of Water Content in the Pendular and Funicular Regimes

The manner in which water is distributed in a sample of snow depends on the amount

of water content as a percentage of the total volume of the snow. At different water content

percentages, different forces control the distribution of water resulting in different distribu-

tions. When the water content percentage is below a critical value of about 4%, capillary

and surface tension forces completely control water content distribution. For higher water

content percentages, gravitational forces begin to play a role in determining water content

distributions.

Although gravitational forces begin to play a role after water content percentages

rise above 4%, for water contents less than 8% by volume, capillary and surface tension

forces still dominate and water distribution is characterized by the pendular regime. In the

pendular regime, the volume of gas (air and water vapor) in the pores between grains of ice

is greater than the volume of water. Water content is distributed within the porous regions

of the snow as inclusions within the gaseous volume.

Capillary and surface tension forces cause water inclusions to congregate along the

bond necks and at the points of contact between ice grains where they form as menisci.

Since these menisci surround the bond necks and the points of contact, they form ring

shapes, known as pendular rings. Figure 2.12 depicts ring-shaped menisci inclusions, or

pendular rings, distributed along the bond necks or points of contact of several ice grains.

The cross-sectional area of pendular rings provides an indication of the thickness of bond

necks and, indirectly, of bond strength.

When the water content reaches levels between 4% and 8% within the pendular

regime, gravity begins to play a role. Although the majority of water content is still contained

in pendular rings, gravitational forces begin to pull away a portion of the water content. The

portion that is drawn off is distributed as spheroidal inclusions.

For water contents greater than 8%, gravity plays the dominant role and water dis-

tribution is characterized by the funicular regime. In the funicular regime, gravity begins

to pull water inclusions together into large confluent water bodies. The inclusion structures

characteristic of the pendular regime break down and flow into one another as water content

percentages hover between about 8% and 15%. For water contents greater than 15%, gravity
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Figure 2.12: Depiction of a cluster of ice grains in the pendular regime with pendular rings
at the bonds between ice grains.

acts to pull the water content in a single confluent mass. At this point, gasses like air and

water vapor become the inclusions.

2.3.2 Formation of Clusters in the Pendular Regime

Clusters of ice grains form in the pendular regime. Capillary and surface tension

forces in the pendular regime act to bring ice grains together. Water content affixes to ice

grains in response to capillary forces; water affixed to different ice grains is brought together

by surface tensions forces. As menisci at the points of contact form, water between the

34



Figure 2.13: Photograph of multiple grain clusters under magnification. Reprinted from [11].

ice grains is squeezed out and ice-to-ice sintering, as discussed above, occurs. A group of

different clusters of ice grains is depicted in Fig. 2.13.

Over time, the sintering process fuses the clusters together until the individual grains

can become indistinguishable. In addition to the sintering process, diurnal freeze-thaw cycles

can play a role. During the thaw portion of the daily cycle, ice grains melt, water content

is introduced, clusters can grow, and pendular rings form. During the freeze portion of

the cycle, the pendular rings freeze, increasing the strength of bonds between individual

grains and making bond strength temperature dependant. A particular form of freeze-thaw

metamorphosis is at work in the formation of the crusts discussed above.
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Clusters increase cohesion. The large, irregular, clusters resist deformation by the

mechanical friction they produce. Mechanical friction arises as the large, irregular clusters

catch each other, tangling together in a manner that resists deformation.

2.3.3 Lubrication of Ice Grains in the Funicular Regime

Water content above 15% reduces cohesion. Although many clusters are empirically

already present in a snowpack before water contents reach 15%, water insulates ice grains and

clusters of ice grains from one another, preventing the formation of new clusters and the ac-

companying increase in mechanical friction. Furthermore, viscous water between grains and

clusters lubricates the deformation process, breaking down cohesion. A sufficient breakdown

in cohesion manifests itself as the comparatively rare, but very dangerous, wet avalanche.

2.4 Conclusion

A snowpack is comprised of different layers. Commonly occurring layers of faceted

snow, crusts, and wind-deposits are responsible for a majority of avalanche activity because

of their cohesive and friction properties and/or their tendency to generate large shear forces.

Associated with these commonly occurring layers are characteristic densities, porosities,

grain/crystal sizes, grain/crystal shapes, cluster sizes, cluster shapes, water contents, and

water distributions. These characteristics identify avalanche-prone layers. The character-

istics also provide an indication of a layer’s cohesive properties, friction properties, and/or

the shear force that it can generate. Insofar as signature electromagnetic interactions with

these characteristics translate into radar cross-sections, avalanche-prone layers and their

avalanche-relevant properties can be detected by radar.
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Chapter 3

Potential Mechanisms for Backscatter

Characteristic densities, porosities, grain/crystal sizes, grain/crystal shapes, cluster

sizes, cluster shapes, water contents, and water distributions associated with commonly oc-

curring layers in a snowpack have the potential to cause different backscatter characteristics

at different wavelengths. By identifying properties in the snowpack with these different

backscatter characteristics, avalanche prediction may be aided. Several different electromag-

netic phenomena that may give rise to these differing backscatter patterns are explored in

this chapter to guide the design of a radar system capable of remote, large-area, data col-

lection for avalanche prediction. In the process of the discussion, areas in need of additional

research are highlighted.

3.1 Reflection at Impedance Boundaries

Previous studies rely on backscatter caused by specular reflections at impedance

boundaries that occur between layers in the snowpack [1]– [10]. The shallow grazing an-

gles involved in a remote, large-area, radar system often preclude backscatter generated in

this way. However, as discussed below, surfaces that are sufficiently rough, as a function of

wavelength, can produce backscatter at reflection boundaries for a large span of incidence

and grazing angles. Additionally, dielectric boundaries can still play an important role at

shallow grazing angles because of the electromagnetic energy that they conduct away from

a radar system.

Layers within a snowpack have different dielectric-, geometric-, conductive- and permeability-

related properties, indicative of different densities, ice grain and cluster sizes and shapes,

water concentrations and distributions, and levels of porosity. The electromagnetic proper-

ties of a medium determine the wave impedance η of that medium. Wave impedance η, like
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resistance, is a measure of the opposition electromagnetic energy encounters to continuing

along its path.

Where a wave propagating in a first medium with a first intrinsic wave impedance η1

encounters the boundary with a medium with a second intrinsic wave impedance η2, the wave

experiences different degrees of opposition. The result is that some of the wave is transmitted

into the second medium and some of the wave is reflected back to the first medium. Where

η2 is greater than η1, the wave experiences more opposition to continuing along its path

and a fraction of the wave is reflected back into the first medium with a positive amplitude.

Conversely, where η2 is less than η1, the wave experiences less opposition, resulting in a 90◦

phase shift and a negative fraction of the incident wave amplitude is reflected back into the

first medium.

Assuming that the wave propagates at an angle of incidence normal to the boundary,

all of the reflected energy returns to the source of that energy—in the case of a radar system,

all of the energy becomes backscatter. The ratio of the amplitude of the electric field of the

wave reflected Er at the boundary to the amplitude of the electric field of the incident wave

Ei is known as the reflection coefficient Γ,

Γ =
Er

Ei

. (3.1)

Therefore, the amplitude of the reflected electric field Er, which is directly proportional to

backscatter, equals:

Er = ΓEi. (3.2)

3.1.1 Wave Impedance

Since the reflection coefficient Γ measures the reflection caused by the change in

opposition to propagation arising from the change in wave impedances between two media,

the reflection coefficient Γ can be expressed as a ratio of the difference and the sum of the

two wave impedances:

Γ =
η2 − η1

η2 + η1

, (3.3)
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where wave impedance is defined as:

η =

√
jωµ

σ + jωµε
. (3.4)

In Eq. 3.4, σ represents the conductivity, µ represents the permeability, and ε represents the

complex permittivity of a medium. Permeability and permittivity are both complex, with

the real part corresponding to a slow down in propagation speed and the imaginary part

corresponding to polarity losses. The real part of these two terms is the product of both

permeability and permittivity in a vacuum, and the relative permeability and permittivity

of the medium in question. Relative permittivity and permeability can be functions of

frequency and temperature. In the case of snow, the values of these terms are determined

by the three constitutive elements of snow, i.e., ice, water, and air.

Where snow is dry, only ice and air need to be considered. Neither ice nor air are

conductive and the relative permeability of air and ice are both unity. The permittivity of air

approximates the permittivity of a vacuum. For ice, only the real part of the permittivity

need be considered, as the imaginary permittivity of ice is negligible across all relevant

frequencies [32] [33]. Therefore, for dry snow,

η =

√
µ

ε
. (3.5)

Additionally, the real part of the permittivity of ice does not vary greatly with respect

to frequency and temperature. Since a cubic centimeter of water weighs 1 gram and the

volume of a gram of ice is similar (albeit a little larger) than that of water, the density of

snow is about equal to the ratio of ice to air. Therefore, the permittivity of dry snow is

proportional to snow density.

The situation is complicated for wet snow because water has a conductivity and an

imaginary component in its permittivity. These terms make wet snow lossy. Also, for water

contents up to 8%, water contents in the pendular regime and the transition regime from the

pendular regime to the funicular regime, permeability becomes a function of water content.

The pendular rings, discussed in Section 2.3.1, provide loops through which current can
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circulate. These currents produce magnetic fields that result in magnetic loss measured by

the imaginary part of the permeability of the snow. For this reason, the water content of

snow can be correlated with magnetic loss up to water contents of 8% [34], [35].

3.1.2 Examples of Boundary Reflections in Snow

Since the differing physical properties that make up the different strata in a snowpack

have different ratios and distributions of snow, water, and air, the different strata have

different real and imaginary permittivities, conductivities, and permeabilities, resulting in

different wave impedances for the different layers. The different wave impedances result in

reflections at boundaries that have been capitalized on in previous studies to image aspects

of the physical stratigraphy of snowpacks [1]– [10]. Figure 3.1 provides an example.

In Fig. 3.1, the magnitude of backscatter is plotted as a function of range from several

positions deployed along a line 3.5 meters in length. The radar system responsible for the

image is positioned directly over the snowpack with the antenna mount oriented so that the

direction of propagation is substantially normal to the snowpack, i.e., a nadir transmit angle.

Several bands of bright return correspond to different electromagnetic boundaries within the

snowpack. An interesting feature is the bright red bar at a depth of 100 cm and a distance

of 3000 cm, which corresponds with the buried tracks of a snowmobile that were discovered

with the aid of a snowpit dug in the area of the scan [10].

Backscatter from specular reflections have been used to produce impressive maps of

property-specific stratigraphy within a snowpack. One of the more impressive examples is

found below in Fig. 3.2, which provides comparison plots from the study reported in [1], in

which a radar system approaching 1 cm range resolution is employed. The plot on the left-

hand-side provides the probability density function for backscatter as function of snowpack

depth. The plot on the right-hand-side provides the force required by a SnowMicroPen

(SMP) to penetrate the snowpack as a function of depth.

A SMP is capable of providing highly accurate measurements of penetration force at

extremely high resolutions measured in micrometers. The force required to penetrate snow

measures the hardness of snow, a property relevant to avalanche prediction. A review of the
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Figure 3.1: Magnitude of backscatter as a function of depth across a distance of 3.5 m, as
reported by [10].

two plots in [1] shows that a majority of the hardness transitions detected by the SMP are

reflected in the probability density function for the backscatter.

3.1.3 Reflections at Shallow Grazing Angles

Where a radar scans large distance of a snowpack remotely, the grazing angle is often

not normal and is often very shallow. According to Snell’s law of reflection, the angle of

incidence and the angle of refraction are equal:

Θi = Θr. (3.6)
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Figure 3.2: Comparison between the probability density function for backscatter from a
snowpack and the force required of an SMP to penetrate the same snowpack as functions of
snowpack depth. The plots are reported in [1]. On the left-hand side, a series of peaks occur
in the probability density function at certain depths in the snowpack. On the right-hand side,
it is learned that these peaks correspond to changes in snow hardness, or layer boundaries, as
determined by changes in force required of the SMP to penetrate the snowpack at given depths.
Lines are added to aid in the comparison.

This law is depicted in Fig. 3.3 in terms of an incident wave and a reflected wave

at the boundary of two media with different wave impedances. The transmitted wave is

also shown. The magnitude and sign of all three waves depicted, together with the angle

of transmission can be determined in conjunction with Snell’s law of refraction. A more

through discussion of these matters can be found in [36].
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Figure 3.3: A representative depiction of Snell’s law of reflection, with an incident wave, a
reflected wave, and a transmitted wave depicted on a three-dimensional Cartesian coordinate
system at the boundary between a first and a second medium with a first η1 and a second η2

wave impedance, respectively. The grazing angles for the incoming wavesΘi, reflecting waves
Θr, and the transmission angle Θt are also depicted.
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Figure 3.4: Depiction of backscatter from a rough surface. Features at the surface of a
boundary determine the direction of reflection where the size of the incident wavelengths are
commensurate with the size of the surface features.

For purposes of the present discussion, it is sufficient to note that a radar system

transmitting the incident wave is not positioned to receive the reflected wave from a smooth

surface. The energy is conducted away from the radar system for shallow grazing angles in

accordance with Snell’s law of reflection.

3.1.4 Surface Roughness

Not all energy, however, is conducted away from a radar system at boundaries be-

tween media with differing wave impedances. As wavelengths decrease in size, the boundary

between two layers of snow appears less and less like a smooth surface to the wave. Large

gaps can exist between individual ice grains and clusters of grains. Similarly, the boundary

may be defined by a layer of surface-hoar plates measuring in sizes similar to the 2 cm surface

hoar depicted in Fig. 2.9.

As the size of the wavelength becomes commensurate to the size of surface features at

the boundary, the surface features control the directions of reflections. The ability of surface

roughness to reflect waves at all angles generates backscatter even at shallow grazing angles,

as depicted in Fig. 3.4. The size of wavelengths corresponding to different frequency bands

of interest is provided in Table 3.1.
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3.2 Volume Scattering

Although boundary reflections play important roles, as discussed above, at the shal-

low, non-nadir grazing angles involved in remote, large-area radar scans, the majority of the

scatter for these scans comes from volume scattering—scattering from within the volume of

a layer of snow as opposed to at the boundary between two layers. As electromagnetic waves

propagate through a volume of snow, waves interact with grains of ice, clusters of grains,

and water inclusions. Insofar as these ice particles and water inclusions have dielectric prop-

erties, the electromagnetic waves act to polarize the material they encounter. The waves

are scattered and absorbed in the process. Additionally, currents generated in ring-shaped

water inclusions absorb energy out of the wave and the magnetic fields generated from the

pendular rings have their effect.

Unfortunately, modeling the scattering that takes place within a volume of snow is not

as easy as the modeling boundary reflections at homogeneous boundaries. To precisely model

the scattering and absorption that takes place in a volume of snow, Maxwell’s equations need

to be solved in terms of the size, shape, and location, of every grain of ice, cluster of grains,

and water inclusion. Solving for such a result is not feasible. Simplifying assumptions must

be made.

3.2.1 Mie Calculations

A drastic simplifying assumption, which is to be pared down later, is to work with

a single ice grain, cluster of grains, or water inclusion, and to assume that the subject is

a perfect sphere. This assumption is a poor assumption, especially for higher frequencies

and shorter wavelengths, for many layers in a snowpack, but serves to begin discussion.

Solutions to Maxwell’s Equations in terms of scattering and absorption for a homogeneous,

dielectric sphere in a homogeneous background media are first worked out by Mie [37]. The

solutions can be expressed in terms of the absorption efficiency ξa, scattering efficiency ξs,

and backscatter efficiency ξb of the sphere (as reported in [38]). These efficiencies express

a ratio of the cross-sectional area of the sphere to which perfect absorption, scattering, and

backscatter correspond. Therefore, the backscatter from the sphere can be calculated, in
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terms of the radius r and the backscatter efficiency ξb as:

σb = πr2ξb. (3.7)

The result for backscatter efficiency ξb from Mie’s solution leads to an expression that

takes the form of a converging series:

ξb =
1

χ2
|
∞∑

l=1

(−1)l(2l + 1)(al − bl)|2, (3.8)

where χ is the ratio of the diameter of the sphere to the wavelength λb in the background

medium:

χ =
2πr

λb

. (3.9)

The terms al and bl are known as the Mie coefficients and can be found with respect to the

ratio of the index of refraction for the material of the sphere ns to the index of refraction for

the material of the background nb:

n =
ns

nb

. (3.10)

The Mie coefficients al and bl can be solved for with Bessel functions with Complex

arguments or with the index of refraction n and the recursion formulas provided below [39]

(as reported in [38]):

al =
(Al

n
+ l

χ
)Re{Wl} −Re{Wl−1}

(Al

n
+ l

χ
)Wl −Wl−1

, (3.11)

bl =
(nAl + l

χ
)Re{Wl} −Re{Wl−1}

(nAl + l
χ
)Wl −Wl−1

, (3.12)

where:

Wl = (
2l − 1

χ
)Wl−1 −Wl−2, (3.13)

W0 = sin χ + j cos χ, (3.14)

W−1 = cos χ− j sin χ, (3.15)
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and

Al = − l

nχ
+ [

l

nχ
− Al−1]

−1, (3.16)

A0 =
sin n′χ cos n′χ + j sinh n′′χ cosh n′′χ

sin2 n′χ + sinh2 n′′χ
, (3.17)

and n is complex.

3.2.2 Volume Backscatter Coefficient

Once the backscatter efficiency ξb has been computed for a spherical ice grain, the

backscatter for a volume of snow σv comprising such ice grains can be computed. The

volume scattering coefficient σv can be thought of as a three-dimensional radar cross-section,

a measure of the cross-sectional area of a perfectly-reflecting sphere that would produce a

reflection equal to that of the volume in question. The computation of σv requires an estimate

of the number of spheres in that volume Nv. Once the estimate is made, the product of the

backscatter efficiency ξb and the cross-sectional area of the ice grain need only be summed a

number of times equal to the number of grains assumed to be in the volume:

σv =
Nv∑
i=1

πr2ξb. (3.18)

At this point, an aside is appropriate to reconsider wind-deposited snow as explained

in Section 2.2.2. Due to the abrasive processes of and the strong forces involved in wind

deposition, wind-deposited ice grains are packed tightly together. Wind-deposited snow is

characterized by its high density and the high number of ice grains that occupy its volume.

These high numbers of particles result in strong backscatter, pursuant to Eq. 3.18, from

wind deposited snow.

Wind-deposited snow plays an important role in avalanche formation by providing

the shear forces that cause many avalanches. Also, wind-deposited snow accumulates over

large areas, unevenly, and in very small amounts of time. These characteristics and the

indication that wind deposited snow may stand out in backscatter returns suggest that a

radar system’s ability to scan large areas quickly to assess accumulations of such snow may

prove to be one of the ways that a radar system can aid in avalanche prediction.
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3.2.3 The Rayleigh and Mie Regions in χ Space

As appreciated, computation of a volume scattering coefficient by means of the Mie

scattering solution is difficult and involved. Where |nχ| < 0.5, certain simplifying assump-

tions can be made. The region of χ space over which these assumptions can be made is

known as the Rayleigh region. Where these simplifying assumptions are made, Eq. 3.8 can

be reduced [40] to:

ξb = 4χ4|K|2, (3.19)

where K is a complex coefficient defined in terms of the complex index of refraction of

Eq. 3.10 as:

K =
n2 − 1

n2 + 2
. (3.20)

The assumptions that can be applied in the Rayleigh region greatly simplify compu-

tation of volume scattering coefficients, as a comparison of Eq. 3.19 and Eq. 3.20 to Eq. 3.8

through Eq. 3.17 makes apparent. The Rayleigh region is characterized by more than ease of

computation. Additionally, the Rayleigh region is characterized by an exponential increase

in backscatter efficiency as a function of χ, the ratio of the sphere radius to wavelength.

Where χ approaches 1 and larger values, the assumptions of the Rayleigh region no

longer apply. The region of χ space over which these larger values obtain is known as the

Mie region. The computationally intense, but more general, Mie equations must be used to

determine backscatter efficiency in this region. As with the Rayleigh region, the Mie region

is characterized by its computational requirements and by the trend in backscatter efficiency

as a function of χ.

In the Mie region, the trend changes from an exponential increase to damping oscil-

latory behavior. Figure 3.5 depicts the behavior of two spheres in the Rayleigh and the Mie

regions. The first sphere is a perfectly conducting metal sphere, where |n| = ∞. The second

is a sphere with only a finite, real index of refraction, n = 1.29.

The oscillations depicted in Fig. 3.5 arise due to resonances predicted by the Mie

equations. Such resonant behavior is not only predicted but has been observed in spherical

ice particles with resonant peaks occurring at eigenfrequencies for the spherical particles [41].

Spheres are not the only shape that exhibit resonant behavior. Ice particles of different
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Figure 3.5: Backscatter efficiency ξb as a function of χ for a sphere of infinite conductivity
(|n| = ∞) and a sphere with only a finite, real index of refraction (n = 1.29). The response in
both the Rayleigh and the Mie regions is depicted. (Adapted from [39].)

shapes demonstrate resonant behavior defined, in part, by the shapes. Resonance occurs at

eigenfrequencies determined by both the size and the shape of ice particles [41].

3.2.4 Lessons Learned from the Rayleigh and Mie Regions

The assumption of spherical particles and the ensuing discussion has some important

implications for the selection of transmit frequencies/wavelengths for an avalanche-prediction

radar system. First, in the Rayleigh regime, the smaller the wavelength, the better. De-

creasing wavelength size increases the value of χ. As demonstrated by Fig. 3.5, even small

increases, e.g., one-tenth, in χ result in increases of orders of magnitude in backscatter
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Table 3.1: Frequencies and Wavelengths Corresponding to Five Contiguous,
Microwave Frequencies Bands.

X-Band Ku-Band K-Band Ka-Band Q-Band

8 to 12 GHz 12 to 18 GHz 18 to 26.5 GHz 26.5 to 40 GHz 30 to 50 GHz
3.75 to 2.5 cm 2.5 to 1.7 cm 1.7 to 1.13 cm 1.13 to 7.5 mm 10 to 6 mm

efficiency. For wavelengths resulting in values of χ in the Rayleigh region for a range of

sizes of ice grains/clusters, backscatter magnitude may provide a means for determining

grain/cluster size.

Second, very small wavelengths are necessary to acquire information that may be

available from Mie scattering. Mie scattering has the potential to provide information about

size and shape because specific resonances occur at specific eigenfrequencies that are deter-

mined by size and shape. The possibility of detecting a particular size and/or shape is greatly

improved by checking for resonances at multiple frequencies to look for as many points of

agreement between backscatter data and expected resonance profiles. Distinguishing the

resonant profiles from different ice grains for the prediction of avalanche purposes does not

require exact shape recognition. Rather, for example, the ability to distinguish between the

resonance behavior of rounded shapes and and the sharp angular shapes of faceted grains is

all that is required.

To get a better feel for the transmission frequencies that might best take advantage

of the opportunities provided by Rayleigh and Mie scattering, tables are prepared with

information about different frequency bands. In Table 3.1, the wavelengths at the top and

bottom of five contiguous frequency bands are provided. In Table 3.2, the values of χ

corresponding to these frequency bands are provided for commonly occurring grain sizes.

The effect of clustering on Rayleigh and Mie scattering is not entirely clear and has the

potential to greatly complicate the preceding analysis.

The values in Table 3.2 suggest that to take advantage of information about size and

shape that may be embedded in Mie-scattering resonance profiles, high frequency bands are

desired. A common size associated with faceted snow in weak layers is 2 mm. This would
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Table 3.2: Values of χ at Various Frequency Bands for Various Grain Sizes.

Size X-Band Ku-Band K-Band Ka-Band Q-Band

0.5 mm 0.08 to 0.13 0.13 to 0.18 0.18 to 0.28 0.28 to 0.42 0.31 to 52
1.0 mm 0.17 to 0.25 0.25 to 0.37 0.37 to 0.56 0.56 to 0.84 0.63 to 1.00
1.5 mm 0.25 to 0.38 0.38 to 0.55 0.55 to 0.83 0.83 to 1.25 0.94 to 1.57
2.0 mm 0.34 to 0.50 0.50 to 0.74 0.74 to 1.11 1.11 to 1.68 1.26 to 2.09
3.0 mm 0.50 to 0.75 0.75 to 1.11 1.11 to 1.67 1.67 to 2.51 1.88 to 3.14
4.0 mm 0.67 to 1.01 1.01 to 1.48 1.48 to 2.22 2.22 to 3.35 2.51 to 4.19
5.0 mm 0.84 to 1.26 1.26 to 1.85 1.85 to 2.78 2.78 to 4.19 3.14 to 5.24

suggest, according to Table 3.2, a radar system transmitting at Ka-band or higher to acquire

data on Mie scattering.

Radar systems transmitting at lower frequency K-bands would be able to receive Mie

scattering from larger grain sizes. Although these larger grain sizes can and do play important

roles in faceted weak layers, especially in layers of depth hoar, grain sizes larger than 3 mm

become less and less common. Information about grain size from Rayleigh scattering could

profitably be obtained from a number of frequency bands, with the X-band remaining in the

Rayleigh region over all grain sizes recorded in Table 3.2. Again, the effect that clustering

has on the Rayleigh and Mie regimes is unclear and adds a complicating consideration.

3.2.5 Shape-accommodating Formulas

The use of the equations for either Mie or Rayleigh scattering requires the assumptions

of a perfect spherical particle. To accommodate the presence of water and variations in ice

grain size, volume scattering coefficients can be calculated with Eq. 3.18 for varying sizes

of spheres of ice and water with varying backscatter efficiencies. However, the ice grains,

clusters, and water inclusions are not confined to spherical shapes.

The faceted grains of interest are not spherical in shape and clusters take on shapes

that are much more complicated. As discussed in Section 2.3.1, water assumes narrow ring

and disk shapes within a snowpack—shapes that share little in common with a perfect sphere.

Importantly, the water inclusions, although small in size, have relative permittivities—many

times greater than the relative permittivity of ice. Therefore, as pointed out in [42], inaccu-
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rate shapes for water will have an important effect on calculations of the effective permittivity

of a volume of snow and of the backscatter that volume is expected to generate. This includes

the assumption that water coats ice grains with a spherical shell, a physical impossibility for

reasons set forth in Section 2.3.1.

A call to better accommodate shapes, especially for water inclusions, is made by [42].

In the reference, the mixing formula of Polder and Van Santen [43] is employed to model

ice grains as spheroids with various aspect ratios and surface hoar as disks. With the use of

these shape-accommodating formulas, a better fit is achieved for various data sets measuring

the permittivity of dry snow. The improved fits to permittivity are more impressive for wet

snow. For the wet snow, the mixing formula is used to model water inclusions as needle-like

shapes, more consistent with the pendular rings present in the pendular regime.

The shape-accommodating work of [42] is picked up and advanced in [44]. In [44], the

mixing formula of Polder and Van Santen [43] and a Debye-like method are used to accom-

modate shape. The methods are fit with some empirical fine tuning to previous data sets

and a large number of new measurements spanning 3 GHz to 37 GHz. As water content in-

creases, the accommodating shapes employed by the Polder-Van Santen models are changed

from needles to discs, in keeping with the distinction between the pendular and funicular

regimes. Interestingly, [44] provides a rare comparison of extinction between faceted and

non-faceted grains, demonstrating significantly more extinction for the faceted grains.

