
LOW COST/HIGH PRECISION FLIGHT DYNAMICS

ESTIMATION USING THE SQUARE-ROOT

UNSCENTED KALMAN FILTER

by

Trevor H. Paulsen

A thesis submitted to the faculty of

Brigham Young University

in partial fulfillment of the requirements for the degree of

Master of Science

Department of Electrical and Computer Engineering

Brigham Young University

April 2010

Copyright © 2009 Trevor H. Paulsen

All Rights Reserved

BRIGHAM YOUNG UNIVERSITY

GRADUATE COMMITTEE APPROVAL

of a thesis submitted by

Trevor H. Paulsen

This thesis has been read by each member of the following graduate committee and
by majority vote has been found to be satisfactory.

Date David G. Long, Chair

Date Richard W. Christiansen

Date Doran K. Wilde

BRIGHAM YOUNG UNIVERSITY

As chair of the candidate’s graduate committee, I have read the thesis of Trevor H.
Paulsen in its final form and have found that (1) its format, citations, and biblio-
graphical style are consistent and acceptable and fulfill university and department
style requirements; (2) its illustrative materials including figures, tables, and charts
are in place; and (3) the final manuscript is satisfactory to the graduate committee
and is ready for submission to the university library.

Date David G. Long
Chair, Graduate Committee

Accepted for the Department

Michael J. Wirthlin
Graduate Coordinator

Accepted for the College

Alan R. Parkinson
Dean, Ira A. Fulton College of
Engineering and Technology

ABSTRACT

LOW COST/HIGH PRECISION FLIGHT DYNAMICS

ESTIMATION USING THE SQUARE-ROOT

UNSCENTED KALMAN FILTER

Trevor H. Paulsen

Department of Electrical and Computer Engineering

Master of Science

For over a decade, Brigham Young University’s Microwave Earth Remote Sens-

ing (MERS) team has been developing SAR systems and SAR processing algorithms.

In order to create the most accurate image reconstruction algorithms, detailed aircraft

motion data is essential. In 2008, the MERS team purchased a costly inertial mea-

surement unit (IMU) coupled with high precision global positioning system (GPS)

from NovAtel, Inc. In order to lower the cost of obtaining detailed motion measure-

ments, the MERS group decided to build a system that mimics the capability the

NovAtel system as closely as possible for a much lower cost. As a first step, the same

sensors and a simplified set of flight dynamics are used.

This thesis presents a standalone motion sensor recording system (MOTRON),

and outlines a method of utilizing the square-root Unscented Kalman filter (SR-UKF)

[1] to estimate aircraft flight dynamics, based on recorded flight data, as an alternative

to the extended Kalman filter. While the results of the SR-UKF are not as precise as

the NovAtel results, they approach the accuracy of the NovAtel system despite the

simplified dynamics model.

ACKNOWLEDGMENTS

I would like to express my gratitude and appreciation to all those who have

guided my education.

I would especially like to thank my advisor, friend, and mentor Dr. David

Long. He has helped me not only with my research, but with many important deci-

sions I have faced “aLong” the way.

Special thanks go to Dr. Randal Beard for taking time out of his busy schedule

to help teach me Kalman filtering basics.

I would also like to express my appreciation towards my colleagues Bryce

Ready and Matthew Tolman who spent more time than they probably could afford

working with me, and all of my friends in the MERS lab.

Finally, I would like to thank my family for always being encouraging and

supportive. Particularly, I thank my wonderful wife, Caryn, who has been so patient

with me through this whole process.

Table of Contents

Acknowledgements xiii

List of Tables xix

List of Figures xxiii

1 Introduction 1

1.1 Purpose . 1

1.2 Contributions . 2

1.3 Outline . 2

2 Background 5

2.1 Introduction . 5

2.2 SAR Image Processing . 5

2.2.1 SAR System Overview . 5

2.2.2 The Need for Motion Compensation 6

2.3 Aircraft Flight Dynamics . 8

2.3.1 Coordinate Frames . 8

2.3.2 Characteristics of Aircraft Motion 12

2.4 The Kalman Filter . 13

2.4.1 The State-Space Model . 13

2.4.2 Formulation of the Kalman Filter 14

xv

2.4.3 Non-Linear Extensions of the Kalman Filter 15

2.4.4 Square-Root Implementation of the UKF 17

2.5 Conclusion . 19

3 Motion Recording Onboard Device (MOTRON) 21

3.1 Requirements for the MOTRON . 21

3.2 Motion Sensors . 22

3.2.1 NovAtel ProPak V3 with IMAR IMU 22

3.2.2 MicroStrain 3DM-GX1 and Additional Functionality 24

3.3 The MOTRON . 26

3.3.1 Components and Design . 26

3.3.2 User Interface, Data Storage, and Input Algorithms. 27

3.3.3 Interpreting the Recorded NovAtel Data 29

3.4 NovAtel Data Collected by the MOTRON 30

3.4.1 Measurement Statistics . 30

3.5 Conclusion . 31

4 Implementation the Square-root Unscented Kalman Filter 35

4.1 Aircraft Flight Dynamics and State Variables 35

4.1.1 State Variables . 36

4.1.2 Reference Frames . 37

4.1.3 Equations of Motion . 38

4.2 Measurement Sensors . 41

4.3 Implementing a Square-root Unscented Kalman Filter 42

4.3.1 Finding Initial Conditions . 43

4.3.2 Time Update . 45

4.3.3 Measurement Update . 46

xvi

4.3.4 Nonlinear State Functions . 47

4.3.5 Simulated Measurements . 51

4.4 Conclusion . 52

5 Results 55

5.1 Flight Simulator . 55

5.2 Kalman Filtering the Simulated Data 59

5.3 Kalman Filtering Actual Flight Data 63

5.3.1 Measurements of the Entire Flight 64

5.3.2 A Smaller Portion of the Flight 66

5.4 Filtered Results . 67

5.5 Conclusion . 68

6 Conclusion 85

6.1 Contributions . 86

6.2 Future Work . 86

Bibliography 88

A Hardware Implementation 91

A.1 Basic Operation of the TS-7800 . 91

A.2 COM Connections . 93

A.3 MOTRON Operating Source Code 94

A.4 Additional Resources . 95

xvii

xviii

List of Tables

3.1 IMU Scale Factors . 30

3.2 Statistics of Measurements shown in Figures 3.9 and 3.10 33

5.1 Northing, Easting, and Altitude Errors (m) 60

5.2 Body Frame Velocity Errors (m/s) 61

5.3 Non-centripetal Acceleration Errors (m/s2) 62

5.4 Attitude Errors(◦) . 62

5.5 Angular Rate Errors (rad/s) . 63

5.6 Difference Between SR-UKF and NovAtel Position (m) 64

5.7 Difference Between SR-UKF and NovAtel Attitude(◦) 65

5.8 Difference Between SR-UKF and NovAtel Position (m) 66

5.9 Difference Between SR-UKF and NovAtel Attitude(◦) 67

5.10 Difference Between Filtered SR-UKF and NovAtel Attitude(◦) 68

A.1 Interface Parameters . 91

A.2 Mapping of COM Port Pins. 94

xix

xx

List of Figures

2.1 SAR uses multiple antenna pulses to create a synthetic antenna. By
combining each pulse return from an area, high resolution images can
be created. 6

2.2 Any non-ideal motion in an aircraft can cause serious problems for
synthetic aperture processing. 7

2.3 Two of the most important frames of orientation. (a)The world frame.
(b)The body frame. 9

2.4 The three Euler angles. φ is roll, θ is pitch, and ψ is yaw. Each follow
the right hand rule about the body frame coordinate axis. 10

3.1 Schematic showing how the MOTRON, SAR system, NovAtel, IMU,
Antenna, Flash Drive, and any additional sensors are connected to
each other. 23

3.2 Connections of the NovAtel: A) Power Socket B) To MOTRON C) To
SAR System D)&E) To IMU F) To Antenna 24

3.3 The antenna connected to the NovAtel ProPak V3. 25

3.4 The IMAR iIMU-FSAS connected to the NovAtel ProPak V3. 25

3.5 The complete MOTRON. The box size is approximately 6” × 4” × 11”. 27

3.6 MOTRON connections A) Power Cable, B) Power Switch, C) ProPak
USB Connection, D) Jump Drive Connection, E) Ethernet Connection,
F) Serial Terminal Access, G) Additional Serial Ports for additional
measurement instruments. 27

3.7 Display screens for operation of the MOTRON. 28

3.8 A script for converting latitude and longitude to northing and easting
in meters. 31

3.9 Stationary accelerometer readings over 70 seconds. 32

xxi

3.10 Stationary gyroscope readings over 70 seconds. 32

4.1 Body frame versus world frame. î, ĵ, and k̂ represent the three orthog-
onal directions of the aircraft’s body frame. x̂, ŷ, and ẑ represent the
three orthogonal directions in the world frame. 37

4.2 Time update MATLAB script. 46

4.3 Measurement update MATLAB script. 48

4.4 Nonlinear function hGPS MATLAB script. 49

4.5 Nonlinear function f MATLAB script. 50

4.6 Nonlinear function hIMU MATLAB script. 52

5.1 The basic Simulink model for the MAGICC Lab flight simulator con-
sisting of an autopilot block and a flight dynamics block. 56

5.2 The Simulink model of the UAV flight dynamics. “yout.mat” contains
the simulated sensor data and “xout.mat” contains the truth data of
the flight. 57

5.3 The flight path of the virtual UAV. The UAV starts at the center and
flies a clockwise path around four different waypoints several times. . 59

5.4 Truth data, SR-UKF solutions, and SR-UKF error for northing, east-
ing, and altitude. See text and Table 5.1 for analysis. 70

5.5 Truth data and the SR-UKF solutions for u, v, and w. See text and
Table 5.2 for analysis. 71

5.6 Truth data and the SR-UKF solutions for non-centripetal acceleration
in the x, y, and z directions. See text and Table 5.3 for analysis. . . . 72

5.7 Truth data and the SR-UKF solutions for roll, pitch, and yaw. See
text and Table 5.4 for analysis. 73

5.8 Truth data and the SR-UKF solutions for angular rates p, q, and r.
See text and Table 5.5 for analysis. 74

5.9 The flight path of the MERS aircraft The drop pin indicates the start-
ing position just before takeoff. 75

5.10 NovAtel solution and the SR-UKF solution for northing, easting, and
altitude. See text and Table 5.6 for analysis. 76

xxii

5.11 NovAtel solution and the SR-UKF solution for roll, pitch, and yaw.
See text and Table 5.7 for analysis. 77

5.12 NovAtel solution and the SR-UKF solution for the body frame velocity,
non-centripetal acceleration, and angular rates. See text for analysis. 78

5.13 NovAtel solution and the SR-UKF solution for northing, easting, and
altitude. 79

5.14 NovAtel solution and the SR-UKF solution for roll, pitch, and yaw. . 80

5.15 NovAtel solution and the SR-UKF solution for the body frame velocity,
non-centripetal acceleration, and angular rates. 81

5.16 Frequency content of φ. Notice the strong harmonic content at 0.21π,
0.42π, 0.63π, and 0.84π rad/sample. 82

5.17 Frequency response of the low pass filter. 82

5.18 NovAtel solution and the low pass filtered SR-UKF solution for roll
and pitch. 83

A.1 The layout of the TS-7800 single board computer. Included on the TS-
7800 are six separate RS-232 uarts, two USB ports, an ethernet port,
an LCD port, a DIO port, an A/D, three bootup jumper options, and
an SD card slot(underneath). See text for further description. 92

A.2 The pin numbers of COM1. 94

A.3 The pin numbers of COM2 and COM3. Notice that the white circle
indicates pin 1. 95

xxiii

xxiv

Chapter 1

Introduction

1.1 Purpose

Synthetic aperture radar (SAR) is a valuable tool with applications ranging

from military to environmental. There are many types of SAR, but each relies on

special processing techniques to form useful imagery. These processing techniques

require accurate measurements of aircraft speed and attitude to correct aberrations

within SAR images. For over a decade, the Microwave Earth Remote Sensing (MERS)

team at Brigham Young University (BYU) has been developing SAR instruments and

processing algorithms that incorporate these motion measurements. With the addi-

tion of BYU’s nu-SAR system in 2008, an accurate standalone motion measurement

system was needed.

In 2008, BYU purchased a costly motion dynamics estimation system from No-

vAtel, Inc. The system utilizes three orthogonal accelerometers and laser gyroscopes

coupled with a high precision GPS system. It also includes a CPU that processes the

sensor and GPS data into a high precision navigation solution consisting of attitude

and position information. In order to decrease the dependence on expensive motion

measurement systems, BYU’s MERS team determined a standalone recording/pro-

cessing system was necessary and also wanted to develop processing algorithms that

mimic the capability of a high-end navigation system.

The purpose of this thesis is to present a system to couple high precision ac-

celerometers and laser gyroscopes with a high precision GPS system into an accurate,

onboard motion measurement system using the square-root Unscented Kalman filter

(SR-UKF) presented by Merwe [1]. Specifically, this thesis addresses a motion record-

ing onboard device (MOTRON) used to record and time sync GPS, accelerometer,

1

and gyroscope measurements, as well as SR-UKF techniques to optimally estimate

aircraft attitude, position, and velocity from these measurements.

This thesis demonstrates that the SR-UKF can be a very effective tool for

aircraft dynamics estimation. Although the NovAtel processing system is much more

sophisticated, the SR-UKF presented in this thesis approaches the effectiveness of the

NovAtel system. While it is expected that the techniques described by this thesis will

not outstrip the performance of a $40,000 motion measurement unit, it is shown that

with creative methodology, a much less complicated system implementing an effective

type of Kalman filter can perform quite well at a lower cost.

1.2 Contributions

This thesis contributes to the base of estimation theory by presenting a stan-

dalone sensor recording scheme that can be used in any fixed-wing aircraft platform.

This thesis further contributes by applying the SR-UKF to flight dynamics and mo-

tion estimation. Previously, the extended Kalman filter (EKF) has been used with

these sensors by NovAtel [2] to estimate motion measurements. Comparison of the

NovaTel filter and the SR-UKF is also presented. This analysis gives valuable insight

into the functionality of the SR-UKF for flight dynamics estimation.

1.3 Outline

The remainder of this thesis is organized into the following chapters:

� Chapter 2 gives a background on the need for motion measurement systems

within SAR processing algorithms, a brief survey of aircraft flight dynamics,

and a presentation of the SR-UKF.

� Chapter 3 presents a motion sensor recording scheme in order to collect data

from laser gyroscopes, accelerometers, and high precision GPS. It introduces the

requirements the MOTRON must fulfill, and how the MOTRON meets those

requirements.

2

� Chapter 4 outlines the specific implementation of the SR-UKF to the MERS

aircraft flight dynamics estimation problem. This chapter also gives specific

approximations that are used by the SR-UKF to simplify calculations.

� Chapter 5 presents the results of the SR-UKF on simulated data and on actual

recorded data. In the simulated case, the output of the SR-UKF is compared to

the truth data provided by the simulator, and in the actual flight, the SR-UKF

solution is compared to the NovAtel solution.

� Chapter 6 concludes the thesis and suggests areas in which further work can be

done to refine the SR-UKF implementation.

3

4

Chapter 2

Background

2.1 Introduction

In order to create a motion tracking system, it is important to look at why

such a system is needed. This chapter discusses the need for a motion tracking

system, reviews basic aircraft dynamics, and provides a formulation of a nonlinear

square-root “unscented” Kalman filter. This chapter also outlines assumptions made

in flight dynamics in order to simplify state space calculations.

2.2 SAR Image Processing

Microwave remote sensing, particularly Synthetic Aperture Radar (SAR), has

been in use since the 1960s. Some of the significant advantages of SAR over con-

ventional aerial photography are its ability to penetrate clouds, independence of the

sun as a source of illumination, and the ease at which man-made objects can be rec-

ognized. Often, the combined use of SAR and photography allow a greater study

of geometric and molecular properties of a surface. SAR systems are very complex

devices, and as such, only a brief overview of SAR systems is given here.

