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ABSTRACT

Wind scatterometry is the determination of vector winds over the earth’s
oceans using radar data from a satellite scatterometer. In this thesis | develop three
techniques which can augment current methods of wind retrieval from scatterometer data.
In the first part | investigate methods of obtaining reliable error covariance estimates on
retrieved wind. After expanding the accepted statistical measurement model to incorporate
geophysical model function uncertainty, | derive the Cramer-Rao bound for both point-wise
and model-based retrieved winds and show that it can be used as an approximation to
the covariance. In the second part | develop a method to eliminate wind aliases using a
hypothesis testing procedure based on a likelihood ratio statistic. | then apply this method
to both point-wise and model-based retrieved winds with significant success, showing that,
especially with model-based wind fields, a single wind estimate can often be retrieved from
the data alone. In the third part of this thesis, | develop three additional wind field models
for use in model-based retrieval and compare them with previously used models.
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Chapter 1

INTRODUCTION

1.1 Background

Accurate short-term weather prediction is an important element of modern
science. We commonly rely on the five-day forecast to plan our excursions and outdoor
activities. More importantly, many industries including transportation and agriculture rely
on weather prediction in order to make crucial decisions. Unfortunately, weather prediction
is often hindered by lack of knowledge of current global weather conditions. Before the
age of satellites for monitoring the earth, information about current conditions was limited
to isolated weather stations. This means that over the oceans, where 3/4 of weather occurs,
almost nothing was known about daily weather conditions.

Satellites have made it possible to understand current weather conditions on
a global scale. An important piece of weather information for meteorology is accurate
high-resolution near-surface winds over the ocean. In 1978 the experimental Seasat
scatterometer (SASS) first demonstrated that a radar could accurately infer vector winds
over the ocean’s surface from space at an unprecedented spatial resolution and frequency
(Davison and Harrison, 1990; Levy and Brown, 1991; Stoffelen and Cats, 1991).

A wind scatterometer such as the one on-board Seasat is an active instrument
that sends pulses of microwave radiation to the earth and measures the return power. From
this measurement it infers the normalized radar cross sectigmf the ocean surface.

With a set of these noisy°® measurements, the wind vector can be estimated using a
relationship between surface wind over the oceansndhis relationship is known as the
Geophysical Model Function (GMF).

SASS operated at 14.6 GHz (Ku-band) with either horizontal or vertical
polarization and nominally used two measurements‘ofo estimate the wind velocity
over a 50km by 50km cell(Grantham et al., 1977; Johnson et al., 1980). A spacecraft power
failure shortened the SASS mission, but the SASS successes prompted further plans for
wind scatterometers.

In July 1991 the European Space Agency (ESA) launched its first wind
scatterometer on-board the ERS-1 (European Remote Sensing-1) satellite. This wind
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scatterometer operates at 5.3 GHz (C-band) with vertical polarization and makes three
measurements over each cell of a 25km by 25km grid from which wind velocity is
estimated on a 50km by 50km grid (Attema, 1991). ESA launched a second identical
scatterometer on-board ERS-2 on April 20, 1995, but technical difficulties made the wind
data unavailable until the summer of 1996.

NASA has plans for two of its own wind scatterometers: NSCAT (NASA
SCATterometer) to be launched in August, 1996 on-board a Japanese satellite, ADEOS
(ADvanced Earth Observing System), and SeaWinds to be launched in 1999. NSCAT will
take four measurements over each cell of a 25km by 25km grid and will nominally retrieve
wind over a 50km by 50km grid, although 25km by 25km retrieval is possible (Naderi
etal., 1991).

1.2 Current wind retrieval methods

There are two general methodologies employed for wind retrieval using scat-
terometer measurements: point-wise wind retrieval and model-based wind retrieval. Since
there is a relationship betweefi measurements and the wind vector over a single patch of
the ocean surface, wind may be estimated patch-by-patch froaf timeasurements over
just that patch. Such wind retrieval is conveniently named point-wise retrieval and each
patch is called avind vector cell As will be explained in more detail in Section 2.3, the
nature of the geophysical model function which relatégo winds is such that a single
wind vector estimate can rarely, if ever, be resolved from efilgneasurements (Long and
Mendel, 1990a). Typically, a second step called “dealiasing” is used to select from among
the several ambiguities a single wind vector in each cell. The dealiasing procedure relies
on ad hocconsiderations of how wind should behave from cell to cell and is consequently
more difficult to analyze.

As a result of these difficulties the second approach to wind retrieval known as
model-based retrieval has been suggested and developed (Long and Mendel, 1990b). This
method uses a wind field model covering several wind vector cellssTimeasurements
are then used to estimate the parameters of the model. This method of wind retrieval has
limitations. The chief problem is that estimating the parameters of the wind field model
becomes a maximization problem with multiple local maxima in a multi-dimensional space.
The task of finding all significant local maxima is difficult with the current wind field
model.



One missing element in both methods of wind retrieval is that no information
is reported about the possible error in the retrieved wind. While simulations have been
used traditionally (Leotta and Long, 1989), no reliable procedure for reporting error on
each wind estimate has been established and so error estimates on retrieved wind are not
commonly reported.

1.3 Summary of Contributions

The contributions of this thesis can be divided into three categories each of
which address some problem in current wind scatterometry.

The first major contribution of this thesis is to address the problem of error
estimates on retrieved winds. As the statistical model used fowthmeasurements
is the most important factor affecting the reliability of such error estimates, | pursue an
investigation into this statistical model. Using this model, | develop a method of determining
approximate error-bars on both point-wise and model-based retrieved winds. Part of this
development involves the derivation of the Cramer-Rao bound for both point-wise and
model-based wind retrieval.

The second major contribution of this thesis is to apply the statistical model used
for wind retrieval to develop a decision-theory-based method of distinguishing among the
maxima of a maximume-likelihood equation such as the one used in wind estimation. For
both point-wise and model-based retrieval the likelihood function has multiple maxima,
only a few of which are large enough to be believable. | apply decision theory to aid in
determining which maxima actually correspond to wind estimates that statistically support
the measurements.

While the previous two contributions address problems in both point-wise and
model-based retrieval, the final general contribution is focused on model-based retrieval. |
investigate alternative wind field models using a basis-field concept in order to improve the
practical implementation of model-based retrieval by reducing the number of parameters
to be estimated.

To demonstrate the applicability of these contributions, actual data from the
ERS-1 scatterometer will be used as will simulated data from NSCAT. Nonetheless, the
derivations in this thesis can be generally applied to any of the scatterometers previously
mentioned.



Chapter 2

WIND SCATTEROMETRY BACKGROUND

2.1 Overview

In order to understand the contributions made by this thesis, it is important to
review some fundamentals of wind scatterometry. As a result, this chapter is included to
discuss in more detail scatterometers and how wind can be estimated from scatterometer
data. This will be accomplished by first briefly describing a scatterometer and how a
measurement of normalized radar cross sectidn,is made. Second, the Geophysical
Model Function which relates the ocean wind vectowtowill be described. Third, a
statistical model of the backscatter measurements will be presented which is useful in
developing a method of point-wise wind retrieval usirigdata. Finally, model-based wind
retrieval will be reviewed as an extension to point-wise retrieval.

2.2 Scatterometers
2.2.1 Radar equation

A scatterometer is an active instrument designed to measure the scattering
properties of a target. Refer to Figure 2.1. The scatterometer transmits pulses of
electromagnetic radiation and receives the energy scattered off the target. The scattering
properties of the target are grouped into a single parameteknown as the differential
scattering cross section. This parameter is a combination of the transmitting gain back
towards the antenna and the fraction of intercepted power scattered instead of absorbed.
The returned power is related t& and the transmitted power according to the radar
equation (Ulaby et al., 1982):

_ PGENA

po= 2 e 2.1
(xRt 2.1)

where P, is the power transmitted;/ is the gain of the transmitting antenna,is the
wavelength of the electromagnetic wavkjs the effective illuminated area, arilis the
distance from the scatterometer to the target. All the parameters refdtitogthe power
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Figure 2.1: Demonstration of scatlerometer operation.

received can be grouped into one constarso that
P =Coc°.