3.2.6 Future Areas of Research

Although the use of mixing formulas, like the Polder-Van Santen formula, demon-

strates the need to account for grain and water inclusion shapes to obtain accurate dielectric

permittivities, these dielectric permittivities need to be related to backscatter efficiencies and

backscatter coefficients. More importantly, the shapes and sizes of various grains and water

inclusions of interest need to be capitalized upon in an effort to find backscatter efficiencies

and volume scattering coefficients for these grains and water inclusions of interest.

Faceted grains have very small specific surface areas because of their angular geometry,

which are not taken into account by Polder-Van Santen formula that model them as elongated

spheroids. Additionally, faceted grains elongate in the direction of the temperature gradient
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in which they form. Perhaps this elongation would be detectable in a comparison between

the backscatter from different polarizations.

Additionally, as demonstrated in Fig. 2.12, the pendular rings in clusters of faceted

snow are smaller and tighter than the pendular rings in rounds. A possible way of detecting

faceted snow may come from the difference in the size of the pendular rings for faceted snow

as opposed to rounds. Many other possibilities exist that need to be pursued with an eye

toward determining the signature for properties of interest to avalanche formation.

3.3 Penetration

Generally, as has been suggested from the discussions in this chapter, as wavelengths

approach the size of the ice grains and water inclusions of interest, the likelihood of learn-

ing about those subjects of interest increases. However, as frequencies become higher and

higher and wavelengths become smaller and smaller, the wavelengths become more suscep-

tible to surface and volume scattering. At some point, the wavelengths become unable to

satisfactorily penetrate the snowpack.

Previous studies relying on specular reflection demonstrate the ability of frequency

bands up to Ku-band to penetrate an alpine snowpack without problem [8]. Question remain,

however, about higher frequency bands. A study seeking to better understand scatterometer

data of Greenland’s ice sheets provides an indication [45]. In the study, three 33 cm cubes of

firn snow are harvested and measured for dielectric permittivity at frequencies in Ka-band

(26.5 to 40 GHz). In the process, several extinction losses are measured ranging from of 5

dB/m to 10 dB/m.

The high density of the firn samples should be taken into account. At a standard

depth of 2m, a maximum 20 dB loss does not foreclose the possibility of using frequencies

in Ka-band. Indeed the measurements at 37 GHz in [44] support the feasibility of using this

band. However, the losses do suggest that the frequencies in Ka-band may constitute the

upper limit for frequencies that can be employed to probe an alpine snowpack’s properties.

However, if the opportunity presents itself, higher frequencies should be tried.
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3.4 Summary

The strata of a snowpack produce backscatter to a radar system with information

about the dielectric, geometric, conductive, and permeability properties of the snowpack.

This backscatter can come from surface reflections at boundaries or it can come from the

volume of the snow itself. At the shallow grazing angles involved in remote, large-area radar

scans, most boundary reflections conduct electromagnetic energy away from a radar system.

Surface roughness can provide an exception where wavelengths are relatively small compared

to the geometric features of a boundary, such as when a boundary is marked by the presence

of surface hoar.

The majority of the backscatter involved in remote, large-area radar scans comes from

volume scattering. The Mie and Rayleigh models assume a spherical scatterer can be used

for a very rough approximation of volume scattering. The dependence of volume scattering

on the number and density of particles, as suggested by these models, indicate that the

backscatter from wind-deposited snow may stand out, allowing radar systems to capitalize

on their ability to scan large areas quickly to provide information about this dangerous and

difficult-to-assess snow form. Additionally, these models suggest the importance of small

wavelengths and possibly the use of multiple frequencies to learn about the size and shape

of ice grains.

In the Rayleigh region, small increases in frequency or small increases in scatterer

size result in large differences in backscatter efficiency. In the Mie region, different sizes,

shapes, and electrical properties result in different resonant frequencies. Points of agreement

between an expected resonance profile and the received backscatter data may provide the

means to decipher the properties upon which that profile depends. As stated, the properties

can be very general, such as faceted versus rounded shapes.

The problems with assuming spherical ice grains and water inclusions becomes ap-

parent where the results of the assumptions are confronted with data, especial with respect

to water content, because of its high relative permittivity. The use of mixing formula to pro-

duce shape-accommodating models like the Polder-Van Santen model produce results that

fit data much better. These models account, albeit roughly, for the thin shape of pendular

rings and the elongated nature of ice grains.
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Nevertheless, the models need to be translated from models of dielectric permittivity

to volume backscatter coefficients. What is more, properties of shape and distribution need

to be focused on in an effort to make the volume backscatter coefficients correspond to snow

forms of interest, like faceted grains. Specific surface area, elongation along the axis of facet-

forming temperature gradients, and size and distribution of pendular rings provide a few

examples of characteristics that need modeling.

3.5 Design Parameters

Phenomena such as Rayleigh scattering, Mie resonance, and backscatter from sur-

face roughness suggest that the highest transmit frequencies possible can provide the most

backscatter and the most information about snow properties. In the Rayleigh regime, higher

frequencies and their shorter wavelengths, lead to exponential increases in backscatter. At

sufficiently high frequencies, resonance profiles from Mie scattering provide information

about ice grain, ice cluster, and water inclusion shape and size. However, the ability of

a frequency band to penetrate a snowpack places an upper limit to frequencies. Although

higher frequency bands ought to be tried, indirect measurements suggest that the Ka-band

defines this upper limit.

The Ka-band has frequencies sufficiently high to provide Mie scattering for ice grains

1.5 mm in size and larger–encompassing most grains of interest. Size and shape informa-

tion is encoded in resonance profiles from Mie Scattering that are a function of frequency.

Therefore, the more frequences within Ka-band in the transmit signal, the more information

collectable about sizes and shapes. The ability to distinguish between faceted and rounded

grounds would prove enormously helpful for avalanche prediction. Additionally, the smaller

wavelengths associated with frequencies in this band are likely to result in backscatter at

surfaces covered with the large plate-like structures of surface hoar, even when angles are

shallow, possibly providing a means for detecting these dangerous structures.

Ka-band places several ice grain sizes out of the Rayleigh regime. To acquire in-

formation about size from the Rayleigh regime, a second band of transmit frequencies is

beneficial. For the common sizes of ice grains found in alpine snowpacks, the frequencies

of the X-band keep scattering in the Rayleigh regime. The larger wavelengths associated
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with X-band are more likely to experience specular reflections away from the radar at strong

boundaries, such as crusts, for shallow grazing angles, possibly providing a means for detect-

ing these structures. Therefore, an ideal radar system transmits many frequencies in the X-

and Ka-bands.
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Chapter 4

Design of a Synthetic Aperture Radar System Capable of Remotely
Reconstructing Snowpack Stratigraphy Over Large Areas

The stratigraphy of a snowpack can be considered in terms of the cohesive properties

of the snowpack’s strata, or layers, the friction properties between differing layers, and/or

the shear forces that these layers generate. Snowpack stratigraphy considered in these terms

comprises a mechanical system that determines whether or not an avalanche forms. Proper-

ties of layer cohesion, friction, and shear forces generated by snowpack layers are derivative

properties that depend on more fundamental properties within a snowpack, such as density,

porosity, grain/crystal size, grain/crystal shape, cluster size, cluster shape, water content,

and water distribution.

Radar systems can remotely collect data about the backscatter from a snowpack

over a large area relatively quickly. Since backscatter data may reflect the fundamental

properties that are characteristic of the cohesive properties of layers, the friction properties

between differing layers, and/or the shear forces that these layers generate, radar systems

may overcome deficiencies in current avalanche prediction methods by assessing at least

some avalanche risks at a safe distance, over large areas, relatively quickly. However, this

backscatter data must be in a form that can be reconstructed to provide information about

the overall stratigraphy and the corresponding mechanical system, which determines whether

or not a particular snowpack slides.

4.1 Radar System Requirements

A radar-based reconstruction of stratigraphy is, however, a complicated proposition

with several prerequisites. First, relevant properties of the snowpack must be detectable from

backscatter data. Second, measurement of the degree to which those properties manifest
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themselves must be possible from the backscatter data. Third, the relative location of

the properties must also be determinable. Finally, the radar-based reconstruction must

be achievable by a radar system that is practical in terms of its construction, cost, and

deployment in the mountainous terrain where avalanches occur.

4.1.1 Ultra-high-resolution Requirement

In order to satisfy the first two prerequisites of detecting and assessing a property,

or collection of properties, associated with poor cohesion, poor friction, and/or high shear

forces, a radar system must be able to differentiate backscatter. The radar system must

differentiate backscatter originating from the region of the property or properties in question

from backscatter originating from elsewhere in the snowpack and from the ground. The

resolution of a radar system quantifies the ability to differentiate backscatter from different

regions. Since the layers in which avalanche-relevant properties reside can be relatively

thin, the regions from which backscatter must be differentiated are small. A radar-based

reconstruction of stratigraphy capable of satisfying prerequisites one and two, therefore,

requires ultra-high resolution.

4.1.2 Requirement to Account for the Orientation of a Radar System Relative
to the Layers in a Snowpack

As discussed above, at shallow grazing angles, layer boundaries produce specular re-

flections that conduct electromagnetic energy away from a radar system. To receive backscat-

ter from specular reflections at boundary layers, the radar system must be oriented so that

its range direction, or line-of-sight, is normal to the snowpack and its layers. There are

additional reasons why the orientation of the radar’s line-of-sight can be important.

As discussed below in the section on radar basics, the principal axis along which

resolution is measured for all radar systems is defined by the line-of-sight of the radar system.

Resolution along a radar system’s line-of-sight is known as range resolution. However, ultra-

high range resolution alone is not sufficient to differentiate the backscatter from different

regions in a snowpack. The orientation of a radar system’s line-of-sight relative to the

orientation of the planes described by the layers within a snowpack plays important roles.
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Figure 4.1 depicts a stationary radar system deployed in a setting of mountainous

terrain where avalanches occur. Slopes are the dominant feature of mountainous terrain.

The sloping nature of mountainous terrain greatly changes the relative orientation of a

radar’s line-of-sight to layers in a snowpack from one location to another. Additionally,

mountainous terrain is rugged, and the surface of the bed on which a snowpack reposes

undulates and varies widely from location to location. As the stationary radar system scans

across a snowpack, the slope and the undulations greatly change the relative orientation

of the radar system’s line-of-sight. Usually, the resultant lines of sight correspond with

shallow grazing angles at which specular reflections conduct electromagnetic energy away

from a radar system. As a result, the line-of-sight will vary from less common orientations

normal, or near normal, to the layers in the snowpack (as in the expanded view of angle

1 in Fig. 4.1) to more common orientations that are widely oblique and even parallel to

the planes described by the layers in the snowpack (as in the expanded view of angle 2 in

Fig. 4.1). These oblique angles for the line-of-sight correspond with shallow grazing angles

at which specular reflections conduct electromagnetic energy away from a radar system.

In the expanded depictions of the relative orientations of the radar system to the

snowpack layers in Fig. 4.1, the hash marks disposed along the two-sided arrows, which depict

different lines-of-sight, indicate regions that are distinctly resolvable for a radar system with

ultra-high-range resolution. However, even with ultra-high-range resolution, at least four

distinct problems prevent the satisfaction of the first three prerequisites outlined above.

First, prerequisites one and two, that properties or collections of properties rele-

vant to possible avalanche formation be detectible and quantifiable are not satisfied because

specular reflections at non-nadir, shallow grazing angles do not produce backscatter with in-

formation about the snowpack. Second, prerequisites one and two are not satisfied because

the backscatter from the regions where these properties may occur is often confused with

backscatter for regions with different properties.

Figure 4.1 is helpful in demonstrating why this occurs. Where the orientation of the

line-of-sight is normal, or near normal (as in the expanded depiction for angle 1) relative to

the planes described by the snowpack layers, individual, distinct layers, depicted by pattern

and color variations, occupy distinctly resolvable regions along the line-of-sight. For example,
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Figure 4.1: Deployment of a stationary radar system in mountainous terrain with expanded
views of the orientation of the radar system’s line-of-sight relative to the snowpack layers.
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in the expanded depiction for angle 1, the white layer entirely occupies the third resolvable

region; and, the dark blue layer (possibly representing a frozen crust) occupies a large enough

portion of the fourth and fifth resolvable region to be detected and assessed despite competing

backscatter from white and light blue layers. The light blue layer and the red layer (possibly

comprising dangerous faceted crystals) will entirely occupy additional resolvable regions,

thereby becoming detectable and quantifiable.

However, where the orientation of the line-of-sight becomes more acute, as it ap-

proaches a parallel orientation (as in the expanded depiction for angle 2) relative to the

snowpack layers, the backscatter from individual, distinct layer can become confused. For

example, in the expanded depiction for angle 2, the distinctly resolvable regions indicated by

the hash marks cut across all four layers depicted. Backscatter from adjacent layers becomes

combined. As a result, detection of distinct properties within distinct layers becomes highly

problematic and measurement of those properties becomes even more difficult still.

Third, prerequisites one and two are not satisfied because the range resolution relative

to layer thickness also changes as the orientation of the radar system relative to the snowpack

layers changes. As the relative orientation goes from normal to parallel, becoming more acute,

the range resolution more finely cuts across snowpack layers, as observable in the comparison

between angle 1 and angle 2 in Fig. 4.1. The changing resolution relative to layer thickness

further complicates interpretation of the backscatter.

Fourth, the prerequisite of being able to determine the relative location of properties

within a snowpack is not satisfied. A radar beam at an acute grazing angle to the layers

in a snowpack travels a greater distance through each layer than a radar beam normal to

the layers of the snowpack (as appreciated from a comparison of the expanded depictions

for angle 1 and angle 2). The different distances traveled by a radar beam have implications

for a radar system’s ability to determine the relative location of different regions within a

snowpack. Therefore, to satisfy the first three prerequisites for a radar-based reconstruction

of snowpack stratigraphy, a radar system must not only have ultra-high-range resolution,

but must also account for variations between the orientation of the radar beam relative to

snowpack layers.
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4.1.3 Discounting the Effect of Varying Orientations of a Radar System Relative
to the Layers in a Snowpack by Three-dimensional, Ultra-high-resolution,
Volume Imaging

The effect of variations in the relative orientation of a radar system’s line-of-sight

to snowpack layers can be discounted for a radar system capable of imaging a snowpack in

three dimensions. Such a radar system must offer ultra-high resolution, not just along the

system’s line-of-sight, but also along two additional axes orthogonal to the line-of-sight. The

images rendered from such a radar system are sometimes referred to as tomographic images.

In a tomographic image, the three orthogonal dimensions along which resolution is

defined combine to create voxels, the three-dimensional analog to the pixel. The resolution

along each of the three axes defines the size of the three dimensional region of the snow-

pack about which each voxel provides backscatter information. These voxels are arrayed

to produce a series of cross-sectional images that combine to account for the volume being

imaged. The term tomography comes from the Greek terms “tomos,” meaning a slice or

a section, and “graphein,” meaning to write [46]. Figure 4.2 depicts a collection of empty

voxels defining the structure of a tomographic image.

A three dimensional image of volume, with a structure as depicted in Fig. 4.2, presents

backscatter as stacks of resolution cells, or voxels, each voxel corresponding to the backscat-

ter from a particular region in the snowpack. Volume scattering, as opposed to specular

reflections, becomes the primary source for the backscatter imaged in the voxels. Since vol-

ume scattering is much less affected by the grazing angle, the angle no longer needs to be

maintained normal to the snowpack at nadir.

Also, when the resolution is the same along all three axes, the most that the snow-

layer, relative resolution may vary is by a factor of
√

3, consistent with a 45◦ tilt on two

dimensions. The orientation of the line-of-sight of the radar system may vary with respect

to the layers in a snowpack, but if the resolution along all three axes, depicted by the two-

sided arrows in Fig. 4.2, is commensurate with the thickness of the thinnest relevant layer,

the backscatter from that layer will be primarily confided to a band of voxels. Therefore, a

radar capable of three-dimensional, ultra-high-resolution, volume images greatly discounts
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Figure 4.2: A collection of empty voxels depicting the structure of a three-dimensional,
volume, or tomographic image.

the importance of the relative orientation of the radar system to snowpack layers for the

reconstruction of snowpack stratigraphy.

Consequently, the radar system is better able to detect and to assess the properties of

the layers, regardless of the orientation of the line-of-sight, satisfying the first two prerequi-

sites for reconstructing the stratigraphy of a snowpack. Additionally, the third prerequisite

of being able to determine the relative location of snow properties is satisfied since the rel-

ative location of each voxel is known. Prerequisite four, namely, that the radar system is

practical in terms of its construction, cost, and deployment in mountainous terrain, requires
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a radar system that can run on low amounts of power. As discussed in more detail below,

low power permits use of smaller, cheaper, and more rugged components.

4.1.4 Summary of Radar System Requirements

Based on the four prerequisites discussed above, a radar system is required that can

image volumes in three-dimensions, with ultra-high resolution, and with low power. Al-

though radar systems exist that can image, have ultra-high resolution, run on low power,

and even image in three dimensions, no radar system presently exists that satisfies all re-

quirements concurrently. A new radar system must be developed. An understanding of the

workings of this new system requires an understanding of twists on some of the most funda-

mental principles of radar. Therefore, an explanation of this new radar system proceeds by

briefly laying a foundation with some basic radar principles.

4.2 Radar Basics

A radar (an acronym for Radio Detection and Ranging) system transmits electromag-

netic energy at radio frequencies. All radars modulate the radio signal they transmit. The

modulation in the transmit signal results in information in the receive signal reflected back

to the radar from a scatterer (the term scatterer is used with the understanding that the

scatterer may be an aggregate of several smaller scatterers). The vestiges of the modulation

in the transmit signal picked up in the receive signal provide information from which knowl-

edge may be derived about a scatterer. This section on radar basics discusses ways in which

(1) the distance to and (2) the location of a scatterer can be determined. The section also

discusses (3) resolution between scatterers with respect to range, and (4) resolution between

scatterers with respect to axes orthogonal to the axis range.

4.2.1 Range

Range is a measure of the distance between a radar system and a scatterer responsible

for backscatter detected by the radar. As mentioned, range is measured along the axis defined

by a radar system’s line-of-sight. Modulation of the transmit signal can be used to determine

the range of a scatter by the appearance of a vestige of the modulation in the echo from that
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Figure 4.3: Use of amplitude modulation to determine range.

scatterer. To determine range, the transmit signal may be modified in terms of amplitude,

frequency, or phase.

Amplitude Modulation Approach to Range

The most basic radar systems rely on amplitude modulation to produce pulses of

electromagnetic radiation in the transmit signal. The pulse of electromagnetic radiation

travels to a scatterer and returns in the form of an echo (Fig. 4.3). Range is determined by

the delay time between the transmit signal and its echo, known as the “time-of-flight” τ .

The time-of-flight represents the time required for the transmit signal to reach and to

return from a scatterer. As shown in the top half of Fig. 4.3, as time progresses, a pulse of

electromagnetic energy, corresponding to a modulation of a radar system’s voltage, travels
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along the radar system’s line-of-sight to a scatterer. In the bottom half of Fig. 4.3, the echo

from the scatterer is depicted taking the same amount of time to return to the radar system,

where the echo will cause an increase in the radar system’s voltage, resulting in detection of

the scatterer. Hence, the scatterer’s range is simply half the time-of-flight τ multiplied by

the speed of light, as expressed (for an alternative discussion see [47]):

R =
cτ

2
. (4.1)

Frequency Modulation Approach to Range

Frequency modulation radar systems (FM radars) modulate the frequency of the

transmit signal through a range of frequencies. Since frequency describes the rate of change

in phase with respect to time, the notion of an instantaneous frequency changing with respect

to time is a construct. In actuality, phase is what changes from time to time. The construct

of instantaneous frequency is arrived at by taking the derivative of the rate of change of

phase with respect to time. A function that describes a linear rate of change in frequency

is really derivative of a quadratic function describing changes in phase with respect to time

[48].

Figure 4.4 plots the instantaneous frequency for a transmit signal (solid line) with

respect to time for a Linear Frequency Modulated, Continuous Wave (LFM-CW) radar. The

bandwidth B is the difference between the maximum frequency and the minimum frequency

of the transmit signal. In a LFM-CW radar, when the transmit frequency reaches the

maximum frequency, the radar returns the transmit frequency to the minimum frequency,

below the central frequency fc corresponding to the horizontal axis in Fig. 4.4. Figure 4.4

also depicts the time-delayed receive signal (dashed line) as an echo from a scatterer.

In such a radar system, the rate of instantaneous frequency change has a constant

magnitude. As a result, the frequency value of the transmit signal changes with respect to

time with the saw-wave pattern depicted in Fig. 4.4. The instantaneous frequency in the

receive signal follows the same saw pattern with respect to time at the same rate of change.

However, the receive signal is shifted in time with a delay τ due to its time-of-flight to and

back from the scatterer.
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Figure 4.4: Use of frequency modulation to determine range.

The manner in which FM radars modulate transmission signals, as described above,

determines the manner in which FM radars can determine scatterer range. As with other

forms of radar, range may be determined by the delay time between the transmit signal and

its echo. Hence, a scatterer’s range is simply half the time-of-flight τ multiplied by the speed

of light (Eq. 4.1).

Time-of-flight is determined from a measure of the change in instantaneous frequency

∆f between the instantaneous frequency of the transmit signal and that of the receive signal.

From the change of instantaneous frequency ∆f , the time required for this change, i.e., the

time-of-flight τ can be determined if the rate of frequency change r is known,

τ =
∆f

r
. (4.2)

67



As depicted in Fig. 4.4, during the time period for each cycle T , the transmission

signal begins at the lowest frequency and rises to the maximum frequency. In the process,

the transmit signal spans the bandwidth B. The rate of frequency change, therefore, is equal

to the bandwidth divided by the period T ,

r =
B

T
. (4.3)

LFM-CW radars determine the change in frequency ∆f by passing the transmit and

the receive signals to a mixer. The output of the mixer provides signals at frequencies equal

to the sum and the difference of the two inputs. The sum frequency is filtered out, leaving

the difference frequency, i.e., the change in frequency ∆f . As discussed, dividing the change

by the rate of change provides the time-of-flight, from which range is determined by Eq. 4.1.

(Eor an alternative discussion see [38].)

4.2.2 Use of Range and Antenna Orientation to Locate a Scatterer in Three-
dimensional Space

A radar can locate a scatterer in three-dimensional space by determining the range

to the scatterer and the direction from which the scatterer causes the echo in the receive

signal to re-traverse that range. The range and the direction create a vector that points to

the location of the scatterer. An echo from a scatterer must come from a direction receiving

sufficient radiative energy from the radar, as determined by the three-dimensional beam

pattern of a radar’s antenna. Since a radar antenna radiates electromagnetic energy in a

predetermined, three-dimensional pattern, the direction from which the echo returns to the

radar can be approximated by the orientation of the antenna, i.e., the radar system’s line-

of-sight. This conceptually intuitive point can be quantified by the radar equation, which

describes the amount of power available from a known scatterer at a particular location in

three-dimensional space for a particular antenna configuration (see [49]).

Antenna Beam Patterns

The radiation pattern of an antenna is expressed in terms of Watts per steradian. A

steradian is the three-dimensional analog of the radian, describing two-dimensional angular
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Figure 4.5: Diagram of a steradian.

spans in three-dimensional space, just as the radian describes one-dimensional angular spans

in two-dimensional space. More precisely, a steradian describes the solid angle Ω (an angle

rotated about a central axis resulting in a cone-like shape) subtended at the center of a

sphere of radius r by a portion of the surface of the sphere having an area equal to the

radius squared, as shown in Fig 4.5.

Radiation patterns are usually depicted in a normalized form known as the normal-

ized radiation pattern. The normalized radiation pattern is normalized with respect to the

maximum value of the radiation pattern. The ratio is expressed in terms of decibels (dB).

The normalized radiation pattern is a function of both azimuth φ and elevation Θ.

Commonly, normalized radiation patterns are depicted as cross sections of the overall

patterns in terms of a single axis, usually azimuth. The cross section is taken for a particular

value of elevation or azimuth, for example, elevation equals zero. The depiction can be pre-

sented in terms of a polar diagram (decibels are plotted as a function of radially distributed
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Figure 4.6: Beam pattern as a function of azimuth at elevation zero.

angles) or a rectangular diagram (decibels are plotted as a function of linearly distributed

angles). An example of a rectangular diagram of a cross-section at an elevation of zero is

presented in Fig. 4.6.

As illustrated in Fig. 4.6, a main beam usually occupies the central angles of a beam

pattern. The width of the main beam can be described in terms of cut off points such as

-3 dB (a one-half reduction in power), -10 dB, and null-to-null. Often, as in Fig. 4.6, there

is a drop of 20 dB, or greater, to the nearest side lobe. Since a drop of 20 dB is equal

to about one-hundredth of the original power, the vast majority of the power is radiated

by the antenna in the direction of the main beam, as determined by the orientation of the
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antenna. As a result, the vast majority of the backscatter reflected back from the antenna

has its origin at a scatterer in the path of the main beam. (For an alternative discussion of

steradian and beamwidth see [38].)

Determination of Beam Path from Antenna Orientation

By windowing out side lobes, a radar system can insure that only scatterers in the

path of the main beam produce sufficient backscatter to be detected. Where the main beam

is centered about zero degrees in terms of both azimuth and elevation, the normal to the

antenna’s aperture (an antenna’s aperture is the area from which the antenna radiates)

describes the direction of the main beam. As stated, combining the directional information

with the range information generates a vector pointing to the location, in three dimensional

space, of the scatterer detected by the radar.

4.2.3 Resolution

Resolution quantifies the ability to distinguish the backscatter originating from a first

scatterer from the backscatter originating from an adjacent, second scatterer in terms of the

distance between the two scatterers. Resolution is defined along an axis. The axis described

by the path of the main beam is known as the range axis, and the resolution along this axis

is known as the range resolution. When backscatter data is processed to form an image,

as discussed below, the two- and three-dimensional cells that make up a radar image are

defined by resolution along a second and a third axis respectively.

Range Resolution for Amplitude Modulated Radar

For amplitude modulated radar (AM Radar), range resolution is a function of pulse

duration. The dependence of resolution on pulse duration becomes clear by assuming a

first scatterer separated from a second scatterer by a distance less than half the distance

covered by the speed of light during the pulse duration, as depicted in Fig. 4.7. In Fig. 4.7,

three different scenarios are depicted in which the relative distances between two scatterers

is increased. The top portion of Fig. 4.7 shows a transmit pulse as it approaches, encounters,

and passes the two scatterers at various points of time within a series of discrete samples
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Figure 4.7: Resolution as a function of pulse duration for amplitude modulated radar.
(Adapted from [38], Fig. 17.9.)

of time. The bottom portion of Fig. 4.7 shows the echo from the two scatterers in the

receive signal. Unlike the top portion of Fig. 4.7, in the bottom portion of Fig. 4.7, time is

continuous and is depicted across the horizontal access.