2.2.1 SAR System Overview

In a typical SAR application, the SAR antenna is attached to the side of an

aircraft. Once the aircraft has achieved level flight, a pulse from the antenna is trans-

mitted to the ground below. Because diffraction requires a large antenna to produce

a narrow beam, a single pulse from the radar is rather broad; often illuminating the

terrain from directly beneath the aircraft to the horizon. If the topography is approx-

imately flat, the times at which that echo returns allow objects at different distances

5

Figure 2.1: SAR uses multiple antenna pulses to create a synthetic antenna. By
combining each pulse return from an area, high resolution images can be created.

to be distinguished. If the amplitude and phase of the return signal from a piece of

ground are recorded, and the aircraft emits a series of these pulses as it travels, the

results of these pulses can be combined to make a much higher resolution image. In

effect, the series of observations can be joined together just as if they had all been

made concurrently from a very large antenna. This process creates a synthetic aper-

ture much larger than the length of the antenna or aircraft. Image resolution of SAR

is proportional to the radio signal bandwidth, and depends upon the post-processing

techniques used. Constructing a SAR image usually requires significant computa-

tional resources. Often, image construction is done on the ground well after the flight

has been made.

2.2.2 The Need for Motion Compensation

Because synthetic aperture processing usually depends upon the assumption

that the radar is traveling horizontally in a straight line at constant speed, any move-

ment outside of that line is not ideal. Errors in acceleration or attitude in an aircraft’s

flight can cause serious problems for the SAR. Consider the example illustrated by

Fig. 2.2. Because the acceleration and attitude are non-ideal, the radar return is not

what it is desired to be. As a result, the image is defocused and displaced. According

6

Figure 2.2: Any non-ideal motion in an aircraft can cause serious problems for syn-
thetic aperture processing.

to Ulaby [3], the bounds on the size of the error velocities uy (height) and uz (side to

side) are given by

uy sin θ − uz cos θ ≤ λfD0εr, (2.1)

where θ is the angle between the vertical and radar beam such that cos θ = height
range

, λ

is the wavelength of the beam, fD0 is the desired Doppler frequency and

fDε

fD0

≤ 2εr, (2.2)

where fDε is the Doppler error component and εr is a limit bound allowed in the

Doppler frequency. Considering an example aircraft with εr = 0.1, fD0 = 1 Hz, and

λ = 3 cm, the limit is found to be

uy sin θ − uz cos θ ≤ 3mms−1. (2.3)

In addition, the errors in acceleration must also be compensated. This essentially

means compensating for changes in velocity. While fixed-velocity errors affect the

presumed direction of the radar beam, acceleration errors affect the focus of the beam

because varying Doppler shift causes the desired signal to drift out of the Doppler

7

filter band. Using the same example aircraft it can be shown that

ay sin θ − az cos θ ≤ 0.006m/s2, (2.4)

meaning that any acceleration error must be within 6.1× 10−4g, which is extremely

sensitive.

Furthermore, an aircraft may roll, pitch, and yaw. Each of these movements

cause variation in the SAR return which can lead to errors in image reconstruction.

Rolling alters the gain for a particular point on the ground. If the antenna rolls too

much, this can be a serious problem, but it is not as severe as any yawing or pitching.

If an aircraft yaws or pitches while recording SAR data, it moves the illuminated area

away from a side-looking direction to a direction that is slightly ahead of or behind

the plane. This causes distortions in the image, and shifts the Doppler frequencies

away from the broadside of the plane.

With tiny attitude and velocity errors causing serious problems for the SAR, it

becomes absolutely necessary to compensate for these errors. It is unrealistic to think

that an aircraft can fly such a straight course. This is why great care is taken to mea-

sure non-ideal aircraft movement so that the unexpected motion can be compensated

for in processing algorithms.

2.3 Aircraft Flight Dynamics

In order to most effectively find inconsistencies in an aircraft’s flight path, it is

important to understand the ways in which an aircraft’s position can be represented.

This section briefly presents some basics behind coordinate frames, kinematics, dy-

namics, and nonlinear equations of motion. The notation used here is that used by

Beard in [4]; however, this notation is common to most aeronautics literature.

2.3.1 Coordinate Frames

There are various coordinate systems that can be used to describe the posi-

tion, velocity, and orientation of aircraft. Each of these coordinate systems can be

8

Figure 2.3: Two of the most important frames of orientation. (a)The world frame.
(b)The body frame.

transformed into the frame of another. There are several reasons that multiple coor-

dinate frames need to be used. First, Newton’s equations of motion are given in the

coordinate frame attached to the aircraft. Second, aerodynamic forces are applied

in the body frame of the aircraft. Third, onboard sensors measure information with

respect to the body frame, while outside sensors (such as GPS or RADAR) measure

information in the world frame. Because all of this information needs to be incorpo-

rated, it is necessary to be able to express any measurement in terms of any other

coordinate system.

One coordinate frame is transformed into another through two basic opera-

tions: rotation and translation. Rotations can be performed using a rotation matrix.

A rotation matrix is an n-dimensional square matrix that acts as a rotation of Eu-

clidean space. Two aircraft coordinate frames, the world frame and the body frame,

are related to each other through a rotation.

When rotated through three Euler angles, roll, pitch, and yaw, it is possible

to rotate from the body frame to the word frame and vice versa. However, a single

transformation through these three angles is not always unique. In order to create a

unique transformation, it is necessary to restrict the order of these Euler rotations.

9

Figure 2.4: The three Euler angles. φ is roll, θ is pitch, and ψ is yaw. Each follow
the right hand rule about the body frame coordinate axis.

Therefore, to reach the world frame from the body frame, we construct a rotation

matrix by first rolling, then pitching, then yawing. This is equivalent to rotating

three times, or multiplying three rotation matrices.

RBtoW =




cψ −sψ 0

sψ cψ 0

0 0 1







cθ 0 sθ

0 1 0

−sθ 0 cθ







1 0 0

0 cφ −sφ

0 sφ cφ




=




cθcψ −cφsψ + sφsθcψ sφsψ + cφsθcψ

cθsψ cφcψ + sφsθsψ −sφcψ + cφsθsψ

−sθ sφcθ cφcθ


 , (2.5)

where φ, θ, and ψ represent roll, pitch, and yaw respectively, and cφ = cos φ, and sθ =

sin θ. Similarly, transforming from the world to body frame requires the same Euler

angles, but they must be applied in reverse order. This is equivalent to multiplying

by the transpose of RBtoW .

RWtoB = RT
BtoW =




cθcψ cθsψ −sθ

−cφsψ + sφsθcψ cφcψ + sφsθsψ sφcθ

sφsψ + cφsθcψ −sφcψ + cφsθcψ cφcθ


 . (2.6)

10

Converting angular rates (p, q, and r) into the world frame (φ̇, θ̇, and ψ̇) is also

important. By recognizing that




p

q

r


 =




φ̇

0

0


 +




1 0 0

0 cφ sφ

0 −sφ cφ







0

θ̇

0


 +




1 0 0

0 cφ sφ

0 −sφ cφ







cθ 0 −sθ

0 1 0

sθ 0 cθ







0

0

ψ̇




=




1 0 −sθ

0 cφ sφcθ

0 −sφ cφcθ







φ̇

θ̇

ψ̇


 , (2.7)

as shown by Beard in [4] and inverting,




φ̇

θ̇

ψ̇


 =




1 sin φ tan θ cos φ tan θ

0 cos φ − sin φ

0 sin φ sec θ cos φ sec θ







p

q

r


 , (2.8)

we can express changes in angular rates within the body frame as changes in the

Euler angles. With these rotation matrices we can represent all of the sensor outputs

we receive in terms of one another. This is crucial for extracting as much information

as possible from the sensors.

It is very important to understand what coordinate frame the measurements

are taken in. Position measurements are almost always taken from the world frame via

GPS. Velocity measurements can be expressed in the world frame (north, east, down

velocity) or in the body frame (velocity in the i, j, k directions). Acceleration can

be represented in further complicated frames. This is due to the fact that every time

we differentiate a measurement, it must be differentiated with respect to a coordinate

frame. For example, differentiating body frame velocity with respect to the world

frame gives non-centripetal acceleration. Differentiating the body frame velocity with

respect to the body frame gives an acceleration measurement that includes centripetal

acceleration. In addition, angular rates measured by gyroscopes are measured in the

body frame, while Euler angles are measured in the world frame.

11

2.3.2 Characteristics of Aircraft Motion

With an understanding of coordinate frames, a brief discussion of aircraft flight

characteristics is warranted. First, one of the most important characteristics of an

airplane is understanding how it turns. When an aircraft turns, it rolls to accomplish

a change in heading. This is known as a coordinated turn. Note that if the roll angle

is zero, the change in world frame heading is related only to the wind and sideslip

angle. If sideslip and wind are neglected, then the roll angle is zero if there is no

change in heading. Under these conditions, a coordinated turn can be modeled by

ψ̇ =
g

v
tan φ, (2.9)

where ψ̇ is the change in heading, g is the acceleration due to gravity, φ is the roll

angle, and v is the total velocity of the aircraft. Furthermore, we can model the body

frame velocity according to

u = v cos α cos β,

v = v sin β,

w = v sin α cos β, (2.10)

where u, v, and w are the body frame velocity in the i, j, and k directions respectively.

v is the total velocity, α represents the angle of attack, and β represents the sideslip

angle. Neglecting sideslip also allows us to assume that all of the velocity present in

the body frame of the aircraft is present in the i and k directions. This means that

u = v cos α,

v = 0,

w = v sin α. (2.11)

Assuming sideslip is zero is an approximation, but for larger aircraft with a

large rudder, it can be a good approximation. Assuming no wind is a worse approxi-

12

mation, but if we assume that SAR readings are made on sufficiently calm days, then

it can be acceptable. These assumptions greatly simplify the dynamics and help us

to formulate a simpler state space model for the Kalman filter.

2.4 The Kalman Filter

The Kalman filter is a recursive estimator used to estimate the state of a linear

time-varying state equation, in which the states are driven by noise and observations

are made in the presence of noise. There are many variations of the Kalman filter,

particularly when extending this idea to non-linear models. This section addresses

the basics of Kalman filtering and useful extensions of the idea using the Unscented

Kalman Filter (UKF) and it’s square-root variation for numerical stability. The

notation used in this section for the Kalman filter is that of Moon [5].

2.4.1 The State-Space Model

The Kalman filter is a method of recursive and sequential estimation based on

a state space model,

xt+1 = F txt + ξt,

yt = H txt + ηt, (2.12)

where F t represents the state transition model, H t is the observation model, ξt is

the state process noise, and ηt is the observation noise in vector form. For simplicity,

all processes are assumed to be real. The process noise is assumed to be zero mean,

with covariance

Eξtξ
T
τ = Qtδt,τ , (2.13)

and is assumed to be uncorrelated among samples. The observation noise ηt is also

assumed to be zero mean, uncorrelated, with covariance

Eηtη
T
τ = Rtδt,τ . (2.14)

13

We assume that the process and obervation noise are uncorrelated as well. Finally,

there is some initial condition (or priori density) on the random variable denoted x0.

2.4.2 Formulation of the Kalman Filter

There are several ways to approach the Kalman filter. The method described

here is often referred to as the “innovations approach”. The Kalman filter has two

important steps, the time-update and the measurement-update. The time-update is

performed using

x̂t+1|t = F tx̂t|t,

P t+1|t = F tP t|tF
T
t + Q, (2.15)

and the measurement update is performed using

x̂t+1|t+1 = x̂t+1|t + Kt+1[ymeasured −H t+1x̂t+1|t],

P t+1|t+1 = (I −Kt+1H t+1)P t+1|t, (2.16)

where

Kt+1 = P t+1|tH
T
t+1[H t+1P t+1|tH

T
t+1 + R]−1, (2.17)

and P is the state covariance matrix and Q and R have been defined previously.

The Kalman filter is a solution to the general problem of state estimation on

a linear system. When using a Kalman filter on linear Gaussian systems, it is an

optimal estimator. This is due to the fact that Gaussian distributions are completely

described by a mean and covariance. Unfortunately, this derivation of the Kalman

filter is only useful for linear systems. To be used with aircraft dynamics, a different

approach to the Kalman filter must be taken.

14

2.4.3 Non-Linear Extensions of the Kalman Filter

Consider a general nonlinear system of the form

xt+1 = f(xt, t) + ξt,

yt = h(xt, t) + ηt, (2.18)

where f and h are nonlinear functions of xt and t.

The general nonlinear estimation problem is extremely difficult, and no gen-

eral solution to the general nonlinear filter problem is available. One reason the linear

problem is more convenient to solve is that when the noise and initial conditions are

Gaussian, the state, x̂t , is guaranteed to be Gaussian as well. However, if f or h is

nonlinear, then x̂t|τ is not guaranteed to be Guassian, so either a linearization is re-

quired, or there must be a different approach to estimating the state error covariance.

A typical approach to solving this problem is to linearize the nonlinear function f

using the Jacobian,

∂f

∂x
=




∂f1

∂x1

∂f1

∂x2
· · · ∂f1

∂xL

∂f2

∂x1

∂f2

∂x2
· · · ∂f2

∂xL

...
...

. . .
...

∂fL

∂x1

∂fL

∂x2
· · · ∂fL

∂xL




, (2.19)

where L is the dimension of the state. With this approach, we can then use the

Jacobian of f in place of the matrix F of the linear Kalman filter, but updated

at every sample. Similarly, a linearization of h is needed, so by also computing its

Jacobian we can use the Jacobian of h in place of matrix H. This is generally referred

to as the Extended Kalman Filter (EKF).

Another approach to the nonlinear problem is the Unscented Kalman Filter

(UKF) presented by Julier and Uhlmann [6]. The UKF uses a deterministic approach

to calculate mean and covariance terms. Basically 2L + 1 “sigma” points are chosen

based on a square-root decomposition of the prior covariance. Each of these sigma

points are then passed to the nonlinear function f without approximation. A weighted

mean and covariance is then taken from this new set of points. Julier and Uhlmann

15

[6] have shown that this approach results in approximations accurate to the third

order (Taylor series expansion) for Gaussian inputs for all nonlinearities. For non-

Gaussian inputs, approximations are accurate to at least the second order. The EKF’s

linearization approach, on the other hand, results only in first-order accuracy.

The UKF chooses sigma points using the following formulas:

χt =
[

x̂t x̂t + η
√

P t x̂t − η
√

P t

]
, (2.20)

and

η =
√

Lα2, (2.21)

where χt is a set of 2L + 1 sigma points and α is a constant that determines the

spread of the sigma points around x̂ and is usually set to 0.0001 ≤ α ≤ 1. It also

uses the following weights:

W
(m)
0 =

α2 − 1

α2
,

W
(c)
0 =

α2 − 1

α2
+ (1− α2 + β),

W
(m)
i = W

(c)
i =

1

2Lα2
, (2.22)

where β = 2 if the system is Guassian. Finally, with these weights in place, we can

calculate the state mean and covariance time update using a deterministic approach,

x̂t+1|t =
2L∑
i=0

W
(m)
i χi,t+1|t,

P t+1|t =
2L∑
i=0

W
(c)
i [χi,t+1|t − x̂t+1|t][χi,t+1|t − x̂t+1|t]

T + Q, (2.23)

16

where χi,t+1|t represents the sigma points which have been passed through the non-

linear function f . The measurement update is performed similarly,

P yy =
2L∑
i=0

W
(c)
i [Y i,t+1|t − ŷt+1][Y i,t+1|t − ŷt+1]

T + R,

P xy =
2L∑
i=0

W
(c)
i [χi,t+1|t − x̂t+1|t][Y i,t+1|t − ŷt+1]

T ,

Kt+1 = P xyP
−1
yy , (2.24)

where K denotes the Kalman gain for the UKF. Y i,t+1|t is a new set of sigma points,

specifically the points from χi,t+1|t, which have been passed through the nonlinear

function h. This approach is different from the EKF in that it does not use a Jaco-

bian, but instead, uses a deterministic sampling to manually approximate the state

covariance. The computation involved is the same order of magnitude according to

Merwe [1]. This is due to the fact that the Jacobians are removed, but they are re-

placed with deterministic outer products. The final step of the measurement update

is performed analogously to the linear Kalman filter:

x̂t+1|t+1 = x̂t+1|t + Kt+1(ymeasured − ŷt+1),

P t+1|t+1 = P t+1|t −Kt+1P yyKT
t+1. (2.25)

2.4.4 Square-Root Implementation of the UKF

Because Kalman filter equations tend to be somewhat poorly conditioned nu-

merically, many algorithms have been developed to address this problem which have

better numerical conditioning. One of these algorithms, known as the square-root

Kalman filter, propagates St+1 which is the Cholesky square-root of the matrix P t+1|t.