Note that knowing both the gain of the scatterometer antenna and the distance
to the target are imperative to being able to infefrom the received power measurement.
To make a measurement ©f, the scatterometer transmits a pulse of radiation and makes
a power measurement, of received power. Due to the presence of background noise
it then makes a noise-only power measureméht,and determines the return power as
P, = P, — P,. The measurement, of the radar scattering cross section is then inferred
using the radar parameters,

Qv

2.2.2 ERS-1 and NSCAT instruments

This thesis involves data from ERS-1 and simulated data from NSCAT so a
brief description of these instruments is given. Both of these scatterometers are fan-beam
scatterometers with illumination patterns shown in Figure 2.2. Both instruments coregister
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Figure 2.2: Measurement geometry for ERS-1 and NSCAT satellites.

the o° measurements onto a rectangular grid of cells aligned with subsatellite along-track
and cross-track directions, called wind vector cells, within which wind can be estimated.
On the other hand, there are notable differences between the two instruments that affect
wind retrieval beyond the obvious geometry differences. One of these is the way in which
the two instruments construct a grid of wind vector cells.

The instrument on ERS-1 uses yaw-steering, programmed such that the effects
of the earth’s rotation is counteracted, to coregisterdtheneasurements onto 19 nodes
(Attema, 1991). Ten of these nodes correspond to center points of 50km by 50km cells
that span the swath. The other 9 nodes are placed between these ten to generate 19 nodes
separated by 25km. Three measurements are provided by ESA at each node, one for each
of the beams. Wind can be retrieved at each of the 19 cross-track nodes using the three
measurements resulting in 25km by 25km sampling of the wind field. While sampled at
25km by 25km the effective resolution is 50km by 50km (Davis, 1993).



The NSCAT instrument uses digital Doppler processing to colocaterthe
measurements onto 24 cross-track wind vector cells that span each 600km swath. Wind can
then be retrieved at true 25km by 25km resolution usingstheneasurements from each
cell (Naderi et al., 1991). In order to improve wind retrieval accuracy, the measurements
are further grouped into 50km by 50km cells over which the wind vectors are estimated.
This results in 12 cross-track wind vector cells on each side of the spacecratft.

There are other notable differences between the two instruments. ERS-1 operates
at 5.6 GHz (C-band) and uses a different Geophysical Model Function than NSCAT which
operates at 14 GHz (Ku-band). ERS-1 transmits only vertically polarized pulses from its
three beams, while NSCAT transmits both vertical and horizontal polarization from its
center beam. The result is that NSCAT nominally has four available measurements from
which to retrieve wind over the 25km by 25km cells instead of three. A final important
difference between the two instruments is level of transmit-power: ERS-1 transmits
approximately 5kW peak power compared to about 100W peak power for NSCAT. As a
result, the signal-to-noise ratio is higher for ERS-1 than for NSCAT.

2.3 Geophysical model function

With a general understanding of h@#® measurements are made, consider how
these measurements are used to estimate (retrieve) wind velocity over the ocean. There
is an indirect relationship between the wind blowing over the ocean surface and the radar
scattering cross section?, which the scatterometer measures. Wind creates waves on the
ocean surface. The waves determine how much the ocean reflects electromagnetic energy.
This correlation between wind velocity and allows estimation of wind frorna°.

The reliability of the wind estimate based ofi data is directly related to our
understanding of the relationship between wind velocity @dbeveral studies have been
made on the connection between wind and waves and between wind°afiabnelan
and W.J. Pierson, 1987; Jones et al., 1977). These studies show that the connection is a
complex one. As a result, developing a theoretically based model of the dependence of
o° on wind velocity derived from first principles is extremely unwieldy. Consequently,
empirical studies have been made to understand the relationship. Out of these studies have
come operational Geophysical Model Functions (GMF) which relate wind velocit§.to



The GMF may be generally expressed as
o =M(0,U.x, [ p)

whereU is the wind speedy is the azimuth angle between the wind direction and the radar
azimuth angled is the radar incidence anglé,is the frequency of the radar, apds the
polarization of the transmitted energy (horizontal or vertical). Usually the frequéncy,

fixed for a particular instrument. In addition, it is often desirable to express the dependence
on the wind directiong, and radar azimuth angle, separately. As a result we often write

o° = M(07U7¢ - ¢7p) = M(@,U, ¢7¢7p)'

The direction convention chosen for the azimuth angle and wind direction is arbitrary as
long as it is consistent since only the difference is important to the GMF. We will assume
the convention of measuring these angles in degrees clockwise from north.

Several functional forms have been proposed for the GMF. Acommon approach,
however, is to simply store the empirically-derived data points in a multi-dimensional table
and interpolate intermediate values (Naderi et al., 1991). This is the approach used in this
thesis.

According to the relationship predicted by the GM#,is a function of only
wind speed, relative wind direction, and radar incidence angle. However, other factors
such as sea temperature, local salinity, and long gravity waves also affect the relationship.
Thus there is some uncertainty, or modeling error, in the GMF (Long, 1989).

Given a GMF, wind estimation (or retrieval) becomes an inversion problem.
Measurements of° are taken at known values gf andf. Values oftU and¢ are then
selected as the wind estimate in order to be statistically consistent with these observations.

Examining the SASS-2 GMF

In this section the SASS-2 GMF (Wentz et al., 1984), derived for (Ku-band)
from Seasat data, will be examined in order to illustrate its dependence on wind speed and
direction. This will aid in understanding the problems associated with inverting the model
function to obtain wind estimates.

Figure 2.3 shows plots o¥1 versus relative azimuth angte, for several values
of wind speed and incidence angle. Notice the(2y) dependence on azimuth angle.



2l
1.5
1\/\/ i |
\/\/
0 0
0 90 1§0 270 360 0 90 1§0 270 360
0=46 8=56
‘ 0.2
0.4 0.15
0.3
® % 0.1
0.2
0.1\/\/ 0.03
\/\/
0 : 0 :
0 90 1§0 270 360 0 90 1§0 270 360

Figure 2.3: Plots of 0° versus relative azimuth angle, x for various incidence angles
and speeds. The speeds chosen for plotling are 5, 15, 25, 35, and 45 m/s where °® increases

with increasing wind speed. The GMF is the SASS-2, Ku-band model function to be used
with initial NSCAT data.



There is also a general trend of increas#igfor increasing wind speed. In addition?
decreases as incidence angle increases.

Considering the monotonic trend ef for increasing wind speed, it is not
surprising that wind speed estimation is fairly accurate using most estimation techniques.
The double-cosine dependence on wind direction, however, makes it difficult to estimate
wind direction froms° data. In particular, notice the similarity ef when measured with
a relative azimuth angle @ and180°, especially at low incidence angles and low wind
speeds. This upwind/downwind similarity makes it very difficult to uniquely resolve a
single wind direction from noisy° measurements. As will be seen later, usually a set of
at least two wind velocities, called aliases, must be returned over each region as possible
wind solutions.

Figure 2.3 also shows that more than one wind speed and direction can give
rise to the same value of° for fixed radar incidence and azimuth angles. Consider the
upper-left plot in the figure, and notice that for any valueyothere will be one speed
which gives rise tar® = 0.5. As a result, multiple measurements are needed to define a
finite set of possible wind vectors.

Another way to visualize the model function as it relates to wind retrieval and
see more clearly the need for multiple measurements is to plot the locus of wind velocities
that give rise to a single® for fixed radar incidence and azimuth angles. In Figure 2.4(a)
such a plot is shown for three sets of radar angles encountered with data from the ERS-1
scatterometer. Figure 2.4(b) shows the same type of plot for four sets of radar angles
representative of data from the NSCAT scatterometer. These plots were generated by
choosing a wind speed and direction and generatihngalues using the C-band GMF
(CMODFDP) for ERS-1 (Freilich and Dunbar, 1993) and SASS-2 for NSCAT. For each
radar incidence and azimuth angle, all the wind speeds and directions that would induce
thato°® were plotted as a single curve. The true wind speed and direction chosen was 10
m/s andi5°.

As shown in Figure 2.2, the beams on ERS-1 are spaced &lscapart with the
fore and aft beams at the same incidence angle and the middle beam at a lower incidence
angle. Figure 2.4(a) shows that according to the GMF all three of these measurements
are needed to uniquely determine a wind velocity. This figure also shows that there
iS a near intersection point approximatél0° from the true wind direction due to the
upwind/downwind similarity. In the presence of noise, it is almost always impossible to
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Figure 2.4: Plots of wind vectors that would support the measurements taken for a
particular wind vector cell for FRS-1 and NSCAT.
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distinguish this alias from the true wind velocity as the effect of noise is to move the curves
vertically.

The beams on NSCAT are similar to those on ERS-1 except for the center
beam which is offset from5° as shown in Figure 2.2. In addition, two polarizations are
measured on the middle beam so that nominally four measurements are made over each
25km region. The plot in Figure 2.4(b) shows that the second polarization on the middle
beam does not add significant extra information as to the true wind velocity. Notice that
the180° alias is also present for NSCAT measurements.