In the first scenario depicted in Fig. 4.7, the distance between the two scatterers is

less than half that traveled by light during the pulse. As a result, the echo from the second

scatterer overlaps the echo from the first scatterer when the two echoes are received by

the radar system, as shown for the first scenario in the bottom portion of Fig. 4.7. Unless

something is known about the scatterers beforehand, which is generally not the case, the
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echoes from the two scatterers cannot be distinguished. In the second scenario, the scatterers

are spaced further apart, but their echoes still result in some ambiguity in their return signals.

In the third scenario, the scatterers are spaced further apart than light can travel

in the time of the corresponding pulse’s duration. As a result, the two scatterers can be

resolved in the receive signal. The resolution of an AM radar systems can, therefore, be

expressed in terms of pulse duration,

∆r =
ctp
2

. (4.4)

AM radars have poor resolution because light travels about 300 meters in a single

microsecond. Achieving pulse durations of less than a micro-second is difficult, because of

the amount of energy that must be concentrated in each pulse. As electromagnetic energy

radiates from a radar system’s antenna, it spreads in three-dimensional space so that only

a very small fraction reaches any particulary scatterer. Similarly, electromagnetic energy

reflected back to the radar also spreads in three-dimensional space so that the amount of

energy from a particular scatterer is a very small fraction of the transmitted energy. To

compensate, the amount of energy transmitted must be very large.

However, to achieve any kind of resolution, the energy must be crammed into short

pulses, resulting in enormous amounts of power. For example, the amount of energy that

must be concentrated in a microsecond, or near microsecond, pulse requires megawatts of

power for a typical weather radar system. Further shortening pulse duration requires even

more power, placing impractical demands on circuitry, the antenna, and the power supply

of a radar system.

To meet these demands, AM radar systems tend to be large, expensive, bulky, fragile,

and relatively un-portable. Even when compromised by these incumbrances, an AM radar

has poor resolution, measured in tens to hundreds of meters. However, to resolve the layers

in a snowpack, resolution must be measured in centimeters. As explained below, to achieve

range resolutions measured in centimeters and to avoid large power requirements, frequency

modulation is required.
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4.2.4 Power Distribution Afforded by Frequency Modulation

FM radars have a distinct advantage with respect to power requirements. For an equal

amount of transmission energy, the Signal to Noise Ratio (SNR) for pulse-modulated radars

and FM radars is about the same [50]. However, pulse-modulated radars must concentrate all

of their energy during a short pulse. Conversely, FM radars can distribute energy uniformly

throughout the entire frequency modulation cycle of arbitrary duration. Since FM radars

can distribute the energy over arbitrary durations of time, they do not require large bursts of

power. The ability to distribute power throughout an entire cycle has important implications

for SNR and hardware.

Since the hardware associated with FM radars does not have to handle large pulses

of power, the size, weight, and expense of hardware can all be reduced. As appreciated,

circuitry capable of handling Watts, or even fractions of Watts, as opposed to a mega Watt

or more, is relatively small, light weight, and inexpensive. Radar systems of extreme light

weight, versatility, and low expense can be constructed when power requirements are low [51].

Range Resolution for Frequency Modulated Radar

For an AM radar, range resolution is a function of pulse duration, i.e., a width defined

by a span of time in the time domain. For FM radar, range resolution is inversely proportional

to a span of frequencies in the frequency domain [52].

In the frequency domain, the width of the transmit signal is determined by the band-

width of the transmit signal. Due to the inverse relationship between the frequency and the

time domains, the larger the bandwidth over which an FM radar sweeps a transmit signal,

the narrower the constructive pulse width in the time domain for the signal. Hence, larger

bandwidths result in better resolution for a radar system.

Figure 4.8 depicts the inverse Fourier transform on two transmit signals with differing

bandwidths. The first transmit signal has a larger bandwidth than the second. As the inverse

Fourier transform on the two transmit signals shows, the width of a signal in the time domain

is inversely proportional to the width of the signal in the frequency domain [53].
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Figure 4.8: Inverse relationship between the frequency and time domains. (Adapted from
[53], Fig. 4.11.)
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The inverse relationship between the bandwidth B of the transmit signal and the

constructive pulse width tcp of that signal can be expressed as:

tcp =
1

B
. (4.5)

Additionally, the relationship in Eq. 4.5 suggests that an equation analogous to Eq. 4.4,

which determines range resolution for AM radars, can be created for FM radars, namely:

∆r =
c

2B
. (4.6)

Ultra-high Range-resolution Requirement

As stated, range resolution must be high in order to satisfy the first two prerequisites

of the radar system, namely, the ability to detect and to measure a property, or collection of

properties, associated with poor cohesion, poor friction, and/or high shear forces. The layers

that exhibit these properties of interest can vary widely in their thicknesses. Often layers

of interest can be as thin as a couple of centimeters, or even a centimeter or less. In order

to detect and to measure properties, the ratio of backscatter from the layer of interest to

backscatter from the surrounding snow in the cell of resolution must be as large as possible.

According to Eq. 4.6, a radar system with a bandwidth of 15 GHz, would have a range

resolution of 1 cm. Although such a resolution would be ideal, practical limitations make a

bandwidth of 1.5 GHz more attainable. Referring back to Eq. 4.6, a bandwidth of 1.5 GHz

results in a resolution of 10 cm (approximately 4 inches). A resolution of 10 cm corresponds

to a layer-of-interest-to-surrounding-snow ratio of about 1 to 9 for the very thinnest layers,

holding open the possibility of detecting and measuring the properties of even the thinnest

layers of interest—many layers of interest are much thicker, will have better ratios, and will

be much easier to detect and to assess.

As discussed above, a radar system capable of reconstructing the stratigraphy of a

snowpack must be able to image in three dimensions. In fulfillment of this requirement, the

resolution along each axis of the imaging voxels should be equal, i.e., 10 cm.
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Figure 4.9: Comparison between a radar detection display and a radar image.

4.2.5 Imaging

The common conception of a radar system embodies the function of these systems

during the Second World War, namely, the detection of scatterers, or targets, and the deter-

mination of the location of these targets in multi-dimensional spaces. Less widely appreciated

is the ability of radar systems to make two-dimensional, and even three-dimensional maps,

or images, of the backscatter characteristics of a particular region. Figure 4.9 contrasts

the traditional notion of radar, embodied by a phosphorescent radar sweep display, with an

example of an image produced by a radar system.

As discussed, an image of the backscatter of a snowpack may be able to reconstruct

a stratigraphy of that snowpack over large areas in terms of avalanche relevant properties.

As also discussed, such an image is comprised of pixels, or voxels in the three-dimensional

case, that are delineated one from another along multiple, orthogonal axes. The creation

of these pixels/voxels requires the ability to determine location and resolve along multiple,

orthogonal axes.
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Footprint Location Determination and Resolution

To image in three dimensions, location determination and resolution must be possible

along three orthogonal axes. Frequency modulation of the transmit signal makes possible

location determination and resolution along a first axis. However, a means for determining

backscatter location and for resolving backscatter from different regions must still be provided

for two additional, orthogonal axes.

The location determination and resolution necessary for imaging can be achieved in

two orthogonal dimensions by means of the footprint illuminated by the antenna of a radar

system. In Fig. 4.10, the depicted antenna illuminates a footprint in a plane orthogonal

to the range direction. A non-coherent radar system attached to this antenna records the

backscatter from all the scatterers in the illuminated footprint—the differing phase from the

various scatterers adding constructively and destructively—to provide a real measurement

of the intensity of the backscatter in the illuminated footprint.

Since the backscatter from the entire illuminated footprint is combined in a single

measurement, the dimensions of the illuminated footprint define the resolution of a non-

coherent radar system. As depicted, the height and the width of the footprint respectively

define the elevation and the azimuth resolutions. Antenna footprints can also be used to

determine the location from which backscatter arises.

By moving the antenna, the resultant footprint illuminates different regions of the

orthogonal plane. By temporally indexing the location of the antenna with the region pre-

dicted to be illuminated by the footprint from the moving antenna, an image of the intensity

of the backscatter from different regions can be produced. This non-coherent radar mapping

mode is known as Real Beam Ground Mapping (RBGM) [54].

In Fig. 4.11, the antenna of a radar system is mounted on an airplane to perform

RBGM. The flight path of the plane describes a trajectory such that at different times the

footprint of the antenna occupies a different cell in an imaging grid. Measurements of the

footprint at times when it is centered in different cells in the grid are combined to create

an image of the intensity of backscatter. The resolution of the image mapping backscatter

intensity is defined by the dimensions of the footprint.
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Figure 4.10: Footprint-dependent resolution for azimuth φ and elevation Θ.

Footprint Resolution

The dimensions of the footprint illuminated by an antenna are functions of the az-

imuth and elevation beam widths and the range, as depicted in Fig. 4.12 for a circular antenna

with a circular footprint. Footprint dimensions increase with range as demonstrated by the

four footprints in Fig. 4.12. Since the footprint is circular, the variable Θ is used for both

azimuth and elevation angles. The azimuth and elevation dimensions of the footprint can be

expressed as:

∆az = RΘaz, (4.7)

∆el = RΘel. (4.8)
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Figure 4.11: Real Beam Ground Mapping.

4.2.6 Inverse Relationship Between Antenna Size and Beam Width

Equations 4.7 and 4.8 show that the antenna of a radar system must have a small

beam width to support fine footprint resolution. An antenna couples electromagnetic energy

traveling in a wire or a wave guide into the air or vice versa. The orientation and distribution

of electromagnetic energy, in terms of a real or impressed current, over the area at which this

coupling takes place determines the way in which that electromagnetic energy propagates,

including the confines of the beam width.
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Figure 4.12: Footprint dimensions as a function of range and beam width.

Beam Width from the Perspective of Signals and Systems

From the perspective of signals and systems, the coupling of electromagnetic energy

that occurs at an antenna can be viewed as a dynamic system. The current distribution

across the coupling area of the antenna constitutes the input signal. The antenna beam

width constitutes the output signal generated by the system. Maxwell’s equations hold the
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same regardless of the location of a unit of current, resulting in the same radiative properties

and making the system position invariant.

The output of an invariant system to an input signal can be determined by convolving

the input signal with the response of that system to a single impulse. The nature of the

impulse depends on the nature of the system. For example, the output signal y(t) from a

system that is time invariant can be determined by convolving the input signal x(t) with the

response from the system to a unit of energy at time zero, with infinitesimally small duration,

known as a delta function. This response is the impulse response h(t) [55]. Therefore,

y(t) =

∫
x(t)h(t− t′)dt′. (4.9)

The impulse provided to the coupling system of an antenna is not a delta function, but

is defined by the function that describes a unit of current on the coupling area of the antenna

with respect to position, not time. Assuming a sinusoidally alternating current, which to

first order approximates the transmit and receive signals of an antenna, the impulse is a

sinusoid defined by a specific frequency, which in the frequency domain manifests as a pair

of frequency-shifted delta functions.

The impulse response for this position-invariant system is determined by the response

of the system to this sinusoid. This response can be derived directly from Maxwell’s equa-

tions, but with some difficulty. The sinusoidal nature of the impulse results in electromag-

netic waves that lend themselves to description by the wave equation:

52 ~E + k2 ~E = jωµ ~J, (4.10)

where ~E is a vector describing the radiated electric field, k is the wave number, and ~J is a

vector describing the current at the antenna.

Unfortunately, the wave equation provides solutions, such as longitudinal waves, that

are not permitted by Maxwell’s equations. To avoid this problem, the wave equation is

reworked with some vector identities to be expressed in terms of a vector ~A known as the
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magnetic vector potential, which is consistent with Maxwell’s equations,

52 ~A + k2 ~A = −µ~J. (4.11)

Altering the wave equation so that it is consistent with Maxwell’s equations by means of

the magnetic potential vector is ubiquitously described in the literature and can be found in

many textbooks, such as [56]. By solving for the magnetic potential and setting the equation

for the magnetic potential equal to the convolution of the unknown impulse response g(~r−~r′)

and the current distribution ~J , the impulse response can be solved for,

~A(~r) =
−µ~J(~r)

(52 + k2)
=

∫
~J(~r)g(~r − ~r′)d~r′. (4.12)

The derivation of the commonly-used solution requires many steps, including the use

of spherical coordinates and the solving of a differential equation. The derivation of a Green’s

function will not be undertaken here, as the subject is treated in several readily-available

texts, such as [57]. The result g(~r − ~r′), however, is provided:

g(~r − ~r′) =
µ

4π

e−jk|~r−~r′|

|~r − ~r′| . (4.13)

As appreciated, the Green’s function is a function of two variables: ~r′, which corre-

sponds to a point in space on the area of the antenna at which coupling of electromagnetic

energy takes place, and ~r, which corresponds to a point in the spatially characterized out-

put. However, for all points in the output signal at a sufficient distance from the antenna,

certain simplifying assumptions can be made. The region over which the particular set of

assumptions important to this discussion can be made is known as the Far Field Region,

traditionally defined as any point greater than ten wavelengths from the antenna.

In the Far Field Region, the phase term can be simplified by the mathematical ap-

proximation that:

~r′ ' r − r̂ · ~r′, (4.14)
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where the term r̂ is a unit vector from the antenna to the output point in question, so that

the phase term is:

e−jk|~r−~r′| ' e−jkre−jkr̂·~r′ . (4.15)

The magnitude term can be further simplified insofar as the r̂ term can be neglected:

1

|~r − ~r′| '
1

r
. (4.16)

At this point, the system output ~Aff (~r) can be determined by convolving the spatially

distributed input signal ~J(~r′) with the Green’s function,

~Aff (~r) =
µ

4π

e−jkr

r

∫
~J(~r′)e−jkr̂·~r′d~r′. (4.17)

Beam width with respect to azimuth and elevation can now be determined by changing

from a Cartesian coordinate system to a spherical coordinate system defined in terms of

azimuth φ and elevation Θ angles. A Cartesian coordinate system is maintained at the

antenna so that:

r̂ = x̂ sin θ cos φ + ŷ sin θ sin φ + ẑ cos θ, (4.18)

~r′ = x′x̂ + y′ŷ, (4.19)

and

r̂ · ~r′ = x′ sin θ cos φ + y′ sin θ sin φ. (4.20)

Therefore, the relevant wave numbers can be expressed as:

kx = k sin θ cos φ, (4.21)

ky = k sin θ sin φ, (4.22)

and

kr̂ · ~r′ = kxx
′ + kyy

′. (4.23)

84



After the following discussion on aperture antennas, the foregoing results for the wave num-

bers will be used to explore the relationship between antenna size and beam width.

Aperture Antennas

Having determined the spatial impulse response of the system, having made the

simplifying far-field approximations, and having changed the output coordinate system to

be expressed in terms of azimuth and elevation angles, this discussion has almost advanced to

the point where the inverse relationship between antenna size and beam width can be easily

explored. One conceptual development remains. Beam width can be effected not only by

the shape and size of the antenna’s coupling area, but the relative magnitudes of the current

distributed across that area. To understand the relationship between antenna size and beam

width, it is necessary to make the relative magnitude irrelevant by making it uniform across

the coupling area.

Many antennas radiate electromagnetic energy by sending a current down a wire or

across a metal strip. However, the current takes time to travel down the wire or strip. If the

current is an alternating current, the current is not uniformly distributed in terms of phase,

resulting in differing amplitudes. Aperture antennas, however, are capable of providing a

uniform phase and amplitude distribution and can be made with a coupling area of any

shape or size.

An aperture antenna, as its name implies, can be understood as a hole in a sheet of

conducting material. Plane waves arrive along an orientation normal to the surface of that

plate. As the plane waves encounter the sheet, the waves are either diffracted as they pass

through the aperture or are converted into surface currents on the sheet.

The antenna system, as developed in the previous section, expects a current distri-

bution as its input. Although an aperture antenna has no current distribution across the

aperture that makes up the coupling area of the antenna, a constructive current distribu-

tion can be impressed within the aperture. The impressed current is the equivalent current

capable of generating the uniform electromagnetic fields that appear on either side of the

aperture.
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Figure 4.13: Aperture diffraction.

The current can be derived by the continuity boundary condition on the magnetic

field, as required by Maxwell’s equations:

~J(x, y) = ẑ × { ~H(z = 0+)− ~H(z = 0−)}, (4.24)

leading to:

~J(x, y) = −x̂{Eo(x, y)

ηo

+
Eo(x, y)

ηo

}, (4.25)

leading to:

~J(x, y) = −x̂
2Eo(x, y)

ηo

. (4.26)

An illustrative example of incident waves, aperture, conducting sheet, diffracted waves, and

impressed current J(x, y) is provided in Fig. 4.13.

The preceding derivation ignores the influence of any surface currents on the conduct-

ing sheet. A horn antenna provides an example of an aperture antenna for which these surface
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Figure 4.14: Uniform distribution across the aperture of a horn antenna.

currents can be ignored. In a horn antenna, the plane waves incident upon the aperture are

provided by a waveguide that is tapered into a horn shape at its far end. The aperture is

described by the perimeter of the mouth of the horn without any surrounding conducting

material. Figure 4.14 depicts a horn antenna on a coordinate system providing definition

of the plane of the aperture and the direction of electromagnetic radiation. As indicated

in Fig. 4.14, the waveguide delivers incident waves of uniform amplitude and phase to the

aperture. The uniformity of the phase distribution is important to the synthetic aperture

radar systems discussed below, which cannot be created without accurate phase information.
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Inverse Relationship Between Antenna Size and Beam Width

With the spatial impulse response of the system, simplifying far-field approximations,

the output coordinate system expressed in terms of azimuth and elevation angles, and uni-

form illumination, the conceptual foundation is in place for an intuitive explanation of the

inverse relationship between antenna size and beam width. To demonstrate this inverse re-

lationship, a sinusoidal current is applied across a square area, with a uniform amplitude,

producing a two dimensional rect function in terms of the amplitude. This two-dimensional

rect constitutes the current distribution, which is convolved with the Green’s function below.

~Aff (~r) = −x̂
µ

4π

e−jkr

r

∫ ∫
2Eo(x

′, y′)
ηo

e−j(kxx′+kyy′) dx′dy′. (4.27)

From the way in which the magnetic vector potential is derived, the electric field in

the far field can be found from the magnetic vector by,

~Eff = jωr̂ × (r̂ × ~Aff ) = ~Υ(r, θ, φ)F (θ, φ), (4.28)

where ~Υ(r, θ, φ) is a term that takes care of terms unrelated to the beam pattern and F (θ, φ)

describes the pattern of the electric field. The cross products of Eq. 4.28 and the scaling

factor in Eq. 4.27 can be peeled off:

~Υ(r, θ, φ) = −r̂ × r̂ × x̂
µ

4π

e−jkr

r
, (4.29)

so that

F (θ, φ) =

∫ a/2

a/2

∫ b/2

b/2

2Eo(x
′, y′)

ηo

e−j(kxx′+kyy′) dx′ dy′, (4.30)

where a is the length of the aperture with respect to the x axis, b is the length of the

aperture with respect to the y axis, and the function F (θ, φ) is known as the beam pattern

and determines the beam widths with respect to azimuth and elevation.
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Since the incident electric field Eo(x
′, y′) takes a value of one at all locations on the

aperture, the terms in the beam pattern equation can be rearranged to take the form:

F (θ, φ) =

∫ a/2

a/2

2Eo(y
′)

ηo

e−jkxx′ dy′
∫ b/2

b/2

2Eo(x
′)

ηo

e−jkyy′ dx′. (4.31)

Equation 4.31 is recognizable as having the same form as a Fourier Transform for each

dimension of the two-dimensional surface of the coupling area of the antenna. As discussed

above in Section 4.2.4, the Fourier transform of a rect function is a sinc function. Whereas, in

Section 4.2.4, the rect function describes the input in the frequency domain, the rect function

for the antenna system describes the input current distribution in the spatial domain of the

antenna’s coupling area. Similarly, whereas, in Section 4.2.4, the sinc function describes the

output in the time domain, the sinc function for the antenna system describes the output in

the beam width domain of the antenna’s azimuth and elevation beam patterns.

As in Section 4.2.4, the larger the rect function, the higher and the more narrow

the sinc function. Therefore, the greater the length of the antenna in one dimension, the

more narrow the beam width corresponding to that dimension. This inverse relationship is

depicted below in Fig. 4.15 for a square antenna coupling area of two different sizes, each

with uniform current distributions.

Returning to the equation for beam pattern and performing the transforms provides

the result:

F (θ, φ) =
2

ηo

[
sin πa

λ
sin θ cos φ

πa
λ

sin θ cos φ
][
sin πb

λ
sin θ sin φ

πb
λ

sin θ sin φ
], (4.32)

where the sinθ cos φ and sinθ sin φ terms fall out from Eqs. 4.21 and 4.22. Focusing on

elevation angle and setting azimuth to zero, an equation for the beam width can be derived.

Noting that a sinc function has a magnitude of zero when its argument is an integer,

sin πa
λ

sin θ
πa
λ

sin θ
= 0, (4.33)

when
πa

λ
sin θ = 1. (4.34)
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Figure 4.15: Inverse relationship between aperture dimensions and beam widths.
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Therefore, discounting the factor of π with the factor of 2 necessary to provide the entire

beam width Θnull:

Θnull = arcsin
λ

a
(4.35)

which by the small angle approximation, assuming λ/a << 1, can be approximated as:

Θnull ' λ

a
. (4.36)

4.3 Synthetic Aperture Radar

The dependence of resolution upon beam width (Eqs. 4.7 and 4.8) and the inverse

relationship between beam width and antenna size (Eq. 4.36) require impractically large an-

tenna sizes. For example, to obtain 10 cm resolution in azimuth and elevation at a frequency

of 15 GHz and a range of 300 m, Eqs. 4.7, 4.8 and 4.36 require an antenna of 60 m by 60

m. Not only would the construction of such a large antenna be cost prohibitive, but the

deployment and the scanning of such an antenna over avalanche terrain are impractical.

A practical solution to the problem for the required resolution entails synthesizing a

large antenna aperture from a smaller antenna. A radar system relying on a synthesized an-

tenna aperture is known as a Synthetic Aperture Radar (SAR) system. Figure 4.16 depicts

a small antenna occupying several different positions over time. As explained below, infor-

mation received from these different positions allows a SAR system to achieve much smaller

resolutions than those predicted by Eqs. 4.7, 4.8 and 4.36 for the small antenna aperture

from which a synthetic aperture is created.

A non-coherent RBGM system ignores different phases associated with backscatter

traveling different paths back to the system antenna. Hence, backscatter sums constructively

and destructively in a non-coherent fashion. Conversely, a coherent SAR system harnesses

phases associated with echoes traveling different paths to variously located antenna positions,

such as those depicted in Fig. 4.17, to synthesize a large aperture from a small antenna.
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Figure 4.16: Footprints for a real and a synthetic aperture created from a single small antenna.

4.3.1 Focusing Metaphor

As discussed in [38], such a synthetically-derived aperture can be viewed as the lens

of a camera. Just as the aperture of a camera focuses the light received by the camera

from a subject at a particular location, the synthetic aperture of a SAR system focuses on a

scatter at a particular location by accounting for the proper delay time for each constitutive

antenna position so that the backscatter from that scatterer can come into phase. The

scatterer comes into focus as the backscatter from the scatterer in question adds coherently.

Backscatter from locations on which the system is not focused are sum destructively, causing

the response from the focused location to come to the fore.
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Figure 4.17: Differing ranges to a single scatterer from different antenna positions.

Intuition into the manner in which a synthetic aperture is created by coherently

focusing upon particular locations in a field of view is aided by an example of a radar system

that only records real data. Such a system, as depicted in Fig. 4.18, relies on an array of

antennas that transmit and receive at the same time and a summer that sums the returns

from the antennas. Each antenna in the array is identical to the others and is equally spaced

from adjacent antennas. However, the cabling lengths between the antennas in the array

and the summer differ.

The cable lengths are adjusted to re-phase the backscatter from the various antennas.

Cables corresponding to antennas closer to the scatterer (those in the middle of the array)

are longer to allow the phase to progress to the phase reached at antennas farther from the

scatterer. For this reason, the cables depicted in Fig. 4.18 are less and less doubled back on

themselves for antennas at the edges of the array.
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Figure 4.18: The focusing of an array on a particular scatterer location. (Adapted from [38],
Fig. 9.1.)

The illustration becomes even more clear by making a false assumption, for the sake

of argument, that the phase velocity in the cabling is the same as it is in free space. Under

this assumption, re-phasing occurs when the sum of the distance to the scatterer and the

distance of the cable associated with each antenna are equal, as expressed by the equation:

L1 + R1 = L2 + R2 = L3 + R3 = L4 + R4 = L5 + R5 = L6 + R6 = L7 + R7. (4.37)
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Figure 4.19: The focusing of an array on a scatterer offset to the side.

Therefore, the backscatter from the location at which the array is focused sums constructively

and comes to the fore.

By changing the cable lengths, the antenna array can focus on a different location,

as depicted in Fig. 4.19. In Fig. 4.19, the antennas to the right are closer to the target.

Therefore, the cables attached to the antennas on the right are longer to allow the phase to

progress to the point it reaches for the antennas on the left, over the long distances traveled

by the backscatter to these antennas.

The same focusing ability of the real antenna array depicted in Fig. 4.18 and Fig. 4.19

can be created synthetically with a single antenna that occupies the same positions at dif-
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ferent times. This synthetic approach is depicted in Fig. 4.20 in terms of a data capturing

step (upper half of Fig. 4.20) and a data processing step (lower half of Fig. 4.20). The data

capturing step involves positioning a single antenna at different positions at different times.

At each time-specific position, the antenna captures backscatter from a common scatterer

with different phase, arising from differing distances between the antenna and the scatterer.

A voltage amplitude, induced by the backscatter, with an amplitude and phase, is recorded

at each temporally-indexed, antenna position.

The data processing step involves shifting the phase of each of the time-indexed

measurements of voltage amplitude and phase in memory. This phase shift is accomplished

by multiplying each measurement by the appropriate phase. In traveling to and from the

scatterer to each antenna position, a phase shift of 2kRi accumulates, where k denotes the

wave number and i denotes the time-indexed antenna position. Therefore, the appropriate

phase by which to multiply each measurement is the conjugate of the same phase accumulated

for the position corresponding to that measurement, as depicted in the lower half of Fig. 4.20.

Once multiplication by the measurement-specific phases brings the phases of each

measurement in sync, the measurements are added by the summer. In this way, the backscat-

ter from the scatterer at the location of interest adds constructively and comes to the fore.

The synthetic array can be re-focused to an alternative location of interest, as in Fig. 4.19,

by multiplying by the conjugate of the phases that would accrue for each antenna position

over for this new location of interest.