Merwe [1] has proposed an efficient method for implementing this modification to the

UKF known as the SR-UKF. The SR-UKF makes use of three linear algebra tech-

niques: QR decomposition, Cholesky factor updating, and efficient least squares.

17

First, sigma points must be calculated in a slightly different manner,

χt =
[

x̂t x̂t + ηSt x̂t − ηSt

]
, (2.26)

because we are now utilizing St instead of P t. χt is therefore computed the same

way as before, and the mean is also calculated in the same way. The covariance time

update must now be performed using the following two steps:

St+1|t = qr
[√

W
(c)
i (χ1:2L,t+1|t − x̂t+1)

√
Q

]
,

St+1|t = cholupdate
[

St+1, χ0,t+1 − x̂t+1, W
(c)
0

]
. (2.27)

In the measurement update, the equation for P yy is replaced by the measurement

update equation for Syt+1 ,

Syt+1 = qr
[√

W
(c)
i (Y1:2L,t+1|t − ŷt+1)

√
R

]
,

Syt+1 = cholupdate
[

Syt+1 , Y0,t+1 − ŷt+1, W
(c)
0

]
, (2.28)

and the equation for Kt+1 becomes (using MATLAB’s efficient least squares algorithm

implemented with the ‘/’ operator),

Kt+1 = (P xy/S
T
yt+1

)/Syt+1 , (2.29)

where ST
yt+1

Syt+1 takes the place of P yy, and St+1 is updated by

U = Kt+1Syt+1 ,

St+1|t+1 = cholupdate
[

St+1|t, U , −1
]
. (2.30)

This square-root implementation has significant advantages over the UKF.

According to Merwe [1], the SR-UKF is an O(L2) algorithm as opposed to O(L3) for

the UKF. This is due to the fact that the SR-UKF takes advantage of many optimal

matrix algorithms. Merwe states that the SR-UKF is about 20% faster than the UKF

18

in experimental results. With the SR-UKF in place, we are prepared to apply it to

the flight dynamics problem for SAR image processing.

2.5 Conclusion

This chapter has presented the need for motion measurement, a basis for

understanding aircraft flight dynamics, and a formulation of the Kalman filter. With

this information, a state estimation scheme can be readily initiated.

19

20

Chapter 3

Motion Recording Onboard Device (MOTRON)

When the BYU MERS lab purchased a motion sensing system from NovAtel

Inc., a compact data collection and storage device for this system became necessary.

As a consequence, I created the MOTRON (MOTion Recording ONboard device).

The goal of the MOTRON system is to create a small, lightweight, user-friendly,

and efficient data collection device. Specifically, the MOTRON collects data from

a Novatel Propak V3 system. This system includes an IMU (Inertial Measurement

Unit) consisting of three finely calibrated fiber optic gyros, three highly sensitive

accelerometers, and a high precision GPS system.

In order to create a motion tracking system, a data collection device is needed

to accumulate all of the necessary measurements for that system. This chapter out-

lines the requirements that the MOTRON fulfills, the specifications of the sensors to

be measured, the components and operation of the MOTRON, and finally, examples

of data that have been captured using the MOTRON and how to make the data

useful for analysis.

3.1 Requirements for the MOTRON

The MOTRON is designed to support Synthetic Aperture Radar (SAR) sys-

tems. A typical SAR system amasses enormous amounts of radar data that are later

processed to produce images. It is useful to have a separate motion measuring system

to remove any unnecessary computation and memory usage that may further burden

a SAR system. It is also useful to collect motion data independent of radar. Because

there are no engineers onboard the aircraft when it collects radar data, the MOTRON

must be very easy to use. The MOTRON must be able to collect data with little

21

or no human interaction during the flight and have a very user friendly interface for

data extraction and set up.

Because the MOTRON is meant to be mounted to an aircraft, it is important

that its weight and size be minimized. This also makes it a viable data capturing

option for future, smaller aircraft. Since the sensors are independent of the MOTRON,

the MOTRON must effectively link to those sensors without losing any data. This

means that the data transfer rate must be sufficient to handle all of the incoming data.

Finally, the MOTRON must have an efficient way to store all of the sensor data. It

is important that this data is easy to extract once recorded and readily available.

3.2 Motion Sensors

Given the requirements of the MOTRON, this section considers the way that

the MOTRON connects to each of the outside sensors, specifically, the NovAtel

ProPak-V3 in conjunction with an Inertial Measurement Unit (IMU), GPS antenna,

the SAR system, and any additional sensors. A schematic is shown in Fig. 3.1. The

next subsections include information about the various sensors used with the MOT-

RON.

3.2.1 NovAtel ProPak V3 with IMAR IMU

NovAtel’s ProPak-V3 is a high-performance GPS receiver with 72 available

channels, L1 and L2 GLONASS, USB communication and SPAN support. Figure

3.2 illustrates the different connectors to the ProPak. The ProPak connects to the

IMU, MOTRON, SAR System (for data syncing), and to the GPS Antenna. This

system outputs GPS and inertial measurements through the USB-serial port to the

MOTRON. It also outputs a time stamp to the SAR system in order to time sync

the data in post processing.

The ProPak connects to the antenna shown in Fig. 3.3. The GPS-701-GG

antenna is part of NovAtel’s GPS-700 antenna series and offers access to GPS L1 and

L2 frequencies, as well as GLONASS. For added accuracy, the antenna phase center

remains constant as the azimuth and elevation angle of GPS satellites change. Since

22

Figure 3.1: Schematic showing how the MOTRON, SAR system, NovAtel, IMU,
Antenna, Flash Drive, and any additional sensors are connected to each other.

signal reception is unaffected by the rotation of the antenna or GPS satellite elevation,

placement and installation of the antenna is easy. It connects to the ProPak using a

standard coaxial cable shown in Fig. 3.2 and is permanently attached to the aircraft.

The third component of the NovAtel system is the Inertial Measurement Unit

(IMU). The particular IMU that came with the system is an IMAR iIMU-FSAS

tactical grade IMU. The iIMU-FSAS is a relatively small size IMU consisting of three

fiber optic rate gyros of class 0.75 deg/hr and three servo-accelerometers of class 1

mg. This unit is pictured in Fig. 3.4. It is designed for ruggedized applications and is

internally equipped with shock absorbers. It communicates with ProPak via RS422

on an HDLC protocol.

After each component has been connected properly, the data is transmitted

across the USB-serial port. Two packets of information are sent to the MOTRON at

different rates. The GPS solution arrives at 50 Hz and includes GPS position, velocity,

23

Figure 3.2: Connections of the NovAtel: A) Power Socket B) To MOTRON C) To
SAR System D)&E) To IMU F) To Antenna

and ground track heading with their associated time stamps. The IMU reading arrives

at 200 Hz and includes the output of the rate gyros and accelerometers with their

associated time stamps.

3.2.2 MicroStrain 3DM-GX1 and Additional Functionality

While the MOTRON primarily interfaces with the NovAtel ProPak, the MOT-

RON is designed to be able to interface with multiple devices. There are four serial

ports mounted to the back panel that can be used with additional sensors. The

MicroStrain 3DM-GX1 is a smaller, lighter, and less accurate IMU that has been

interfaced with the MOTRON. The 3DM-GX1 can be recorded simultaneously with

the NovAtel ProPak to provide additional measurement sensors. It connects via a

standard RS232 protocol and contains three rate gyros, three accelerometers, and

three magnetometers to determine orientation. While the 3DM-GX1 is less accurate

than the NovAtel, it may be advantageous for various applications.

24

Figure 3.3: The antenna connected to the NovAtel ProPak V3.

Figure 3.4: The IMAR iIMU-FSAS connected to the NovAtel ProPak V3.

The MicroStrain IMU is only one example of many different types of sensors

that can be easily recorded by the MOTRON. Because there are four separate serial

ports, four additional sensor interfaces can be set up simultaneously. Each additional

25

sensor can then be recorded to the same flash drive that all the other sensors are

recorded to.

3.3 The MOTRON

In order to address each of the requirements previously stated, careful choice

of components, design, and algorithms were made. The following subsections describe

the components, design, user interface and algorithms of the MOTRON.

3.3.1 Components and Design

The MOTRON is based on a small ARM single board computer, the TS-7800,

made by Technologic Systems. This computer utilizes a 500 Mhz ARM9 CPU, 128

MB DDR-RAM, 512 MB of NAND Flash memory, 2 USB ports, a gigabit Ethernet

connection, 10 serial ports, and boots Linux (Debian) from the onboard Flash mem-

ory. The user interface consists of a small serial graphic LCD and twelve button serial

keypad. The LCD screen is a blue/white 128×64 graphic display made by MicroCon-

troller Pros Corporation. It is controlled through simple ASCII commands through

a standard RS232 protocol. The keypad interface is a basic 3× 4 keypad array made

by Storm Interface. Connected to the keypad is a keypad switch that converts the

keypad entries into ASCII symbols and transmits them over a serial RS232 protocol.

Since the display is input only and the keypad is output only, I saved a serial port

by setting the LCD and keypad to operate at the same baud rate and use the same

serial port.

Each of these components are put together inside of a grated metal box shown

in Fig. 3.5. The grating allows proper airflow for cooling. Each of the necessary

connections to the computer are also brought to the outside of the box using the

standard connections shown in Fig. 3.6. The MOTRON is mounted to a metal plate

with four bolts which makes it easy to attach inside an aircraft.

This design is intuitive and easy to use. Each of the cord sockets are clearly

labeled in order to avoid confusion, and the user interface is designed to be clear and

understandable.

26

Figure 3.5: The complete MOTRON. The box size is approximately 6” × 4” × 11”.

Figure 3.6: MOTRON connections A) Power Cable, B) Power Switch, C) ProPak USB
Connection, D) Jump Drive Connection, E) Ethernet Connection, F) Serial Terminal
Access, G) Additional Serial Ports for additional measurement instruments.

3.3.2 User Interface, Data Storage, and Input Algorithms.

In order to make the user interface as intuitive as possible, great care was

taken in designing the user input system. When the MOTRON is first turned on, it

displays the baud rate at which the screen is functioning (Fig. 3.7 (a)), then displays

the “Data Capture” screen shown in Fig. 3.7 (b).

27

(a) (b)

(c) (d)

(e) (f)

Figure 3.7: Display screens for operation of the MOTRON.

At this point, the MOTRON is ready to go and displays the following screen

shown in Fig. 3.7 (c). The MOTRON determines whether or not a flash drive has

been inserted. If a flash drive has not been inserted correctly, it continues to prompt

the user to insert a flash drive. Once a flash drive has been inserted, the MOTRON

displays the following screens shown in Figs. 3.7 (d) and (e).

Following this, the user is ready to begin collecting data. It should be noted

that the NovAtel ProPak should be allowed up to two minutes to self-calibrate before

attempting to record any data. Pressing one on the MOTRON keypad begins the

recording process and sends a command to the NovAtel ProPak to begin sending 1

Hz time stamps to the SAR system for time syncing. If all systems are functioning

correctly, the screen shows the information in Fig. 3.7 (f).

28

Figure 3.7 (f) shows the MOTRON’s data display screen during data collection.

The screen is updated in real time as the plane flies. This is performed with a multi-

threaded algorithm that takes in data through the USB and displays it at a much

lower rate than it is received. Simultaneously, all of the data streams are recorded

to text files on the inserted flash drive. Two separate files are recorded. One file,

“INS.txt”, records the GPS data at 50 Hz. The second file “RAW.txt” contains the

IMU data at 200 Hz. “INS.txt” includes the time stamp, latitude, longitude, altitude,

north, east, and up ground velocity, ground heading, and the NovAtel solutions to

roll and pitch. “RAW.txt” includes the time stamp and output of the accelerometers

and gyros. The top of the IMU defines the coordinate system used by NovAtel (y

should point out the nose of the plane).

In order for the MOTRON to interface correctly with the NovAtel ProPak, a

new USB driver had to be cross-compiled. The new driver is a modification of the

“usbserial” driver included in Linux 2.6 distributions. Using this driver, it is easy to

implement a USB-serial interface with the commonly used SerialStream C++ library.

Being able to modify the MOTRON is important. To modify the MOTRON,

access to the command line is necessary. There are two methods of gaining ac-

cess to the MOTRON’s command line in order to modify its operation. The first

method is connecting serially through the “Terminal ttyS0” RS232 port at 115200

baud using the username “root” and password “hello”. The second method is to ssh

through the network connection with the command “ssh root@192.168.0.50” using

the password “hello”. Once a connection has been made, the user can change the

MOTRON interface by editing the file “INS.cpp” located in the “\BYU\Interface”

directory. Recompiling INS.cpp is done with the command “g++ -lserial -pthread -o

INS INS.cpp”. Once compiled, the program runs automatically upon bootup via an

“\etc\init.d” script.

3.3.3 Interpreting the Recorded NovAtel Data

The GPS and IMU packets arrive in double precision binary format. From

the GPS packets, latitude, longitude roll, pitch, and heading are given in degrees,

29

Table 3.1: IMU Scale Factors

Sensor Scale Factor

Gyroscope π
1.65888×109 rad/s

Accelerometer 5
1.6384×104 m/s2

and altitude is given in meters. North, east, and up velocity are given in m/s. From

the IMU packets, accelerometer readings are given by the change in “velocity count”

along a certain axis. Similarly, the gyro measurements are given in change in “angle

count”. This means that the output of the IMU packet (“RAW.txt”) must be scaled

by a constant after it has been recorded in order to make the data meaningful. The

scale factors used to scale the data are given in Table 3.1.

Multiplying the output of the IMU by these scale factors yields data that is

much more useful. By doing so, we get the instantaneous angular rate in radians and

instantaneous acceleration in meters per second at each sample. It is also important

to change the GPS readings (found in “INS.txt”) into a more useful form. First

by changing ground track heading into radians by multiplying by π/180, then by

converting latitude and longitude into northing and easting. This is accomplished by

the MATLAB script shown in Fig. 3.8.

3.4 NovAtel Data Collected by the MOTRON

After all of the data has been recorded from the NovAtel, it must be formatted

correctly so that we can begin to work with it. An example data set is shown in

Figs. 3.9 and 3.10. Figure 3.9 shows the output of the accelerometers. Figure 3.10

shows the output of the gyros during the same measurement period.