2.4 Statistical Models of Measured Backscatter
2.4.1 Motivation for studying statistical models

In general, wind estimation can be considered in the class of image recon-
struction problems. The® measurements are the observed “image” and the wind to be
retrieved is the true “image”. The°® measurements are corrupted by noise that is in
general multiplicative, that is to say the statistics of the noise are dependent on the actual
o° value. At each pixel, or cell, in a region the wind velocity is mapped to a set ehlues
through a so-called point non-linearity, corresponding to the actual scattering properties of
the wind-driven surface. Noise corrupts the tedevalues during measurement. The job of
wind retrieval is to restore the original wind “image” from the observed‘image”.

There are several properties of this image reconstruction problem that make it
particularly difficult to perform. The most impeding difficulty is the non-linear mapping
between wind velocity and°®. Because this mapping is not only non-linear but non-unique,
it is at best extremely difficult to resolve a single wind direction even with a high signal-to-
noise ratio. At worst, six wind directions could reasonably give rise to the observations. A
second difficulty is that the “image” to be restored has two values per pixel (wind speed
and direction) and the observed “image” has many values per pixel corresponding to the
different radar looks necessary to infer a finite set of wind velocities.

These difficulties could explain why the techniques of image restoration have
not been widely applied to the wind retrieval problem. Instead, traditional estimation
techniques have been most often used to retrieve wind from measyred. maximum-
likelihood estimation. In fact, the working algorithm that JPL (Jet Propulsion Laboratory)
will use for NSCAT retrieval is a maximum likelihood estimation procedure (Dunbar et al.,

12



:|.+Kpm v, 1+Kpc Vv,
| : : P
Geophysical ] O % 2\ P /L r /o g
W Model M X X X O z
(U9 Function J P P P ¥ :
? |
X 1+Kpr V3

Figure 2.5: Block diagram showing how wind vector affects final scatterometer mea-
surement z and where noise is added.

1988).

Since many wind estimation procedures, including those used in current wind
retrieval techniques rely on a statistical model of the measurements, the next section
presents a statistical model of. In the following > represents a° measurementy;
represents the true value ©f that would have been measured in a noise free environment,
and( represents the parameters in the radar equation as shown in Section 2.2.

2.4.2 Model explanation

Many kinds of estimation procedures are dependent on a model for the proba-
bility density of the observations conditioned on the object to be estimated. In this case
we are concerned with the probability density function (PDF) of the measured value of
normalized radar cross sectierconditioned on the wind velocitw. The components of
wind velocity can be in either polaf/( ¢) or rectangular«, v) form'. This PDF is denoted
p-(z|w). Whilew can be treated as either deterministic or random, it is traditionally treated
as deterministic.

For completeness, this section presents a general modeldf theasurements

!itis convention to measurg clockwise from north so that = U sin(¢) andv = U cos(¢).
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introduced by Long (1989) and shown in Figure 2.5. This model accounts for most sources
of variability in o° given a fixed wind velocity. In practice a more simplistic statistical
model is employed, so the assumptions leading to this PDF for the measurements are also
outlined.

Assuming fixed incidence angle, azimuth angle, and polarization, the wind
vector gives rise to a predicted normalized radar cross section of the ocean surface given
by the GMF:

oy = M0, W, ¥, p). (2.2)

Although wind is a dominant factor, it is not the only factor affectirig As a result, even
with a fixed wind vector, there will still be some variability in the true value-6f This
uncertainty can be modeled by defining a new random variable,

0-1? = Ufn(l + [(pmvl)v (23)

wherev, is a zero-mean, unit-variance Gaussian random variable. Notdithais in

general a function of the wind vector. The trae of the surfaces?, is scaled by the

true radar equation parametét, to get a true power returtt).. The measurement of the
returned power made by the scatterometer is corrupted by instrument noise and background
noise. This source of uncertainty can be modeled by representing the scatterometer estimate
of the returned power as a random variable

P, = P14+ K,ovy) = Cod(1 4 K,ov,). (2.4)

Note again thaty,. is in general a function af, andv, is another zero-mean, unit-variance
Gaussian random variable. The measured value of returned power is then divided by an
estimate of the radar parametefs,in order to obtain a measurementgf Uncertainty in

the radar parameter estimate can be modeled by tre@tiag a random variable through

the introduction of another zero-mean, unit-variance Gaussian random variable:

N

C = C(1 + K,vs). (2.5)

Combining these expressions, the resultiigneasurement can be written as

A

.= P, _ M(07W7¢7p)(1 + {(pmvl)(l + [(pCUQ) (26)
1+ [XpTvg

~

r
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This is a formidable model, especially when it is recognized that can be
a function ofw, and K,. can be a function of's;. Compounding the problem is that
the only piece of this model that is well understoodiis.. There has been much effort
placed in understanding the noise model for the power measurements. It is typically given
as (Naderi et al., 1991)

2 51 7
[&pc—oz—l—PT/Pn +P2/P27 (2.7)

where P, is the measured background noise power= C'o7y is the true return power
from the ocean surface, amd 3, and~; are values that depend on the instrument design
and are reported with the satellite data. (For ERS-1, the signal to noise ratio is large enough
that it is assumed that ~ v; ~ 0.)

Since this is the only well understood source of noise, frequently it is assumed
that it is the only source of noise. In other words it is assumedihat= 0 and /£, = 0.
With these assumptions, the measurement model becomes (note that the dependencies of
the GMF on radar incidence and azimuth angles, wind velocity, and radar polarization have
been suppressed).

z = M1+ K,v), (2.8)
P, P?
K, = ¢a+ %M 1 g;M”Q,
3 gl

With this model, it is apparent thatis a Gaussian random variable with mean
M and variance, = aM?* + M + v (8 = v = 0 for ERS-1). While the assumptions
used to obtain this model may be strained, they do allow us to use a comfortable density
function forp. (z|w).

pletw) = g enp |- EEAERE], (2.10)
\/2m¢? 262
;= aM*(0,w,,p)+ M0, W, ¢, p)+ 7. (2.11)

This is the probability distribution on the measuremerttsgat is commonly used to estimate
wind from scatterometer measurements af
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2.5 Point-wise Wind Retrieval
25.1 Method

As described above, at least two measurements at different azimuth angles are
required to obtain a finite set of wind estimates. We denote each measuremeaniqd
the measurement vectat,= [z,... ,zx]. Associated with each measurement is a set
of radar information. In particular, values are given for the radar azimuth and incidence
angles {, 0), the K,.-equation constantsy(/,~), and (for NSCAT measurements) the
electromagnetic polarization of the antenpa<horizontal/vertical). These values are also
subscripted by the index, given toz;. Since the commonly used model accounts only
for communication noise, it is reasonable to assume that the elements®ftatistically
independent. In addition, we simplify notation by writing (6, U, ¢, tx, pr) as.M,, with
the dependence on the wind implied, and the dependence on the radar values expressed by
the subscriptk. As a result, the joint distribution af can be written as

K 1 _(Zk o Mk)2
puteiw) = 1 — ﬂ_p[ = ] | (2.12)
= M+ BMy + e (2.13)

With this statistical model of the measurements given the wind, the wind is

estimated given observations,, by selecting the wind vectok = (U, ¢) that gives the
maximum value of the density function. This is simply maximum likelihood estimation:

W = arg mngsz(z0|W) (2.14)

An equivalent but more computationally tractable problem is to maximize the log-likelihood
function overw:

W = argmax L(w,z), (2.15)
L(szo) = 10gpz(Z0|W)
K P _M2 1 1
_ _Z{[%i?dwlog[g;]ﬁlog(zw)}. (2.16)
k=1 gzk

The empirical dependence 8, onw requires that the optimization éf(w, z,) be done
numerically.

This function typically has several local maxima due to the symmetry inherent
in the GMF. Figure 2.6(a) shows a representative normalized likelihood function from an
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Figure 2.6: Ezample likelihood functions used in wind retrieval for both ERS-1 and
NSCAT.

actual ERS-1 wind vector cell. Notice the presence of two dominant peaks which indicate
possible wind solutions. Figure 2.6(b) shows the log-likelihood function for the same wind
vector cell. This plot makes evident that the likelihood function has more than two local
maxima, even though the other maxima are not as significant as the first two. Similar plots
for simulated NSCAT measurements are shown in Figures 2.6(c) and 2.6(d). Notice that
the smaller signal-to-noise ratio for NSCAT measurements widens the peaks.
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In typical wind retrieval all of these local maxima are saved for each wind vector
cell as possible wind solutions. Each of these possible solutions is called an ambiguity,
or alias. As is evident from the figures, the set of wind solutions have similar speeds but
widely varying directions, and some are more likely solutions than others.