Therefore, by accounting for the phase to each antenna position for backscatter from

a location of interest, an aperture focused on the location of interest can be synthetically

stitched together from time-indexed positions of a moving antenna. The resultant synthetic

aperture can be steered electronically by changing the phases by which each time-indexed,

antenna-position measurement is multiplied, in a manner analogous to the way in which an

array of antennas can electronically steer a beam pattern. The real and synthetic arrays

depicted in the previous figures are all deployed along a single axis to create an aperture

of length DSAR, as depicted in Fig. 4.17. However, the same principles that allow for the

synthetic creation of an aperture in a first dimension allow for the creation of an aperture

in two dimensions.
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Figure 4.20: Capturing of backscatter by a synthetically created array (aperture) and pro-
cessing of that backscatter to focus on a particular scatterer. (Adapted from [38], Fig. 9.1.)
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4.3.2 Phase Progression as a Carrier of Information Determining Backscatter
Location

A SAR system uses phase information not only to synthetically stitch together a larger

aperture, allowing for improved resolution, but also uses phase information to determine

the location, with respect to an axis along which the antenna is deployed, of the resolved

backscatter. As the antenna progresses along the length of the synthetic aperture, the slant

range Rs (the distance from an antenna position to a scatterer) varies with the position of

the antenna, causing phase to change according to the formula:

φ = 2kRsi, (4.38)

where i indexes an antenna position.

For a predetermined range along the direction normal to the synthetic aperture,

backscatter travels different slant ranges to the different antenna positions. According to

Eq. 4.38, different phase shifts result that can be used to determine the location from which

the backscatter originates. However, phase shifts between antenna positions can be ambigu-

ous as they cannot be used to determine location where the different slant ranges vary by

more than a quarter of a wavelength—a phase shift of π radians. To determine the location

of backscatter along the axis of the aperture for larger distances, information about the

progression of phase is required.

As discussed, the different slant ranges from each antenna position result in a different

phase corresponding to each position. Regardless of the time taken to move the small antenna

from one location to another, the antenna positions in a synthetic aperture can be indexed

to times that would be required to achieve each position if the small antenna were to move

at a uniform rate. By indexing antenna positions to these times, the phases corresponding

to these positions can also be indexed, and a time dependent function of phase φ(t) can be

created.

The phase function φ(t), as indicated by Eq. 4.38, is a function of slant range Rs.

When slant range Rs, which is a function of antenna position, is also related to the same time

index created by the assumption of uniform motion, the resultant time-dependent function

98



Figure 4.21: Schematic depiction of the variation of slant-range Rs with respect to an axis
(azimuth or elevation) orthogonal to the range axis. These slant ranges Rs correspond to
discrete time samples.

is a parabola:

Rs(t) = α + βt2, (4.39)
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Figure 4.22: Changing slant range Rs and phase progression φ(t) as a function of posi-
tion/time, resulting in parabolic and more hyperbolic shapes respectively.

where α is the range to the scatterer along the axis normal to the synthetic aperture from its

center and β describes the concavity of the parabolic shape. Figure 4.21 depicts discreetly

sampled slant ranges describing a parabolic shape as a function of time.

The function that describes phase progression φ(t), therefore, is:

φ(t) = 2kRs(t) = 2k(α1 + βt2). (4.40)

The additional factor of 2k results in more of a hyperbolic than a parabolic shape. The

parabolic shape of slant range Rs and the hyperbolic shape of the phase progression φ(t),

which are both functions of position-dependent time, are compared in Fig. 4.22.

The farther a scatterer is from being centered with respect to the synthetic aperture,

the more the slant range changes as a function of antenna position/time and, therefore, the
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more the phase changes. The increasing rate of change in slant range, which drives the

rate of change in phase progression, can be seen by comparing Fig. 4.21 and Fig. 4.23. In

Fig. 4.23, the scatterer is offset to one side. The more the scatterer is offset to the side of a

particular antenna position, the larger the component of the slant range Rs from the antenna

position that traverses the distance along the axis defined by the synthetic aperture. The

greater the component of the slant range Rs traversing this axis, the greater the slant range

Rs. Therefore, the position of the antenna along the axis of the synthetic aperture plays a

larger role in determining the slant range Rs.

The increasing rate of change in slant range as a function of antenna-position/time

can be seen in the slope of the parabolic shape of the function describing slant range. For a

scatterer centered in front of the synthetic aperture, at a great distance from the synthetic

aperture, the change in slant range between antenna positions is very small. Therefore,

the slope of the parabola is very small between these time-dependent antenna positions.

For a scatterer closer to and distinctively offset to one side of the synthetic aperture, as

in Fig. 4.23, the slopes between time-dependent, antenna positions on the parabolic fit are

larger, corresponding to the steeper walls on either side of the parabola, as shown in Fig. 4.23.

Since the rate of phase progression φ(t), as shown by Eq. 4.40, depends on the rate of

change in slant range Rs(t), the rate of phase progression increases the more offset a scatterer

is from center. The rate of phase progression, for a particular range, therefore, determines

the location of a scatterer along the axis defined by the synthetic aperture, whether azimuth

or elevation.

The rate of phase progression is simply the slope of the function describing phase

φ(t), which can be found by taking the time derivative of this function. As discussed in

Section 4.2.1, the derivative with respect to time of the phase function is the instantaneous

angular frequency w(t),

w(t) =
d

dt
φ(t) = 4kβt. (4.41)

So the instantaneous frequency is f(t):

f(t) =
w(t)

2π
= (

4kβ

2π
)t = (

4β

λ
)t. (4.42)
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Figure 4.23: Schematic depiction of the variation of slant-range Rs length with respect to an
axis orthogonal to the azimuth and cross-track axes. These slant ranges correspond to discrete
time samples for a scatterer offset to one side.
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Figure 4.24: Linear chirp created by differing slant ranges.

Equations 4.41 and 4.42 describe a linear change in frequency with respect to time,

or a chirp, as shown below in Fig. 4.24. As discussed in the section on range resolution,

instantaneous frequencies within a chirp can also be indexed to location. Each frequency,

or phase progression rate, corresponds to a different distance relative to the center of the

synthetic aperture. The higher the frequency, the greater the distance.

As discussed, an FM radar embeds a frequency chirp in the transmit signal, from

which range distances normal to a synthetic aperture are determined. By deploying a small

antenna to create a synthetic aperture in a direction orthogonal to the range direction, a
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Figure 4.25: Two-dimensional synthetic aperture created by a grid of positions occupied over
time by a small antenna.

second chirp is created for the azimuth direction. By deploying the same antenna in a

second direction orthogonal to the first two—so that the antenna occupies the points in a

two-dimensional grid similar to that depicted in Fig. 4.25—a third chirp may be created for

elevation.

In other words, for each position in the azimuth direction, the antenna occupies

a series of positions in the elevation direction to create a chirp in the same way as the

azimuth chirp is created. These three chirps correspond to three orthogonal axes, as shown
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Figure 4.26: The three orthogonal chirps used to determine backscatter location in three
dimensions.

in Fig. 4.26, allowing the location of backscatter to be pinpointed in three-dimensional space.

In this way the backscatter from volumes can be mapped and imaged.

Need for a Ground-based Platform

Although the technology of using SAR radar systems to image volumes is not preva-

lent, it has been demonstrated for airplane-mounted antennas [58] [59] [60] [61]. For example,

airplanes have been used as a platform to scan an antenna in grid patterns similar to the

pattern in Fig. 4.25 to map the density of forest canopies [62]. However, motion problems

rule out the use of airplanes as a platform for a two-dimensional, SAR system used to image

a snowpack in three dimensions.
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The creation of synthetic apertures requires knowledge of antenna position to within

a fraction of a wavelength because SAR systems rely on phase information to stitch together

the synthetic aperture and to determine the locations from which backscatter originates.

The location of an antenna mounted on an airplane platform can only be determined to an

accuracy measured in tens of centimeters to meters. However, the wavelengths corresponding

to frequencies in X- and Ka- bands suggested in Chapter 3 range from 3.75 cm to 7.5 mm

(See Table 3.1). Therefore, antenna location must be known to within about a millimeter of

accuracy. A ground-based platform is much more suited to achieve this kind of accuracy.

4.3.3 Azimuth and Elevation Resolutions for a Synthetic Aperture

The small aperture of a small antenna can be stitched into an antenna that is large in

two dimensions by a phase-informed focusing of time-indexed antenna positions. According

to Eqs. 4.7, 4.8 and 4.36, the larger the aperture, the better the resolution in azimuth and

elevation. These equations suggest that arbitrarily fine resolution can be achieved for azimuth

and elevation by simply scanning a small antenna over a sufficiently-large, two-dimensional

grid of positions.

Although it is correct that larger position grids increase resolution, resolution cannot

be made arbitrarily fine. Additionally, these real-antenna-based equations are off by a factor

of 2 in describing the resolutions achievable for a synthetic aperture, for reasons discussed

below.

Small-antenna Dependent Limit on Resolution

Achievable resolution has a floor dictated by the ceiling that is set for the potential

length DSAR of the aperture in a given dimension. This ceiling on aperture length is inversely

proportional to the beam width of the small antenna used to generate the synthetic aperture.

Resolution is, in turn, as shown below, inversely proportional to the small antenna beam

width.

Figure 4.27 depicts the inverse relationship between small antenna beam width and

potential aperture length. In Fig. 4.27, the leading edge of the beam width of the small

antenna in a first position coincides with the trailing edge of the small antenna in a second
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Figure 4.27: Limit on the length of a synthetic aperture imposed by the beam width of the
small, constitutive antenna. (Adapted from [38], Fig. 9.7.)

position at a certain range. As appreciated, the maximum length of the synthetic aperture

cannot exceed the distance between the two positions. In a scenario where the length of

the synthetic aperture exceeded this limit, the beam from at least one position would not

encompass the scatterer depicted in Fig. 4.27.

The maximum length of a synthetic aperture is equal to the distance between the

two antennas. Otherwise, the beams from all the antenna positions would not encompass

the scatterer. The beam from a third antenna position located equidistant from the first two

spans the distance between the first two positions at the range in question. Therefore, the

maximum dimension of the synthetic aperture depends on the span of the beam from the
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small antenna at the range in question,

DSARMAX
= RΘ. (4.43)

Equations for Resolution as a Function of Synthetic Aperture Dimensions

For real antennas, footprint resolution is determined by the product of beam width

and range (Eqs. 4.7 and 4.8). Equation 4.36 states that beam width for a given dimension

is primarily the ratio of wavelength to the length of the aperture in that dimension. This

relationship does not hold, however, for a synthetic aperture.

The beam width of an antenna, for a given dimension, results from differing phases

associated with waves originating at different locations of an aperture. Differences in phase

arise when the beam, or a portion thereof, describes an angle that is not normal to the

antenna surface, resulting in different, position-dependent, travel distances for the waves,

as shown for a synthetic aperture in Fig. 4.28. The contours of the beamwidth are defined

when the differing phases add destructively at a certain angle, preventing the transmission

and reception of power at that angle.

In Fig. 4.28, a portion of the beam describes an angle Θ1/2 from antenna positions

1 and 2. (These positions correspond to locations at the leading and trailing edges of an

aperture.) Since the scatterer that reflects these beams is far off, the paths traveled from the

two positions to the scatterer can be considered to be parallel. As the position on the right is

closer to the scatterer, the distance to the scatterer from that position, i.e. R7 is less than the

distance to the scatterer from the position on the left R1. A simple trigonometric calculation

determines the difference in the distance traveled for the two positions ∆xsinΘ1/2. For a

real antenna, the differential phase can be determined from this differential distance:

∆φ = k∆xsinΘ1/2. (4.44)

When the differential phase equals π radians

k∆xsinΘ1/2 = π, (4.45)
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Figure 4.28: Phase shift between antenna positions. (Adapted from [38], Fig. 9.7.)

the beams from the two antenna positions cancel each other out, defining the limit of the

beam width. Therefore,

Θ1/2 = arcsin
π

k∆x
= arcsin

λ

2∆x
. (4.46)

So the half beam width can be stated and approximated as:

Θ1/2 = arcsin
λ

2∆x
' λ

2∆x
, (4.47)

and the full beam width can be approximated as:

Θ ' λ

∆x
. (4.48)
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The discrepancy between beam width equations for real and synthetic apertures arises

because in a synthetic aperture, the difference in phase with respect to two locations of the

aperture accrues not only in route to a scatterer, but along the return path as well. In

a real antenna, only the phase accumulated during the trip to the scatterer is important

because all locations across the aperture are available to receive backscatter. In a synthetic

aperture, the antenna only exists at one location at a time. As a result, all backscatter must

return along the same antenna-position-specific path that the original beam traveled to the

scatterer. Therefore, the phase accumulation is double for a synthetic aperture, meaning the

phase differential accumulates to π twice as quickly, or in half the length, with the result

that at the beam-width limit:

2kDSARsinΘ = π. (4.49)

So the beam width becomes

Θ = arcsin
π

2kDSAR

= arcsin
λ

2DSAR

' λ

2DSAR

. (4.50)

At this point, Eqs. 4.7 and 4.8 can be modified to provide the azimuth and elevation

resolutions for a SAR radar system.

∆raz =
Rλ

2DSARaz

, (4.51)

∆rel
=

Rλ

2DSARel

. (4.52)

In the event that the synthetic aperture can be deployed to a sufficient length to

achieve maximum resolution, Equation 4.43 can be substituted into Eqs. 4.49, 4.51, and 4.52,

which in turn can be informed by Eq. 4.36 to provide a result for the absolute resolution

achievable for a given small antenna dimension,

∆rMAX
=

π

2kDSARMAX

=
Rλ

2DSARMAX

=
Rλ

2RΘ
=

λ

2Θ
=

λ
2λ
l

=
l

2
, (4.53)

where l is the given small antenna dimension.
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Table 4.1: Length of Each Dimension of a Synthetic Aperture as a Function
of Range and Frequency.

Frequency (GHz) Band 100 m 300 m 500 m 1000 m

15 Ku 10 m 30 m 50 m 100 m
22.25 K 6.74 m 20.2 m 33.71 m 67.43 m
33.75 Ka 4.4 m 13.3 m 22.2 m 44.4 m
40 Ka 3.75 m 11.25 m 18.75 m 37.5 m

As shown in Eq. 4.53, when the synthetic aperture can be deployed to a sufficient

length, resolution is independent of range and is a function of only the dimension of the

small antenna used to create the synthetic aperture along the axis being resolved. When the

synthetic aperture cannot be deployed to a sufficient length to achieve maximum resolution,

Eqs. 4.51 and 4.52 determine resolution.

To collect snowpack data over large areas, areas that would include the slopes on

which avalanches form, data must be collected from ranges of a little under 100 m to 1000

m, on the very high end. According to Eqs. 4.51 and 4.52, these ranges play an important

role in determining azimuth and elevation resolution. Frequency/wavelength also plays an

important role, with higher frequencies improving resolution. Potential interactions with

snow crystals, ability to penetrate snowpack, and implications for resolution suggest fre-

quencies in the X-, Ku-, K-, and Ka- bands be employed. Table 4.1 provides the lengths of

a side of a square synthetic aperture for which an antenna needs to be deployed for selected

ranges between 100 m and 1000 m and selected frequencies from the K-bands.

4.3.4 Resolution, Bandwidth, and Angle of Integration

As discussed in Section 4.3.2, the location from which backscatter originates can be

determined from chirps corresponding to three orthogonal axes. As discussed in Section 4.2.4,

the degree to which backscatter can be resolved with respect to the range axis, the axis normal

to the surface of the synthetic aperture, is a function of the bandwidth of the chirp in the

transmission signal (see Eq. 4.6). Therefore, the achievable resolution with respect to the

azimuth and elevation axes should also be a function of available bandwidth within the chirps

corresponding to these axes. Mathematically, this expected result can be demonstrated.
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Figure 4.29: Depiction of the geometry of the angle of integration Θint

The distance between the center of the aperture and a scatterer D and the length of

the aperture, DSAR, determine the angles over which backscatter is received. The largest

angle is known as the angle of integration, Θint, and is depicted in Fig. 4.29.

The angle of integration can be determined trigonometrically,

Θint1/2
= arctan

DSAR

2

D
. (4.54)

Rearranging either Eq. 4.51 or Eq. 4.52 in terms of Eq. 4.54 and using the small angle

approximation provides a result that allows resolution to be expressed in terms of angle of

integration Θint and the central frequency fc,

∆r =
Dλ

2DSAR

=
c

2fc2 tan Θint1/2

' c

2fcΘint

. (4.55)
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The product of the central frequency fc and the angle of integration Θint approximates

the bandwidth Baz/el of the chirp generated by the different phases arising from the different

slant ranges to the target. Therefore, resolution along the azimuth and elevation axes can

be expressed as:

∆r =
c

2Baz/el

. (4.56)

As predicted, Eq. 4.56 has the same form as the equation used to determine range

resolution (Eq. 4.6). Interestingly, the higher the central frequency and the shorter the

wavelength, the better the resolution. This observation corresponds with intuition because

at shorter wavelengths, phase changes more rapidly with differing slant ranges. Additionally,

the larger the integration angle, the better the resolution. (For an alternative discussion

see [54].)

4.3.5 Deployment Modes

To improve resolution, the bandwidth of the transmit signal and the size of integration

angles should be maximized. Different approaches to deploying the constitutive antenna

result in differing integration angles. Three common modes of deployment are referred to

as the stripmap mode, the geometric mode, and the steered spotlight mode. These three

modes are depicted in Fig. 4.30.

The stripmap mode deploys the constitutive antenna in a straight line. The circular

mode circles the constitutive antenna around a target location, and the spotlight mode pivots

the antenna around one location before moving to a next location. Although much larger

angles of integration are achievable by the spotlight mode and especially by the circular

mode, these methods are limited in the areas they cover. Scanning of large areas, such as

those where avalanche issues are a concern, are best achieved with the stripmap mode, the

mode for which resolution is explored in the preceding sections.
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Figure 4.30: Three modes of deploying a synthetic aperture.

4.3.6 Sampling Requirements

A coherent radar system, such as a SAR system, relies on information about the

progression of phase to determine the location of backscatter. To acquire information about

phase progression, phase must be sampled at a sufficient rate such that phase measurements

are unambiguous. In other words, sampling must occur with sufficient frequency that phase

changes are less than π radians between samples.
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Phase is simply the distance traveled to and from a scatterer divided by wavelength

and multiplied by 2π radians. Change in phase, therefore, is simply a function of the change

in slant range ∆Rs between adjacent antenna positions,

∆φ = 2π
2∆Rs

λ
. (4.57)

An equation for change in slant range can be written in terms of some consideration

of a scatterer disposed at the leading edge of the beam width extending from a first antenna

position. The scatterer, beam width, and antenna position are depicted on the left-hand

side of Fig. 4.31. It is important to note that the scatterer is disposed at a great distance

from the first antenna position, much greater than would appear from the left-hand side of

Fig. 4.31, as indicated by the dotted lines.

On the right-hand side of Fig. 4.31, a second, advanced antenna position is depicted.

Under the assumption that the scatterer is sufficiently far away, the lines described by the

leading edges from beams from the two antennas can be considered in parallel one to another.

Assuming that the two leading edges of the beam from the two antennas are parallel to each

other, the change in slant range between the two positions can be determined by simple

trigonometry.

As the antenna on the right-hand side of Fig. 4.31 progresses forward, it becomes

closer to the scatterer, decreasing the slant range. The amount of the decrease is equal to

the opposite side of the shaded, acute angle on the right-hand side of Fig. 4.31. The angle

of the shaded, acute angle is half the beam width Θ1/2. The hypotenuse of the triangle is

the distance between the two antenna positions d. Therefore, the change in slant range ∆Rs

is a decrease equal to:

∆Rs = d sin Θ1/2. (4.58)

The need to keep phase changes to less than π, the equation for phase change

(Eq. 4.57), and the equation for the change in slant range (Eq. 4.58) lead to the follow-

ing intermediate result:

π = 2π
2d sin Θ1/2

λ
. (4.59)
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Figure 4.31: Change in slant range as illustrated for a scatterer starting at the edge of an
antenna beam from a first antenna position and obtaining a new slant range after the antenna
achieves a second position. (Adapted from [54], Fig. 21-10.)

The maximum distance allowable between samples to avoid ambiguous phase changes can

now be solved for:

d =
λ

4 sin Θ1/2

, (4.60)

which by the small angle approximation becomes,

d =
λ

4Θ1/2

, (4.61)
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which, when modified by Eq 4.36, is approximated as:

d ' l

4
. (4.62)

Equation 4.62 can now be related back to resolution to provide an equation for the

requisite sampling rate, in terms of distance between antenna positions, to achieve a certain

resolution. From Eq. 4.51 or Eqs. 4.52, 4.54, and 4.36:

∆r =
Rλ

2DSAR

=
λ

2Θ1/2

=
l

2
. (4.63)

The sampling distance can then be determined by combining the result in Eq. 4.62

with the result in Eq. 4.63,

∆r = 2d, (4.64)

which is then solved for d.

d =
∆r

2
, (4.65)

which is the Nyquist requirement. Failure to sample at least as frequently as the distance

prescribed in either Eq. 4.62 or Eq. 4.65 results in backscatter from one location aliasing to

another location.

4.4 Processing

The previous sections discuss the collection of data over different frequencies, azimuth

angles, and elevation angles. The different frequencies and angles produce different magni-

tudes and phases for the backscatter from the same volume of space. Without these changes

in frequency and angle, only a single magnitude and phase would be present. These differing

magnitudes and phases are responsible for the data that is captured by the radar. The data

is indexed by antenna position and transmit frequency. Processing this data involves taking

the different magnitude and phase information and reconstructing a map of the backscat-

ter originating from different regions in the volume of space down range from the synthetic

aperture.
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Figure 4.32: Three-dimensional coordinate system used to describe a synthetic aperture and
regions from which backscatter originates.

The different regions from which backscatter can originate and the different antenna

locations used to generate a three-dimensional SAR are defined by a three-dimensional co-

ordinate system. A serviceable example of such a coordinate system is defined by assigning

the azimuth and elevation directions respectively to the x and y axes of a traditional, three-

dimensional Cartesian coordinate system. The z axis defines the direction described by a

vector normal to the synthetic aperture.

Figure 4.32 depicts this coordinate system, with a synthetic aperture generated by

an antenna deployed in azimuth and elevation. The figure also depicts an array of cubes

representing various regions from which backscatter can originate. As appreciated, these
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cubes closely resemble the array of imaging voxels depicted in Fig. 4.2. SAR processing uses

the data collected from a set of regions from which backscatter can originate, similar to those

depicted in Fig. 4.32 and assigns values to voxels similar to those depicted in Fig. 4.2. The

goal of SAR data processing is to make the dimensions and locations of the array of regions

and the dimensions and locations of the array of voxels to overlap on the same grid system,

producing a three-dimensional map of complex reflectivity, or backscatter.

4.4.1 SAR data

SAR data provides the means to move from the physical world, the array of regions

from which backscatter can originate in a volume, to the image of that volume. SAR data

comprises measurements of the voltage induced by backscatter reflected from different re-

gions. Each measurement is indexed to the position from which the underlying microwave

energy is transmitted and received, making SAR data a function of position. Additionally,

the measurements comprising SAR data are indexed to the time delays accompanying their

reception, making SAR data a function of position and time delay. For a three-dimensional

SAR, position is a function of azimuth and elevation, allowing the following function to be

written to describe SAR data:

SARdata ≡ d(x, y, t). (4.66)

For a frequency modulated radar system, time delay coincides with frequency. For

this reason, SAR data can be stored as a function of frequency. Understanding time delay

as a function of frequency is particularly convenient when frequency in the transmit signal

is modulated in discrete steps. These discrete steps manifest themselves in the return signal

and provide a means for indexing the SAR data. As an example of how SAR data might

be stored, a two-dimensional matrix might include a first dimension defined by position and

a second by frequency. Additional possibilities for representing azimuth, elevation, time

delay/frequency are possible.

Often it is difficult to capture phase information and store that information with the

data. Instead of storing complex values with real and imaginary parts that carry magnitude

and phase information, it is not uncommon for SAR data to be entirely real. The phase
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information, however, remains latent in the real data and can be recovered by a Fourier-

based method of transformation.

4.4.2 Point Spread Response (PSR)

The reflections from scatterers are recorded in the data for each antenna position.

Moving from data to an image of those scatterers requires (1) the gathering up of energy

corresponding to the various scatterers of the volume being imaged as received at various

antenna locations and (2) determining the location of those scatterers from that energy.

Various algorithms, tailored to different deployment modes for the antenna positions in the

synthetic aperture, can achieve this goal. All of these algorithms must know where to look

in the SAR data for the energy associated with each scatterer.

The Point Spread Response (PSR) for a particular antenna deployment mode provides

the requisite information about where in the SAR data energy for a scatterer at a given

location can be found. The PSR provides this information by assuming that isotropic point

scatterers reside at any location of interest downrange from the synthetic aperture. Since

the point scatterers are isotropic, as depicted in Fig. 4.33, the path from each position to

any given scatterer is a straight line.

Assuming stripmap mode, the differing distances from antenna positions to a scatterer

describe a parabolic shape when plotted as a function of position, as explained above in

Section 4.3.2. Although SAR data is not indexed as a function of distance, it is indexed

as a function of delay time, which is, in turn, a function of distance. However, when delay

time, or time-of-flight, is plotted as a function of position, the parabolic shape becomes more

hyperbolic (as it did with phase—see Fig. 4.22) because the differences in distance become

multiplied by a factor of 2 for the round trip.

Where the antenna is deployed in two dimensions to form the synthetic aperture for

a three-dimensional SAR system, the situation is nearly the same. The only difference is

that, this time, the more-hyperbolic shape takes on a three-dimensional form. An example

of such a shape formed by the times-of-flight to a single scatterer is provided in Fig. 4.34.

The contour of the shape provides a pictorial depiction of how far into the SAR data

an algorithm must go at each position to collect the energy associated with the scatterer at
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Figure 4.33: Straight lines to antenna positions from isotropic scatterers.

the particular location that would create the corresponding shape. Different locations render

different contours. By following the contour for all of the locations necessary to create the

desired image, an algorithm generates the image.

Even if the change in slant range is smaller than the resolution of the SAR system

with respect to the z axis, causing all of the energy from each position to be stored in the

SAR data in the bin corresponding to the same time-of-flight for each position, the phase
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Figure 4.34: Shape generated when time-of-flight τ is plotted as a function of position for a
two-dimensional synthetic aperture.

information from those bins is still present. When the data is phase shifted and summed for

a particular location of interest with respect to the x and y axes, the different phases cause

the elements to add destructively for locations that are not the location of interest. For

the location of interest, the differing phases add constructively to increase the final value of

the sum for that location. The location of interest, at which processing is computationally

focused, comes to the fore.
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The contour of a shape described by times-of-flight to a particular location is described

by the equation:

h(xa, ya, xs, ys, zs) =
2

c

√
((xa − xs)2 + (ya − ys)2 + z2

s), (4.67)

where the factor of 2 is included for a round trip along the path to and from the scatterer,

c represents the speed of light, xa and ya represent the antenna location, and xs, ys, and zs

represent the location of the scatterer within the coordinate system.

A few simple manipulations of Eq. 4.67 indicate a constant degree of concavity for

the hyperbolic shape corresponding to any particular location within a plane defined by

a constant downrange distance along the z axis. To demonstrate the constant degree of

concavity, a shift is introduced into the scatter position with respect to the x axis (a similar

shift can be introduced with respect to the y axis),

h(xa, ya, xs, ys, zs) =
2

c

√
((xa − (xs + δxs))2 + (ya − ys)2 + z2

s). (4.68)

Mathematically, this shift can be transferred to the antenna positions,

h(xa, ya, xs, ys, zs) =
2

c

√
((xa + δxa)− xs)2 + (ya − ys)2 + z2

s), (4.69)

resulting in a shift of the position of the center of the hyperbola and nothing more.