3.4.1 Measurement Statistics

As can be seen in Figs. 3.9 and 3.10, the accelerometers and rate gyros are

very sensitive and the signal to noise ratio is high. The statistical attributes of these

six measurements plus the GPS measurements are given in Table 3.2. Because the

30

1 % INS(1:3,:) = Latitude, Longitude, Altitude respectively
2

3 % compute nominal segment center point
4 mo window = kaiser(length(INS),2.5)'; % define weighting window
5 mo window = mo window/mean(mo window); % normalize window amplitude
6 lat0 = mean(INS(2,:).*mo window);
7 lon0 = mean(INS(3,:).*mo window);
8 alt0 = mean(INS(4,:).*mo window);
9 time0 = mean(INS(1,:).*mo window);

10

11 % compute positions in meters relative to center point
12 DTR=pi/180; % Degrees to radians
13 REsemi=6378.1363e3; % Semimajor axis of Earth in m
14 Kflat=1/298.257; % Earth flatness constant
15

16 % convert GPS lat/lon to displacement on locally
17 % tangent plane, use gps altitude as is
18 RE = (1−Kflat*sin(lat0*DTR).ˆ2)*REsemi; % local earth radius
19 rel easting = RE*cos(INS(2,:)*DTR).*sin((INS(3,:)−lon0)*DTR);
20 rel northing = RE*(sin((INS(2,:)−lat0)*DTR)+cos(INS(2,:)*DTR).*...
21 (1−cos((INS(3,:)−lon0)*DTR))*sin(lat0*DTR));

Figure 3.8: A script for converting latitude and longitude to northing and easting in
meters.

variance of a signal is the standard deviation squared, these measurements are useful

in helping to determine the measurement noise covariance for the Kalman filter.

3.5 Conclusion

In this chapter I have discussed the need for the MOTRON, what the MOT-

RON is, how it was made, and what it does. I have presented the ways that the

MOTRON fulfills the needs of SAR image processing, and the ways in which it was

designed to make it easy to operate and utilize. A guide for operating the MOTRON

was also presented as well as sample data. Useful data for determining measurement

noise covariance was shown, and a method for obtaining initial conditions was ex-

plained. Overall, the MOTRON has been very successful in meeting the needs of

the BYU MERS SAR team and will continue to be useful throughout the foreseeable

future.

31

0 10 20 30 40 50 60

−0.3
−0.28
−0.26
−0.24
−0.22

X
 A

xi
s

Accelerometer Output

0 10 20 30 40 50 60

0
0.02
0.04
0.06
0.08

Y
 A

xi
s

0 10 20 30 40 50 60

−9.84
−9.82

−9.8
−9.78
−9.76

Time in Seconds

Z
 A

xi
s

Figure 3.9: Stationary accelerometer readings over 70 seconds.

0 10 20 30 40 50 60

−4
−2

0
2
4

x 10
−3

X
 A

xi
s

Gyroscope Output

0 10 20 30 40 50 60

−4
−2

0
2
4

x 10
−3

Y
 A

xi
s

0 10 20 30 40 50 60

−4
−2

0
2
4

x 10
−3

Time in Seconds

Z
 A

xi
s

Figure 3.10: Stationary gyroscope readings over 70 seconds.

32

Table 3.2: Statistics of Measurements shown in Figures 3.9 and 3.10

Sensor Mean Value Standard Deviation

Accel X -0.2682 0.0107
Accel Y 0.0078 0.0396
Accel Z -9.8000 0.0091
Gyro X −8.5849× 10−6 7.0660× 10−4

Gyro Y −4.8611× 10−5 5.5001× 10−4

Gyro Z −4.6365× 10−5 3.5382× 10−4

Latitude 40.2470 3.24736× 10−6

Longitude -111.6480 2.1034× 10−6

Altitude 1.4196× 103 0.4948
N Velocity 0.0017 0.0030
E Velocity -0.0016 0.0051
U Velocity 0.0023 9.0529× 10−4

33

34

Chapter 4

Implementation the Square-root Unscented Kalman Filter

State estimation using the Kalman Filter is very useful for a wide range of ap-

plications. In the application for which the MOTRON is designed, imaging synthetic

aperture radar (SAR) data, the attitude and velocity measurements are crucial to

forming high precision radar images. Therefore, it is extremely important that the

attitude, position, and velocity data are as accurate as possible. For this reason, the

input sensors are some of the best sensors available. By further processing this sensor

data using a Kalman filter, the accuracy and utility of the data is improved.

The following chapter outlines a method of estimating attitude and position

data using the square-root unscented Kalman filter presented in Chapter 2. Section

4.1 summarizes the dynamics of aircraft flight and propose a set of state variables for

modeling these dynamics. Section 4.2 defines a model for the output sensors of the

system. Finally, Section 4.3 presents the details of setting up an unscented Kalman

filter to implement the state space model to be presented.

4.1 Aircraft Flight Dynamics and State Variables

Prior to developing the filter, it is important to first look at the dynamics of

the system to be modeled. By understanding the underlying principles of aircraft

flight, we can more accurately model it. The expressions presented are general to any

rigid body and are derived from equations presented in Chapter 2.

35

4.1.1 State Variables

The state variables of the aircraft are the following eighteen quantities:

pn = Northing position of plane,

pe = Easting position of plane,

pd = Down position of plane (negative altitude),

u = Body frame velocity in the î direction,

v = Body frame velocity in the ĵ direction,

w = Body frame velocity in the k̂ direction,

ainc = Non-centripetal acceleration in the î direction,

ajnc = Non-centripetal acceleration in the ĵ direction,

aknc = Non-centripetal acceleration in the k̂ direction,

φ = Roll angle,

θ = Pitch angle,

ψ = Heading angle,

p = Angular rate along î,

q = Angular rate along ĵ,

r = Angular rate along k̂,

Bi = î gyro bias,

Bj = ĵ gyro bias,

Bk = k̂ gyro bias. (4.1)

As shown in Fig. 4.1, the î, ĵ, k̂ directions are in the body frame of the aircraft. This

means that î is in the direction of the nose of the plane, ĵ is pointing out the right

wing, and k̂ points out the bottom of the aircraft forming a right hand coordinate

system. It is also important to note that the angular rates (p, q, r) as well as the

Euler angles (φ, θ, ψ) follow the right hand rule. The position of the aircraft, pn,

pe, and pd, are given in the world frame, x̂, ŷ, and ẑ, which correspond to northing,

36

Figure 4.1: Body frame versus world frame. î, ĵ, and k̂ represent the three orthogonal
directions of the aircraft’s body frame. x̂, ŷ, and ẑ represent the three orthogonal
directions in the world frame.

easting, and negative altitude provided by GPS measurements respectively. The body

frame velocity (u, v, w), angular rates (p, q, r), non-centripetal acceleration (ainc,

ajnc, aknc), and gyro biases (Bi, Bj, Bk) are represented in the body frame, (̂i, ĵ, k̂).

4.1.2 Reference Frames

The body frame of the aircraft is related to the world frame(x̂, ŷ, ẑ) through

the following rotation matrix:

RBtoW =




cθcψ −cφsψ + sφsθcψ sφsψ + cφsθcψ

cθsψ cφcψ + sφsθsψ −sφcψ + cφsθsψ

−sθ sφcθ cφcθ


 . (4.2)

37

This matrix takes vectors within the body frame (̂i, ĵ, k̂) and rotates them into the

world frame (x̂, ŷ, ẑ). In order to move from the world frame to the body frame, we

simply multiply by RWtoB which is the transpose of RBtoW .

RWtoB = RT
BtoW . (4.3)

4.1.3 Equations of Motion

In order to calculate the northing, easting, and down velocities (ṗn, ṗe, ṗd), we

rotate the body frame velocity (u, v, w) through RBtoW . This gives us the velocity

in the world frame (ṗn, ṗe, and ṗd)




ṗn

ṗe

ṗd


 = RBtoW




u

v

w


 , (4.4)

yielding

ṗn = u(cθcψ) + v(sφsθcψ − cφsψ) + w(cφsθcψ + sφsψ),

ṗe = u(cθsψ) + v(sφsθsψ + cφsψ) + w(cφsθsψ − sφcψ),

ṗd = u(−sθ) + v(sφcθ) + w(cφcθ). (4.5)

The body frame acceleration, (u̇, v̇, ẇ), can be modeled as the sum of the non-

centripetal acceleration and centripetal acceleration in the body frame. Centripetal

acceleration is found by taking the cross product of the angular rates with the body

frame velocity. This is known as the Coriolis equation,




aic

ajc

akc


 =




p

q

r


×




u

v

w


 , (4.6)

38

and yields

aic = qw − rv,

ajc = ru− pw,

akc = pv − qu. (4.7)

Eq. 4.7 gives an expression for centripetal acceleration which can be used to find the

total body frame acceleration,

u̇ = ainc + aic = ainc + qw − rv,

v̇ = ajnc + ajc = ajnc + ru− pw,

ẇ = aknc + akc = aknc + pv − qu. (4.8)

Eq. 4.8 gives a representation of acceleration in the aircraft’s body frame. The Euler

angle rates can be described using p, q, and r through the following rotation as shown

by [4], 


φ̇

θ̇

ψ̇


 =




1 sin φ tan θ cos φ tan θ

0 cos φ − sin φ

0 sin φ sec θ cos φ sec θ







p

q

r


 . (4.9)

Finally, this rotation takes each of the three angular rates in the body frame, and

translates them into changes in the Euler angles within the world frame. After mul-

tiplying, the following is found:

φ̇ = p + q sin φ tan θ + r cos φ tan θ,

θ̇ = q cos φ− r sin φ,

ψ̇ = q sin φ sec θ + r cos φ sec θ. (4.10)

Finding dynamic equations of ainc, ajnc, and aknc, also referred to as “jerk”,

can be difficult. Furthermore, modeling the gyro biases Bi, Bj, and Bk is also trou-

39

blesome. For the sake of this problem we assume that

˙anc = −0.1anc,

Ω̇ = 0,

and

Ḃ = 0. (4.11)

The assumption behind the acceleration model is that if the jerk is non-zero, the

jerk is expected to decrease. We also assume that the gyro bias does not change,

and model Ω̇ as having no change. These assumptions have given reasonable results.

Using Eqs. 4.5, 4.8, 4.10, and 4.11, the dynamics of the aircraft are formed through

the following set of state space equations:

ṗn = u(cθcψ) + v(sφsθcψ − cφsψ) + w(cφsθcψ + sφsψ),

ṗe = u(cθsψ) + v(sφsθsψ + cφsψ) + w(cφsθsψ − sφcψ,

ṗd = u(−sθ) + v(sφcθ) + w(cφcθ),

u̇ = ainc + qw − rv,

v̇ = ajnc + ru− pw,

ẇ = aknc + pv − qu,

ȧinc = −0.1ainc,

ȧjnc = −0.1ajnc,

ȧknc = −0.1aknc,

φ̇ = p + q sin φ tan θ + r cos φ tan θ,

θ̇ = q cos φ− r sin φ,

ψ̇ = q sin φ sec θ + r cos φ sec θ,

ṗ = 0,

q̇ = 0,

ṙ = 0,

40

Ḃi = 0,

Ḃj = 0,

Ḃk = 0. (4.12)

Eq. 4.12 defines the dynamic nonlinear function f(x, t) of our state space.

4.2 Measurement Sensors

The system input includes accelerometers, fiber-optic rate gyros, and high

precision GPS measurements. The output of a rate gyro is modeled by

ygyro = Ω + Bgyro + ηgyro, (4.13)

where ygyro is the output of the gyro, Ω is the angular rate, Bgyro is the gyro bias,

and η is zero mean white noise. The output of an accelerometer is modeled as

yaccel = anc + ac + (RWtoB)glift + ηaccel, (4.14)

where yaccel is the output of the accelerometer, anc is non-centripetal acceleration,

ac is centripetal acceleration, glift is the lift acceleration against gravity (-9.8 m/s in

the ẑ direction) rotated from the world to body frame, and ηaccel is zero mean white

noise.

The measurements of position pn, pe, and pd are directly measured by the GPS

system, as are ṗn, ṗe, and ṗd, the velocity in the world frame. Putting these equations

together, the output of the accelerometers can be modeled using the following

yiaccel = ainc + (qw − rv) + glift(− sin θ),

yjaccel = ajnc + (ru− pw) + glift(cos θ sin φ),

ykaccel = aknc + (pv − qu) + glift(cos θ cos φ). (4.15)

41

The gyros can be modeled as

yigyro = p + Bi,

yjgyro = q + Bj,

ykgyro = r + Bk, (4.16)

and the GPS position can be modeled

Northing = pn,

Easting = pe,

Altitude = −pd, (4.17)

and lastly, the world frame velocity is given by

ṗn = u(cθcψ) + v(sφsθcψ − cφsψ) + w(cφsθcψ + sφsψ),

ṗe = u(cθsψ) + v(sφsθsψ + cφsψ) + w(cφsθsψ − sφcψ),

ṗd = u(−sθ) + v(sφcθ) + w(cφcθ)(cφsθcψ + sφsψ). (4.18)

Each of these equations define an output function for the Kalman filter.

4.3 Implementing a Square-root Unscented Kalman Filter

With these set of equations, we can define f(xt, t) and h(xt, t), the nonlinear

functions of a state space model. General implementation of the square-root un-

scented Kalman Filter (SR-UKF) is outlined in Chapter 2. This section discusses a

particular implementation of the SR-UKF in order to solve the state space model

xi|i−1 = f(xi−1|i−1, t) + ξ, (4.19)

y = h(xi|i−1, t) + η, (4.20)

42

where ξ and η represent process and measurement noise respectively. The SR-UKF

uses a set of scalar weights,

Wm
0 = λ/(L + λ),

W c
0 = λ/(L + λ) + (1− α2 + β),

Wm
i = W c

i = 1/[2(L + λ)]), (4.21)

where

λ = L(α2 − 1), (4.22)

is a scaling parameter. Values of α = 1.5, β = 2 and L = 18 are used throughout the

SR-UKF implementation. α determines the spacing of the sigma points, β should be

equal to two for Gaussian noise, and L represents the number of states in the system.

4.3.1 Finding Initial Conditions

In order to initialize the Kalman filter, the MOTRON’s data set must provide

initial conditions for each of the states in the Kalman filter. In order to simplify this

process, the IMU is allowed to sit still for a few minutes while initial conditions are

calibrated. By allowing a calibration time, we can assume the initial position is the

mean position of that period. The initial velocity is set to zero and the initial attitude

is calculated in a straightforward method.

The lift force against gravity is assumed to be -9.8 m/s2 in the ẑ direction.

Using the rotation matrix RWtoB from Eq. 4.2, we can determine the initial roll and

pitch. 


ĀX

ĀY

ĀZ


 = RWtoB




0

0

−9.8


 , (4.23)

43

giving

ĀX = − sin θ(−9.8),

ĀY = sin φ cos θ(−9.8),

ĀZ = cos φ cos θ(−9.8), (4.24)

which leads to

θ0 = sin−1 ĀX

9.8
, (4.25)

φ0 = cos−1 ĀZ

−9.8 cos θ
, (4.26)

where Ā represents the mean value of the acceleration over the calibration time. θ0

represents the initial pitch and φ0 represents the initial roll. After calculating the

initial pitch, it is plugged into Eq. 4.26. Finding the initial heading is done in a

similar manner to Eqs. 4.25 and 4.26 but using the gyros,




ḠX

ḠY

ḠZ


 = RWtoB




Ω cos(ζ̄)

0

Ω sin(ζ̄)


 . (4.27)

Ḡ represents the average gyroscope reading during the calibration period, Ω represents

the rotation of the Earth (7.2722×10−5 rad/s), and ζ̄ represents the average latitude

over the calibration period. This equation yields

ḠX = Ω cos ζ̄(cos θ cos ψ) + Ω sin ζ̄(− sin θ), (4.28)

giving

ψ0 = cos−1 ḠX + Ω sin ζ̄ sin θ

Ω cos ζ̄ cos θ
. (4.29)

Therefore, by solving for θ, then φ, then ψ using Eqs. 4.25, 4.26, and 4.29, we have

a method for obtaining the initial values of pitch, roll, and heading. Initial velocities

44

are then set to zero. This approach gives a consistent method for obtaining initial

conditions.