A second step called dealiasing, or ambiguity removal, must be performed
to choose a single wind field. This step takes into account that wind from cell to cell
is correlated. One particular method that is used is an iterative median-filter algorithm
described in detail by Shaffer (Shaffer et al., 1991). Briefly, all cells are initialized to
the wind estimates giving the highest likelihood values. On each pass, the wind vector in
the center of a moving window is replaced by the ambiguity closest to the median of the
window. This is repeated until no changes occur.

2.5.2 Problems with point-wise retrieval

Although point-wise retrieval is a useful method for wind field estimation over
the ocean, it does have short-comings. One of the problems is the unjustified technique
of keeping all local maxima of the likelihood function. It seems reasonable to keep local
maxima that are comparable in magnitude to the global maximum, but to keep maxima
that are much smaller than the global maximum seems to ignore the basic philosophy of
maximum likelihood estimation: choose the wind vector that maximizes the probability of
observing the measurements. Passing wind estimates on to the dealiasing step that give
rise to significantly lower maxima ignores the fact that such a wind vector would only with
very low probability have given rise to the observed measurements. This complicates the
dealiasing step and decreases the reliability of the retrieved wind.

Another short-coming of point-wise retrieval is the lack of any derived error-
bars for the wind estimates. Part of this problem is due to the lack of understanding about
how to model uncertainty in the GMF which relates winato Since the wind estimate
depends directly on the® measurements, knowledge about the distribution of the wind
estimate depends on a reliable model of #fiemeasurement distribution. Even though
little is understood about all noise sources in #fieneasurements, approximations can be
made in order to give more specific information as to the accuracy of wind estimates.

A final shortcoming of point-wise wind retrieval is the dealiasing step, which is
largelyad hocand difficult to analyze. In addition, it can be error prone over large regions
due to selection of the wrong alias. In order to remove this complicated dealiasing step,
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model-based wind retrieval was developed. This technique will be described in the next
section.

2.6 Model-based wind retrieval

2.6.1 Method

To overcome some of the problems with the dealiasing step of point-wise wind
retrieval, model-based wind retrieval was introduced by Long and Mendel (1990a). In
model-based estimation, the wind vectors over a large region are estimated at the same
time. These wind vectors are combined into a single wind field:

W1

, (2.17)

WMN

wherel is the lexicographical index into alf x N matrix. This wind-field matrix is made
up of M cross-track rows withV along-track wind vectors. The wind vector in thé
lexicographical cell of this matrix is denotest; = (U, ¢;) = (u, vp).

The ¢° measurements over the region from which the estimate is to be made
are grouped into a large measurement vector:

VA

Z = Z . (218)

ZMN

In this block vector,z,; is a variable length vector representing the measurements taken
over thelth lexicographical cell in the region. It is sometimes convenient to represent the
individual elements of each measurement vector and so we establish notatio#thThe
measurement in thiéh vector ofZ will be denoted’;, ;. Associated with each measurement,
Zx,, i1s a set of radar information. Values are given for the radar azimuth and incidence
angles ¢, 9), the K,. equation constantsx(3,~), and (for NSCAT measurements) the
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electromagnetic polarization of the antenpa={ horizontal/vertical). These values will
also be subscripted by the indéx,/, given toZ;, ;.

The joint probability density function of the large measurement vector is
constructed from the marginal distributions of the measurements over each cell by
assuming independence. As a result,

MN K(1) 1 _(Zkl _Mkl)2
pZ(Z|W) = ——exXp : ! ,
l:l_[l kl;Il Vv 27‘-ng,1 Qg%k,l
$Zpy = O‘k,le,l + BraMii + Ve, (2.19)

whereK (1) represents the number of measurements.im addition, to simplify notation
we have writtenM (0. ;, Uy, 1, k.1, pra) aS M.

The key element of model-based estimation is the introduction of a wind
model to introduce correlation in the wind field. This model can be written generally as
W = g(X), whereg is a mapping from a dimensionally smaller space of model parameters,
X, to the2 M N dimension space of sampled wind fields.

Instead of directly estimating the wind using Eq. (2.19), the model parameters
are first estimated using maximum likelihood

X = arg max {log pz [Z|g(X)]} . (2.20)
Then the wind estimate is determined ¥ = g(X). Note that the same problem of
multiple solutions exists due to the symmetry of the GMF. This time, however, many fewer
wind fields need to be pieced together to cover a satellite track so the task of dealiasing
becomes much simpler.

2.6.2 Status of model-based retrieval

The model in current use is a linear model derived from first principles but
which assumes a low-order polynomial curl and divergence field along with a low-order
polynomial for the required boundary conditions (Long and Mendel, 1990a). Without
going into all the details, the model can be represented by the linear equation.

W = X (2.21)

The matrixF is 2M N x M, whereM x N is the wind field region size andl, is the
number of parameters in the model. The number of parameters can be varied according to
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the model order desired. In this model, the elemenWaddre defined to be the rectangular,
(u,v) components of the wind vectors in the region. In addition all ofitlomponents
are lexicographically ordered into the wind-field vector prior to row-scanning all ot the
components. SpecificallWV is defined as

Uy
u;

w= | MY (2.22)

0

vy

UMN

wherel is the lexicographical index into the x NV region.

The current limitation of model-based retrieval is the lack of a suitable algorithm
for finding all of the important local maxima expected from the log-likelihood function.
Part of this problem is due to the large number of model parameters to be estimated. The
other part of this problem is the existence of unimportant local maxima inhibiting the
search. Another missing element in model-based retrieval is the same as for point-wise
retrieval: a field-by-field estimate of the error in retrieved winds.
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Chapter 3

ERROR ESTIMATION IN WIND RETRIEVAL

3.1 Statistical Model Revisited

The most important factor in determining a reliable error estimate for retrieved
winds is a realistic model of the noise in the measurements. In Section 2.4.2 a commonly
used distribution was presented. As discussed in that section this statistical model makes
two assumptions that while simplifying the estimation procedure leave doubts about its
accuracy in determining error estimates for wind retrieval. The first simplifying assumption
often made is that the GMF is completely accurate in relating wind velocitie8.tdhe
second assumption is that the radar paramétgis known exactly. Both of these are only
approximations that need improvement in order to report reliable covariance estimates of
retrieved wind. The purpose of this first section is to ameliorate the problem by tighting the
first assumption. In particular, this section examines the effect on the probability density
function of the measurements if random error in the GMF is allowed.

In order to perform this investigation, the general model for the measurements
introduced by Long (1989) and given by Eq. (2.6) is used. As uncertainty in the radar
parameter(’, is not considered herey,,. is still assumed to be zero. As part of the
investigation on the effect of keeping a non-zero valugfgy,, a more detailed discussion
of uncertainty in the GMF is presented.

3.1.1 Uncertainty in the GMF

The Geophysical Model Function can be most generally thought of as an
empirically derived table indexed by four independent variables: incidence angle, relative
azimuth angle between the wind direction and the radar antenna, wind speed, and
polarization. There is a fifth independent variable, frequency. Since current scatterometers
operate at a single frequency a separate table is constructed for each desired operating
frequency (14 GHz for NSCAT and 5.6 GHz for ERS-1). The complexity involved in
deriving the GMF makes assessment of GMF uncertainty difficult.

As a result, we will assume a simple model for GMF uncertainty and determine
the effect on the overali® measurement model. Regardless of the experiments used to

22



derive the GMF, it will always maintain a certain degree of inaccuracy since wind velocity
is not the only geophysical parameter affectifgof the ocean surface. Other factors
can feasibly modifyy° of the ocean surface: long-waves, distance from land, sea-surface
temperature, and salinity are a few parameters that can also infla&ntiee current GMF
ignores all of these factors and assumes that wind velocity is the only sourtelofnges.

To account for the inaccuracy of this presumption one method is to treat the
true o° of the ocean surface as a random variabfe,with mean given by the GMF and
variance given by a table similar to the GMF. In principle this table could be constructed
empirically using the data collected to form the GMF. It could be constructed using the
additional variability ofo° measurements for the same wind velocity not accounted for
by instrument noise and background radiation. In general, this would be a function of the
same parameters as the GMF. To obtain a general idea of how uncertaititframslates
to uncertainty in wind estimates, we deal only with the variance’adnd assume; is a
Gaussian random variable.