Conversely, the antenna positions cannot be shifted with respect to the z axis. As a

result, changes in the scatterer position with respect to the z axis remain in the equation

to alter the degree of concavity. Scatterers closer to the synthetic aperture have a higher

degree of concavity than those that are farther away.

From the perspective of signal processing, PSR can be viewed as the impulse response.

As discussed above, however, the PSR is only partially position invariant. The impulse

response is position invariant for constant scatterer distances with respect to the z axis, but

position variant otherwise.
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4.4.3 Algorithims

Conceptually, it is sufficient to say that the energy along the contour of a hyperbolic

shape corresponding to a downrange location must be summed to image that location. In

terms of processing, however, an algorithm is required that accesses and sums the SAR

data along the hyperbolic contours corresponding to the different locations being imaged.

Different algorithms can be employed that leverage knowledge provided by the PSR. Two

such algorithms are discussed below. The matched filter, although computationally intensive,

is discussed first because it lays the groundwork for understanding a more efficient algorithm

known as backprojection.

Matched Filter

A matched filter looks for an expected signal in a received signal. The matched filter

performs this search by determining the cross correlation between the two signals. The cross

correlation is determined by convolving the received signal with a time-reversed conjugate

of the known signal. In the presence of white Gaussian noise, the cross-correlation at the

heart of a matched filter results in the highest possible SNR.

In the context of SAR processing, the received signal is embodied in the SAR data.

The information needed to construct the known signal that we are looking for is provided

by the PSR and an exponential term for phase accumulation. The PSR gives the expected

magnitude for an isotropic scatter at every location downrange that could be the subject

of the imaging process. These constructive isotropic scatterers are assumed to radiate back

to the antenna with unit amplitude through lossless space. The unit amplitude of these

constructive scatterers suggests that their magnitude is best modeled by a shifted delta

function δknown for each position.

To pick the appropriate information from the SAR data for scatterers located down-

range, the delta function must be a function of everything of which the SAR data and the

scatterers are functions, i.e., for SAR data, the antenna positions variables (xa and ya) and

the time-of-flight variable (τ), and for scatterers, the position variables (xs, ys, and zs). To

pick out the right values from the SAR data, for a particular scatter location (xs, ys, and zs)

and antenna position (xa and ya), the delta function must be zero everywhere except at the
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particular time-of-flight necessary for the backscatter in question to arrive at that antenna

position. This can be accomplished by shifting the delta function by this time-of-flight.

Since the delta function has a magnitude of one for the time-of-flight necessary to

reach the scatterer in question from the antenna position in question, it preserves values from

the SAR data necessary to determine the backscatter from a particular location downrange

of the synthetic aperture. If the position-specific, time-of-flight values for which the delta

function were non-zero were plotted with respect to position, the hyperbolic shape corre-

sponding to the scatterer in question would be described. As a function, the information

embodied in the PSR takes the form:

δknown(xa, ya, τ, xs, ys, zs) = δ(τ − 2

c

√
(xa − xs)2 + (ya − ys)2 + z2

s)). (4.70)

The time shift in the delta function acts to time reverse the known signal as required for a

matched filter. Since the delta function is real-valued, taking its conjugate does not change

anything. The phase term is constructed around the time of flight:

τ =
√

((xa − xs)2 + (ya − ys)2 + z2
s)), (4.71)

and is expressed as a positive exponential because it is the conjugate of the actual phase:

phase term = ej2πτ . (4.72)

The matched filter is then constructed by convolving the SAR data with the product of

the PSR and the phase term. An imaging function I(x, y, z) results that maps the backscatter

to voxels corresponding to the regions from which backscatter originates in the downrange

volume,

I(x, y, z) =

∫ ∫ ∫
SARdata(xa, ya, τ)δknown(xa, ya, τ, xs, ys, zs)e

j2πτ dxadyadτ. (4.73)

Since SAR data is recorded digitally, the integration operations are often, in practice,

replaced with summations. Additionally, time-of-flight corresponds to frequency in frequency
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modulated radars. Due to the fact that the transmit frequency is incremented in discrete

steps, the discrete frequencies in the return signal provide a convenient discrete basis for

digital storage of SAR data. As a result, the variable for time-of-flight τ is often replaced

by frequency,

I(x, y, z) =
∑∑ ∑

SARdata(xa, ya, f)δknown(xa, ya, f, xs, ys, zs)e
j2πτ dxadyadf. (4.74)

The convolution/summation operations sum the values picked out of and preserved

from the SAR data over the various antenna positions to determine the backscatter from

the location of interest. Another way to look at Eqs. 4.73 and 4.74 is to notice that the

three integration/summation operations integrate, or sum, out the variables from the data

function, i.e., dxa, dya, dτ , the variables that give structure to the data in the data domain,

leaving only the variables that give structure to the image, i.e., xs, ys, zs, in the image domain.

Importantly, the same variables that define the image in three-dimensional space define the

volume being imaged in three-dimensional space.

As appreciated, the matched filter defined in Eqs. 4.73 and 4.74 is computationally

inefficient. For each location in the image corresponding to each downrange location in the

volume being imaged, each element value stored in the SAR data must be multiplied by

the corresponding value of the PSR function, even though the vast majority of the values

are zeros, making most of the integration/summation operations incremental accumulations

of zeros. Furthermore, finding the value from the PSR function involves the computation-

ally expensive step of taking a square root to determine time-of-flight. The backprojection

algorithm, discussed below, provides a means for avoiding some of these unnecessary calcu-

lations.

Backprojection

The backprojection algorithim does not rely on a delta function to scale all non-

relevant values of the data set by zero for each location of interest. Instead, the backprojec-

tion algorithim simply projects back into the SAR data with respect to the time dimension

to pick out the relevant values from the data and sum them, leaving all non-relevant data
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values alone, hence the name, “backprojection algorithim.” The algorithm can be expressed

in equation form for continuous time as:

I(x, y, z) =

∫ ∫
SARdata(xa, ya,

2

c

√
((xa − xs)2 + (ya − ys)2 + z2

s))e
j2πτ dxadya, (4.75)

or for discrete time as:

I(x, y, z) =
∑ ∑

SARdata(xa, ya,
2

c

√
((xa − xs)2 + (ya − ys)2 + z2

s))e
j2πτ dxadya. (4.76)

Equations 4.75 and 4.76 are mathematically justified because they are equivalent to

Eqs. 4.73 and 4.74. The integration/summation over relevant values for a particular scatterer

location offers the same result offered by an integration/summation over relevant values and

non-relevant values scaled by zero. The efficiency gains resulting from backprojection are ap-

parent in the loss of an integration/summation operation with respect to the time/frequency

domain—only the relevant times associated with the time-of-flight from a particular antenna

location to a particular scatter location are involved. As with the matched filter, the equa-

tion for the backprojection algorithm integrates out the variables for the antenna position,

leaving only the variables needed to define the scatterers in both the image domain and the

physical world. Backprojection, therefore, is a much more effective algorithm for going from

the data domain to the image domain.

Range Compression

The first step to the backprojection algorithm is to range compress the SAR data.

As discussed above in Section 4.2.1, the range of a scatterer is determined by detecting the

modulation applied to the transmit signal in the receive signal and determining the distance

traveled during the corresponding time delay. The ability to differentiate modulation in the

return signal as a function of time determines range resolution.

Range compression is the process by which the modulation in the transmit signal

is correlated with that modulation in the receive signal in the presence of white, Gaussian
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noise on both the real and imaginary channels. Since the transmit signal is known, the

cross-correlation between transmit and receive signals that is range compression is also a

matched filter. The matched filter can be implemented as a simple convolution between the

receive signal and the conjugate of the time-reversed transmit signal.

For AM radar, the transmit signal is a series of rectangular pulses, as is true with the

receive signal. The convolution of these signals creates triangles with a base length, defined

with respect to time, twice as long as the pulse. As discussed above, therefore, targets with

a time-of-flight less than half the pulse length cannot be distinguished (Section 4.2.3).

As discussed above, modulation of frequency allows for much finer resolution (Sec-

tion 4.2.4). A linear chirp over frequencies in the time domain describes a rectangular

function in the frequency domain. An inverse Fourier transform on the this rectangular

function produces a sinc function (see 4.8). When the rectangular transmit and rectangular

receive signals are convolved in the frequency domain, the resultant triangular shape is very

similar to a sinc function in the time domain. Such a sinc function can be distinguished

from adjacent sinc functions, even where they are separated by very little time. Resolution

is greatly improved.

The origin of the term range compression can be seen in the resultant sinc function.

In the upper half of Fig. 4.35, the transmit and receive signals are plotted as functions of

time before the two signals are range compressed. The transmit signal comprises a linear

chirp within a pulse. The receive signal comprises a time-reversed, attenuated version of the

chirped transmit pulse and occupies a significant amount of time. The receive signal, after

range compression, is depicted in the lower half of Fig. 4.35. After range compression, the

receive signal occupies a relatively short duration with a sinc function. Such a sinc function

is referred to as being compressed with respect to time relative to the time-reversed pulses

in the upper half of Fig. 4.35. The compression in the receive signal allows returns to be

distinguished over much smaller time intervals, resulting in much finer resolution.

Although conceptually range compression can be thought of as a convolution that

implements the cross-correlation of a matched filter, the form in which the data is provided

by the FM radar must also be taken into account. As discussed above in Section 4.2.1, in

FM radars, transmit and receive signals are mixed, resulting in sinusoidal time-domain data
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Figure 4.35: Transmit and receive signals, together with the result from range compression.
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at frequencies that are the sum and the difference of the frequencies of the transmit and

the receive signals. The sum data is filtered, leaving only the time-domain difference data,

which is usually sampled and provided in discrete form.

However, as also discussed in Section 4.2.1, range corresponds to frequency. To acquire

these range-determinative frequencies, the discrete time-domain data must be transformed to

discrete frequencies. These discrete frequencies correspond to range bins, which include the

return from scatterers over the range interval covered by the respective bins. In practice, the

transformation on the discrete time-domain data is often performed with the computationally

efficient Fast Fourier Transform (FFT). Use of the FFT is conceptually justified because an

FFT can be used to perform a convolution in discrete time [63]. The series of multiplications

of the transmit and receive signals that takes place in the radar mixer can be viewed as the

series of multiplications that takes place under the integral or summation operations. The

FFT simply takes this series and combines them as they would be combined in traditional

convolution.

Once the SAR data has been range compressed, the data is enhanced for the back-

projection algorithm in two ways. First, and most importantly, the range resolution has

been improved drastically. Second, since matched filters deliver the highest possible SNR in

the presence of white noise, the matched filter involved in range compression provides qual-

ity data in terms of SNR. For these reasons, SAR data is usually range compressed before

processing by means of the backprojection algorithm.

4.5 Conclusion

A linearly chirped, high-bandwidth radar system with a two-dimensional synthetic

aperture, transmitting at high frequencies over large integration-angles, and deployed in

stripmap mode from a ground-based platform meets the requirements of a radar system

capable of assisting in avalanche prediction. The data from such a radar system should

be range compressed and processed with the backprojection algorithm for efficient, quality

imaging.

For the purposes of avalanche prediction, to capitalize on a radar system’s ability

to gather large amounts of data about a snowpack quickly and over a large area, certain
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prerequisites arise. The system must be able to (1) detect, (2) measure, and (3) determine

the relative location of avalanche-relevant properties in the snowpack. Additionally, (4) the

system must be practical and deployable in rugged mountainous terrain. These prerequisites

translate into radar parameters in terms of the requirements that the radar system (a) has

ultra-high resolution, (b) is capable of imaging three-dimensional volumes with ultra-high

resolution, and (c) runs on low power.

In fulfilling these requirements, such a radar system includes a linear chirp in the

transmit signal because the inverse relationship between the frequency and time domains

results in superior range resolution for systems that employ frequency modulation. The

higher the bandwidth of the chirp, the better the resolution. For the purposes of imaging

a snowpack, resolution of about 10 cm (4 inches) is desirable. Equation 4.6 requires a

bandwidth of 1.5 GHz or better.

Additionally, linear chirp modulation frees resolution from pulse-width dependency,

allowing pulses to be stretched arbitrarily to accommodate power needs. As a result, power

demands can be measured in Watts and fractions of a Watt, as opposed to megawatts. These

low power demands allow for light-weight, portable, and inexpensive components that can

be combined in a system deployable in the mountains.

To fulfill the requirement of three-dimensional imaging, a two-dimensional synthetic

aperture is relied upon. Relying on expected differences in phase between antenna positions

for backscatter from different downrange locations, the two-dimensional synthetic aperture

is able to determine the location of backscatter with respect to azimuth and elevation. By

determining location with respect to range, azimuth, and elevation, the system is capable of

imaging in three dimensions.

The two-dimensional synthetic aperture makes use of a small, easily-deployable an-

tenna to create an aperture of a size that would be impractical to deploy. The size of this

aperture allows for high resolution along azimuth and elevation by increasing the angle of

integration over which data is collected. Equation 4.55 states that resolution along azimuth

and elevation is a function of frequency. Therefore, high frequencies are desirable for high

resolution. For this reason, and for the electromagnetic interactions possible with different
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snowpack properties for the corresponding wavelengths (see Chapter 3), recourse is made to

frequencies in the X- and Ka- bands.

To collect data over large areas, the synthetic aperture is deployed according to

stripmap mode. In stripmap mode, resolution can be determined by the dimensions of the

synthetic aperture and the range, which are related to the angles of integration, by Eqs. 4.51

and 4.52. These equations indicate that for frequencies in the K- bands, at distances between

100 m and 1 km, the dimensions of the synthetic aperture can be anywhere from 3.75 m to

100 m, depending on the frequency and the distance.

Additionally, the antenna used to create the synthetic aperture must be small. A

larger antenna would trigger the fundamental limit on resolution imposed by Eq. 4.53. For

10 cm resolution, the dimensions of the antenna must be 20 cm or less.

The spatial sampling within the synthetic aperture must be high to avoid aliasing. To

avoid aliasing the Nyquist criterion must be satisfied and the dimensions of the constitutive

antenna must be taken into account. According to Eq. 4.62 and Eq. 4.65, for 10 cm resolution,

sampling needs to occur with respect to each dimension at least every 5 cm and every

quarter of the antenna’s length in that dimension. Therefore, although it is desirable that

the antenna be small, it is also important that the antenna not be too small, as this would

impose a requirement for too-frequent, time-consuming spatial sampling.

The radar system provides a data set indexed by antenna position and time-of-flight,

or frequency, so as to lend itself to quality-enhancing range compression and the efficient

backprojection algorithm. These algorithms assume that phase delays do not accrue relative

from one location to another across the antenna’s aperture. To assure the avoidance of

aperture-location-specific-phase delays, the antenna should be a horn antenna.
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Chapter 5

Preliminary System to Test Feasibility

To evaluate the theory of the previous chapters, a SAR radar system informed by

the principles previously developed needs to be realized. Ideally, such a system would meet

the parameters previously outlined. The implementation of such a system, however, requires

a significant investment and the overcoming of certain obstacles. Due to resource limita-

tions, the system must be implemented on a smaller scale from inexpensive and available

components.

Such a system has parameters that approximate those outlined in a way that best

utilizes resources to meet three goals. First, the system needs to provide a means with

which to acquire familiarity with the issues, including problems and potentials, involved in

acquiring and processing three-dimensional volume SAR data at high frequencies. Second,

the system needs to provide indications suggesting where additional allocations of resources

are likely to be rewarded with the best results. Third, the system needs to support new

components that better accommodate the conclusions of the previous chapters and which

may become available in the future.

5.1 Obstacles to Implementing the System Design of the Previous Chapter

Although the design specifications from the previous chapters have been achieved in

different radar systems in isolation, they have not been brought together. Bringing together

the parameters in a single realized system creates many problems that need to be worked

through. For example, although SAR apertures are commonly created over large distances,

creating them at the high frequencies of X- and Ka-bands imposes a requirement that the

location of the positions at which samples are taken be known with a great deal of accuracy

to respect phase information requirements for shrinking wave lengths.
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To accurately track phase progression, the location at which the samples that make

up the synthetic aperture are taken should be known to within a tenth of a wavelength [64].

At 15 GHz, the middle of Ku-band, the wavelength is 2 cm long, meaning that the position

of each constitutive sample be known relative to some predefined point within the synthetic

aperture to within 2 mm. At 40 GHz, the top of Ka-band, the wavelength is 7.5 mm

long, meaning that position information must be accurate to within less than a millimeter.

The samples do not need to be taken at exact locations as long as sampling occurs with

sufficient spatial frequency, but the relative locations at which they are taken does need to

be known accurately. Achieving this accuracy over grids with dimensions measured in several

to tens of meters presents possibly the largest challenge to implementing the conclusions of

the previous chapters. A number of possible solutions present themselves involving cables,

multiples antennas, directional mirrors, or even robotic helicopters capable of determining

their location with lasers and weigh stations.

Short wavelengths are not the only challenges that high frequencies bring. The preci-

sion required of the hardware necessary to generate, modulate, transmit, and receive wave-

lengths approaching or measured in millimeters makes the fabrication of such hardware diffi-

cult [65]. The wavelengths associated with frequencies in Ka-band approach or are measured

in millimeter lengths, making the requisite hardware difficult to acquire affordably.

Large bandwidths also present problems. Many of the important results in the chapter

on design, in terms of the antenna beam width, the creation of the synthetic aperture, and

the processing of the resultant data, assume a single frequency. This assumption is justified

where the bandwidth is a small fraction of the central transmit frequency. However, as the

bandwidth is increased to 1.5 GHz and above, the assumption becomes problematic, requiring

additional mathematical considerations in the design process [66]. Additionally, although low

power transmissions for research purposes over large bandwidths do not present problems,

transmission over large bandwidths with the power required to transmit and receive at a

distance of a 1000 m is likely to present conflicts with existing allocations by the Federal

Communication Commission. Happily, at high frequencies conflicts are less likely to occur

and special licenses may be granted for the sparsely populated mountainous terrain where

avalanches are a concern. Additionally, important research has shown that resolution may
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be improved by stitching together non-continuous allocations of bandwidth from available

swaths of the electromagnetic spectrum [67].

5.2 Availability of Signal-conditioning Modules

The hardware necessary to generate, modulate, transmit, receive, and record informa-

tion about the wavelengths involved in the radar system make up the heart of the radar sys-

tem. This hardware is referred to as the signal-conditioning module. The signal-conditioning

module determines the bandwidth and the central frequency of the radar system. Several

possibilities for the signal-conditioning module exist.

The microSAR developed at Brigham Young University is a precedent for student

development of small, light-weight, and portable signal-conditioning modules [51]. The mi-

croSAR transmits at a central frequency of 5.4 GHz, within C-band (4-8 GHz), and transmits

across a bandwidth of 90 MHz. Apart from the low frequencies, the low bandwidth affords

a range resolution of 1.7 m, about the thickness of the snowpack. Additionally, there may

be issues with microSAR being insufficiently rugged for the deployment demands imposed

by snowpack imaging in mountainous terrain.

The microSAR precedent can be followed to develop a new, higher-frequency, higher-

bandwidth system. As demonstrated by the microSAR program, however, the development

process is involved. As discussed above, developing a system at higher frequencies presents

additional challenges. Improving the bandwidth also presents challenges.

Commercially available network analyzers perform the essential functions of frequency

generation, reception, and recording across large bandwidths. Commonly available network

analyzers span frequencies from 50 MHz to 20 GHz, and network analyzers that span fre-

quencies between 50 MHz to 40 GHz and 10 MHz to 110 GHz are also available. The ability

to generate and record the returns from frequencies across such large spans makes network

analyzers a good core around which to build a signal-conditioning module [68] [69].

However, the transformation of a network analyzer into a signal-conditioning module

is more complicated than it would first appear. Network analyzers, as their name implies, are

designed to measure reflection coefficients, not backscatter. Making the transition requires

a thorough knowledge of the inner workings of a particular network analyzer and significant
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development. The systems are not designed to transmit electromagnetic energy over the

airwaves like radars, requiring the development of complicated amplification solutions. A

synthetic aperture system needs to record measurements over a large number of locations

over a large number of frequencies. To image snow with sufficient SNR, several hundred

measurements may need to be taken at each frequency at each location. Network analyzers

are not designed to record such large data sets parsed in the ways required. Network analyzers

are typically designed to provide frequencies and record samples for a limited number of

increments over a selected bandwidth. To satisfy Nyquist sampling requirements and avoid

aliasing, this sampling limitation would effectively limit the bandwidth, unless additional

measurements are made stitched together. Network analyzers are not designed for cold

and rugged environments such as those encountered doing snow research. These are just a

sampling of the problems that would be encountered during the transformation of a network

analyzer into a viable signal-conditioning module for snow research.

Private industry has made available different signal-conditioning modules. These

modules are designed to acquire data for two-dimensional images from airborn platforms.

The resolution requirements for these images are not as fine as those needed to study snow.

However, the modules are rugged, designed to collect backscatter, designed to store backscat-

ter in a way that lends itself to the creation of a two-dimensional synthetic aperture focused

on a snowpack, and have better bandwidths than the student-developed microSAR.

In keeping with its tradition of supporting student research, ARTEMIS INC., has

generously made available its microASAR module for snow research during the winter months

of 2010. The module is small (22.1 x 18.5 x 4.6 cm), light-weight (less than 3.3 kg), and

rugged. The module transmits in C-band at a central frequency of 5.4 GHz and has an

adjustable bandwidth of up to 200 MHz (80 cm range resolution). The module stores data

sets conveniently indexed by frequency and position on flash-memory cards that can easily

be downloaded for processing. Two separate antennas are required for use with the module,

one to transmit and one to receive. Figure 5.1 pictures the module with the cover plate and

circuit board removed.

As private industry continues to improve upon existing technologies, a trend is devel-

oping for modules with higher frequencies and higher bandwidths. The potential exists for
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Figure 5.1: MicroASAR with cover plate and circuit board removed to show the radio fre-
quency hardware. (Reprinted from the website of ARTEMIS INC.)

continued cooperation with private industry. Therefore, additional components to a prelim-

inary system for snowpack research need to accommodate signal-conditioning modules with

higher frequencies and higher bandwidths.

5.3 Scanning Platform

Aside from the signal-conditioning module, antenna system, and the infrastructure to

support these components, a platform is required that is capable of scanning the antenna(s)

attached to the signal-conditioning module from position to position within the grid that

makes up the overall system’s synthetic aperture. The desire to support high frequencies

and small wavelengths entails the need to pinpoint the relative location of the positions at
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which samples are taken with a high degree of accuracy. In order to support wavelengths at

the upper frequencies of Ka-band, the platform must be able to pinpoint the location of the

antenna mount to within less than a millimeter. Meeting this standard for accuracy is much

easier with a ground-based platform that utilizes tracks.

To meet goal (1) of a system with which familiarity with the issues involved in ultra-

high- resolution, volume imaging can be acquired, the ground-based platform should be

able to scan the antenna mount to create an aperture of dimensions large enough to al-

low ultra-high-resolution, volume imaging (at least at close range) for a readily available

signal-conditioning module. To meet goal (2) of determining where to invest in system im-

provements, the platform should be able to create a synthetic aperture of sufficient size to

allow volume imaging at significant ranges so that the viability of larger platforms can be

assessed. The platform should also be able to create a synthetic aperture large enough to de-

termine the feasibility of volume imaging of a snowpack and how best to make improvements

on images. To meet goal (3), the system needs to be able to support signal-conversion mod-

ules at higher frequencies in the future. Practical constraints also require that the platform

be easy to store and to move. A scanner that multiple people can be fit through doorways

fulfills this requirement.

A grid with dimensions of 180 cm x 180 cm (6 ft x 6 ft), for the C-band central

frequency of 5.4 GHz, allows for azimuth and elevation resolutions of 10 cm at a range of 6.8

m. Although this places a severe range limitation that prevents the system of achieving the

end of collecting data over large areas, it allows goal (1) to be achieved—acquiring familiarity

and experience with the issues involved in ultra-high-resolution, volume imaging. For the

Ka-band frequency of 40 GHz, dimensions of 180 cm x 180 cm, allow for 10 cm resolution

at a range of 50 m. Although a range of 50 m is also not enough to accomplish the end of

collecting data over large areas, the range should be enough to achieve goal (2) in terms of

assessing the feasibility of achieving high-resolution at larger ranges with larger platforms.

Additionally, goal (2) is met by allowing near-range, volume images of snow to be tried

in a way that would suggest what changes might improve those images. By being able to

support frequencies to the top of Ka-band, the platform achieves goal (3) of being able to

support higher frequency signal-conditioning modules in the future. These high frequencies
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are important for more than just achieving high resolutions, as discussed in Chapter 3, they

are important for gathering information about avalanche-relevant properties in the snowpack.

To be able to support the short wavelengths transmitted by high-frequency modules,

the location of the each antenna position from which measurements are collected must be

known to within a millimeter relative to a reference location within the aperture. A near-

field scanner is another instrument tasked with providing information about antenna location

within a plane. The demonstrated success of near-field scanners makes their inverted T-shape

design, comprising a horizontal and a vertical component, a good guiding concept for the

ground-based platform. In the inverted T-shape design, a pair of horizontally disposed tracks

provide the bed on which a platform with vertically-disposed tracks can slide back and forth.

The vertically disposed tracks provide the guidance for the antenna mount, which can move

up and down. The ability to move side to side and up and down allows the antenna mount

to accesses any location within the dimensions of the horizontal and vertical runs along the

two sets of tracks. A visualization generated in AUTOCAD and provided in Fig. 5.2 of the

inverted T-shape design of the ground-based platform helps to visualize these principles of

motion.

The design of the ground-based platform is depicted in Fig. 5.2. To provide the

stability for accurate determinations of location on the vertical component, the vertical

component sits on a base plate 2 ft wide x 3 ft deep. Affixed to the back corners of the

base plate and extending to the top of the vertical component are aluminum angle pieces

providing a strong back to counter strong winds that may be encountered in mountainous

terrain.

Since the run along the tracks of the horizontal component is 180 cm, or 6 ft, and the

base plate is 2 ft wide, the total length of the horizontal component is 8 ft. The horizontal

component comprises a rectangular box of 93/4 inches in height to provide room for a motor

to drive the vertical component under the base plate. To provide rigidity for more accurate

measurements along the horizontal component, the extruded, aluminum tubing, of dimension

2 inches x 3 inches, along the four corners of the horizontal component have a thickness of

a quarter inch. Similarly, the two vertical columns that support the tracks of the vertical
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Figure 5.2: Drawing of design for a ground-based platform generated in AUTOCAD, demon-
strating the inverted T-shape design that allows motion along the horizontal component extend-
ing out of the picture and along the vertical component. The rendering also depicts the horn
antennas on the antenna-mount plate disposed more than half way up the vertical component
with the bronze-colored microASAR module, discussed below, positioned underneath.
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component have a thickness of a quarter inch, but have dimensions 3 inches x 3 inches. The

total height of the scanner is just over 7 ft.