4.3.2 Time Update

After computing initial conditions, the first step is the sigma point calculation

and time update shown by the equations below:

χi−1 =
[

x̂i−1 x̂i−1 + ηSi x̂i−1 − ηSi

]
, (4.30)

χi|i−1 = f(χi−1), (4.31)

x̂i|i−1 = f(x̂i−1), (4.32)

Si|i−1 = qr
[√

W c
i (χi|i−1(1 : 2L)− x̂i|i−1)

√
Q

]
, (4.33)

Si|i−1 = cholupdate
[

Si|i−1, χi|i−1(0), sign{W c
0}

]
. (4.34)

As shown in Eq. 4.30, the SRUKF relies on a deterministic “sampling” approach to

calculate mean and covariance terms. This equation determines how those points are

chosen. χi−1 is an L×2L+1 or 18×37 matrix where each column represents a sigma

point. In Eq. 4.31, each of these columns or points are passed through the nonlinear

function f and stored in χi|i−1. Typically the mean value, x̂i is computed using a

weighted average of the sigma points, however, in this implementation the new mean

value is computed by simply passing the previous sample mean x̂i−1 through f , shown

in Eq. 4.32. The new Cholesky factor of the state covariance, Si, is calculated in two

steps, shown in Eqs. 4.33 and 4.34. First, the Cholesky factor, Si, is calculated using

a QR decomposition of the compound matrix square-root of the additive process noise

covariance. The subsequent Cholesky update (or downdate) in Eq. 4.34 is necessary

since the zero’th weight, W c
0 , can be negative with different values of α. Fig. 4.2

illustrates a MATLAB script to accomplish the time update portion of the SR-UKF.

45

1 function [new xhat new Si] = timeupdate(old xhat, old Si)
2

3 L = number of states;
4 T = sample time;
5 old sigma points=[old xhat old xhat(:,ones(1, L))+eta*old Si...
6 old xhat(:,ones(1, L))−eta*old Si];
7 new sigma points = f(old sigma points);
8 new xhat = new sigma points(:,1);
9 [Junk new Si] = qr([Wci*(new sigma points(:,2:end)−...

10 new xhat(:,ones(1,L*2))) chol(Q*T)].');
11 new Si = new Si(1:L,:);
12 if Wc1 > 0
13 Sip = cholupdate(new Si, Wc1*(new sigma points(:,1) −...
14 new xhat), '+');
15 p = 0;
16 else
17 [Sip,p] = cholupdate(new Si, Wc1*(new sigma points(:,1)...
18 − new xhat), '−');
19 end
20 if p > 0,
21 fprintf('new Si is negative definite.');
22 else
23 new Si=Sip;
24 end

Figure 4.2: Time update MATLAB script.

4.3.3 Measurement Update

The measurement update equations follow a similar pattern.

ŷi|i−1 = h(xi|i−1), (4.35)

Yi|i−1 = h(χi|i−1), (4.36)

Syi
= qr

[√
W c

i (Yi|i−1(1 : 2L)− ŷi|i−1)
√

R
]
, (4.37)

Syi
= cholupdate

[
Syi

, Yi|i−1(0), sign{W c
0}

]
, (4.38)

P xiyi
=

2L∑

k=0

W c
k

[
χi|i−1(k)− x̂i

] [
Y i|i−1(k)− ŷi|i−1

]T

, (4.39)

46

Ki = (P xiyi
/ST

yi
)/Syi

, (4.40)

x̂i|i = x̂i|i−1 + Ki(ymeasured − ŷi|i−1), (4.41)

U = KiSyi, (4.42)

Si|i = cholupdate
[

Si|i−1, U , ‘-’
]
. (4.43)

The output estimate ŷi|i−1 is computed by passing x̂i|i−1 through the nonlinear func-

tion h. Next, a set of output points Yi|i−1 is calculated by passing each of the new

sigma points, χi|i−1, through the nonlinear output function h. A similar two-step

approach is applied to the calculation of the Cholesky factor, Syi, of the observation-

error covariance in Equations 4.37 and 4.38, where R is the measurement noise co-

variance. Two nested inverse (or least squares) solutions are used to calculate the

Kalman gain, Ki, in Eq. 4.40. Finally, the posterior measurement update of the

Cholesky factor of the state covariance is calculated in Eq. 4.43. A MATLAB script

used to calculate the measurement update is included in Fig. 4.3

4.3.4 Nonlinear State Functions

Now that we have sufficiently set up the Kalman filter to optimize our mea-

surements, we introduce the functions that the filter operates with. Using Eq. 4.12,

we can construct f . If we represent Eq. 4.12 as the time derivative of the state x̂

then,

f(x̂i−1) = x̂i−1 + ∆ ˙̂xi−1, (4.44)

where ∆ is the change in time, or sample rate. This is an approximation of the

nonlinear function f . If ∆ is sufficiently small, then the approximation good. The

function f must be made to accept large arrays of points, so in the following MATLAB

code the ‘.*’ operator is used in place of ‘*’. The MATLAB script can be seen in

Fig. 4.5. In this particular implementation we receive measurements in two different

packets. We receive the IMU measurements (accelerometers and gyros) at a rate of

200 Hz and we receive GPS measurements (position and ground speed) at a rate of

47

1 function [new xhat new Si] = measureupdate(xhat, Si,...
2 number of measurements)
3

4 M = number of measurements;
5 sigma points = [xhat xhat(:,ones(1, L))+eta*Si...
6 xhat(:,ones(1, L))−eta*Si];
7 y points = h(sigma points);
8 yhat = y points(:,1);
9 [Junk Syi] = qr([Wci*(y points(:,2:end) −...

10 yhat(:,ones(1, M−1))) chol(R)].');
11 if Wc1 > 0
12 Syi = cholupdate(Syi(1:M,:), Wc1*(y points(:,1)...
13 − yhat), '+');
14 else
15 Syi = cholupdate(Syi(1:M,:), Wc1*(y points(:,1)...
16 − yhat), '−');
17 end
18 Syi = Syi.';
19 Pxy = Wc1*(sigma points(:,1) − xhat)*(y points(:,1) − yhat).';
20 for j=2:L*2+1
21 Pxy = Pxy + Wci*(sigma points(:,j) − xhat)*...
22 (y points(:,j) − yhat).';
23 end
24 K = (Pxy/Syi.')/Syi;
25 new xhat = xhat + K*(measurements − yhat);
26 U = K*Syi;
27 for j=1:M
28 [Sip,p] = cholupdate(Si, U(:,j), '−');
29 if p > 0,
30 fprintf('Si negative definite');
31 else
32 new Si=Sip;
33 end
34 end

Figure 4.3: Measurement update MATLAB script.

50 Hz. This necessitates the use of two separate h functions. The nonlinear function

hGPS makes use of Equations 4.17 and 4.18, and is illustrated in Fig. 4.4.

48

1 function [y vel points] = h GPS(points)
2

3 pn = points(1,:);
4 pe = points(2,:);
5 pd = points(3,:);
6 u = points(4,:);
7 v = points(5,:);
8 w = points(6,:);
9 phi = points(10,:);

10 theta = points(11,:);
11 psi = points(12,:);
12

13 cphi = cos(phi);
14 sphi = sin(phi);
15 ctheta = cos(theta);
16 stheta = sin(theta);
17 cpsi = cos(psi);
18 spsi = sin(psi);
19

20 pndot = ctheta.*cpsi.*u + (sphi.*stheta.*cpsi − cphi.*spsi).*v...
21 + (cphi.*stheta.*cpsi + sphi.*spsi).*w;
22 pedot = ctheta.*spsi.*u + (sphi.*stheta.*spsi + cphi.*cpsi).*v...
23 + (cphi.*stheta.*spsi − sphi.*cpsi).*w;
24 hdot = (−stheta.*u + sphi.*ctheta.*v + cphi.*ctheta.*w);
25

26 y vel points = [pn; pe; pd; pndot; pedot; hdot; psi];

Figure 4.4: Nonlinear function hGPS MATLAB script.

49

1 function [sigma star] = f(points)
2

3 pn = points(1,:);
4 pe = points(2,:);
5 h = points(3,:);
6 u = points(4,:);
7 v = points(5,:);
8 w = points(6,:);
9 ncax = points(7,:);

10 ncay = points(8,:);
11 ncaz = points(9,:);
12 phi = points(10,:);
13 theta = points(11,:);
14 psi = points(12,:);
15 p = points(13,:);
16 q = points(14,:);
17 r = points(15,:);
18 Bi = points(16,:);
19 Bj = points(17,:);
20 Bk = points(18,:);
21

22 cphi = cos(phi);
23 sphi = sin(phi);
24 ctheta = cos(theta);
25 stheta = sin(theta);
26 ttheta = tan(theta);
27 sectheta = sec(theta);
28 cpsi = cos(psi);
29 spsi = sin(psi);
30

31 pndot = ctheta.*cpsi.*u + (sphi.*stheta.*cpsi − cphi.*spsi).*v...
32 + (cphi.*stheta.*cpsi + sphi.*spsi).*w;
33 pedot = ctheta.*spsi.*u + (sphi.*stheta.*spsi + cphi.*cpsi).*v...
34 + (cphi.*stheta.*spsi − sphi.*cpsi).*w;
35 hdot = (−stheta.*u + sphi.*ctheta.*v + cphi.*ctheta.*w);
36

37 udot = ncax + (q.*w − r.*v);
38 vdot = ncay + (r.*u − p.*w);
39 wdot = ncaz + (p.*v − q.*u);
40

41 phidot = p + sphi.*ttheta.*q + cphi.*ttheta.*r;
42 thetadot = cphi.*q − sphi.*r;
43 psidot = sphi.*sectheta.*q + cphi.*sectheta.*r;
44

45 sigma star = [pn+T*pndot; pe+T*pedot; h+T*hdot; u+T*udot;...
46 v+T*vdot; w+T*wdot; ncax−T*0.1*ncax;...
47 ncay−T*0.1*ncay; ncaz−T*0.1*ncaz;...
48 phi+T*phidot; theta+T*thetadot; psi+T*psidot;...
49 p; q; r; Bi; Bj; Bk];

Figure 4.5: Nonlinear function f MATLAB script.

50

4.3.5 Simulated Measurements

In order to use additional information about the aircraft’s dynamics, a few

synthetic “measurements” are used to further correct the output of the Kalman filter.

These synthetic measurements take advantage of the following formulas:

vtotal =
√

u2 + v2 + w2,

ψ̇ =
g

vtotal

tan φ, (4.45)

where g is the lift acceleration against gravity, -9.8 m/s2. Equation 4.45 means that

an aircraft cannot turn unless it rolls to the right or left. This is called a coordinated

turn.

The second synthetic measurement is to correct the body frame velocity. This

synthetic measurement is probably the most inaccurate, so special care should be

taken when tuning the measurement noise covariance matrix. The variance of these

three should be tuned sufficiently high so as to not provide false accuracy to the

overall output. It is given by the equations

u = vtotal cos α,

v = 0,

w = vtotal sin α, (4.46)

where α is the angle of attack. For larger aircraft, α is relatively small (≈ 0◦ − 5◦),

but for some small aircraft α is larger (≈ 5◦ − 10◦).

Finally, a third simulated measurement is meant to keep the non-centripetal

acceleration in check. The simulated measurement simply says that the non-centripetal

acceleration is zero. With this insight and Eqs. 4.15 and 4.16, we can construct hIMU ,

the second h output function. Figure 4.6 shows the MATLAB script to accomplish

this.

51

1 function [y IMU points] = h IMU(points)
2

3 g = −9.8;
4

5 u = points(4,:);
6 v = points(5,:);
7 w = points(6,:);
8 ncax = points(7,:);
9 ncay = points(8,:);

10 ncaz = points(9,:);
11 phi = points(10,:);
12 theta = points(11,:);
13 p = points(13,:);
14 q = points(14,:);
15 r = points(15,:);
16 Bi = points(16,:);
17 Bj = points(17,:);
18 Bk = points(18,:);
19

20 stheta = sin(theta);
21 ctheta = cos(theta);
22 sphi = sin(phi);
23 cphi = cos(phi);
24

25 y acceli = ncax + (q.*w − r.*v) + g*(−stheta);
26 y accelj = ncay + (r.*u − p.*w) + g*(ctheta.*sphi);
27 y accelk = ncaz + (p.*v − q.*u) + g*(ctheta.*cphi);
28

29 y gyroi = p + Bi;
30 y gyroj = q + Bj;
31 y gyrok = r + Bk;
32

33 vector = sqrt(u.ˆ2 + v.ˆ2 + w.ˆ2);
34 psidot = g./vector.*tan(phi);
35

36 y IMU points = [y acceli; y accelj; y accelk; y gyroi;...
37 y gyroj; y gyrok; u; v; w; psidot; 0; 0; 0];

Figure 4.6: Nonlinear function hIMU MATLAB script.

4.4 Conclusion

This chapter has presented a method for modeling aircraft flight dynamics and

a method for applying the SRUKF for optimizing attitude and position data. I have

proposed a set of state variables that can be used to model aircraft dynamics, derived

a set of equations to define the motion of the aircraft, and proposed a Kalman filter

52

to optimize gyroscope, accelerometer, and GPS readings in synchronization with our

model.

53

54

Chapter 5

Results

Once an actual flight has been recorded by the MOTRON, the SR-UKF can

be applied to the collected sensor data. By applying the SR-UKF to the sensor data,

a completely new data set is created that contains estimates of the aircraft’s position,

speed, and attitude which can be compared to the NovAtel estimates. This chapter

presents the results of the SR-UKF implementation discussed in Chapter 4. First,

the Kalman filter is applied to a simulated data set that contains absolute truth data.

Then, the Kalman filter is applied to actual recorded data and an explanation of the

results is provided.

5.1 Flight Simulator

In order to gauge the effectiveness of the SR-UKF, I first use simulated sensor

and position data from a flight simulator. The flight simulator provides computer-

generated accelerometer, gyroscope and GPS readings and also provides absolute

truth data about the position, velocity, and attitude. By applying the SR-UKF to

the computer-generated sensor data and comparing its output to the truth, it is

easy to judge the effectiveness of the SR-UKF. A flight simulator created by BYU’s

MAGICC Lab is used to create a set of synthetic data [7]. The simulator is typically

used to model small unmanned aerial vehicles. Modifications have been made to

more closely simulate the sensors that are used onboard the MERS aircraft. It is

constructed in MATLAB’s Simulink and consists of an autopilot block and a flight

dynamics block shown in Fig. 5.1. The autopilot system is outside the scope of this

thesis; however, the flight dynamics block is important to the results, and is shown

in Fig. 5.2.

55

Figure 5.1: The basic Simulink model for the MAGICC Lab flight simulator consisting
of an autopilot block and a flight dynamics block.

As is shown in Fig. 5.2, the output of the dynamics are fed into the simulated

sensors block which generates a file “yout.mat”. This file contains the data from

the virtual accelerometers, gyroscopes, and GPS. Special care is taken to make the

virtual sensors imitate the real sensors onboard the MERS aircraft by matching the

variance of the simulated noise to that of the measured noise given in Chapter 3. The

file “xout.mat” contains all of the truth data from the dynamics block related to the

Kalman filter states. The flight dynamics block determines how the simulated aircraft

responds to external stimulus. It relies on a complex set of coefficients that model

an aircraft’s drag, lift, propeller thrust, weight, aerodynamics, and inertia, [8] [9].

Every aircraft has a distinct and unique set of coefficients and responds to autopilot

commands differently. For this reason, the autopilot must be specifically tuned for

each individual aircraft.

All of the noise parameters, flight dynamics coefficients, and simulation pa-

rameters are given in an initialization file, “param.m”, which can be readily modified.