Since multiple measurements must be used to estimate wind velocity, it is
more realistic to consider; as a random process with dependence on radar measurement
angles and polarization. This allows consideration of the correlation betwfeieom the
different sets of radar angles and polarization that are used to retrieve wind. However, no
prior correlation information ol is available, and it is not the purpose of this thesis to
construct such information; therefore, we assume thaitltandom process is completely
uncorrelated. Given the prior Gaussian assumption, we effectively assume that different
realizations oby are independent for the purposes of estimating the wind. As a result, we
only need to considet; as a random variable.

To clarify the description given in the preceding paragraphs,Mgt, > —

é, U, p) represent the GMF for a given frequency, incidence angle, relative azimuth angle,
wind speed, and polarization. Associated with the GMF is a hypothetical variance of the
GMF denoted) (4, — ¢, U, p) which accounts for the model function uncertainty. Then,
for a particular set of, v, U, andp, o7 is modeled as a Gaussian random variable with
meanM and variance’.

It is customary in scatterometry to define the normalized standard deviation,
K, of arandom variable. To distinguish it from other noise sourcesithef o7 is called
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Figure 3.1: Model for 0° measurements used in this thesis.

K,,, and defined as

Ky = (3.1)

SE

Theno; can be written as
o = M1+ Kpnvr), (3.2)

wherev, is a zero-mean unit variance Gaussian random variable. Not&'thas generally

a function off. ¢» — ¢, U, andp, as well as frequency. Using this notation, the probability
density function oby (the true normalized radar cross section of the ocean surface) can be
written for a fixed wind velocityw, as

pos (05 W) =~ exp | T M (3.3)
Y 2T MEK2 2MEKS,

3.1.2 Effect of GMF uncertainty on overall measurement model

With a model for uncertainty in the GMF, the effect on the overall measurement
model can be explored. Consider Figure 3.1 which is a simplified block-diagram similar to
Figure 2.5 but showing only communication noise and GMF uncertainty. From this figure
we see that

z= M4 Kpmv1)(1 + Kpeve) = 07 (1 + Kpevq), (3.4)
wherekK,. is given by Eq. (2.9) with\ replaced by;:

Kz oty

o o}

. (3.5)
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Now z is the product of two normal random variables which are not completely
independent sinc&’,. depends owy. As a result, the density function ofis difficult
to derive directly. However, using conditional probability we can formulate an integral
expression for the density function of

p-eIw) = [ pese (z,0%Iw) dot
Tt
= [ pa (2107) pog (FIw)
T

(z=0¢)

2 (e0=M)?
P T e gor ) | P | TR, |

p-(zlw) = do (3.6)
'/Ut \/27r (acf? + Bog + ) \/QFsz(gm '

It is evident that this density function is not Gaussian. To see its shape,
representative plots are shown in Figure 3.2 for particular valugg oi,,.,, «, /3, and~.
For all butk,,,, these values were chosen to correspond to actual ERS-1 data and expected
NSCAT data. The value fak,,,, was chosen based on research done by P. Johnson (1996)
in estimatingk’,,,, for C-band (ERS-1). For comparison, a plot of a true Gaussian density
with the same mean and variance is shown as well. Although not exactly Gaussian, the
distribution is near-Gaussian. Whens small, as for ERS-1 data, the distribution is almost
exactly Gaussian. Whenm is larger, as for NSCAT data, the distribution is skewed to the
left.

While there is not a simple closed form expression for Eq. (3.6), we can obtain
a useful closed expression fpfz|w) if we make one very reasonable assumption. Note
that K. is only dependent oay when s and~ are non-zero. In additionj and~ are
usually very close to zero and much smaller thai fact, simply setting them to zero has
no visually perceivable effect on the density shown in Figure 3.2(b). As a résultan
be made independent of with little effect on the model by using the meandgfinstead
of &7 in the equation fory,,,:

. s

Now, K. is no longer a function of; so thatz is the product of twondependenhormal
random variables.

While this assumption still does not make the density function easy to express,
it does allow straight-forward computation of the central moments. This ultimately allows
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p(z|w)

Probability of z given w Probability of z given w

30, T T T T T 6 T T T T
Gaussian Gaussian
25¢ 1 5F i
20 a =0.0025 1 at a = 0.0506 1
B=0 - B =5e-05
2
15- y=0 ] N 3F y=4.1e-08 1
st
Kom = 0.22 Kom = 0.22
10r M =0.06 1 2 M=0.25 i
5- ] 1 ]
O 1 1 1 L L O L L
0 0.02 0.04 006 008 01 012 0.14 0 01 02 03 04 05 06 07 038
z z
(a) ERS-1 parameters (b) NSCAT parameters
Figure 3.2: Probability of = given w compared with a true Gaussian of the same mean

and variance. The two curves in (a) are nearly identical.
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an expression fos. (z|w) to be written using an expansion in Hermite polynomials whose
coefficients are determined by these central moments. This is a useful expansion technique
for approximating near-Gaussian distributions and is outlined in Appendix A.

The result is

plzlw) = NEETE [1+§;0ka (3;7’:)] (3.8)

= (D)™ (ph-2n = 13,
o= Y — ( _— ). (3.9)
oo nl(k — 2n) g T2k 20

In these equationgy,, is themth central moment op.(z|w), ¢ is the mean op. (z|w),
andp? is themth moment of a zero-mean Gaussian with variangelt is well known
thatuY = 0 for m odd andu = (m — 1)!'uy" for m even. We now derive an expression
for ., assumingk,. is independent ofy, but first we need..

po= Elz]l = EIM(1+4 Kynv)(1 + Kpevs)],
= MUE[l 4 Kppvy 4+ Kpevy + Ky Kpev1v9]
= M1+ Ky Elvi] + Ky Elvg] + Ky Kpe E[v1] E[v3])
= M. (3.10)
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Now the central moments can be computed using iterated conditional expecta-
tions and the binomial expansion:

MUm =

E{E((z — oy + o7 + M)"|o}]}

(
p{e[3 (V) e - aiiat] o - sy},

NE

(k — VUKL E [0 (o7 — M) |

>
of
[oR=]
5

>
of
[oR=]
5

NE

NE
e s e

bt 5 ()t st ],

(=0

>
of
o
5

NE
M»

|
)(k — DIKEE (07 = M+ M) (o7 = M)" 7],
)
(

(k)Mz(k ~ DUKEE [(07 — M)™ ],

—

k=0 [=0 k)

k even

s k m k I "k 1" pom—1 m—I

>3 )Mk = DR = 1= g A

k=0 =0

k evenm-l even
m k

MPS S (Z‘) ’;)(k—1)!!(m—z—1)!!1(§cf%—l. (3.11)
kk:v%nm-ll:e?/en

In these equations,

(3.12)

" I x3x---xn n>1(nodd
nll =
1 n=—l1.

This compact expression for the central moments can be rewritten foncd evenn:

Hm odd

Hm even

3

M |

2k
2k — 1)!(m — 20 = 2)NKZFK 21
(%) ()2t = Dton — 202 |

il 2k ok s
Z( )( ) (2k — 1)!(m — 20 = DIKZFK ]2 (3.13)

i Mwls i M ‘

While it is useful to have a complete expression for the probability distribution

p-(z|w) given by Eqg. (3.8), usually only the first few moments are needed to approximate

the true distribution accurately. As a result, the first four central moments are explicitly
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m | fim

MA(K2 + K2, + KLK?2,)

6MPK2K?,

SMY (KL + KL, +3KLK], +6KLK2, +6K2K!, +2K2K?2,)
60M K2 K2, (K2 + K2, + 3K2K?2,)

Tt = WD

Table 3.1: Central moments, jt,,, form =2...5 for the expanded probability model of
the measurements z given the wind w.

Probability of z given w

6 T T T T T T T
— Actual
k=3
5- J
4+ a =0.0506 4
B =5e-05
—~ 3 =4.1e-08 .
2 3 y e
N Kpm:O.ZZ
<2 M=0.25 ]
1 J
0 J
_1 1 1 1 1 1 1 1
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

Figure 3.3: Comparison of actual density function to a Gaussian with a first order
correction factor.

listed in Table 3.1. Figure 3.3 shows how well the probability density function in Eq. (3.8)
fits the actual density function when using only a third-moment correction factor.

Given the preceding analysis, which describes in detail the density function of
the measurements a question that begs response arises: “How should we apply this
distribution to wind estimation?” It seems overzealous to use the exact density function
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given by Egs. (3.6) or (3.8). Not only are these equations unwieldy but they are obtained by
simplistically assuming Gaussian statistics#9r As a result, it is reasonable to use only
the the first two moments of the resulting distribution and assume that the measurements
are Gaussian-distributed with mear and variancg:, = M*(K’. + K2 + K. K} ).