To reduce weight, the scanning platform is constructed of aluminum, with the cutting

and welding done by the BYU Precision Machining Workshop. As aluminum is notorious for

warping when welded, the top of the rectangular, horizontal component is provided with two

flat-bottomed grooves milled on a precision mill capable of holding a tolerance to 1/10,000

of an inch. The grooves provide a perfectly flat bed for the horizontal tracks to sit in. The

necessity of the grooves is shown by the height of their walls, which vary by a quarter of an

inch. Without these grooves, this quarter inch (6.35 mm) variance would throw the ability

of the scanner to provide accurate measurements to within less than a millimeter. As welds

were not made along the length of the vertical, extruded aluminum tubing, similar grooves

are not made along their length.

Four teflon-coated tracks (make, model, and size: PCB LINEAR, MINI RAIL, 20

mm), are mounted along the rigid structure provided by the vertical and the horizontal

components. Bolts placed every 60 mm in the tracks insure that the base plate and the

antenna mount do not drift as the four teflon carriages to which they are each affixed slide

along the tracks. To determine how far along the tracks the base plate and the antenna

mount move relative to a horizontal and a vertical starting position, the base plate and the

antenna mount are translated from side to side and up and down by two rotating acme

screws (make, part number and size: THOMSON BSA, M23S12-XCT7505-72”).

The acme screws are 6 ft long and have a diameter of 0.75 inches. Each rotation of

the screws translate a nut a 1/5 of an inch (5.08 mm). The screws are precision milled so

that position can be determined as a function of rotation to within 0.003 inches per foot

(0.018 inches/0.457 mm over 6 ft.). The nuts that translate down the screw, and to which

the base plate and the antenna mount are attached, have a non-slip mechanism to insure,

especially for the vertical component, that a nut does not slide backwards once the screw,

around which the nut is wrapped, ceases to rotate.

Two stepper motors (make, model, and size: APPLIED MOTION, STM23, NEMA

23) rotate the screws. A stepper motor uses electromagnets in an alternating fashion to

attract iron teeth on a rotor, thereby rotating the rotor in increments, or steps. The stepper
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motors used have 2,000 steps per rotation. Each step corresponds to 3 µ of translation

down the screw. A driver coupled to each motor sends pulses of current to control how

many increments the motor rotates and the rate at which the motor cycles through those

increments. Stepper motors have the advantage that/ after the prescribed number of steps

per rotation, the motors return to the starting position, preventing errors from cascading

between rotations.

Although the number of steps that each motor advances the corresponding screw can

be used to determine locations, greater accuracy is achieved by taking readings from optical

encoders attached to the motor drive shafts. An optical encoder works by shining light

through a disk in which slots, which allow light to pass through, encode information about

the number of rotations. The optical encoders attached to the drive shafts of the motors

exceed the increments per rotation of the stepper motor.

The motors are controlled from a laptop with control software written in C++ by

Justin Penner, a fellow candidate for a Master’s degree. The control software communicates

with the serial command language of the motors via CAT 5 cable. The communications

include commands that advance the motors to positions in pre-defined grids set up from

user-friendly graphical-user-interfaces, which receive position information errors. The control

software also packages the position information to communicate with the signal-conditioning

module so that measurements of backscatter can be indexed to the positions from which

they were taken.

The vertical component of the scanning platform is pictured in Fig. 5.3. In the figure,

the antenna mount and the screw used to advance the mount are clearly visible. In Fig. 5.4,

the scanning platform is pictured from the side.

To determine the accuracy of the scanning platform, a laser pointer is attached to

the antenna mount and the scanner is run through a series of scans. A grid of centimeter

cubes is printed on two 3 ft x 6 ft sheets of paper that are attached to boards straitened

with aluminum beams. The grid is placed parallel to the plane of the synthetic aperture 4

feet in front of the laser pointer. A series of scans are run, and the laser beam does not vary

more than 4 mm with respect to each axis during any of the scans.
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Figure 5.3: Picture of the vertical component of the completed scanning platform with an
antenna mount and the driving screw visible.

143



Figure 5.4: Side view, allowing the completed scanning platform to be viewed in its entirety.
The screw used to translate the base plate horizontally is visible within the box of the horizontal
component. The driving motor for the horizontal component is attached on the far end.
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The 4 mm variances are somewhat more than the desired tolerance under 1 mm.

Nevertheless, the variations follow certain constant patterns that could be accounted for in

processing with compensation functions. Additionally, the measurements were made with

several bolts removed from the tracks so that the tracks can flex to accommodate for binding

occurring because of screw offset. Continual work to better align the screws in addition

with compensating functions applied to position data hold open the possibility of achieving

tolerances of less than 1 mm.

The scanning platform is deployed in cold weather to capture data about snowpacks.

Different components respond with differing amounts of contraction in response to cold

weather. Unfortunately, the rigidity of the scanner makes it very sensitive to the alignment

of its components, causing the scanner to bind up and cease to function in cold temperatures.

To prevent these problems, the scanning platform is deployed inside a plastic tent

that is transparent to the radar. The tent is constructed from a frame of 1 inch PVC pipe

that is covered with 6 mill greenhouse plastic. The tent is heated to a temperature between

55◦ F to 65◦ F with one or two 1500 Watt space heaters depending on the how quickly

the tent needs to be heated and the temperature outside the tent. The tent has the added

advantage of functioning as a radome to protect the signal-conditioning module and the

scanning platform. The plastic tent, of dimensions 10 ft x 10 ft x 5 ft, is pictured in Fig. 5.5.

5.4 Selection of and Modifications to the Signal-conditioning Module

For purposes of acquiring familiarity with ultra-high resolution, volume imaging and

for purposes of testing the feasibility of imaging a snowpack, the microASAR module made

available by ARTEMIS, INC. is mounted on the scanning platform (see bronze-colored unit

in Fig. 5.2). Of the options discussed above, only the student-developed microSAR and the

microASAR can be mounted on the scanning platform without investing overmuch effort in

developing the modules for deployment. Of the two, the microASAR offers larger bandwidth,

is more rugged, and can more easily be fine tuned to capture data suited for the scanning

platform on which it is deployed at the very close ranges that need to be used.

The microASAR includes a Field Programmable Gate Array (FPGA) chip and a

Direct Digital Synthesizer (DDS) chip. The DDS chip takes a fixed-frequency reference
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Figure 5.5: Plastic tent used to keep the scanning platform warm and to prevent binding,
with its PVC frame visible through the greenhouse plastic.

clock and creates the discrete frequencies necessary to the chirped transmission signal. The

FPGA stores and implements parameters that control the performance of the module.

The parameters stored and implemented by the FPGA, include the bandwidth, the

Pulse Repetition Frequency (PRF), the rate at which frequencies are cycled through, or

the ramp rate, the number of frequency steps included in the chirp, and the parameters of

various filters. The parameters can be changed through a programming cable attached to

the chip in communication with the XILINX programming environment.

To improve range resolution, Craig Stringham, a PhD candidate having expertise

with the microASAR module and the programming of FPGA’s took responsibility for repro-

gramming the FPGA. Through the FPGA, the module’s bandwidth is changed to 200 MHz.
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Additionally, according to Eqs. 4.7 and 4.8, the near range needs to be decreased to as low

as 5 m to achieve resolutions around 10 cm, so the module’s filters are adjusted so as not to

filter out the near range responses. Additionally, the ramp rate is increased to 1.249 x 1013

to improve near range resolution.

To avoid aliasing with respect to range, the PRF is changed to 3,826 Hz to insure

that long-range backscatter from a first pulse is not confused with near-range backscatter

from a second pulse. Additionally, to avoid aliasing, the number of frequency samples in

each chirp is increased to 673. Also, a bank of attenuation switches is adjusted to avoid

overpowering the low noise amplifier on the receive side of the module with return from near

range targets. The attenuators, however, remain high enough to capture enough backscatter

to achieve high SNRs from the relatively light response from a snowpack.

Although, as discussed in Chapter 3, shorter wavelengths increase the likelihood of

backscatter bearing the stamp of avalanche-relevant properties, and, as discussed in Chap-

ter 4, shorter wavelengths improve resolution, especially at long ranges, the relatively long

wavelength of the microASAR is short enough to accomplish the elements of the first two

goals set forth at the beginning of this chapter. First, the wavelengths are short enough

to achieve ultra-high-resolution, volume imaging at short ranges so that experience can be

acquired with producing such images, pursuant to goal (1). Second, the feasibility of pro-

ducing a volume image of a snowpack can be determined. Additionally, a previous study

supports the use of a C-band based module for preliminary studies.

During the winters of 2002 and 2003, this previous, NASA-sponsored study took

measurements, at nadir and other angles, from a Frequency Modulated Continuous Wave

(FMCW) radar across the C- (2 GHz to 6 GHz), X- (8 GHz to 12 GHz) and Ku- (14

GHz to 18 GHz) bands [7]. The 4 GHz of bandwidth provided for in each of these bands

allows for 7.5 cm (3 inch) resolution. The antennas of the radar system are moved over a

distance of 3 m with the range-response recorded as a function of distance. The sweep of

the antennas is not used to create a synthetic aperture, but is used to create something of a

RBGM. Ground truth is provided from snow pits from which data is extracted about snow

density, temperature, crystal type, and hardness as a function of depth. Figure 5.6 depicts
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Figure 5.6: Comparison between parameters measured from a snow pit and backscatter mag-
nitude from a C-band FMCW radar. Referring to the plot on the left of measurements from
the snow pit: the vertical axis corresponds to the snow depth, from 0 to 150 cm, and is incre-
mented in 20 cm intervals; the horizontal axis corresponds to the snow density, temperature,
and hardness. The blue line corresponds to the snow density, ranging from 0 to 500 g/cm3 and
is incremented at intervals of 50 g/cm3; the red line corresponds to the temperature, ranging
from −10◦ C to 0◦ C, and is incremented every 1◦ C; and, the yellow bars correspond to the
hardness of the snow as measured by the hand-hardness scale. The plots are originally reported
in [7].

the magnitude of backscatter as a function of depth across a 3 m distance for C-band (right)

compared to the parameters measured from the snow pit (left).

As seen in Fig. 5.6, red bands indicative of intense backscatter return can be seen at

the surface of the snowpack and at boundaries that correspond to hardness discontinuities in

the profile of the snowpack. Also, the dark blue region in the lower center of the backscatter

plot corresponds with the large weak layer of faceted snow that would be the origin of

any avalanches in a snowpack with this profile. Although the backscatter in Fig. 5.6 arises

primarily from boundary reflections, these results suggest that wavelengths from C-band
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are capable of interacting with a snowpack. Therefore, a C-band system should allow the

feasibility of creating a three-dimensional, non-nadir, volume image of a snowpack to be

determined.

5.5 Antenna Selection

To insure uniform phase across the area of the antennas employed, horn antennas are

selected. (See horn antennas in Fig. 5.2.) To allow for a resolution of 10 cm in compliance

with the antenna-dependent fundamental limit on resolution provided in Eq. 4.63, antennas

with dimensions of 9.78 cm x 13.18 cm are selected. The horn antennas are WAVELINE

INC., model 5999 horn antennas with a frequency range of 4.90 to 7.05 GHz and with beam

widths of about 30◦ in each plane. To accommodate the micoASAR module, two antennas,

one for transmission and one for reception, are employed. The antenna mount is fabricated

so that the antennas can be rotated 90◦ to capture data at various combinations of vertical

and horizontal polarities.

5.6 Conclusion

Ideally, for the application in question, a radar system would be deployed over large

synthetic apertures measured in tens of meters, transmitting at different frequencies in the

X- and Ka-bands over bandwidths of 1.5 GHz or larger. Difficulties bringing these elements

together, such as creating a sufficiently large synthetic aperture, the accuracy required for

position measurements at high frequencies, problems incorporating large bandwidths, and

difficulties in finding/developing high frequency hardware require that studies at a smaller

scale be performed first with a preliminary system.

The preliminary system is designed to meet the goals of (1) providing familiarity

with the problems and potentials of ultra-high-resolution, volume imaging, (2) suggesting

where additional allocations of resources are likely to be rewarded with the best results,

and (3) supporting new, better-suited components. The core components of the preliminary

system include: a signal-conditioning module that performs the transmission, reception,

and recording of electromagnetic energy, a scanning platform used to create the synthetic

aperture, and the antennas used in transmission and reception.
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A variety of different signal-conditioning modules with different bandwidths and

transmission frequencies may become available with or without different investments in de-

velopment. Therefore, in compliance with goal (3), a scanning platform is designed to achieve

the millimeter accuracy that would be required of future signal-conditioning modules trans-

mitting in Ka-band. Initially, however, the system is equipped with the microASAR module

that transmits in C-band over a bandwidth of 200 MHz because of its rugged reliability, the

convenient format in which it records data, and because it can be deployed with only minor

adjustments. Two horn antennas of dimensions 9.78 cm x 13.18 cm are chosen to provide

uniform phase distributions in the transmission signal and to allow for 10 cm resolution.

To meet goal (1), the preliminary system needs to demonstrate ultra-high resolution,

volume imaging in a way that affords understanding of potentials that can be exploited and

problems that need to be overcome in future snowpack imaging systems. To be considered

ultra-high resolution, at least along some axes, the resolution should be measured in inches.

To meet goal (2), the demonstration of volume images of a snowpack would help to determine

which parameters need to be improved to better assess the feasibility of radar-based avalanche

detection from snowpack-stratigraphy images. The ability to distinguish individual layers

would provide even more information from which determinations can be made about how to

proceed. Goal (3) is met by a scanning platform capable of supporting signal-conditioning

modules at higher frequencies.
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Chapter 6

Lessons Learned from Preliminary System

As discussed, researchers have demonstrated the ability of FM radar to find proper-

ties of snowpack stratigraphy from boundary reflections where the antenna line-of-sight can

be maintained normal to the strata by placing the antenna mount directly above the snow-

pack [1]–[10]. However, to capitalize on the ability of a radar to scan large areas remotely,

changes in the orientation of the radar system’s line-of-sight relative to the snowpack have to

be mitigated in their effect by the capability for ultra-high-resolution, volume images. These

images must rely on backscatter from volume scattering within snow, not electromagnetic

boundaries. Non-nadir images of snowpack volumes relying primarily on volume- scattering

based backscatter are yet to be demonstrated. For reasons discussed above in Chapter 5, an

ideal radar system capable of meeting all of the theoretical requirements set forth in Chap-

ter 3 and Chapter 4 cannot be implemented. However, the preliminary system set forth in

Chapter 5 is implemented to demonstrate non-nadir, ultra-high-resolution, volume imaging

of snow based primarily on volume scattering, which is a prerequisite to the larger goal of

remote, large-area, radar-based data collection that is useful for avalanche prediction.

The limitations of the preliminary system must be acknowledged at the outset. The

limited dimensions of the scanning platform (180 cm x 180 cm/ 6 ft x 6 ft), which determine

the dimensions of the synthetic aperture, and the central transmit frequency (5.4 GHz)

of the microASAR module rule out the possibility of demonstrating ultra-high-resolution

along the range axis—although ultra-high resolution may still be obtained along the two

remaining axes, volume imaging at the large ranges required for large-area collection of data,

as indicated by Eq. 4.7 and Eq. 4.8. The 200 MHz maximum bandwidth of the microASAR

module places a limit on range resolution of 0.75 m pursuant to Eq. 4.6. Although 10

cm resolution along azimuth and elevation can still be obtained at very close ranges, fine
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resolutions along these axes may be compromised by the coarse range resolution. Also, the

large wavelength (5.53 cm) associated with the central frequency of the microASAR module is

much less likely to reveal avalanche relevant properties in the snowpack for reasons provided

in Chapter 3.

Nevertheless, several helpful determinations can be made by the preliminary system.

In accordance with the first and second goals of the preliminary system, the ability to

create ultra-high resolution, three-dimensional images in C-band allows for the discovery

of advantages and obstacles that need to be overcome for future systems. Additionally, in

accordance with the second goal, the yet to be demonstrated non-nadir, volume imaging of

snow can be demonstrated. Actual non-nadir, volume images of snow hold the promise of

remote, large-area collection of data from which images of snow can be generated. Images for

C-band data may hint at the possibilities for higher frequency data to distinguish important

snowpack layers. Also, in accordance with the second goal, images for C-band data can be

used to determine which aspects of the signal-conditioning module need to be improved, and

in which order, to better assess the possibility of stratigraphic images that can be used in

avalanche prediction.

This chapter discusses the ability of the preliminary system to produce non-nadir,

three-dimensional, ultra-high-resolution images. Two different deployments of the prelimi-

nary system into mountainous terrain are also discussed together with the volume images

of alpine snowpacks obtained during these deployments. The data from these deployments

are analyzed to learn lessons that can advance further attempts to create a radar-based

avalanche prediction system.

6.1 Demonstration of Three-dimensional Imaging with Ultra-high Resolution
Along Azimuth and Elevation

Several tests deployments were done on the roof of the Clyde building. After over-

coming several obstacles, a test was performed from which thee-dimensional images could

be rendered. For the test, three separate targets are placed on the roof. The first target is

a trihedral corner reflector with dimensions of 21 cm on each side. The second and third

targets are larger trihedral corner reflectors with dimensions of 48 cm on each side. The
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Figure 6.1: Range set up on the roof of the engineering building with corner-reflector Targets
#1 through #3 positioned from left to right. The scanning platform is in the plastic tent in
the foreground.

location of the targets in three-dimensional space is measured with reference to the center

of the antenna mount from its initial position in the grid from which a synthetic aperture is

created.

Figure 6.1 pictures the range with the targets appearing as numbered from left to

right. The first target sits atop a pile of wet snow. The second target sits atop a metal

fixture on the roof of dimensions 1 ft x 2 ft with a base 1 ft above the roof. The third target

sits atop a cardboard box. Within the plastic tent on the left-hand side of the picture is the

scanning platform used to create the synthetic aperture, the first node of which is located at
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the bottom corner of the scanning platform on the side closest to the operator. The laptop

used to control the scanning platform can also be seen.

A scan is performed to create a synthetic aperture of dimensions 130 cm x 130 cm.

A larger scan would have been performed, but for some mechanical difficulties with the

scanning platform. The nodes in the grid that make up the synthetic aperture are spaced

at intervals of 3.33 cm with respect to the azimuth axis and 2.5 cm with respect to the

elevation axis. The scan takes 2 hours to complete with the motors rotating to advance the

base platform and the antenna mount 0.6 inches per second and pausing for 0.4 seconds at

each node.

The microASAR module stores backscatter data for hundreds of pulses at each node

and indexes the data to the corresponding nodes with the aid of the control software. A

rendering of the processed data is provided in Fig. 6.2. The rendering is a three-dimensional

image comprised of transparent tiles that represent different regions within the imaged vol-

ume that are tinted in accordance with the backscatter magnitude originating from those

regions. The rendering is made with the VOL3D shareware tool for MATLAB [70].

The three targets in the three-dimensional rendering of Fig. 6.2 correspond to the

three targets pictured in Fig. 6.1. In interpreting Fig. 6.2, care must be taken since the

voxels are approximately twice as long with respect to range as they are with respect to

azimuth and elevation, as discussed in the caption, where the dimensions of the volume

imaged are given. The three targets appear as expected with respect to range and azimuth,

and, as expected, the third target, which sits atop the large box in Fig. 6.1 is higher than

the other targets.

6.1.1 Target Verification

Target #1 is much fainter than the other two targets, as expected. The radar cross

section σ of a trihedral corner reflector is provided by:

σ =
12πa4

λ2
, (6.1)

where a is the side dimension of the corner reflector. Since the side dimension is increased

by a power of 4 in Eq. 6.1 and the ratio of the large (48 mm) corner reflectors to the small
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Figure 6.2: Three-dimensional rendering of processed data captured from the range depicted
in Fig. 6.1. The targets are numbered, with Target #1 appearing much lighter because of its
reduced size. The range, azimuth, and elevation axes are rendered according to voxel numbers.
However, the dimensions of the voxels differ for the different axes. Each voxel represents 40
cm along the range axis and 21.5 cm along the azimuth and elevation axes. Voxels are counted
from the bottom right corner of the grid generated from the scanning platform. The image
encompasses a volume from 0 m to 18 m down range, from -5 m to 3.5 m across azimuth, and
from -0.72 m to 1.5 m across elevation. These measurements are taken with respect to the
origin for the image, defined as the position of the first node in the grid that makes up the
synthetic aperture.
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corner reflector (21.5 mm) is 2.2, the larger reflectors should be about 23 times as bright.

The response for Target #1 seems to be even greater than the value predicted by Eq. 6.1

because of the pile of very wet, dense snow atop which it sits. In a similar experiment (not

reported here), the response from snow of lower water content and density is found to rival the

response from a 21.5 mm corner reflector. The theory that the snow pile contributes to the

return of the small corner reflector is supported by the fact that the brightest return appears

to come from below the height at which the small corner reflector sits. Closer inspection

of Target #2 from the proper angles (not shown in Fig. 6.2) reveals it to be the brightest

target, as expected because of the metal fixture atop which it sits and which elongates its

reflection with respect to elevation.

To ensure that the targets appearing in Fig. 6.2 correspond to the targets pictured in

Fig. 6.1, their location, as reported by the imaging voxels, is verified. The location of each

target on the range is measured with respect to range, azimuth, and elevation relative to

the center of the antenna mount, where the antenna mount rests at the first node position

in the grid of nodes used to create the synthetic aperture. The location of each target is

determined in the image by means of the voxel count along each axis.

In Fig. 6.2, Fig. 6.3, and Fig. 6.4, the voxels are created by an interpolation factor

of 2 applied to a predetermined, range-specific set of resolutions, so that the dimensions of

each voxel are half the allowable resolution with respect to each axis. The maximum range

in these figures is less than 20 m, which according to Eq. 4.7 and Eq. 4.8 corresponds to

azimuth and elevation resolutions of 43 cm. To determine the location of each target with

greatest accuracy from the images produced by the data, the location around where each

target should appear is imaged with an interpolation factor of 2, but with the range-specific

resolution corresponding to each target calculated according to Eq. 4.7 and Eq. 4.8. The

target-specific range resolutions vary from 19 cm to 37 cm.

The location of each target with respect to each axis is determined by finding the

center of the voxel with the brightest return, counting the number of voxels to this brightest

voxel, multiplying the distance per voxel along the respective axis, adding the location of

the initial voxel, and adding an axis-specific half distance to place the return in the center of

the brightest voxel. In the event that the brightest voxel is flanked by one or more equally
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bright, or very bright voxels, further additions and subtractions of appropriate weight are

made to find the target center.

Tables 6.4, 6.2, and 6.3 compare the physical measurements of each target, with re-

spect to all three axes, to the voxel-dependent location for each target in the images rendered

from the data. Comparison of the physical measurements to the voxel-based determinations

reveals that for all but two exceptions, the two forms of measurement agree to within about

half the resolution distance along the corresponding axis. The biggest exception, the 54 cm

discrepancy between the elevation measurements for Target #1, has a good explanation. Al-

though the imaged bright spot appears low relative to the physical measurement for Target

#1, the bright spot can be explained by the thick mass of wet, dense snow atop which Target

#1 sits.

Table 6.1: Comparison Between Physical Measurements and Voxel-based
Determinations of the Location of Target #1.

Range Azimuth Elevation

Physical Measurements 9.04 m 2.44 m 0.01 m
Voxel-based Determinations 9.00 m 2.35 m -0.55 m
Resolution 0.80 m 0.19 m 0.19 m

Table 6.2: Comparison Between Physical Measurements and Voxel-based
Determinations of the Location of Target #2.

Range Azimuth Elevation

Physical Measurements 10.57 m -0.48 m 0.20 m
Voxel-based Determinations 10.45 m -0.38 m 0.20 m
Resolution 0.80 m 0.22 m 0.22 m

The results in Tables 6.4, 6.2, and 6.3 verify the three-dimensional imaging capabilities

of the preliminary system. The centers of the three targets are located within half the

resolution distances along all three axes, with exceptions being either slight or explainable.
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Table 6.3: Comparison Between Physical Measurements and Voxel-based
Determinations of the Location of Target #3.

Range Azimuth Elevation

Physical Measurements 17.22 m -4.45 m 1.00 m
Voxel-based Determinations 16.70 m -4.45 m 1.20 m
Resolution 0.80 m 0.37 m 0.37 m

The azimuth and elevation resolutions for the three targets are 19 cm, 22 cm, and 37 cm, or

7.5 inches, 8.7 inches, and 14.6 inches. Therefore, the preliminary system has demonstrated

that it can be consistent with the requirements of ultra-high-resolution (measured in inches),

three-dimensional imaging. Should the synthetic aperture be extended to the full dimensions

of 180 cm x 180 cm that the scanning platform can allow, the resolution for the first target

could be dropped as low as 3 inches at 5 m.

6.1.2 Problem of Bleeding as Uncovered by Three-dimensional Imaging Demon-
stration

With the ability of the preliminary system to image volumes in three dimensions with

ultra-high resolution along two of the three axes, the data generated by the system can be

examined for advantages that can be capitalized on and obstacles that need to be overcome.

The ability to achieve resolution in inches is certainly an advantage, with 3-inch resolution

corresponding to the thickness of some of the smaller and more interesting layers within a

snowpack. However, examination of Fig. 6.2 reveals a problem.

Apart from the three targets circled in Fig. 6.2, the next most dominant features

are the blue bands that extend with respect to azimuth, range, elevation. These bands are

not the result of reflections from the ground. The grazing angle to the ground is shallow

enough that backscatter is not reflected back to the radar system. These bands, like the

hallos of color that surround the larger targets, are indicative of an important problem in

ultra-high-resolution, volume images from the perspective of imaging the stratigraphy of a

snowpack. If a fraction of the return from one region is added to the return of surrounding

regions, the true value for the return from the two regions becomes ambiguous.
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Figure 6.3: A three-dimensional rendering of the same data set used to generate Fig. 6.2 to
evaluate bleeding and to check for aliasing with respect to elevation. The image encompasses
a volume from 8 m to 18 m down range, from -4 m to 4 m across azimuth, and from -25 m
to 25 m across elevation. Target #2 and Target #3 are labeled; Target #1 is visible as the
light-blue node in front of Target #2. The 50 m span with respect to elevation should reveal
any aliasing, which does not appear to be a problem.

In an effort to avoid this ambiguity, Taylor windows are applied to the three di-

mensions of the data. Taylor windows weight data according to a distribution similar to

a Gaussian bump. A Taylor window is applied to the chirped frequencies in each pulse;

another is applied to each column in the synthetic aperture; and, yet another is applied to

each row in the aperture. The rendering in Fig. 6.2 includes the application of these Taylor

windows. However, they provide little improvement over the rendering where they are not

applied. The most noticeable difference, which is difficult to detect, is a slight suppression

of the bleeding with respect to range due to the Taylor window over the chirped frequencies.

Additionally, 50 m spans are imaged for each dimension to determine with respect to

which axis the problem is worse and to determine if aliasing, the phenomenon whereby the

signal from one location appears in another, contributes to the problem. A rendering of a

50 m span across the elevation and azimuth axes is provided below in Fig. 6.3 and Fig. 6.4,

respectively. The image of the 50 m span with respect to range is not included.