Additionally, within the “sensors” block are the sensor models. The sensor block takes

the true position, velocity, forces, angular rates, and attitude of the aircraft and cre-

56

Figure 5.2: The Simulink model of the UAV flight dynamics. “yout.mat” contains
the simulated sensor data and “xout.mat” contains the truth data of the flight.

ates modeled sensor data. The gyroscopes are modeled using

gyrox = p + σgyroξ,

gyroy = q + σgyroξ,

gyroz = r + σgyroξ,

where p, q, and r are the angular rates coming from the true UAV angular rates in

“xout.mat”, σ is the gyroscope noise variance parameter set in “param.m”, and ξ is

a zero mean normally distributed random number. The accelerometers are modeled

by

accelx = Fx + Fthrottle + σaccelξ,

accely = Fy + σaccelξ,

accelz = Fz + σaccelξ,

57

where Fx, Fy, and Fz are the aerodynamic forces acting upon the aircraft calculated

using the properties of the aircraft defined in “param.m”, and Fthrottle is the force

applied by the throttle. Finally, the GPS is modeled by

pnGPS = pn + σGPSξ,

peGPS = pe + σGPSξ,

pdGPS = −pd + σGPSξ,

nvel = (pnGPS − pnprev-GPS)/TsGPS,

evel = (peGPS − peprev-GPS)/TsGPS,

dvel = (pdGPS − pdprev-GPS)/TsGPS,

ψGPS = ψ + σGPSξ,

where pn, pe, and pd are the true position, and ψ is the true heading. The GPS

velocities are calculated from noisy positions so no extra noise is added. They also

use the GPS sample time to find the measured velocity. In each of the previous

equations, noise characteristics similar to those of real measurements are used. These

simulated measurements are chosen to most closely model the sensors that are used

on the MERS aircraft.

Unfortunately, the MERS aircraft is considerably different from the aircraft

modeled by this flight simulator. The UAV is considerably lighter, smaller, and

slower than the MERS aircraft. This means that the angle of attack, aerodynamic

coefficients, turning rate, rate of climb, inertial moments, lift, and drag of the UAV

are very different from the MERS aircraft. Sideslip characteristics are very different

because the UAV is much lighter and moves more slowly while not having a rudder.

Because the MES aircraft is larger and moves more quickly with a rudder, it does

not suffer from as much sideslip and has a lower angle of attack. These differences

certainly affect the SR-UKF’s performance, but the simulator is still useful to provide

an assessment of the functionality of the SR-UKF.

58

−250 −200 −150 −100 −50 0 50 100 150 200
−400

−300

−200

−100

0

100

200

300

Easting (m)

N
or

th
in

g
(m

)

Virtual UAV Flight Path

Figure 5.3: The flight path of the virtual UAV. The UAV starts at the center and
flies a clockwise path around four different waypoints several times.

5.2 Kalman Filtering the Simulated Data

Once the simulator has been initiated, it directs the virtual aircraft to fly

the path shown in Fig. 5.3. As the UAV flies, the computer-generated data and

observation time are recorded.

After running the flight simulator for a few minutes (allowing the UAV to fly

several rounds), and collecting a set of simulated sensor measurements, the Kalman

filter is applied to the recorded data. The following set of graphs illustrate the truth

data, the output of the Kalman filter, and the Kalman filter error for each of the

states in the filter.

Figure 5.4 shows the position measurements of the SR-UKF. The figure is

divided into three groups of three graphs, northing, easting, and altitude. The first of

59

the three graphs shows the truth data, the second shows the SR-UKF solution, and the

third is the error, all of which are represented in meters. It is clear that the SR-UKF

and truth data follow a very similar trend. The SR-UKF solution is generally less than

1 meter away from the actual position for each of the three position measurements.

Table 5.1 gives some important statistics about the SR-UKF error. The mean error

is close to zero, and the maximum error is close to 1 meter. By observing the altitude

data, it is easy to see that the small UAV in this flight jumps and dips considerably

(dropping 2 meters within 2 seconds) which significantly effects the accuracy of the

SR-UKF. This is a rather extreme flight pattern that would not normally occur on

the MERS aircraft; nonetheless, the SR-UKF does a reasonable job of tracking the

position despite the somewhat erratic simulated aircraft platform behavior.

Table 5.1: Northing, Easting, and Altitude Errors (m)

Measurement Mean Error RMS Error Standard Deviation Max Error
Northing 0.0277 0.5073 0.5066 1.0130
Easting -0.0042 0.3633 0.3633 1.1945
Altitude -0.0035 0.0618 0.0617 1.2412

Figure 5.5 illustrates the body frame velocity output of the filter. As in Fig. 5.4,

the figure is divided into three parts showing the u, v, and w SR-UKF measurements

with respect to the truth. The body frame velocity is one of the most difficult states

to track accurately due to the lack of any direct measurement of speed in the body

frame. Neglecting sideslip, one of the assumptions previously made, is clearly not

the best decision here. Ideally, v is always zero in the absence of sideslip, but we

can see from Fig. 5.5 that v is clearly not always close to zero throughout the flight.

This assumption negatively affects the output of the SR-UKF, however, with proper

Q-tuning, these errors can be somewhat reconciled as is shown in the output of the

SR-UKF. The other assumption, that u and w follow a constant angle of attack, is

a better assumption, but still not ideal. Due to the UAV’s behavior, the body frame

velocity is under constant change, shown by the large spikes in u and w. While these

60

spikes are certainly difficult to track, they are not large enough to cause significant

problems for the SR-UKF. The error statistics are given in Table 5.2. The mean error

in w is caused by the virtual measurement of the angle of attack in the Kalman filter.

While this virtual measurement may cause a small mean error in w, it is beneficial

overall to the SR-UKF. As expected, the greatest maximum error is in v.

Table 5.2: Body Frame Velocity Errors (m/s)

Measurement Mean Error RMS Error Standard Deviation Max Error
u 0.0562 0.1243 0.1109 0.7704
v 0.0067 0.2980 0.2980 5.1275
w -0.2591 0.4998 0.4274 2.7526

Figure 5.6 shows the non-centripetal acceleration measurements and truth

data in the x, y, and z directions from top to bottom respectively. A large amount

of error is expected in the acceleration measurements. Here we assume that the non-

centripetal acceleration is zero, which of course is not true. Because of the large

acceleration component in the simulated z axis, the measured acceleration (assumed

to be close to zero) and the actual acceleration have large differences. However, this

assumption helps to keep the velocity and position in check. If the acceleration is

allowed to drift from zero too much, it has extreme effects on position and velocity. So,

as shown in all three acceleration measurements, the non-centripetal acceleration is

always close to zero. The actual acceleration has very large spikes which tend to cause

large aberrations in other measurements such as attitude and body frame velocity (as

shown earlier). These spikes are due to the extreme nature of the simulator output

for the UAV’s flight pattern. Table 5.3 illustrates the acceleration errors in each

direction.

Figure 5.7 illustrates the measurements of the roll, pitch, and yaw angles and

their errors. Firstly, it is easy to see that the SR-UKF estimates track all of the trends

of the truth data. Roll is the most difficult to track accurately because it depends

greatly upon the body frame velocity measurements and sideslip. If there is significant

61

Table 5.3: Non-centripetal Acceleration Errors (m/s2)

Direction Mean Error RMS Error Standard Deviation Max Error
x 0.0659 0.3209 0.3141 2.8365
y -0.0029 0.3112 0.3112 5.4124
z 0.0113 2.2606 2.2607 27.5543

sideslip (which is assumed to be zero in the SR-UKF model), it introduces problems

for the SR-UKF. From Fig. 5.7, φ has the greatest error when the UAV takes a large

turn. During a coordinated turn, when an aircraft banks to turn, it must roll to the

right or left. It is also during a coordinated turn that sideslip is introduced; in the case

of a small UAV without a rudder, the sideslip can be severe. Sideslip coupled with

extreme acceleration spikes can be disastrous to the flight model, however, the SR-

UKF still performs very well in tracking these measurements. Statistical properties of

the attitude errors are given in Table 5.4. It is also important to note that the mean

error in θ is due to the constant angle of attack assumption made in the synthetic

measurements within the SR-UKF. Pitch is closely related to w, so due to the non-

zero mean error in w, a non-zero mean error is expected in θ. While the angle of

attack assumption causes this discrepancy, it is still valuable to the SR-UKF as a

whole. Finally, the heading is kept in check by the GPS heading measurement. The

assumption that GPS heading and yaw angle are the same is only true in a zero

wind environment. The simulator does not introduce any wind into the UAV’s flight

environment, so this assumption is better in simulation than it is in an actual flight.

Table 5.4: Attitude Errors(◦)

Angle Mean Error RMS Error Standard Deviation Max Error
φ (Roll) -0.0686 3.4242 3.4237 21.5885
θ (Pitch) 1.3137 2.5649 2.2031 19.1165
ψ (Yaw) 0.0170 0.8090 0.8088 6.4115

62

Figure 5.8 shows the measurements and truth data related to the angular

rates p, q, and r. It is clear from the graphs that p, q, and r are tracked quite

accurately. This is due to the fact that they are directly measured by the onboard

gyroscopes. On the MERS aircraft, the gyroscopes are very accurate, and so the

simulated gyroscopes are set to be very accurate as well. The most significant error

in angular rate is found in the measurement of q. This is because of the extreme

acceleration and pitching of the aircraft discussed previously. The error however, is

still relatively small. Statistical analysis of the errors are given in Table 5.5.

Table 5.5: Angular Rate Errors (rad/s)

Measurement Mean Error RMS Error Standard Deviation Max Error
p -5.613×10−5 3.0711×10−4 3.0196×10−4 0.0084
q -0.0018 0.0044 0.0040 0.0462
r -3.1391×10−4 8.8519×10−4 8.2770×10−4 0.0065

Overall, the SR-UKF tracks the truth data relatively accurately. Despite the

fact that the simulated measurements frequently have large spikes, the SR-UKF is

able to track the states through their nonlinear measurement functions. Many of the

approximations discussed previously, such as the angle of attack, sideslip, and non-

centripetal acceleration assumptions, are not as valid in the case of a small aircraft.

Sideslip significantly affects the accuracy of the results, and because smaller aircraft

without a rudder suffer from significantly more sideslip than larger aircraft do, we see

greater errors in the output of the Kalman filter than would occur otherwise. Despite

the somewhat extreme nature of the simulated flight, the SR-UKF is able to give

reasonably low-error estimates of attitude and position.

5.3 Kalman Filtering Actual Flight Data

With the SR-UKF shown to work on the simulated data, it is applied to real

data from the MERS aircraft. After motion data from a SAR-recording flight is

collected with the MOTRON, the sensor recordings are prepared using the scaling

63

factors and GPS to northing/easting conversion. The SR-UKF is then applied to the

data. The following sections discuss the overall flight measurements and a smaller

section of the flight that seemed to most accurately meet the assumptions made by

the SR-UKF.

5.3.1 Measurements of the Entire Flight

The following data set is taken from the time the aircraft left the ground to the

time it touched down, or in other words, only during flight. This set of data is used

because as the plane taxis on the runway, it violates the assumption of a coordinated

turn and has no angle of attack. Fig. 5.9 shows the overhead view of the MERS

aircraft flight. From the figure, we can see that the plane flies several circles over the

Brigham City area and then returns to the Brigham City Airport runway.

Figure 5.10 shows the position measurements of the MERS aircraft from takeoff

to touchdown. The top three figures show northing measurements provided by the

SR-UKF, the NovAtel system, and their difference. The second set gives the easting

measurements and the third gives altitude. The plane starts at an altitude of 1275

meters (the altitude of the Brigham City airport), reaches an altitude of 1659 meters,

takes a dip to 1460 meters, then returns to 1650 meters before returning and landing

after a 20 minute flight. The position measurements of the SR-UKF are within 50 cm

of the NovAtel solution. Table 5.6 provides statistical data for the difference between

the NovAtel solution and the SR-UKF solution.

Table 5.6: Difference Between SR-UKF and NovAtel Position (m)

Measurement Mean RMS Standard Deviation Max
Northing -0.0172 0.1997 0.1989 0.4646
Easting 0.0129 0.1502 0.1497 0.4780
Altitude 0.0028 0.0466 0.0465 0.4584

Figure 5.11 shows the NovAtel and SR-UKF solutions for roll, pitch, and yaw

respectively. From the figures it is clear that the SR-UKF and NovAtel systems share

64

common trends. Table 5.7 gives data about the error between the NovAtel and SR-

UKF systems. Several assumptions about the aircraft’s flight account for some of the

difference. The assumption of constant angle of attack does not allow the SR-UKF

solution to grow in pitch very much because the virtual measurement of the body

frame velocity (particularly u and w) pull it down. This assumption does not allow

the SR-UKF to achieve the higher angles of pitch that may have existed in the actual

flight, and that the NovAtel system may have reported. These discrepancies can be

found between times 0-200 and 400-600. Furthermore, the assumption of zero sideslip

contributes to some of the error in the roll angle. Because sideslip is not likely zero in

reality, whenever there exists non-zero velocity in the v direction, there is an error in

the roll angle. This is evident at times 100, 300, 1000, and 1300. Also, because there

is no direct measurement of the body frame velocity or attitude, and because the

NovAtel implements a smoother, the SR-UKF solution is significantly noisier than

the NovAtel solution. Because of these factors, the greatest difference is found in the

roll angle.

Table 5.7: Difference Between SR-UKF and NovAtel Attitude(◦)

Measurement Mean RMS Standard Deviation Max
φ(Roll) 0.1250 3.1797 3.1773 16.4655
θ(Pitch) 0.1841 0.9416 0.9235 3.6347
ψ(Yaw) 0.3515 0.4980 0.3527 1.5411

Figure 5.12 shows the remaining states found in the SR-UKF. The body frame

velocity measurements give a good metric as to the validity of our angle of attack and

sideslip assumptions. From the body frame velocity (u, v, and w), we can see that

most of the overall velocity is in the u direction as we would expect. It is also clear that

the assumption of zero sideslip was not completely accurate from the v measurement,

as it clearly drifts away from zero. Finally, w has an almost constant velocity over

the flight, which gives credence to the constant angle of attack assumption. The

non-centripetal acceleration is nearly zero as we would expect, and the p, q, and r

65

measurements seem reasonable. There is no NovAtel solution for these states, so no

error metrics are given.

Overall, the SR-UKF performs much better on the actual flight data than it

did on the simulated flight data. This is due to the fact the assumptions discussed

earlier are much more valid for larger aircraft than the small UAV simulated case.

The results are very encouraging.

5.3.2 A Smaller Portion of the Flight

After viewing the measurements taken from the entire flight, it is valuable to

observe a set of data taken from a flight that more accurately reflects the assumptions

that the SR-UKF makes (no sideslip, constant angle of attack, no wind, etc.). This

subsection discusses a smaller 10 minute portion of the MERS aircraft flight that

closely meets these conditions.

Figure 5.13 illustrates the northing, easting, and altitude measurements of

the SR-UKF compared to the NovAtel system. As the figure shows, the position

tracking is as accurate as the NovAtel system to within 40 cm. This is a better result

than in the simulation or on the full set of flight data. Also, there is a significant

improvement in the altitude measurement. Because this portion of the flight had very

good conditions, the position tracking is excellent. Table 5.8 shows some statistical

differences between the SR-UKF solution and NovAtel solution.

Table 5.8: Difference Between SR-UKF and NovAtel Position (m)

Measurement Mean RMS Standard Deviation Max
Northing 0.0080 0.2063 0.2061 0.4350
Easting -0.0316 0.1528 0.1495 0.3939
Altitude 0.0032 0.0435 0.0434 0.2534

Figure 5.14 shows the result of the SR-UKF versus the NovAtel for this 10

minute flight section. The roll difference looks much more white than before and never

wanders above 8 degrees. Considering that the NovAtel data is smoothed, the SR-

66

UKF performs very well. All three of the Euler angle measurements have a very small

difference with respect to the NovAtel solution. Table 5.9 contains the statistical data

about this difference. It is important to note that the SR-UKF does not allow the

pitch angle to stray very far above 5 degrees. This is due to the assumption that the

angle of attack is constant. At 50 seconds into this flight section we can see that the

NovAtel pitch climbs higher than the SR-UKF is allowed to. The NovAtel solution

is probably more accurate because it does not rely on the angle of attack assumption

that the SR-UKF does. However, the SR-UKF is still only a degree or two away from

the NovAtel solution. This section of data from the SR-UKF is very encouraging,

and the data shows that under the right conditions, the SR-UKF performs very well.