For ERS-1 data, wherg,. (= /«) is small, the exact distribution is so close
to Gaussian that it is reasonable to assume it is Gaussian. For NSCAT data/iyhése
not as small, the distribution has a high enough third moment to distinguish itself visually
from a true Gaussian. In the next section we investigate the effect of this difference on
wind estimation.

3.1.3 Effect on Wind Estimation

The effect on wind estimation for NSCAT data of using a Gaussian model for
the measurements when they are not truly Gaussian can be explored through simulations.
The wind is retrieved using two different probability models to observe if the different
retrieval methods have any effect on the speed and direction distribution of the estimates.

The first probability model used in retrieving wind is a strictly Gaussian model
with varianceu, = M*(K}. + K}, + K2.K? ). The second is a near-Gaussian model
with a third moment correction using (3.8):

1 _e=m)? MPK2K? z—M
plz|w) ~ e 22 |1+ =P H. ( ) (3.14)
( | ) /271_”2 2\/§,U:2))/2 3 2,&2

where H3(z) = 8z® — 12z. In both of these models, the multiple measurements used to
retrieve the wind are assumed independent.

For the simulations in this sections, we chose a true wind vector and then
constructed the measurements according to the multiplicative noise model given in (3.4).
A presumably large value of,,,, (= 0.20) was chosen and values ff,. were computed
based on noise information supplied with the simulated NSCAT data.

Three cell locations in an NSCAT swath were chosen: one near the subsatellite
track, one mid-way in the swath, and one far from the subsatellite track. In each cell,
eighteen simulations were performed with 2000 retrievals per simulation. The eighteen
different true wind vectors chosen for the simulations comprised the product space of three
speeds (5,15,25 m/s) and six directiodfs ¢0°, 120°, 180°,240°, 300°). With the data from
each simulation, two sample distributions were constructed, one for wind retrieved using
the Gaussian probability model and one for wind retrieved using the corrected model.
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Figure 3.4: Distributions for wind retrieved using a Gaussian model and a third-
moment correction model

In every case tested, the two distributions matched exceptionally well. In fact,
Figures 3.4(a) and 3.4(b) present the worst cases encountered for the speed and direction
distributions respectively. These figures were chosen based on visual inspection of all of
the calculated distributions.

Under worst-case scenarios, which these figures represent, the effect of assuming
a Gaussian model to retrieve the wind is to introduce a small bias into the retrieval. When
compared to the overall variance of the simulated distributions, this bias is quite small. As
a result, we conclude this investigation by stating that there is almost no important effect
on wind retrieval of using a Gaussian model instead of the true model derived by assuming
independent, Gaussian noise in the GMF.

3.1.4 Final measurement model

Since the effect of the non-Gaussian PDF on wind estimation is small, and it
is much easier to deal with Gaussian statistics, the measurement model used in the rest of
this paper is Gaussian. In addition, we assume that the multiple measurements needed for
wind estimation are independénfs a result, the joint density of the measurements used

1 This assumption is probably not a good one for uncertainty due to geophysical modeling error. Further
research needs to be done in this area to determine the effect on wind retrieval of correlation of GMF
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for wind retrieval is

K 1 _(Zk_2Mk)2
pa(zlw) = —c 5 (3.15)
<= M2 (1 L+ KL+ KLK), (3.16)
= aMi+ (M +3) (1+K2), (3.17)
For model-based retrieval we write the density functiopgfZ| W) = pz(Z|X):

MN K( | (Zk,l—Mk,l)2

pz(Z]X) = T] H —_— (3.19)
=1 k=1 27‘-ng1

§%k7l = ek,leJ (BeaMeg + Vi) (1 + sz) , (3.20)
erg = g+ K2+ an K2 (3.21)

As only rough estimates ok> are available, it is treated as a constant in this thesis.
Notice that we assum®& = F'X = W in the above noise model for wind field retrieval.

As a result, the estimation model does not account for possible wind field modeling error.
The effect of this omission on the results presented in this thesis is an area that should be
addressed in future research.

The form of the probability density functions for both point-wise and model-
based retrieval are essentially identical. As a result, statistical techniques applied to
point-wise retrieval can be almost directly applied to model-based retrieval. The only
modifications are due to the difference in what is being estimated: in point-wise retrieval a
single wind vector is retrieved, while in model-based retrieval, the model parameters for a
wind field are estimated from which the wind-field estimate is derived.

3.2 Application of new model

In the previous section an enhanced modefbdmeasurements was presented
by incorporating uncertainty in the GMF which relate’sto wind velocity. Including this
uncertainty gives more confidence in the measurement model from which error estimates
on retrieved wind can be inferred.

The following two sections use the model developed in the previous section
to discuss two different approaches for determining a measure of uncertainty in both

modeling error among the measurements used to retrieve wind
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point-wise and model-based retrieved winds. Both approaches attempt to approximate
the covariance matrix of the wind estimate. The first approach is to assume that the
wind estimator is efficient and use the Cramer-Rao bound as the covariance of the wind
estimator. The second approach is to expand the implicit function that relates the
measurements and the wind estimate in a Taylor series and to use this series to approximate
the covariance of the wind estimate. In both cases, we assume that the estimate is unbiased--
-taking advantage of this asymptotic property of maximum likelihood estimators. Although
unbiasedness is not guaranteed for a finite number of measurements, simulations suggest
that the maximum likelihood estimate is sufficiently unbiased for our purposes (Leotta and
Long, 1989; however, see Appendix B).

With the mean and covariance of the wind estimate determined, a confidence
interval can be developed using a Gaussian assumption with concentration ellipses. Two
difficulties must be dealt with, however, in order to make sense of the results that follow.

Both methods of approximation give the mean and covariance of the wind
estimate as a function of the true wind. Since the true wind is unknown during wind
retrieval, one wonders if such a result is useful in reporting uncertainty in actual wind
estimates. The best solution would be to obtain a set estimate of the wind in which we
estimate a region for which we ar€/% sure that the true wind lies. This is a difficult
problem. Alternatively, we could take a conservative approach in determining a confidence
region for the wind estimate by varying the true wind around the calculated wind estimate
and using the largest calculated covariance as the covariance for the concentration ellipse.
In this thesis, however, a simpler approach is used. The covariance matrix of the wind
estimate is calculated assuming the estimate is the true wind. This technique allows simple
reporting of wind retrieval uncertainty for a particular wind estimate.

The other important difficulty with making covariance estimates of retrieved
winds is the inherent multiple-solution problem of wind estimation. In general, after
maximizing the likelihood function there is not a single wind estimate of the true wind.
This makes it difficult to talk about the statisticstbkwind estimate until after dealiasing
has been accomplished. Trying to account for this dealiasing step in a complete statistical
development othewind estimate is formidable.

However, useful results are possible if we ignore the dealiasing step and focus
attention on the wind aliases themsekie®ne of the aliases has an expected value over

2 A formal definition of wind aliases is deferred to Section 3.4.1.
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the measurements which is the true wind. As a result, we determine the covariance of all
of the aliases. Then, when one wind vector is chosen in the dealiasing step, a covariance
will be associated with it. This covariance can be reported along with the retrieved wind as
an estimate of wind retrieval error. While this does not convey the complete error picture
since dealiasing error is ignored, it does provide a quantitative measure of how sensitive
each alias is to the noisy measurements.

Most of the time treating each wind alias as random vector dependent on the
measurements makes simple mathematical sense as the wind aliases usually correspond to
well-separated maxima of the likelihood function. If the peaks are not well separated due
to high noise levels (which can occur in point-wise wind retrieval at low wind speeds)
it is usually because the measurements are not providing enough information to make a
prediction of the wind direction.

With the understanding that we are investigating the statistics of each wind alias
separately, we proceed to develop methods of approximating the covariance of these wind
estimates.
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3.3 Cramer-Rao Bound for Wind Scatterometry

In the previous section a model of measurements was constructed that
attempts to incorporate uncertainty in the GMF which maps wind velocity t8Vith this
uncertainty included we can with more confidence proceed to approximate the uncertainty
in the wind estimate made from thé measurements. The first technique used is to apply
the Cramer-Rao (C-R) bound as an approximation to the covariance matrix. Since the
maximum likelihood estimator used in wind retrieval is asymptotically efficient, we expect
that for a sufficiently large number of measurements the C-R bound will be equal to the
covariance matrix of the wind estimates.

We first describe the C-R bound and give its general form. A derivation of the
C-R bound for point-wise retrieval is then presented and used to obtain the model-based C-R
bound. Finally selected results of the bound applied to both point-wise and model-based
retrieval are presented for ERS-1 and NSCAT measurement geometries. Some of these
results were presented previously by Oliphant and Long (1996a).