Comparison of the 50 m spans with respect to elevation and azimuth in Fig. 6.3

and Fig. 6.4, respectively, suggests that some of the bleeding is due to aliasing in azimuth.

Although the presence of blue arches in Fig. 6.3 is undeniable, they are much less pronounced

than those in Fig. 6.4. The darkest manifestations appear in the uppermost arch, which is

unrelated to the targets and corresponds to fixtures on the edge of the roof that are more
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Figure 6.4: A three-dimensional rendering of the same data set used to generate Fig. 6.2 to
evaluate bleeding and to check for aliasing with respect to azimuth. The image encompasses a
volume from 8 m to 18 m down range, from -25 m to 25 m across azimuth, and from -4 m to
4 m across elevation. Target #2 and Target #3 are labeled; Target #1 is not visible. The 50
m span with respect to azimuth reveals a problem with aliasing.

visible in the 50 m range span (not shown). Along the trajectory of the bands corresponding

to the two bright targets in the elevation span, there are no secondary bright spots which

would indicate aliasing.

The darker arches visible in Fig. 6.4, corresponding to the azimuth axis, can be ex-

plained by the presence of aliasing. Three major examples of aliasing, each labeled, manifest

themselves in Fig. 6.4. The math of 30◦ − 60◦ − 90◦ triangles reveals that anything outside

the central 10.5 m (1/5 of the 50 m span) at the bottom of Figs. 6.3 and 6.4 and outside

the central 24.5 m (1/2 of the 50 m span) at the top of the figures is outside the 30◦ main

beam corresponding to any of the antenna positions. Therefore, the bright spots labeled as

examples of aliasing, which are all outside the regions accessible by the main beams, must

be due to aliasing as opposed to physical scatterers.

Alias #1 and Alias #3 derive from a scatter at the roof’s edge that is clearly visible

in the 50 m range span (not shown). Alias #2, however, which is in the arch associated with

Target #3, derives from Target #3. As with the bright spot corresponding to the actual

target location, the aliased version has dark bands extending on either side that end up

contributing to the dark bands from the original target.

These bands from the aliased bright spots can provide an explanation for why the

bands are darker with respect to azimuth. The spatial sampling frequency of 2.5 cm with
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respect to elevation is greater than the spatial sampling frequency of 3.33 cm with respect to

azimuth. The spatial sampling frequencies reflect the dimensions of the horn antennas with

respect to azimuth and elevation, as required by Eq. 4.62. However, the effective aperture

appears to be the same for both dimensions, since the beam width is 30◦ for both dimensions.

Applying a 30◦ beam width to the beam width equation reveals that the effective aperture is

actually 4.6 cm for each dimension, which would explain the aliasing with respect to azimuth

and suggest even finer spatial sampling with respect to elevation.

Although improved spatial resolution can prevent some of the bleeding in Fig. 6.2, it

does not entirely solve the problem. However, the bleeding seems to behave in predictable

ways, describing arches with contours that depend on the position of the scatterer from which

they originate and falling off in intensity at predictable rates. A processing algorithm needs

to be developed to remove the bleeding to ensure that fractions of the backscatter associated

with the scatterers from one region are not added to the backscatter from adjacent regions.

6.2 Demonstration of Non-nadir, Volume Imaging of a Snowpack

Two field deployments are arranged to demonstrate the repeatability of non-nadir,

volume imaging of a snowpacks with the preliminary system. The demonstration of non-

nadir, volume imaging of a snowpack is not a trivial matter. Although wavelengths trans-

mitted at nadir have been shown to interact with snow packs across several bandwidths

to produce backscatter at electromagnetic boundaries within the snowpack [1]–[10], a non-

nadir image of snowpack volume relies on the different phenomenon of volume scattering

to produce backscatter. Although theory and other types of measurements suggest volume-

scattering-based images are possible, such images have yet to be demonstrated. Questions

also arise as to whether backscatter from the ground will drown out the signal from the snow.

These questions are addressed by the non-nadir, volume images of the snowpack provided

by the preliminary scanner.

6.2.1 First Field Deployment

Special thanks are in order to Snowbird Ski Resort for its cooperation with this

research project. The preliminary system is first deployed on February 9, 2010 in an overflow

parking lot at the Resort. A second field deployment is made at this same site on February 23,
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2010. The deployment site is selected because of the opportunity it affords for uninterrupted

views of an alpine snowpack reposing on a gentle slope of sufficient size to entirely occupy

a volume defined by the range-dependent resolution limits of the preliminary system. The

snow from the parking lot is plowed away from and not pushed into the slope in a way that

avoids a mass of dense ice that would distort the signal. A picture of the location is provided

in Fig. 6.5.

Field Deployment Set-up

The scanning platform and the microASAR of the preliminary system require sup-

porting infrastructure when they are deployed. This infrastructure, with its components and

connections, is depicted in Fig. 6.6.

The grid used to create the synthetic aperture for the deployment on the first day

spans 140 cm x 140 cm, with nodes separated by 2.5 cm with respect to elevation and 3.33 cm

with respect to azimuth. (Unfortunately, the scan discussed in Section 6.1, demonstrating

three-dimensional imaging, was not processed until after the first field deployment and the

knowledge about the need to increase spatial sampling frequency is not applied, as is apparent

in the aliased images of the snowpack that can be rendered from the data.) Again mechanical

problems with the scanning platform and time constraints prevent a synthetic aperture of

larger dimensions from being created. To ensure a metal lip at the tailgate end of the

truck bed does not interfere with the scan, the grid is set to begin from the very top of

the scanning platform at the tailgate end of the truck. Therefore, the origin from which all

locations are measured in any images rendered from the data is in the upper corner of the

scanning platform nearest the snow.

Due to an exceptionally poor snow year, the depth of the snowpack during the first

deployment is measured to be only 4 ft 2 inches (127 cm). The range resolution of the

preliminary system is so poor (0.8 m) as to almost encompass this depth. Therefore, to

image the snowpack, the superior, range-dependent resolution with respect to azimuth and

elevation are relied upon. To harness the resolutions along these axes, the scanning platform

is oriented so that the range direction cuts through the snowpack almost parallel to layers

within the snowpack at its base. The orthogonal azimuth and elevation directions cut across
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Figure 6.5: Site of field deployments on the day of the first deployment, with the one-and-half
ton diesel truck, on which the scanning platform is deployed, in the positions from which the
truck and the platform are located during the scan. When the truck and scan were initially
positioned, the parking lot was essentially free of cars for more than 100 m downrange of the
truck. During the course of the scan however, vehicles parked as close as 30 m in a region to
the front of the truck cab, but were removed by the end of the scan.
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Figure 6.6: Components and connections necessary to deploy the preliminary system in the
field. The infrastructure includes two generators, each providing just over 1500 Watts of AC
power and two DC power supplies, providing 2.7 Amps at 27 Volts to the radar and a similar
current at 35 volts to the motors on the scanning platform via the dark red cords. The motors,
one visible at the far end of the scanning platform and the other (not visible) located under
the base plate, are connected serially, both in terms of their power supply and in terms of
their communication links. Also included is a laptop used to set up the scanning grid, control
the motors, retrieve position information from the motors, and relay that information to the
microASAR module, via communication cables depicted in bright green. A 1500 Watt space
heater warms the plastic tent in which the scanning platform is deployed to keep the platform
warm and to prevent binding. Fortunately, the truck bed is large enough to hold this tent.
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Figure 6.7: View along the snowpack into the scanning platform, providing orientation for
the axes along which the three-dimensional images are rendered and picturing characteristics
of the snowpack that can be demonstrated in those images.

the layers so that they can be imaged. The more shallow the slope, the more the elevation

direction becomes perpendicular to the layers of the snowpack. A picture, as provided in

Fig. 6.7—looking along the snowpack into the scanning platform—aids in an understanding

of this orientation.

A vector normal to the surface of the plastic tent, extending forward along the range

direction from bellow the tent cuts through the snowpack at its base for a great distance

before traversing layer boundaries and a greater distance before exiting the snowpack. The

same is not true for a vector along the elevation axis, which quickly traverses layers and

strikes the ground after traversing a distance just over that of the snow’s depth.
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First Demonstration of Non-nadir, Volume Imaging of a Snowpack

Figure 6.7 pictures important characteristics of the snowpack that manifest them-

selves in the data. First, the slope of the snowpack is shallow, 20◦ at most. Second, the

slope is non-linear, having a concave shape. Third, the headwall of the snowpack slowly

advances across azimuth as range increases. Fourth, as range increases, the height of the

headwall relative to the synthetic aperture decreases due to a slight downward slope in the

bed on which the snowpack rests. Fifth, the distance, along the range axis, from the bot-

tom corner of the synthetic aperture closest to the snow is 6.5 meters (as determined by

approximate measurement).

Additional characteristics about the snowpack become visible when it is viewed from

the opposite direction. This view, from behind the scanning platform, is provided in Fig. 6.8.

The view from behind the scanning platform has the added advantage of providing the view

that the synthetic aperture sees. As shown in Fig. 6.8, sixth, the snowpack has a shelf of

about two meters at its base where the slope is very gentle. Seventh, the headwall and the

bed of the slope bend inward. All seven of these characteristics, including an eighth, the

depth of 4 ft 2 inches, can be demonstrated in the images generated from the data captured

by the scan.

Table 6.4: Important Snowpack Characteristics

Characteristic

1 Shallow slope (20◦ at most)
2 Concave shape to slope
3 Snowpack headwall advances across azimuth with increasing range
4 Slight downward tilt with increasing range
5 6.5 m to snowpack along range from closest corner of synthetic aprerture
6 2 m shelf at the base of the snowpack
7 Headwall and slope bend inward
8 Depth of 4 ft 2 inch

Table 6.7 reviews the eight characteristics of the snowpack as demonstrated in three-

dimensional images rendered from the scan. Different rotations of a three-dimensional image

166



Figure 6.8: View from behind the scanning platform, picturing additional snowpack charac-
teristics that can be demonstrated in images of the snowpack.

are rendered in Figs. 6.9 through 6.12 over a volume covering a large portion of the snowpack

pictured in Figs. 6.7 and 6.8.

Along azimuth and range, the image spans from -5 m to 7 m and from 6 m to 18 m

respectively (a 12 m span, approximately 40 ft, along these axes). Along elevation, the image

covers a span from -5 m to 1 m. With respect to azimuth and elevation an interpolation

factor from just over 2 to just under 1 is applied across these axes. With respect to range,

an interpolation factor of 5.335 is employed. Along all three axes, each voxel represents 15

cm. The data is windowed to only report returns greater than 1.2 x 109 to clarify the image.
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Figure 6.9: First set of rotations of a three-dimensional image of the snowpack from the first
deployment. The image covers an area of 40 ft x 40 ft; a span from -7 m to 5 m with respect
to azimuth, a span from 6 m to 18 m with respect to range, and a span from -5 m to 1 m with
respect to elevation.

Figure 6.10: Second set of rotations of the three-dimensional image of the snowpack from
the first deployment. The image covers an area of 40 ft x 40 ft; a span from -7 m to 5 m with
respect to azimuth, a span from 6 m to 18 m with respect to range, and a span from -5 m to
1 m with respect to elevation. See text for a discussion of the red and orange arrows.
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The first two characteristics of (1) slopes less than 20◦ and (2) concave slopes are

illustrated in the first set of rotations in Fig. 6.9, especially in the first rotation on the left.

In the left-hand corner of the first two rotations, a shape appears, circled in red on the left,

that can be shown to be an aliased portion of the snowpack. The shape should be ignored

in all of the rotations that follow. The rotation on the left also demonstrates (6) the shelf

at the base of the snowpack and (8) 4 ft 2 inch snow depths.

The characteristic that (3) the headwall advances across azimuth as range increases

is clearly demonstrated in the second set of rotations in Fig. 6.10. In the rotation on the

left, the headwall is outlined in red, and the slope is outlined in orange. The (7) bend in the

headwall is also visible in the rotation on the left. Although better confirmations of (4) the

downward tilt as range increases can be seen in rotations not shown, the downward tilt can

still be seen in the rotation on the left.

In the rotation on the right, the (3) progression of the headwall is even more clearly

visible. In the second set of rotations, the overall contour of the snowpack over the large area

of 40 ft x 40 ft maintains its integrity. Also, (5) the 6.5 m distance between the scanning

platform and the snowpack can be seen in the way that the snowpack appears to begin just

over 6 m from the synthetic aperture to the left of center in the various.

The images provided in Figs. 6.9 and 6.10, the images to be discussed in Figs. 6.11

through 6.14, and all the images that the data are capable of generating, demonstrate the

characteristics of the snowpack in the right locations relative to the corner origin of the

synthetic aperture. The preliminary scanner, therefore, achieves, in part, the second goal

behind its design, by demonstrating non-nadir, volume images of a snowpack. Additional

analysis of the images provide suggestions about how better images can be acquired in the

future, furthering the aims of the second goal.

Avoidance of Ground Signals at Shallow Grazing Angles

Since the largest constituent of snow by volume is air, a fear exists that the signal

from the potentially moist ground and angular rock surfaces under a snowpack might drown

out the signal from the snow, or might be very difficult, if not impossible, to decouple from

the snow signal. However, the snowpack appears to float in the air for all of the rotations of
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Figure 6.11: Rotation of a three-dimensional image showing the underside of the snowpack
from the first deployment.

Figure 6.12: Rotation of the three-dimensional image showing a layered structure for at least
40 ft along the headwall of the snowpack at its base (from first deployment). The orange arrows
indicate location and orientation of layers visible in the image.
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its image, with no apparent indication of presence of the ground. Perhaps this observation

becomes most apparent when reviewing Fig. 6.11, depicting the underside of the snowpack,

with the portion closest to the the radar system at the bottom of the figure.

It would seem that the shallow grazing angles with respect to the ground, as de-

termined by the orientation of the scanning platform, generate specular reflections that

transmit energy away from the radar system. As a result, the ground, like the gravel on the

roof pictured in Fig. 6.1, does not stand out.

That the ground does not appear in short range images, bodes well for the devel-

opment of longer range systems. An inability to decouple returns from the snowpack and

the ground could have ruled out the concept of a radar-based avalanche-prediction system.

Since the grazing angles should be shallow for remote, large-area radar-imaging systems, the

ground signal is likely not to present problems in images produced by longer-rang, larger-area

systems.

Analysis of Layered Structure and Other Issues

With a demonstration of non-nadir, volume images of a snowpack, interest turns to

the question of the ability of the images to reveal layers and what this bodes for future

systems at much higher frequencies and sensitivities to snowpack strata. As seen in Fig. 6.8,

a relatively flat shelf extends along the base of the snowpack. Since the range dimension

runs parallel to the snowpack in this region, the shelf at the base of the snowpack is the

most likely region where layering would be visible in images of the snowpack.

In the steeper regions of the snowpack, the snowpack becomes rotated so that the

coarse azimuth resolution cuts into the snowpack, commingling backscatter from adjacent

layers in the returns. Since the shelf along the bottom of the snowpack extends around 2 m

into the snowpack, the 80 cm range resolution remains parallel to the snowpack for multiple

resolution cells, reducing the likelihood of commingled returns. Therefore, layers are most

likely to appear in the base region.

A good view of the base region is achieved by rotating the underside-snowpack view

in Fig. 6.11. In Fig. 6.11 the base region along the headwall extends diagonally, upward and

to the right along the snowpack image, just above the aliased shape. Fig. 6.12 makes the
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headwall even more visible by further rotating the snowpack image so that the full height of

the headwall can be see all along the distance it traverses. At the base of the snowpack, all

along the headwall in Fig. 6.12, a layered structure is clearly visible. The layered structure

comprises a band of cool returns sandwiched between two bands of bright returns (see orange

arrows). This layered structure extends at least 40 ft in the region where a layered structure

would most likely be present.

The layered structure at the base of the snowpack becomes more clear when it is, in

effect, low-pass filtered in an image rendered from only the last 23.33 cm of the scan with

respect to azimuth (creating a synthetic aperture of 23 cm x 140 cm). Figure. 6.13 provides

an imaged slice from such an aperture. Incidently, Fig. 6.13 demonstrates (8) the 4 ft 2

inch depth of the snowpack, (6) the shelf at the base of the snowpack, (1) slopes in the

neighborhood of 20◦, and the (6) concave contour.

Three main features stand out from the filtered image of the snowpack provided in

Fig. 6.13. First, two bands along the shelf of the snowpack, indicated by red arrows, appear

to differentiate layers within the snowpack. Second, a bright spot appears in the middle of

the image. Third, to the right of the bright spot, the top and bottom layers appear to be

replaced by a single layer of strong return in the middle of the snowpack.

The left- and right-hand sides of Fig. 6.13 suggest conflicting things about the struc-

ture of the snowpack. On the left, three distinct layers are suggested, namely, top, bottom,

and middle, with the top and bottom layers being the brightest. On the right, a top, bot-

tom, and middle layer are also suggested, but the middle layer is brightest and the top and

bottom are faint.

One possible explanation for the discrepancy is that on the left-hand side, the shelf

of the snowpack is imaged, whereas on the right-hand side, the steeper upper portion of

the slope is imaged. For the shallow shelf portion, the range direction runs parallel to the

snowpack. However, as shown in Fig. 6.8, the steeper upper slope wraps in front of the

synthetic aperture so that the range direction starts to cut through the snowpack toward

the ground. As this happens, more of the snowpack is imaged along the range direction

as opposed to the elevation directions. The poor resolution with respect to range makes
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Figure 6.13: A three-dimensional rendering of the snowpack in Fig. 6.8, generated from only
the final 23.33 cm of the scan positions with respect to azimuth (creating a synthetic aperture
of 23 cm x 140 cm). The image brings out the more prominent structures of the snowpack and
looks downrange from from behind the scanning platform at a slice 11.5 m to 14.4 m out. The
dimensions of the slice along azimuth and elevation are as displayed. Voxels with respect to
azimuth and elevation cover distance of 13 cm along each axis. See the text for a discussion of
the red arrows.
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Figure 6.14: A three-dimensional rendering of the bottom shelf of the snowpack from the last
23.33 cm with respect to azimuth of the scan, to better bring out layered structure. The
rendering is rotated at an angle that best displays the top and bottom layers within the
snowpack and encompasses a span from 1.5 m to 4 m from the origin with respect to azimuth
and 11.5 m to 14 m with respect to range. Red lines indicate suggested layers—see text.

the layers difficult to distinguish as the signals from the layers that are near to one another

commingle in cells of range resolution.

The distances over which the layered structure on the left-hand side maintains in-

tegrity suggest that the layered pattern arises from something real in the snowpack. Fig-

ure 6.15 depicts an area of 3.5 m with respect to azimuth and 2.5 m with respect to range

(8.2 ft x 11.5 ft). The filtered image is rotated to best demonstrate the integrity of the

structure. The region depicted in Fig. 6.15 is not the only region where the layered structure

manifests. Images of the layered structure can be generated along the entire bottom shelf of

the snowpack, as demonstrated by Fig. 6.12.
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Figure 6.15: Comparison of two slice plots of an image of the bottom shelf of the snowpack at
a range of 10 m. Azimuth and elevation with respect to the imaging origin are as depicted on
the plots. The plots correspond to two different synthetic apertures with azimuth spans from
0 cm to 53.33 cm and from 86.67 cm to 140 cm. As expected the bright spot shifts by about 1
m. The resolution with respect to azimuth is 52 cm due to the short azimuth dimensions. The
red lines delineate different spans of a meter in length on either side of the original origin of
the synthetic aperture.

Returning to the features identified in Fig. 6.13, the bright spot appears to be an

artifact from the antenna gain pattern of the small antennas. The antenna gain pattern

ensures that the strongest returns come from scatterers closest to a point directly in front

of the center of the synthetic aperture, as occurs with the bright spot in Fig. 6.13. This

theory is supported by changing the center of the synthetic aperture. The center of the

synthetic aperture can be changed by only processing the data from positions pertaining to

two different spans of the overall grid of positions collected with respect to azimuth. The

results of such processing are depicted in Fig. 6.15.

Figure 6.15 compares the position of the bright spot on the shelf of the snowpack at

a distance of 10 m when the first 53.33 cm of the synthetic aperture is processed and when

the last 53.33 cm is processed. The centers of the synthetic apertures corresponding to the
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two images are separated by 86.67 cm. Therefore, a bright-spot shift of a little less than a

meter is expected. As expected, the bright spot shifts about a meter, with the bright spot

shifting from a region between the -1 m and 0 m marks to a region between the 0 m and 1 m

marks. The course resolution in Fig. 6.15 arises because of the short azimuth spans of the

two synthetic apertures. Future systems need to address the issue of bright spots. As is clear

from Fig. 6.13, a bright spot drowns out sensitive information about snowpack structure.

Attribution of Possible Physical Properties to the Layered Image Structure from
the First Deployment

That the preliminary system suggests an ability to detect different physical layers is

important to the overall goal of assisting in avalanche detection. However, it is important

to determine to what physical properties the radar system might be responding. The most

likely answer to this question is that the radar is responding to water content. Although

water content is not the property most highly correlated with avalanche activity, it is still a

property of the snowpack that could create a layer at the top and bottom of the snowpack.

Due to problems with the communication link between the laptop and the radar, the

scan for the first deployment is performed in 5 blocks. Each block includes all of the vertical

spans corresponding to runs of about 30 cm down azimuth. As a result of the time required

to download these blocks, verify their integrity, the need to repeat sections of the scan, and

certain mechanical problems, the overall scan takes from 12:00 p.m to 5:00 p.m. to complete.

During this 5 hour period, the snowpack is subject to the full heat of a day on which the

average temperature is 33◦ F, but rises as high as 42◦ F.

A layer of snow subjected to the sun and to these temperatures increases in water

content, which causes more backscatter. In the middle regions of the snowpack, however, the

insulating properties of the overburdening snow protects the mid portion of the snowpack

from high temperatures. The snowpack remains frozen and dry in this region. As explained

in Section 2.2.1, the only other region of the snowpack that is subject to warm temperatures

is at the bottom of the snowpack. The bottom of the snowpack is warmed from the earth

and can also become moist. This temperature profile, very common in alpine snowpacks,

with high temperatures at the top and bottom of the snowpack and low temperatures in
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between, is depicted in Fig. 2.7. A similar profile describes water content. Therefore, the

increased water content at the top and bottom of the snowpack can explain the top and

bottom layers in snowpack images.

A more interesting, but less likely explanation arises from two layers in the snowpack

that are intimately related with avalanche formation. These are layers of faceted snow, and

they are pictured in the infrared image provided in Fig. 6.16. Infrared images are useful

because the intensity in an infrared image is correlated with the specific surface area of the

snow crystals from which they reflect. As explained in Section 2.2.1, faceted crystals have

low specific surface areas. Research has been done to determine the specific surface area of

snow crystals from infrared images of snow [22]. The darker the reflection in an infrared

image of the snowpack, the less specific surface area reflecting the infrared wavelengths and

the more faceted the snow.

Theoretically the layers of faceted snow depicted in Fig. 6.16 could act as a waveg-

uide. This waveguide conducts electromagnetic away from the radar system. As a result,

the signal from the middle of the snowpack is relatively weak.

Lessons Learned from First Deployment

Several things can be learned from the volume images of snow produced by the pre-

liminary scanner during the first deployment. First, a volume of snow provides a good

medium for producing backscatter at non-nadir angles. As discussed, previous studies rely

on nadir, normal angles of incidence and electromagnetic boundaries to generate boundary

reflections [1]–[10]. However, when imaging large areas of a snow pack from a remote loca-

tion, non-nadir, non-normal grazing angles, many of which are very shallow, are the norm.

Specular reflections occurring at boundary layers bounce electromagnetic energy away from

the radar for such scans. The preliminary system demonstrates that volume scattering can

be relied upon to produce the backscatter necessary to generate the three-dimensional, non-

nadir, volume images that can make a remote, large-area, radar-imaging system possible.

Second, return from the ground does not drown out the signal from the snowpack.

The shallow grazing angles with respect to the ground, common for remote, large-area scans,

generate specular reflections that transmit energy away from the radar. As a result, the
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Figure 6.16: Infrared image (wavelengths around 930 nm) of the lower two-thirds of the
snowpack during the first deployment. Two layers of dangerous faceted snow appear as dark,
4 cm bands across the snowpack.

ground does not appear to present a problem at shallow grazing angles. This finding bodes

well for the development of longer range systems, removing the specter of a potentially thorny

problem.

Third, wavelengths at C-band can penetrate large distances through a snowpack,

suggesting that shorter wavelengths can be employed to good effect on future systems. Since

the range axis is oriented almost parallel to the shelf of the snowpack, waves must travel

a great distance through the snow to create the resultant images. The images generated

from the data show strong reflections even after the waves responsible for those reflections

have traveled several meters through the snow. Although shorter wavelengths, which would
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provide much more information about snow properties and improved resolution, do not have

the same penetration capabilities, the penetration capabilities of wavelengths in C-band

bode well for the ability of much shorter wavelengths to penetrate the depth of an alpine

snowpack.

Fourth, volume images of snow are possible at a distance. Although resolution along

azimuth and elevation start to break down quickly with range for the data set provided from

the first deployment, decent volume images of the snowpack can still be generated at a range

of 30 m (100 ft) (not shown). Unfortunately, for the data set from the first deployment, at

this distance, the resolution is reduced to 2 ft, and very little information is provided about

the snow, except its presence and general shape.

Fifth, the synthetic aperture of the preliminary system creates bright spots. The

bright spots favor the return from certain regions over the return from other regions, probably

because of the contour of the main beam of the small antenna used to generate the synthetic

aperture. These bright spots cause serious distortions in images. Appropriate windowing to

flatten the contour of the main beam may help this problem.

Sixth, the images produced from the scan data are consistent with the ability of the

system to differentiate between layers within the snowpack with different physical proper-

ties. The property responsible for the layered structure in the images cannot be determined

with certainty. However, the possibility remains good that properties relevant to avalanche

formation may be detectable, especially at the shorter wavelengths more suited to detect

these properties.

6.2.2 Second Field Deployment

To further demonstrate the repeatability of images snowpack volumes and to further

explore the possibility of imaging layers, the preliminary system is redeployed on February

23, 2010. To capitalize on lessons learned from the roof-scan performed on February 17th

(discussed in Section 6.2.1) and to avoid aliasing with respect to azimuth, the spatial fre-

quency is increased with respect to azimuth. For the second deployment, the nodes of the

grid scanned are spaced at a distance of 2.5 cm with respect to both the azimuth and the

elevation axes.
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Table 6.5: Distance with Respect to Range for the Three Corner Reflectors.

Measurement Distance

1 7.92 m
2 13.34 m
3 13.41 m

The dimensions of the scan are 150 cm with respect to elevation and 90 cm with

respect to azimuth. Due to mechanical difficulties, the span of the azimuth dimension is cut

short. However, the total time of the scan, taken staring at 12:00 p.m., is reduced to under

two hours for most of the relevant measurements (excepting the measurements from the final

30 cm of the scan with respect to azimuth, which were also taken during a relatively cool

time of the day), meaning that the snowpack undergoes less warming and is likely to have a

lower water content.