Table 5.9: Difference Between SR-UKF and NovAtel Attitude(◦)

Measurement Mean RMS Standard Deviation Max
φ(Roll) 0.2268 2.2230 2.2115 10.0244
θ(Pitch) 0.2586 0.8876 0.8492 2.5067
ψ(Yaw) 0.3484 0.5591 0.4372 1.5505

Figure 5.15 shows the remaining states of the 10 minute section. These mea-

surements have nothing to compare with, but are given to show that they are rea-

sonable. The SR-UKF performed much better on this set of actual flight data. This

is due to the fact that the aircraft more closely met the approximations discussed

previously.

5.4 Filtered Results

It is clear that even after Kalman filtering the optimal data, the output of

the SR-UKF is still too noisy, and as Fig. 5.16 shows, there is significant harmonic

distortion in the roll angle estimate. These harmonics are also found in the raw

gyroscope and accelerometer data and are probably due to the intrinsic harmonic

response of the aircraft.

67

In order to correct these distortions, a low pass filter is used on φ and θ. A high

order filter is found to be the most effective and is shown in Fig. 5.17. An equiripple

FIR filter of order 1126 is chosen using the Parks-McClellan method to lower the

noise and all the harmonic content. A very long filter is needed in order to isolate the

low frequency content of interest, 0.001 to 0.005 πrad/sample while keeping the side

lobes down to a low level. Although this filter is long, it is less than 1/100 of the size

of the roll estimate. However, a filter of this length would be unreasonable to use in

real time applications.

Fig. 5.18 shows the resulting attitude estimates after applying the low pass

filter. As before, the NovAtel solution is given first, followed by the filtered SR-UKF

solution and their difference for roll, and pitch respectively. No filtering is applied to

the yaw angle due to the irregular 0-360◦ wrapping. Table 5.10 gives the new error

statistics after filtering. As can be seen in the figure and table, the error is greatly

reduced by the low pass filter. The maximum error has been reduced by half, the

mean error is much closer to zero, and the graph looks much more similar to the

NovAtel solution.

Table 5.10: Difference Between Filtered SR-UKF and NovAtel Attitude(◦)

Measurement Mean RMS Standard Deviation Max
φ(Roll) -0.0946 1.1863 1.1825 5.0120
θ(Pitch) 0.4372 0.8622 0.7431 1.7848
ψ(Yaw) 0.3484 0.5591 0.4372 1.5505

5.5 Conclusion

Overall, the SR-UKF does a reasonable job estimating the simulated UAV

movement and performs very well on actual flight data. The SR-UKF created esti-

mates within a few centimeters of the position and within a few degrees of the attitude

measurements of the NovAtel solution. The SR-UKF performs similarly on data sets

from additional flights made by the MERS aircraft. Most major discrepancies can

68

be accounted for in the approximations made to simplify the implementation of the

SR-UKF. I found that the output of the SR-UKF is very sensitive to the covari-

ance tuning, and even after the SR-UKF has run, additional low pass filtering was

necessary. Most of the time I spent developing this SR-UKF was spent tuning the

covariance matrix: incrementally making small changes to Q and testing the result.

It is also important to note that if either the sensors or aircraft are changed, the

parameters will need to be adjusted to account for the changes.

69

50 100 150 200 250 300 350 400 450 500
−1000

−500

0

500

Tru
th

Northing (m)

50 100 150 200 250 300 350 400 450 500
−1000

−500

0

500

SR
−U

KF
 So

lut
ion

50 100 150 200 250 300 350 400 450 500
−2

0

2

Time (s)

Err
or

50 100 150 200 250 300 350 400 450 500
−500

0

500

Tru
th

Easting (m)

50 100 150 200 250 300 350 400 450 500
−500

0

500

SR
−U

KF
 So

lut
ion

50 100 150 200 250 300 350 400 450 500
−2

0

2

Time (s)

Err
or

50 100 150 200 250 300 350 400 450 500
48

50

52

Tru
th

Altitude (m)

50 100 150 200 250 300 350 400 450 500
48

50

52

SR
−U

KF
 So

lut
ion

50 100 150 200 250 300 350 400 450 500

−1

0

1

Time (s)

Err
or

Figure 5.4: Truth data, SR-UKF solutions, and SR-UKF error for northing, easting,
and altitude. See text and Table 5.1 for analysis.

70

50 100 150 200 250 300 350 400 450 500
10

10.5

11

Tru
th

u (m/s)

50 100 150 200 250 300 350 400 450 500
10

10.5

11

SR
−U

KF
 So

lut
ion

50 100 150 200 250 300 350 400 450 500
−1

0

1

Time (s)

Err
or

50 100 150 200 250 300 350 400 450 500

−1

0

1

Tru
th

v (m/s)

50 100 150 200 250 300 350 400 450 500

−1

0

1

SR
−U

KF
 So

lut
ion

50 100 150 200 250 300 350 400 450 500

−2

0

2

Time (s)

Err
or

50 100 150 200 250 300 350 400 450 500
0

2

4

Tru
th

w (m/s)

50 100 150 200 250 300 350 400 450 500
0

2

4

SR
−U

KF
 So

lut
ion

50 100 150 200 250 300 350 400 450 500

−2

0

2

Time (s)

Err
or

Figure 5.5: Truth data and the SR-UKF solutions for u, v, and w. See text and Table
5.2 for analysis.

71

50 100 150 200 250 300 350 400 450 500
−2

0

2
Tru

th

Non−centripetal Acceleration in the x Direction (m/s2)

50 100 150 200 250 300 350 400 450 500
−2

0

2

SR
−U

KF
 So

lut
ion

50 100 150 200 250 300 350 400 450 500

−2

0

2

Time (s)

Err
or

50 100 150 200 250 300 350 400 450 500
−2

0

2

Tru
th

Non−centripetal Acceleration in the y Direction (m/s2)

50 100 150 200 250 300 350 400 450 500
−2

0

2

SR
−U

KF
 So

lut
ion

50 100 150 200 250 300 350 400 450 500

−2

0

2

Time (s)

Err
or

50 100 150 200 250 300 350 400 450 500
−5

0

5

Tru
th

Non−centripetal Acceleration in the z Direction (m/s2)

50 100 150 200 250 300 350 400 450 500
−5

0

5

SR
−U

KF
 So

lut
ion

50 100 150 200 250 300 350 400 450 500
−5

0

5

Time (s)

Err
or

Figure 5.6: Truth data and the SR-UKF solutions for non-centripetal acceleration in
the x, y, and z directions. See text and Table 5.3 for analysis.

72

50 100 150 200 250 300 350 400 450 500
−40

−20

0

20

40

Tru
th

Phi (deg)

50 100 150 200 250 300 350 400 450 500
−40

−20

0

20

40

SR
−U

KF
 So

lut
ion

50 100 150 200 250 300 350 400 450 500

−10

0

10

Time (s)

Err
or

50 100 150 200 250 300 350 400 450 500

0

10

20

Tru
th

Theta (deg)

50 100 150 200 250 300 350 400 450 500

0

10

20

SR
−U

KF
 So

lut
ion

50 100 150 200 250 300 350 400 450 500
−10

0

10

Time (s)

Err
or

50 100 150 200 250 300 350 400 450 500
0

100

200

300

Tru
th

Psi (deg)

50 100 150 200 250 300 350 400 450 500
0

100

200

300

SR
−U

KF
 So

lut
ion

50 100 150 200 250 300 350 400 450 500

−5

0

5

Time (s)

Err
or

Figure 5.7: Truth data and the SR-UKF solutions for roll, pitch, and yaw. See text
and Table 5.4 for analysis.

73

50 100 150 200 250 300 350 400 450 500

−2

0

2
Tru

th

p (rad/s)

50 100 150 200 250 300 350 400 450 500

−2

0

2

SR
−U

KF
 So

lut
ion

50 100 150 200 250 300 350 400 450 500
−0.01

0

0.01

Time (s)

Err
or

50 100 150 200 250 300 350 400 450 500

−4

−2

0

2

Tru
th

q (rad/s)

50 100 150 200 250 300 350 400 450 500

−4

−2

0

2

SR
−U

KF
 So

lut
ion

50 100 150 200 250 300 350 400 450 500
−0.05

0

0.05

Time (s)

Err
or

50 100 150 200 250 300 350 400 450 500
−0.5

0

0.5

Tru
th

r (rad/s)

50 100 150 200 250 300 350 400 450 500
−0.5

0

0.5

SR
−U

KF
 So

lut
ion

50 100 150 200 250 300 350 400 450 500
−0.01

0

0.01

Time (s)

Err
or

Figure 5.8: Truth data and the SR-UKF solutions for angular rates p, q, and r. See
text and Table 5.5 for analysis.

74

Figure 5.9: The flight path of the MERS aircraft The drop pin indicates the starting
position just before takeoff.

75

200 400 600 800 1000 1200
1200

1400

1600

Altitude (m)
No

vA
tel

 So
lut

ion

200 400 600 800 1000 1200
1200

1400

1600

SR
−U

KF
 So

lut
ion

200 400 600 800 1000 1200
−0.5

0

0.5

Time (s)

Dif
fer

en
ce

200 400 600 800 1000 1200
−10000

−5000

0

5000
Easting (m)

No
vA

tel
 So

lut
ion

200 400 600 800 1000 1200
−10000

−5000

0

5000

SR
−U

KF
 So

lut
ion

200 400 600 800 1000 1200
−0.5

0

0.5

Time (s)

Dif
fer

en
ce

200 400 600 800 1000 1200
1200

1400

1600

Altitude

No
vA

tel
 So

lut
ion

 (m
)

200 400 600 800 1000 1200
1200

1400

1600

SR
−U

KF
 So

lut
ion

 (m
)

200 400 600 800 1000 1200
−0.5

0

0.5

Time (s)

Dif
fer

en
ce

 (m
)

Figure 5.10: NovAtel solution and the SR-UKF solution for northing, easting, and
altitude. See text and Table 5.6 for analysis.

76

200 400 600 800 1000 1200
−40

−20

0

20

40

Phi (deg)

No
vA

tel
 So

lut
ion

200 400 600 800 1000 1200
−40

−20

0

20

40

SR
−U

KF
 So

lut
ion

200 400 600 800 1000 1200
−20

0

20

Dif
fer

en
ce

Time (s)

200 400 600 800 1000 1200
−5

0

5

10
Theta (deg)

No
vA

tel
 So

lut
ion

200 400 600 800 1000 1200
−5

0

5

10

SR
−U

KF
 So

lut
ion

200 400 600 800 1000 1200
−5

0

5

Dif
fer

en
ce

Time (s)

200 400 600 800 1000 1200
0

100

200

300

Psi (deg)

No
vA

tel
 So

lut
ion

200 400 600 800 1000 1200
0

100

200

300

SR
−U

KF
 So

lut
ion

200 400 600 800 1000 1200
−1

0

1

2

Dif
fer

en
ce

Time (s)

Figure 5.11: NovAtel solution and the SR-UKF solution for roll, pitch, and yaw. See
text and Table 5.7 for analysis.

77

200 400 600 800 1000 1200
30

40

50

60

70

Body Frame Velocity (m/s)

u

200 400 600 800 1000 1200

−2

0

2

4

v

200 400 600 800 1000 1200

0

2

4

w

Time (s)

200 400 600 800 1000 1200
−2

0

2
Non−centripetal Acceleration (m/s2)

x

200 400 600 800 1000 1200
−2

0

2

y

200 400 600 800 1000 1200
−2

0

2

z

Time (s)

200 400 600 800 1000 1200
−0.2

0

0.2
Angular Rates (rad/s)

p

200 400 600 800 1000 1200
−0.2

0

0.2

q

200 400 600 800 1000 1200
−0.2

0

0.2

r

Time (s)

Figure 5.12: NovAtel solution and the SR-UKF solution for the body frame velocity,
non-centripetal acceleration, and angular rates. See text for analysis.

78

50 100 150 200 250 300 350 400 450 500
−1

0

1

2
x 10

4 Northing (m)

No
vA

tel
 So

lut
ion

50 100 150 200 250 300 350 400 450 500
−1

0

1

2
x 10

4

SR
−U

KF
 So

lut
ion

50 100 150 200 250 300 350 400 450 500
−0.5

0

0.5

Time (s)

Dif
fer

en
ce

50 100 150 200 250 300 350 400 450 500
−10000

−5000

0

5000
Easting (m)

No
vA

tel
 So

lut
ion

50 100 150 200 250 300 350 400 450 500
−10000

−5000

0

5000

SR
−U

KF
 So

lut
ion

50 100 150 200 250 300 350 400 450 500
−0.5

0

0.5

Time (s)

Dif
fer

en
ce

50 100 150 200 250 300 350 400 450 500
1200

1400

1600

Altitude (m)

No
vA

tel
 So

lut
ion

50 100 150 200 250 300 350 400 450 500
1200

1400

1600

SR
−U

KF
 So

lut
ion

50 100 150 200 250 300 350 400 450 500
−0.5

0

0.5

Time (s)

Dif
fer

en
ce

Figure 5.13: NovAtel solution and the SR-UKF solution for northing, easting, and
altitude.

79

50 100 150 200 250 300 350 400 450 500
−40

−20

0

20

40

Phi (deg)
No

vA
tel

 So
lut

ion

50 100 150 200 250 300 350 400 450 500
−40

−20

0

20

40

SR
−U

KF
 So

lut
ion

50 100 150 200 250 300 350 400 450 500
−20

0

20

Dif
fer

en
ce

Time (s)

50 100 150 200 250 300 350 400 450 500
−5

0

5

10
Theta (deg)

No
vA

tel
 So

lut
ion

50 100 150 200 250 300 350 400 450 500
−5

0

5

10

SR
−U

KF
 So

lut
ion

50 100 150 200 250 300 350 400 450 500
−5

0

5

Dif
fer

en
ce

Time (s)

50 100 150 200 250 300 350 400 450 500
0

100

200

300

Psi (deg)

No
vA

tel
 So

lut
ion

50 100 150 200 250 300 350 400 450 500
0

100

200

300

SR
−U

KF
 So

lut
ion

50 100 150 200 250 300 350 400 450 500
−1

0

1

2

Dif
fer

en
ce

Time (s)

Figure 5.14: NovAtel solution and the SR-UKF solution for roll, pitch, and yaw.

80

50 100 150 200 250 300 350 400 450 500
30

40

50

60

70

Body Frame Velocity (m/s)

u

50 100 150 200 250 300 350 400 450 500

−2

0

2

4

v

50 100 150 200 250 300 350 400 450 500

0

2

4

w

Time (s)

50 100 150 200 250 300 350 400 450 500
−2

0

2
Non−centripetal Acceleration (m/s2)

x

50 100 150 200 250 300 350 400 450 500
−2

0

2

y

50 100 150 200 250 300 350 400 450 500
−2

0

2

z

Time (s)

50 100 150 200 250 300 350 400 450 500
−0.2

0

0.2
Angular Rates (rad/s)

p

50 100 150 200 250 300 350 400 450 500
−0.2

0

0.2

q

50 100 150 200 250 300 350 400 450 500
−0.2

0

0.2

r

Time (s)

Figure 5.15: NovAtel solution and the SR-UKF solution for the body frame velocity,
non-centripetal acceleration, and angular rates.