3.3.1 Description of Cramer-Rao Bound

The Cramer-Rao bound gives the lower bound on the error covariance matrix
of any unbiased estimator. It depends on the probability model of the measurements and
answers the question: “Given the uncertainty in the measurements, what is the least amount
of uncertainty in any unbiased estimate made from the measurements?” This lower bound
is the inverse of the Fisher information matrik,defined for the wind estimation problem
as

i { [aLévv&;,z)]T aLg;VV,z) } | (3.22)

wherew can represent either the point-wise or model-based wind vector and expectation is
taken over the measuremertsHerel is the log-likelihood function for either point-wise
or model-based retrieval, and the derivative with respect to the wind vector is a row
operator.

To describe the Cramer-Rao bound in more detaidte an estimate of true
wind w with

E[W] = w, (3.23)
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then

C=E(W-w)(Ww—-w)I]>J" (3.24)

3.3.2 Derivation for point-wise retrieval

For point-wise retrievalv is a 2-element vector and is a2 x 2 matrix. The
diagonal elements of the inverse.bgive the lower bound on the variance of the individual
estimators of the elements of assuming the estimator is unbiasedhis inverse can be
expressed simply in terms of the elements) aésulting in an explicit expression for the
lower bound on the covariance matrix of the point-wise estimate.

C>Jt= ! [

(3.25)

J22 _J21
J11J22_J12J21 7

_J12 Jll

whereJ;; = J;. We now derive an expression fdy;.
For clarity, the:; element of the Fisher information matrix for point-wise
retrieval is given as

(3.26)

b [8L(W,z) 6L(W,z)] |

ow; Ow;
where the expectation operator is performed over the measuremedtde that we can
identify eitherw; = U andw; = ¢ or w; = uw andw, = v.
Recalling the equation for the likelihood functipg(z|w) given by Eg. (3.15)
we write the log-likelihood function as
L(w,z)=— i [M + llog (27r§2 )] : (3.27)
2¢2 2 *

k=1

For reference, the partials of the log-likelihood function can be explicitly written
for use in the Fisher information matrix:

aL(W, Z) _ K 6Mk ZE — Mk —|— [(Zk - Mk)z . 1 ] 8§fk7 (328)
Owq = Ow gzzk ngk Zgzzk Owq

aL(W, Z) . K 8Mk 2 — Mk (Zk — Mk)z 1 a§22k
Ows B kZ::l Ows S + l 262 a 262 | 0wy’ (3.29)

3Simulations and use of a maximum likelihood estimaterafuggest tha is generally unbiased, (Later
results suggest that at certain wind directions the estimate is somewhat biased. See Appendix B.)
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where, using Eg. (3.17) and assumifig,, is constant,

ZL;} = 2o+ K, + osz;m)Mkaa/\;f + Ol + Kim)aa/\:f,
= PaMi+m0+ K2 S (3.30)
%% :2@%+&;+auﬁmAu%Zf+MO+KﬁfZﬁ,
= [26eMy+ Bi(1 + K2,)] aa/\:;‘ (3.31)
The:; element of the Fisher matrix can be expanded as
Jij = E {é 88/\;? H ;szk + [(Zk ;g;\jk)z B ngk] ij}
AnmeEt T ) e
R e i b
AT [ ) 53

This expression can be simplified by using the fact that the measuremgrase assumed
independent. As a result,

Elg(ze)h(z1)] = Elg(zi)] E[h(21)] k71, (3.34)

for functionsg andh. Using this it is clear that

El(z — Mi)(zi = M) = & 6u,
El(zr = Mi)] = 0,
Bl(z = Mi)(z = Mp)*] = 0,
El(zr — M) (21 — My)?] = 2 o2 + 22 b,
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Making these substitutions allows simplification of the result:

J. = KK 6Mk §22k5kl 8/\/1;
S 95 98 ek
k=11=1 g ngng J
2 2 2 4 2 2 2
S R o ) A v 1 8§Zl}
b
dw; 4t ¢t ded 2 AqZ et 4G 2| Jw;

K E TOMy 6y OM, 8g22k Orl agzzl
N ZZ l ow; g_fl Ow; ow; Zgjl awj] ’

k=11=1
_ i [8/\/@ 1 6Mk n 6§fk 1 a%i]

k=1

Ow; 2 dw; — Ow; 263 Ow;

2k

(3.35)

This expression can be further simplified by substituting from Egs. (3.30) and
(3.32)

K 1
B kZ::l LkMi + (BeMp + ) (1 + K2,

(2ex My + Be(L+ K7 ))? oMy, OM,,
(erME+ (B M+ 7)(1 +I(§m))2] Ow; dw;

+5 (3.36)

It is interesting to note that whe#, = v, = 0 (the ERS-1 noise model) this expression
simplifies even further to

K
l 1 2 ]aMkaMk (3.37)

Jij = :
I kZ::l Eleg + Mz 8wi aw]‘

It is also useful to express the Fisher information matrix using matrix notation.
To this end, note that thg element of/ has the general form

K

Jij = Z akbk7ibk7]‘. (338)
k=1
Thus,.J can be written as
J = GTAG, (3.39)

whereA is aK x K diagonal matrix with elements

1 (2aMi+ Br(1+ K} ))?

= ~ —I— . 7
aMi+ (BeMe+ )L+ K7,) - 2(aME + (BeMe + ) (1 + Agm))(zs )

Akk
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andG is a K x 2 (row) derivative matrix:

oM OM,;
= = ) 41

We can verify Equation (3.35) by comparing it with the derivation given by
Scharf (1991) for a general multivariate normal model. In this moXels a random
sample consisting a#/ independent)V-dimensional, normal random vectors. The mean
of each of thel/ random vectors is thd" x 1 vectorm(f) = m whered is the parameter
vector. Similarly,R(4) = R is the N x N covariance matrix of each of the random
vectors. The joint distribution of the random sample can be written as
1 M

o) = (2RI e =S R .

=1

(3.42)

When this is the joint distribution, the elements of the Fisher information matrix can be
expressed are

M (_ 0R__,OR om? . om
Jij = 2tr(R T aaj)“waeiR 50 (3.43)

In our case, the random samplés the one measurement/gtdifferent azimuth
and incidence looks by the scatterometer. As a rediilt= 1. Using the measurement
model, two identifications can be made:

My
m = : (3.44)
| Mk
e 0
R = (3.45)
0 S

With these identifications, it can be shown that Equation (3.35) gives the same value for
elements of the Fisher information matrix as Equation (3.43) taken from Scharf (1991).

This completes the derivation of the lower bound on the covariance of the
point-wise estimate of the wind. We now extend this result to model-based wind retrieval
and determine an estimate of the covariance of model-based wind estimates.
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3.3.3 Covariance of model-based wind estimate

Before directly applying the Cramer-Rao bound to model-based wind estimates,
we first take a closer look at the error covariance matrix for model-based retrieval.

O = E[W W] [W-W]". (3.46)

Here, W is the true wind-field vector an8V is the estimate calculated by estimating the
model-parameter¥., and mapping them through the model:

W = FX. (3.47)
This error covariance matrix may be rewritten as
Cw = E[W-EW+EW-W|[W - EW + EW - W]
— E[W-EW|[W- W] +E[EW - W] [EW - W]

= Cw+Ck, (3.48)

where
Cw = E[W—EW|[W-EW] (3.49)
Cy = E[EW-W][EW-W]" . (3.50)

When written in this way it is evident that the total error in the model-based wind estimate
is the sum of the covariance matrix of the wind estimatg,, and the modeling erro€;{ .
AssumeX is an unbiased estimate of the true model parameters:

EX =X = F'W, (3.51)
and
EW = FX = FF'W = Wy (3.52)
Consequently, we can rewrite the modeling error as

Cy = (PP -1)WW" (FFt—1)"
= (PP D)WW (FF'-1). (3.53)

This error represents how accurately the model portrays real wind and is one of the
considerations in developing a wind model. Since this section does not deal directly with
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wind modeling, we focus only on approximatiigy using the Cramer-Rao bound and
recognize that the total error in model-based-retrieved winds includes some modeling error
as well.