Unfortunately, during the scan many more cars make use of the parking lot, with cars

occupying a portion of the range as close as 50 ft to 60 ft from the scanner. These cars come

and go during the scan and make a mess of the data for target distances greater than about

50 ft from the scanner.

Repeatability of Non-nadir, Volume Imaging of a Snowpack

The primary purpose of the second deployment is to verify the ability of the prelimi-

nary system to capture data from which volume images of a snowpack can be rendered. For

this reason, the scanning platform is deployed at the same site as the first deployment, in

relatively the same location. The depth of the snowpack increases between deployments to 5

ft 1 inch. Additionally, corner reflectors are placed on the snowpack for a final, vertical scan

to verify that the masses appearing in the images are, in fact, the snowpack. Figure 6.17

pictures, from the side, the snowpack on the day of the second deployment, the relative

orientation of the scanner, and the corner reflectors used in the last, vertical scan.

The picture in Fig. 6.17 can be used to discuss some important differences between

the scans made during the first and second deployments, apart from the depth of the snow

increasing by a foot. In an effort to image regions of the snowpack closer to the radar, thereby
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Figure 6.17: Side view of the second deployment, picturing the snowpack and the relative
orientation of the scanning platform during the second deployment. Three corner reflectors
used to verify the location of snowpack are circled in red, with the ranges to those corner
reflectors provided in Table 6.5. The man just behind the truck is taking pictures of a snow
pit from which measurements of snowpack layers are made in an effort to correlate physical
measurements with radar data. A snow pit adjacent to the one in the picture was dug for the
first deployment.

improving resolution, the scanning platform is tilted more abruptly toward the snowpack.

The tilt can be traced in Fig. 6.17 by the line described by the top of the plastic tent covering

the scanning platform. Due to this tilt, the second scan captures data that allows for images

much closer to the scanner.

In theory, as discussed below, the closer regions of the snowpack can be imaged—due

to the more abrupt tilt—with improved resolution with respect to azimuth and elevation.

The images of most value from the second deployment come from a region before the closest
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Table 6.6: Measurements for the Scanning Platform Relative to
the Snowpack During the Second Deployment.

Measurement Distance/Anlge

Bottom right corner to snow 5.26 m
Top right corner to snow 13.5 m
Bottom left corner to snow 8.08 m
Top left corner to snow 16.00 m
Sideways distance to snow 1.98 m
Angle between scanner and headwall-normal 25◦

corner reflector circled in red in Fig. 6.17. The images of most value from the first deployment

come from a region well after the first corner reflector up until the second and third corner

reflectors in Fig. 6.17.

Additionally, because of the abrupt tilt toward the snowpack, a vector along the range

direction no longer runs parallel to the layers of the snowpack within the bottom shelf of the

snowpack for as great a distance as it did in the first deployment. The increased snow depth

has also filled in some of the shelf. Finally, the headwall may have come to more resemble

an incoming wave with snow at its top overhanging snow at its bottom.

To verify that the images generated from the data correspond to the snowpack, more

extensive measurements of the relative orientation of the scanning platform to the snowpack

are taken during the second deployment. The distance along a vector normal to the synthetic

aperture from each corner of the platform is measured. The measurements are taken with

the aid of a laser pointer reflected onto the snowpack. When the distance to the point

from the laser can be accessed, a measuring tape is used. Otherwise, a laser range finder is

used. Additionally, the shortest distance from the nearest corner of the scanning platform

to the headwall of the snowpack is measured and the angle between the azimuth track of

the scanning platform and a vector normal to the headwall at the point closest to that track

is measured. The results of the measurements are provided in Table 6.6. In Table 6.6, the

right corners of the scanning platform are the corners closest to the snowpack.

The measurements provide a good guide to the general locations of where snowpack

characteristics should appear, but cannot be relied upon for pinpoint accuracy. The absence
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Figure 6.18: A three-dimensional rendering of the snowpack in Fig. 6.17, looking downrange
from from the scanning platform at a slice 6 m to 10 m out. The dimensions of the slice along
azimuth are -2 m to 7.5 m and along elevation are -3.75 m to 1.25 m, both with respect to the
origin. Each voxel represents 9.2 cm with respect to both azimuth and elevation. The data is
windowed to suppress the strong returns from the bright spot directly in front of the synthetic
aperture.

of individual targets in the images, the possibility of a misaligned laser pointer, inaccuracies

from the range finder, and all of the shallow angles involved, make accurate measurements

extremely difficult despite the pains taken to obtain them. Nevertheless, the evidence is very

strong that images from the first two deployments are images of the snowpacks that they

purport to image. When images from the second deployment, similar to the one provided

in Fig. 6.18, are compared with measurements in Table 6.6, a general agreement obtains. In

interpreting Fig. 6.18, as with Fig. 6.13, it is helpful to review Fig. 6.8, which pictures the

snowpack for the first deployment from a vantage point similar to that from which the images

for both deployments are rendered. However, the differences between the two deployments

should be kept in mind.
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Similar to the way in which Fig. 6.13 demonstrates the characteristics of its corre-

sponding snowpack, Fig. 6.18 demonstrates the same characteristics, as they are modified for

the second deployment. Figure 6.18 demonstrates (8) the 5 ft 1 inch depth of the snowpack,

(6) the shortened shelf at the base of the snowpack, and (1) slopes in the neighborhood of

20 degrees. The slope in the figure also describes (2) a concave contour. Characteristics (3)

and (4) can be demonstrated by rotating the three-dimensional rendering. The analog to

characteristic (5) can be demonstrated with an image encompassing the distance between

the scanning platform and the snowpack. Again, the snowpack seems to float in the air,

indicating that even at the more abrupt tilt angle of 25◦ returns from the ground do not

present a problem.

Further comparisons between the images generated from the scans of the two deploy-

ments reveal that a bright spot also appears in Fig. 6.18. However, the bright spot appears

to be about a meter from the origin in Fig. 6.18. The reason for this discrepancy is not

readily apparent. In both figures, a shelf appears at the bottom of the snowpack. However,

the shelf in Fig. 6.18 appears compressed relative to the shelf in Fig. 6.13. The compressed

extent of the shelf in Fig. 6.18 can be explained by the more abrupt tilt with which the

scanning platform faces the snowpack in the second deployment.

Ideally, the layers along the shelf as imaged in Fig. 6.13 for the first deployment could

be confirmed in the images from the second deployment. Although they cannot be confirmed

in Fig. 6.18, where the brightest returns from the bright spot in front of the scanning platform

are suppressed, a layered structure does appear to manifest along the base shelf where the the

bright spot is not suppressed, as shown in Fig. 6.19. A very clear band of almost transparent

returns is sandwiched between to red bands in the region of the base, spanning a distance of

about a meter with respect to azimuth. The compressed nature of the shelf due to the abrupt

tilt angle of the scanning platform may explain why the pattern does not extend a greater

distance with respect to azimuth. Additional layering appears in the green, transparent,

green spot pattern that follows the contour of the snowpack up slope. Since the returns are

so strung in the region of the bright spot, the rest of the snowpack is very muted, but still

visible.
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Figure 6.19: A three-dimensional rendering of the snowpack in Fig. 6.17 showing layers in the
base shelf. The dimensions of the slice along azimuth are -2 m to 7.5 m and along elevation are
-3.75 m to 1.25 m, both with respect to the origin. Each voxel represents 9.2 cm with respect
to both azimuth and elevation. The data is no longer windowed to suppress the strong returns
from the bright spot, allowing returns as high as 7 x 109.

Two additional similarities between the images from the two deployments exist. First,

for a reason that is not readily apparent, the signal from the regions between the shelf and the

upper slope is muted in the images from the two deployments. This may be due to specular

reflections from layers in the snowpack oriented to conduct energy away from the radar at

the transition region to the steeper, upper slopes. Second, the higher and steeper portions of

the snowpack are thinner as compared to the portion of the snowpack corresponding to the

bottom shelf. This may be because more of the snowpack is imaged by the range dimension,

with its coarser resolution on the steeper slopes.

The images from the second deployment appear to provide ample corroborating ev-

idence of the ability of the scanning system to produce a non-nadir, volume images of a

snowpack. Additionally, although time was insufficient to run a complete scan with the cor-

ner reflectors pictured in Fig. 6.17, images from the single vertical scan (not shown) indicate
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return from the snowpack concentrated between the elevations of the corner reflectors for

the relevant ranges. The preliminary scanner, therefore, demonstrates the ability to image a

the volume of a snowpack with repeatable verifiability. Furthermore, the image in Fig. 6.19

corroborates the layered structure at the snowpack base as seen in images from the first

deployment. As before, this layered structure may be attributable to the moisture content

corresponding to the daytime temperature profile of alpine snowpacks.

Attribution of Possible Physical Properties to a New Layered Image Structure
from the Second Deployment

A search for layers in the snowpack is extended to the thinner upper slope for the

second deployment. Happily, the closer ranges provided by the advanced tilt angle may offer

improved resolutions with respect to azimuth and elevation with which to explore the image

of the upper slope for layers. This improved resolution may make up for the abrupt tilt into

the snowpack, avoiding the problems that made it difficult to distinguish layers in the image

of the upper slope, Fig. 6.13, from the first deployment.

Careful analysis of the upper slope in the image provided in Fig. 6.18 reveals a rel-

atively thin, bright band along the snowpack surface. Underneath this bright band is a

relatively cool, thin band followed by a thick, bright band. The return under this broad

band is relatively cool.

To better illustrate this pattern, thin slices are imaged, of thicknesses equal to the 80

cm range-resolution, taken from a range of 3.7 m to a range of 7.7 m. The five imaged slices

are depicted below in Fig. 6.20. Light orange and blue arrows are included to suggest the

proposed pattern of a thin, bright return layer, followed by a thin, cool return layer, followed

by a thick, bright return layer.

The proposed bright bands are not uninterrupted. However, bright spots do line up

along the proposed bands, which follow the contour of the snowpack, in the locations where

they would be expected to appear in all five images. Furthermore, the pattern seems to be

consistent over all five images, which cover a distance of 13 ft down range, suggesting the

patterns to be more real than imagined.
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Figure 6.20: Three-dimensional renderings of slices of the snowpack in Fig. 6.17. The slices
correspond in thickness equal to the range resolution of 80 cm. The endpoints, relative to the
origin, for the spans covered with respect to azimuth and elevation are provided. Each voxel
has dimensions of 5.8 cm with respect to azimuth and elevation. Actual resolutions vary from
6.8 cm with respect to elevation at 3.7 m to 23.6 cm with respect to azimuth at 7.7 m.
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Importantly, the proposed bands migrate upward between images. This migration is

consistent with characteristic (4), namely that the snowpack is disposed on a downward tilt

with respect to range. Unfortunately, the downward tilt of the snowpack and the abrupt tilt

of the radar line-of-sight into the snowpack mean that resolution with respect to azimuth

and elevation are compromised. Of the two tilts, the tilt into the snowpack at 25◦ is the

more pronounced.

Over 80 cm, a tilt into the snowpack of 25◦ causes the range direction to vary 37

cm. Therefore, layers separated by as much as 37 cm within the snowpack can contribute

to the return in a single resolution cell, no matter how small the resolutions with respect

to azimuth and elevation. The ambiguity as to where, within a snowpack, contributions

are coming from to generate the voxels in a snowpack image could explain some of the

irregularities in Fig. 6.20, but it also adds ambiguity to interpretations of those figures in

terms of physical snow properties.

Launching waves into a snowpack at close range so that the range direction is parallel

to the layers in the snowpack presents a challenge. With improved resolution, the orientation

of the range direction with respect to the layers in the snowpack would not matter nearly

as much. Therefore, to achieve high resolutions with respect to azimuth and elevation that

relate to the snowpack in an uncompressed way, range resolution should be improved by

increased bandwidth (see Eq. 4.6).

Despite the ambiguities introduced by the disproportionately coarse range resolution,

the patterns demonstrated in Fig. 6.20 merit attention. As the angles between the range

direction and the snowpack are relatively constant, the ambiguity introduced applies equally

to all imaging voxels. Patterns in the snowpack should appear, albeit somewhat disturbed,

in images of the snowpack. An effort to correlate the patterns to properties in the snowpack

is warranted.

The top bright bands in Fig. 6.20 may be explained by increased water content due to

worming in the snowpack. The presence of warming, melting, and increased water content

is supported with evidence from a snow pit (dug in the location indicated in Fig. 6.17) that

suggests that melting occurred from the top of the snowpack down to between 12 cm to 20

cm below the surface. Upon a drop in temperature, the melt region in question refreezes into
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a loosely formed, but very thick shell, or crust, on top of the snowpack. This melt region is

pictured in Fig. 6.22.

Water content, however, cannot explain the thick, bright band below the cool band.

According to expectations, the regions below the top bright band, the band warmed by the

sun, should grow increasingly cool, due to the insulating properties of snow, until a possible

band of brightness occurs at the bottom of the snowpack, due to warming from the ground.

The bright band from the ground does not appear. And, contrary to expectation, the middle

section is characterized by a broad, bright band.

Snow densities recorded from the snow pit, together with other features in the snow-

pack can be combined to provide a possible explanation. Figure 6.21 records the density of

the snowpack from the second deployment as a function of snowpack height. Also recorded

from the snow pit in Fig. 6.21, are measurements of snow hardness (hand scale), crystal

type, and crystal size, all as functions of snowpack height.

Denser snow provides stronger returns. As indicated by Fig. 6.21, the snow is most

dense in the middle of the snowpack. The large crystal sizes in this region correspond to high

density snow. The the larger 3.5 mm grains in the lower middle of the snowpack shown in

Fig. 6.21 may also produce more Rayleigh scattering. This region of dense snow can account

for the broad, bright band below the thin, cool band in the images.

At the top of the snowpack, the snow is relatively new, having undergone less of the

abrasive interactions that break down snow crystals over time, allowing them to be packed

more tightly together. In the top of the snowpack, therefore, the lightest snow is found. An

infrared picture of this light, low density snow is provided in Fig. 6.22. The light, low density

snow toward the top of the snowpack, as recorded in Fig. 6.21 and pictured in Fig. 6.22, can

account for the thin, cool band.

Toward the bottom of the snowpack, the density is not as high as it is in the middle

of the snowpack, but the snow is still dense. However, the bottom of the snowpack is

dominated by faceted crystal forms. These faceted forms have lower specific surface areas
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Figure 6.21: A record, for the second deployment snowpack, of measurements of snow density,
snow hardness (yellow bands measured on the hand scale), crystal type, and crystal size as a
function of snowpack height. The carrot denotes depth hoar, squares denote faceted crystals,
and circles denote rounds. Hardness is measured by the hand scale [11]. The blue line, indicative
of percent density, is interpolated from seven samples of snow taken at the locations indicated
by the blue dots. Zero height is at ground level.
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Figure 6.22: An infrared picture of the upper third of the snowpack, during the second
deployment. The location of the snow pit from which the picture is taken, is indicated in
Fig. 6.17. The infrared picture shows a region of melt-refreeze at the top of the snowpack,
a region of light, low density snow underneath, and, at the bottom, a region characterized
by several layers of distinct crusts separated by bands of snow. The crusts are visible as the
striations in the region marked multiple crusts.

and, therefore, may produce weaker returns, as demonstrated in Fig. 5.6. Faceting at the

base of the snowpack can explain the relatively week reflections in this region.

The multiple layers of crusts pictured at the bottom of the infrared image in Fig. 6.22,

and recorded in Fig. 6.21, might provide an alternative explanation for the cool, thin band

in the images provided in Fig. 6.20. These layers may act as specular surfaces. Owing to the

swallow grazing angle, specular surfaces would redirect electromagnetic energy away from

the radar system, thereby, explaining the cool response in the images for the relevant regions.
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Lessons Learned from Second Deployment

The second deployment provides its own lessons. First, non-nadir, volume-scattering-

based images of a snowpack are repeatable with the preliminary scanner. Additional mea-

surements ensure that the snowpack in the images corresponds to the physical snowpack.

Therefore, snow volumes, not just electromagnetic boundaries, can serve as a source of imag-

ing backscatter. Second, the important finding that the ground does not interfere with the

signal from the snowpack is confirmed. The abrupt tilt angle of 25◦ employed for the second

deployment suggests that grazing angles can rise as high as 25◦ and returns from the ground

will not be a problem. These two points are important to remote, large-area, imaging radar

systems directed at snowpacks.

Third, the next step to improving resolution is increasing bandwidth. When it comes

to efforts to image the stratigraphy of a snowpack, resolution with respect to azimuth and

elevation are at the mercy of range resolution. Coarse range resolution introduces ambiguities

into voxels with respect to azimuth and elevation where the range axis cannot be made

exactly parallel to the snowpack—this is almost always the case in the undulating terrain

where snowpacks are found. These ambiguities complicate the ability of voxels to accurately

depict snowpack stratigraphy.

Fourth, in both deployments, patterns consistent with snowpack layers exhibit them-

selves in the images. Not only is the layered structure seen at the base of the snowpack

in the images from the first deployment corroborated, but new patterns seem to manifest

themselves. The new patterns follow the contours of the snowpack, as expected and maintain

integrity over large areas. The ability to distinguish physical properties within a snowpack,

therefore, seems likely at high frequencies.

Fifth, bright bands on the top of the snowpack suggest the ability of the preliminary

system to detect changes in water content due to warming during the day. Sixth, more

accurate results for avalanche relevant properties, without the effects of heating on the

snowpack might require faster scan times, and scans performed in the evening and morning

hours.

Seventh, explanations consistent with the physical properties of the snowpacks can

be made. These properties may include water content, density, and specific surface area.
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However, any attribution of physical properties of a snowpack to proposed image layers

remains speculative.

6.3 Conclusions

In accordance with the first goal of the preliminary system, the system demonstrates

the ability to generate three-dimensional images at ultra-high resolutions, resolutions mea-

sured in inches. In accordance with the second goal, the preliminary system also demon-

strates the ability to image snow by means of volume scattering at non-nadir angles. The

preliminary system also demonstrates the repeatability of three-dimensional volume images

of a snowpack. The coarser resolution images from the preliminary system for longer ranges

suggest that higher resolution images would be possible over great distances for an improved

system.

Also in accordance with the second goal, the preliminary system uncovers assets and

problems for future systems. In terms of assets, the resultant images indicate that at the

shallow grazing angles (angles up to at least 25◦) that should obtain for long-range, large-

area, radar imaging, ground signals should be muted, leaving only the signal of interest

from the snowpack. The images from the preliminary system also contain layered structures

consistent with layers within the snowpacks that they image. Although accounts of these

patterns can be made that are consistent with the physical properties of snowpacks imaged,

attribution of patterns to actual physical properties remains speculative. The results from

the preliminary system also raise some problems that need to be addressed. Images of

corner reflectors show bleeding around scatters, especially with respect to the orthogonal

range, azimuth, and elevation axes, that can compromise images by commingling returns.

This problem needs to be addressed.
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Chapter 7

Conclusion

The ability of radar to capture data remotely, quickly, and over large areas, makes

radar a prime candidate for providing the information necessary for improved avalanche

prediction, which presently is not based on data from large areas as it should be. To acquire

data over large areas practically, a radar must be able to generate and map backscatter from

a snowpack for spatially-variant, shallow grazing angles. The radar systems from previous

snowpack studies do not have this capability, precluding them from capitalizing on the

principal advantages of radar.

At shallow grazing angles, backscatter is primarily generated from volume scattering.

Various mechanisms, such as Rayleigh and Mie scattering, hold the promise for generat-

ing backscatter with information about the physical properties of snowpack strata, such as

density, grain size and shape, water content and distribution. To provide a radar system

capable of generating and mapping this backscatter, this thesis designs a three-dimensional,

volume-imaging SAR with ultra-high resolution. The ability of a preliminary system to meet

these specifications and the implications of the images from the preliminary system for future

systems are discussed.

Previously un-demonstrated non-nadir, volume images of snowpacks, as required for

remote, large area scans, are demonstrated on more than one occasion by the preliminary

system. As another hopeful harbinger of the potential for future systems, the preliminary

system demonstrates that the shallow incident angles of a remote scan diminish returns from

the ground, avoiding the potentially very difficult problem of decoupling signals from the

ground and snow—for angles at least as large as 25◦. Furthermore, despite the low-frequency-

and low-bandwidth-limitations of the preliminary system, the resultant images from the sys-

tem demonstrate structures and patterns consistent with the layers of a snowpack. Physical
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properties consistent with these patterns, but not conclusively attributable, include density

and with water content. The possibility of detecting and assessing avalanche-relevant prop-

erties at higher frequencies that are more likely to be responsive to these properties remains

good. Also, the results from the preliminary system provide insights that inform the devel-

opment of future systems that should more closely resembling the full SAR system designed

in this thesis.

7.1 Future Work

The ability of the preliminary system to produce volume images of snowpacks war-

rants development of additional generations of radar systems. These systems should ad-

dress the problems mentioned in the preceding chapters. The mechanical problems with the

scanner need to be resolved. Additionally, greater facility in capturing, downloading, and

processing backscatter and position data needs to be achieved.

Greater facility in data capture can be achieved by changing the processing algorithm

from one that requires pauses and dwell times at the various nodes in a scan grid to one that

can process data from continuous scans. Continuous scans could be performed much more

quickly. An ethernet link from the radar to a laptop could allow for backscatter and position

data to be downloaded instantaneously, allowing for verification of data before entire scans,

or large portions thereof have been run. Adjustments to the processing algorithm could then

be applied to see images of the snowpack develop as it is scanned. These improvements

are all necessary to allow more interaction with the snowpack in terms of more scans, at

more angles, subject to less sun, and with more frequency to capture temporally-evolving

snowpacks. The measures are necessary to better determine which physical properties in a

snowpack can be attributed to patterns in images from the scans.

Improvements need to be made in terms of the signal-conditioning module. The

signal-conditioning module needs to have a higher bandwidth. For reasons discussed, range

resolution is the weak link that compromises the ability of azimuth and elevation resolution

to differentiate the stratigraphy of a snowpack. Where the range axis is not perfectly parallel

with the strata of the snowpack, the resolution cells along range pick up returns from adjacent

strata. A bandwidth of 1.5 GHz (10 cm resolution) is desired, but a bandwidth of 500 MHz
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(30 cm resolution) would mitigate the ambiguities that range resolution currently imposes

upon image voxels with respect to azimuth and elevation.

The second deployment demonstrates the ability of the scanning platform to launch

waves close enough to the snowpack to achieve resolutions along azimuth and elevation that

are in the sub 10 cm range. Sufficiently fine range resolution is needed to allow azimuth and

elevation resolutions to accurately reflect changes in the snowpack stratigraphy with respect

to azimuth and elevation. With sufficient range resolution, properties like water content

and density represent low-hanging fruit for confirmed attribution, and should be reflected

in C-band images, as the first two deployments suggest. Additional work with processing

algorithms to reduce bleeding should increase the likelihood of success.

Ultimately, a signal-conditioning module with higher transmit frequencies is desired.

As discussed in Chapter 3, higher frequencies mean smaller wavelengths that are much more

likely to be responsive to physical properties in the snowpack. According to the theory of

Rayleigh scattering, a move up to X-band would make backscatter much more responsive

to particle size. According to the theory of Mie scattering, a move up to the K-bands,

especially Ka-band, would tap into resonance profiles bearing size and shape information.

Even the ability to detect very general differences in shape, such as the difference between

sharp, angular facets and rounded grains, would allow for the detection and assessment of

some of the most dangers layers in the snowpack. Additional backscatter mechanisms, such

as those linked to surface roughness demonstrated by by surface hoar, are also likely to make

backscatter more responsive to important physical properties in a snowpack with decreasing

wavelengths and increasing frequencies. Increased frequencies can also offer higher resolution.

At higher frequencies, high resolution can start to be maintained at distances for which it can

start to become possible to determine the feasibility of larger scanning platforms to create

long-range, large-area images of snowpack stratigraphy.

Although significant obstacles would need to be overcome, a network analyzer, be-

cause of the large range of frequencies it can produce, might be reconfigured to serve as a

signal conditioning module. Such a modified signal-conditioning module would be particu-

larly valuable where the network analyzer spanned frequencies up to 50 GHz. A system with

such a module would allow for all manner of wavelengths to be applied to different types of
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ice grains, clusters, and water contents and distributions in a snowpack to better understand

the corresponding backscatter signatures for layers important to avalanche formation.

In the event that such efforts would allow densities to be attributed to image patterns,

as suggested from the results of the preliminary system, preliminary efforts in actually aiding

in the prediction of avalanches could be undertaken. Such efforts could begin by looking for

exceptionally dense snow on top of the snowpack, where low density snow traditionally

belongs. The high density snow sought after is wind-deposited snow, the heavy trigger

of many avalanches. Wind-deposited snow is infamous for being undetected in its rapid

accumulations during inclement weather. The ability of radar to scan large areas quickly

provides an ideal solution for detecting and assessing this hazard.

Also, to better understand the physical layers to which structures in images from

future systems may correspond, better backscatter models need to be generated for these

layers. As discussed in Chapter 3, current models do not take into account the shapes and

water distributions most likely to to be correlated with avalanche relevant layers. Empirically

results suggest that these oversights have detectible implications for volume scattering coeffi-

cients [42], [44]. The requisit models necessary to overcome these oversites could be generated

from electromagnetic modeling software employed on volume maps of the microstructure of

samples of the relevant types of snow as produced by X-ray diffraction. Examples of such

microstructure maps are provided in [19], [20], and [21].

7.2 Impressions on Likelihood of Success

The results from the preliminary system bode well for the possibility of using radar

in a way that can assist in avalanche prediction. The system has demonstrated the ability of

volumes of snow to provide sufficient backscatter to image snowpacks at the shallow angles

that obtain over long-range, large-area scans. The system has demonstrated that returns

from the ground should not be a problem at these shallow angles—at least for angles as large

as 25◦. The promise remains open, and is foreshadowed in some of these layered structures

in the resultant images, of imaging property-specific, snowpack stratigraphy.

However, in addressing the probability of success, a distinction should be made be-

tween avalanche prediction in a strong sense and in a weak sense. In the strong sense, a
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radar-based system could provide stratigraphy reproducing images of the physical properties

relevant to avalanche potential so that predictions can be made without a-priori knowledge of

the snowpack. Achieving capabilities in the strong sense is preferable, but such capabilities

are not necessary.

In the weak sense, success means that radar systems are a useful part of a broader ap-

proach to avalanche prediction, tracking properties correlated with known layers of concern.

The ability to track secondary properties, such as density, associated with known layers of

interest, such as wind-deposited snow, may provide sufficient assistance to avalanche pro-

fessionals to warrant radar-based systems. Radar systems would be employed by avalanche

professionals with a good deal of familiarity about the snowpack they would seek to image.

After the results from the preliminary system, success in the weak sense seems feasible; suc-

cess in the strong sense seems more uncertain. Whether radar-based systems obtain success

in the weak sense, or the strong sense, the largest obstacle seems to be the construction of

large scanning platforms, with dimensions measured in tens of meters to create the requisite

apertures.
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