81

0 0.2 0.4 0.6 0.8 1
−6

−4

−2

0

2
x 10

4

Normalized Frequency (pi rad/sample)

Ph
as

e (
de

gre
es

)

0 0.2 0.4 0.6 0.8 1
−50

0

50

100

150

Normalized Frequency (pi rad/sample)

Ma
gn

itu
de

 (d
B)

Frequency Content of Phi

Figure 5.16: Frequency content of φ. Notice the strong harmonic content at 0.21π,
0.42π, 0.63π, and 0.84π rad/sample.

0 0.2 0.4 0.6 0.8 1
−400

−300

−200

−100

0

Normalized Frequency (pi rad/sample)

Ph
as

e (
de

gre
es

)

0 0.2 0.4 0.6 0.8 1
−150

−100

−50

0

50

Normalized Frequency (pi rad/sample)

Ma
gn

itu
de

 (d
B)

Frequency Response of the Low Pass Filter

Figure 5.17: Frequency response of the low pass filter.

82

50 100 150 200 250 300 350 400 450 500
−40

−20

0

20

40

Phi (deg)

No
vA

tel
 S

olu
tio

n

50 100 150 200 250 300 350 400 450 500
−40

−20

0

20

40

SR
−U

KF
 S

olu
tio

n

50 100 150 200 250 300 350 400 450 500
−10

0

10

Di
ffe

re
nc

e

Time (s)

50 100 150 200 250 300 350 400 450 500
−5

0

5

10
Theta (deg)

No
vA

tel
 S

olu
tio

n

50 100 150 200 250 300 350 400 450 500
−5

0

5

10

SR
−U

KF
 S

olu
tio

n

50 100 150 200 250 300 350 400 450 500
−5

0

5

Di
ffe

re
nc

e

Time (s)

Figure 5.18: NovAtel solution and the low pass filtered SR-UKF solution for roll and
pitch.

83

84

Chapter 6

Conclusion

The research provided in this thesis describes a method for estimating flight

dynamics from measurements provided by laser gyroscopes, accelerometers, and high

precision GPS integrated with a SR-UKF. The results of this research are thoroughly

tested, examined, and compared to that of a high cost navigation system and are

found to be surprisingly similar. Although the results of the SR-UKF are less accurate

than the NovAtel system, they approach the accuracy of the NovAtel system. This

result is surprising in that the development effort involved and cost of the SR-UKF

is extremely low compared to the NovAtel system.

This thesis has also presented a straightforward model for fixed-wing aircraft

flight dynamics, and has presented a simple, low-cost data recording scheme for high

precision motion sensors. A SR-UKF was implemented using MATLAB software, and

was optimized for rapid calculation. While MATLAB may run much more slowly than

C/C++, the MATLAB code gives clear instruction on how to optimally program an

SR-UKF for future use.

Due to the nature of SAR image processing, real time calculations are not

always necessary. However, the dynamics estimation system here can be easily im-

plemented in real time without the low pass filter. This is another benefit of the

SR-UKF compared to the EKF. Because the SR-UKF runs more computationally

efficient than the EKF, it is easier to execute in real time while at the same time

gaining accuracy.

The main drawback of the SR-UKF described by this thesis is the flight dynam-

ics assumptions. Assuming that sideslip is zero greatly simplifies the SR-UKF, but

also contributes to inaccuracy in the body frame velocity and attitude. Furthermore,

85

assuming a constant angle to attack makes implementation easier, but the results

less correct. With proper covariance tuning and a lot of patience, these assumptions

could be done away with.

Overall, the research presented by this thesis has shown that a simple SR-UKF

implementation can approach the effectiveness of an expensive and complex motion

measurement system implemented with an EKF. In ideal conditions, the SR-UKF

was nearly as good, and cost much less.

6.1 Contributions

The research presented in this thesis contributes the following:

� A user friendly standalone motion sensor measurement recording system that

can be used with multiple sensors of any type (MOTRON).

� A state-space flight dynamics estimation model for fixed wing aircraft.

� An estimation model of three IMAR-IMU laser gyroscopes and accelerometers.

� A unique formulation of the square-root Unscented Kalman filter in which the

mean value is not a traditional weighted sum, but simply the previous state

mean passed through the nonlinear function f .

� A method for estimating initial attitude conditions of a stationary aircraft.

� A method of integrating simulated measurements into actual flight data to

improve filter accuracy.

� A functional flight simulator that correctly models the NovAtel sensors onboard

a small UAV.

� A fully functional flight dynamics estimation system.

6.2 Future Work

Areas in which future work may be done include:

86

� Elimination of flight dynamics approximations. By successfully eliminating the

angle of attack, sideslip, coordinated turn, and acceleration assumptions, the

estimation scheme can be applied to any free moving body. In other words,

the estimation system can be used in automobiles, watercraft, helicopters, as

well as fixed-wing aircraft. It would also make the Q-tuning independent of

the platform, which would be very useful for not only SAR, but robotics and

guidance systems.

� Use of quaternions. Using quaternions would eliminate the need for Euler an-

gles, and hence, eliminate the problems associated with their use. Quaternions

remove the chance of gimbal lock which occurs when two of the three axes of

rotation in a three dimensional space are driven to the same direction resulting

in the loss of one degree of freedom. By using quaternions, the motion estima-

tion system is able to rotate freely without encountering this issue. It would

also eliminate the issues that can occur with 0◦-360◦ crossings.

� Implementation of a Kalman smoother. The SR-UKF estimates the state covari-

ance at each time and measurement update. If each of those covariance updates

were stored in memory, a Kalman smoother could be easily implemented. This

would help to reduce the noise found in the results of the SR-UKF, and would

be a much better alternative to a simple low pass filter.

� Verification of the SR-UKF using SAR imagery. If the data collected by BYU’s

nu-SAR were motion compensated correctly using the output of the SR-UKF,

it would be a strong indication that the motion estimates were correct.

� Move the SR-UKF to operate in real time on the MOTRON. By optimizing the

SR-UKF to run in C or C++, it could be greatly sped up and run in real time

onboard the MOTRON, for real time dynamics estimates.

87

88

Bibliography

[1] R. van der Merwe and E. A. Wan, “The Square-Root Unscented Kalman Filter
for State and Parameter-Estimation,” Acoustics, Speech, and Signal Process-
ing(ICASSP) IEEE Proceedings, vol. 6, pp. 3461–3464, May 2001. xi, 1, 17,
18

[2] SPAN for OEMV User Manual, 4th ed., NovAtel Inc., 1120 - 68 Avenue NE,
Calgary, Alberta, Canada T2E 8S5, 2007. 2

[3] F. T. Ulaby, R. K. Moore, and A. K. Fung, Microwave Remote Sensing. Nor-
wood, MA: Artech House, 1981. 7

[4] R. W. Beard and T. W. McLain, “Guidance and Control of Autonomous Fixed
Wing Air Vehicles,” May 2009, a reference for flight dynamics, state estimation,
and path planning. 8, 11, 39

[5] T. K. Moon and W. C. Stirling, Mathematical Methods and Algorithms for Signal
Processing. Upper Saddle River, NJ: Prentice Hall, 2000. 13

[6] S. J. Julier and J. K. Uhlmann, “A New Extension of the Kalman Filter to Non-
linear Systems,” Int. Symp. Aerospace/Defense Sensing, Simul. and Controls,
vol. 92, no. 3, pp. 401–422, 1997. 15, 16

[7] R. W. Beard, personal communication, 2009. 55

[8] J. Roskam, Airplane Flight Dynamics and Automatic Flight Controls. Lawrence,
KS: Design, Analysis and Research Corporation, 2001. 56

[9] B. L. Stevens and F. L. Lewis, Aircraft Control and Simulation. Hoboken, NJ:
John Wiley and Sons, Inc., 2003. 56

[10] TS-7800 Manual, 1st ed., Technologic Systems Inc., Fountain Hills, AZ 85268,
2009. 91

89

90

Appendix A

Hardware Implementation

The MOTRON’s basic components consist of a TS-7800 single board com-

puter, a small LCD screen, and a numeric entry keypad. This appendix discusses the

particular way in which these devices are interconnected setup, and operated.

A.1 Basic Operation of the TS-7800

The MOTRON relies primarily upon a single board computer, the TS-7800,

made by Technologic Systems, Inc [10]. The TS-7800 has no video controller or

keyboard interface. This is to keep the board size small and cost low. In order to

interface with the device, a COM1 RS-232 connection is typically required. A null

modem cable is necessary to use the COM1 Terminal plugin. An Ethernet jack is also

available. Table A.1 gives the information necessary to use COM1 and the Ethernet

port.

Table A.1: Interface Parameters

COM1 Serial Port Ethernet Port
Baud 115,200 IP Address 192.168.0.50
Data Bits 8 Username ‘root’
Parity none Password ‘hello’
Flow Control none
Stop Bits 1
Jumper 2 (JP2) On
Username ‘root’
Password ‘hello’

91

On the topside of the board, shown in Fig. A.1, there are three jumpers. If

jumper 1 is installed, meaning each of the jumper 1 pins are electrically connected,

than the board attempts to boot from an SD Card, independent of the on-board flash

memory, otherwise, the board boots from the flash memory. Two backup SD Cards

have been created to safeguard the MOTRON’s operation. If jumper 2 is installed,

Figure A.1: The layout of the TS-7800 single board computer. Included on the TS-
7800 are six separate RS-232 uarts, two USB ports, an ethernet port, an LCD port,
a DIO port, an A/D, three bootup jumper options, and an SD card slot(underneath).
See text for further description.

92

console output to COM1 is turned on, if it is not installed, console output to COM1

is turned off. If jumper 3 is installed, it causes the CPU to run at 333MHz rather

than 500MHz to save power and allow it to run in hotter thermal conditions.

To turn on the TS-7800, connect a regulated 5VDC to the pins shown in

the bottom left of Fig. A.1. All of the boot messages are displayed through COM1

by default. Once started, the TS-7800 boots Debian Linux from the on-board flash

memory if an SD Card is not inserted. The board is set to bypass a“fast bootup”

sequence and proceed directly to a full operating system bootup. To get back to the

fastboot shell, touch the file “/fastboot” in the root directory of the Debian filesystem.

To turn it off again, issue the command, “ln -sf /linuxrc-mtdroot /linuxrc; save”.

Finally, in the case of a crash, to reprogram the entire TS-7800 flash memory, boot

from a backup SD Card and issue the command “createmtdroot” from the shell. This

will restore all necessary files to operate the MOTRON. The MOTRON can also be

operated completely from a backup SD Card.

Once booted, the TS-7800 runs a full-featured Debian Linux distribution. It

includes everything necessary to run Linux and develop Linux applications. The TS-

7800 also includes an on-board C/C++ compiler for developing custom applications.

To compile a source file just issue the command “g++ -o outfile sourcefile.cpp”. All of

the MOTRON’s source code is in the “/BYU” directory, including “INU.cpp”, which

contains the code for the MOTRON data recording program.

A.2 COM Connections

There are three COM ports on the TS-7800 which have six independent RS-

232 uarts. In the “/dev” directory, they appear as ttts0, ttts1, ttyS0, ttyS1, ttts4,

and ttts5. Each of these are labeled on the casing of the MOTRON. On COM1, the

pins are labeled as shown in Fig. A.2, and on COM2 and COM3 the pins are labeled

as in Fig. A.3. The mapping of these pins are given in Table A.2.

It is important to note that ttyS0 maps to the terminal output, and will

not function properly as anything else unless jumper 2 is off. Also, ttts4 is the

display/input port, and is wired directly to the LCD and keypad on the MOTRON.

93

Table A.2: Mapping of COM Port Pins.

COM Port /dev Transmit Pin Receive Pin
COM1 ttts0 7 8

ttts1 4 1
ttyS0 3 2

COM2 ttyS1 3 2
COM3 ttts4 3 2

ttts5 7 8

A special USB-Serial driver was complied to allow functionality with the No-

vAtel’s USB features. This kernel module can be located in the kernel directory under

the name “usbserial.ko”. This file is different than the usual file that typically comes

with Debian installations. This file has been backed up to each SD Card and does not

ever need to be recross-compiled. Each time a USB device is attached, the TS-7800

automatically detects it and assigns it to a ttyUSB device name which can be found

in the “/dev” directory. From that point, the USB serial device is treated just like

any other serial device.

A.3 MOTRON Operating Source Code

The MOTRON’s operating code, found in “/BYU/INU.cpp”, is written in

C++ and contains all of the serial device interfacing, NovAtel system communica-

Figure A.2: The pin numbers of COM1.

94

Figure A.3: The pin numbers of COM2 and COM3. Notice that the white circle
indicates pin 1.

tions, and input/output handling. Serial communications were accomplished via the

SerialStream package which is widely available.

A small set of LCD graphics functions are also defined. These make it much

simpler to write messages to the LCD screen. A set of delays is embedded in each

display function to keep the LCD display from displaying erroneous messages. Each

interfacing device has an assigned Serial Port that can be found at the beginning of

the main function. Each device must be interfaced within a separate thread, so the

pthread package was used. Each interfacing function operates independently in order

to avoid timing issues.

INU.cpp can be easily compiled on-board using the command “g++ -lserial

-pthread -o INU INU.cpp”. Once compiled, the script executes automatically upon

system startup. In order to stop the MOTRON from immediately executing this

script upon startup, edit the TS-7800’s init.d script.

A.4 Additional Resources

For more information about the functionality of the TS-7800, visit Technologic Sys-

tem’s online user manual,

http://www.embeddedarm.com/about/resource.php?item=393

95

For additional information regarding the LCD screen, visit

http://microcontrollershop.com/product info.php?products id=1974

96

	Title Page
	Abstract
	Acknowledgements
	Table of Contents
	List of Tables
	List of Figures
	1 Introduction
	1.1 Purpose
	1.2 Contributions
	1.3 Outline

	2 Background
	2.1 Introduction
	2.2 SAR Image Processing
	2.2.1 SAR System Overview
	2.2.2 The Need for Motion Compensation

	2.3 Aircraft Flight Dynamics
	2.3.1 Coordinate Frames
	2.3.2 Characteristics of Aircraft Motion

	2.4 The Kalman Filter
	2.4.1 The State-Space Model
	2.4.2 Formulation of the Kalman Filter
	2.4.3 Non-Linear Extensions of the Kalman Filter
	2.4.4 Square-Root Implementation of the UKF

	2.5 Conclusion

	3 Motion Recording Onboard Device (MOTRON)
	3.1 Requirements for the MOTRON
	3.2 Motion Sensors
	3.2.1 NovAtel ProPak V3 with IMAR IMU
	3.2.2 MicroStrain 3DM-GX1 and Additional Functionality

	3.3 The MOTRON
	3.3.1 Components and Design
	3.3.2 User Interface, Data Storage, and Input Algorithms.
	3.3.3 Interpreting the Recorded NovAtel Data

	3.4 NovAtel Data Collected by the MOTRON
	3.4.1 Measurement Statistics

	3.5 Conclusion

	4 Implementation the Square-root Unscented Kalman Filter
	4.1 Aircraft Flight Dynamics and State Variables
	4.1.1 State Variables
	4.1.2 Reference Frames
	4.1.3 Equations of Motion

	4.2 Measurement Sensors
	4.3 Implementing a Square-root Unscented Kalman Filter
	4.3.1 Finding Initial Conditions
	4.3.2 Time Update
	4.3.3 Measurement Update
	4.3.4 Nonlinear State Functions
	4.3.5 Simulated Measurements

	4.4 Conclusion

	5 Results
	5.1 Flight Simulator
	5.2 Kalman Filtering the Simulated Data
	5.3 Kalman Filtering Actual Flight Data
	5.3.1 Measurements of the Entire Flight
	5.3.2 A Smaller Portion of the Flight

	5.4 Filtered Results
	5.5 Conclusion

	6 Conclusion
	6.1 Contributions
	6.2 Future Work

	Bibliography
	A Hardware Implementation
	A.1 Basic Operation of the TS-7800
	A.2 COM Connections
	A.3 MOTRON Operating Source Code
	A.4 Additional Resources