In order to use the Cramer-Rao bound to approximate the covariance of the wind
estimate, it is important to recognize that the bound only directly applies to the parameter
being estimated. In model-based wind retrieval the estimated object is a parameter vector,
X. As aresult, to find an approximation to the covariance of the wind estimate, we first
approximate the covariance of the model parameters using the Cramer-Rao bound and then
useW = F'X to estimate the covariance of the wind-field vector:

Cw = E[W-EW|[W-£W]",
— E[rX-rEX| [FX - FEX]",
— F[X-BX|[X-EX] P
= FCOxFT. (3.54)

SinceX is estimated using maximum likelihood, it is asymptotically unbiased
with covariance equal to the Cramer-Rao bound. With the large number of measurements
over theM x N region used to estimafk it is reasonable to assume tf¥tis unbiased
and its covariance can be well-approximated by the Cramer-Rao bound:

where.Jx is the Fisher information matrix of the model parameters:

o B { IL(X, Z)]T IL(X, Z)} |

X X
With this expression for the covariance on the model parameters, the covariance on the
wind-field estimate can be well-approximated as

(3.56)

Cw ~ FJZ'FT. (3.57)

To calculate the elements ofx we recognize that the likelihood function
for estimatingX from Z is essentially identical to that used for point-wise retrieval in
estimatingw from z. Consequently, we can simply re-write Eg. (3.35) in model-based
notation as the Fisher matrix for the estimated model parameters:

MNEO T OM,, 1 OM sz 1 O
(Jx), _ Z Z k,l . k,l n Zi 1 - L1 ‘
J 6XZ ng . 6X] 6XZ 2§Zk7l 6X]

=1 k=1

(3.58)
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The only difference between this equation and the corresponding one derived for the
point-wise case is that the partial derivatives are taken with respect to the model parameters
X; and the double indexing specifies not only which measurement over a single cell but
also which cell over a large region.

This expression can be further simplified as in the point-wise case by substituting
from Egs. (3.30) and (3.31)

MN K() 1
Jx)ij = 7
Wi ; 1; g ME+ (BeaMpg + ) (1 + K2,)
(2€x Mg+ Bra(14+ K2, ))? ] OMy OMy,
20ep M7+ (BraMpg + ) (L+ K2,))2] 0X;: 0X;

Itis again interesting to write the expression for v = 0 (the ERS-1 noise model) which
simplifies it even further to

_|_

(3.59)

MN K() 1 2 oM 0M;,
- . , . 3.60
=3 3 [+ ] S 0

As with the point-wise expressiosx can be written using matrix multiplication:
Jx = GTAG, (3.61)

whereA is an x L diagonal matrix, withl, = >M" K (), having elements

1 (261/./\/{[/ + ﬂl’(l + [X’;m))z

= ” + Y ‘
e M3+ (B My +30)(1 + Kz, 2(e oo (B Mo+ )1+ Agm)g; 62)

Here!’ is a new index that subsumésnd!. In addition,& isanL x M, (row) derivative
matrix:

IM1
axX
G = % = L (3.63)
OMuyn
axX

whered M, /0X is aK (1) x M, sub-matrix containing the derivatives of the model function
with respect to the model parameters for all the measurements in cell

These partial derivatives with respect to the model parameters can be calculated
using the chain rule. First, note th&d, is only a function of the wind components in cell,
I. Then, definew] to be the wind vector in thé&h lexicographical cell written in polar
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form (with ¢ measured in degrees clockwise from North). Similarly, we de#figo be
the wind vector written using rectangular coordinates. Then,

6/\/1; B 6/\/1; an 8w}“

_ 3.64
X  ow] ow] IX’ oo
where for clarity,
roAMyy oMy
av, 9
oM, . .
M : : 7 (3.65)
l OMpmy  OIMiu)
L 8Ul a(bl
[ ouU,  au in (& q
owi | 5w a—uf] _ [ sin (1) cos (585) ] (3.66)
o g, ¢ | 1s0 ¢y 180 i ((&um 7 .
ow; | e =0, €08 (ll@) B ll_o)
T du du
6w}“ - ﬁ aX]\lJI B I 3.67
= - ’ ( . )
X Qv _du F
s e I+MN

where F; is defined to be thdth row of F. Note that the last derivative is written
assuming the common rectangular-component ordering of the individual wind vectors into
the wind-field vector W, given by Eq. (2.22).

With this expression for the partial derivatives, the expressiori-fgiven by
Eq. (3.63) can be rewritten as

_ " 3
18Wf

aajv\v/lf Tw? 0 Fiymn

G = : , (3.68)
IMyy OWh
0 awé\;j\j ang FMN
| Faun |

= TIIF, (3.69)

whereT is thel x 2M N block-diagonal matrix of derivatives:

oM, owl 0
owl owr
T = , (3.70)
0 OMuyn 3W§4N

P T
WL OWL N

and Il is a permutation matrix calculated to interleave the rowd'cds necessary. In
particular, it is the2M N x 2M N identity matrix with rowk permuted according to the
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map:

2k —1 E<MN,
k — (3.71)

E—MN+1 k> MN.

With these definitions, the Fisher information matrix for the model parameters
can be written in matrix notation as

Jx = FTIITTTATIIF, (3.72)
= FTQF, (3.73)

where) = HTTTATIL is 2MN x 2M N and dependent on the GMF and its derivates
calculated aW = F'X.

With the Fisher information matrix of the model-parameters calculated, the
lower bound on the covariance of the wind-field vector can be calculated as shown
previously:

Cw = FJg'FT = F(FTQF) ' FT. (3.74)

The rank of this covariance matrix is at most the rank'oivhich is less thar M N. This
means that certain linear combinations of the individual wind-vector estimates comprising
W are completely correlated. Most of the time, however, interest is only inVfhé
sub-matrices of 'w along the main diagonal which specify the covariance matrices of the
individual wind vectors in thé/ x N region.

As the current wind field model is written in terms of the rectangular components
of the wind, the covariance matrix is that of the rectangular components of the wind vector.
In order to write the covariance for the wind-field vector in polar form, at least two simple
methods are possible.

In the first approach realizations of a random vect,, with covariance
matrix given byCw and mean given bW corresponding to the cell in the region are
generated as outlined. This random vector is then mapped to the polar version and the
sample covariance calculated.

An alternative approach is to use a first-order Taylor series for calculating the
wind-field vector in polar formW¥. in terms of the wind-field vector in rectangular form,
W7.. Then, the covariance V%, can be calculated fromiw using

OW? _ gweT
Owr = oW O gw
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where

ow?

8w}” 0
OW?P !
- (3.76)
OW”
0 owh v
IW

Of course this approximation will be quite poor if the covariance is very large.

Using these expressions, the lower bound on the covariance of the model-based
estimate can be calculated for the entire wind field or for each wind vector cell in the region
in both (U, ¢) and(u, v) coordinates. It should be noted again that since the wind-field
model is not perfect, modeling error is also introduced into the model-based wind estimate.
As a result the total error is the sum of the covariance calculated here and the modeling
error shown earlier. Some idea of the magnitude of this bias can be obtained by fitting the
model to point-wise retrieved winds and measuring the fit error (Long, 1989).

3.3.4 Point-wise Results

There are two key results with respect to the point-wise Cramer-Rao bound.
The first result is that the wind estimate is nearly efficient for most true wind velocities so
that the Cramer-Rao bound is a reasonable estimate of the covariance. The second result
is that the covariance of the wind estimate grows particularly large for certain true wind
directions. In the following we will demonstrate these two results for both ERS-1 and
NSCAT geometries.

ERS-1

As a review of ERS-1 wind estimation geometry, for each wind vector cell
three measurements are taken at azimuth angleapgtst with the center beam at a lower
incidence angle. At 25km resolution, there are 19 cross-track cells each with a different set
of incidence angles for the measurement

In order to evaluate the performance of the wind retrieval estimator, we chose
three cross-track locations which can be labeled far, mid, and near with respect to the
subsatellite track. We evaluated the Cramer-Rao bound on the standard deviation of
the speed and direction estimates at these locations for a variety of true wind speeds
and directions. For these same true wind velocities we also performed a Monte Carlo
simulation whereinr° measurements are simulated according to the assumed model and
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Figure 3.5: Comparison of standard deviation for wind speed and divection estimates
between those computed with Cramer-Rao bound and simulated values at near-track swath

location (FRS-1).

wind is retrieved using the maximum likelihood algorithm. The sample standard deviation
for both the speed and direction was then computed so that it can be compared with the
lower bound. Figures 3.5 to 3.7 show the results.

These figures all show that simulations are in good agreement with the Cramer-
Rao bound indicating that the wind estimator is nearly efficient, especially at far swath.
There is some discrepancy between simulations and the bound at mid-swath for 25 m/s winds
which can be attributed to small sample size in the simulation-based variance estimate. The
most notable discrepancy between the Cramer-Rao bound and the simulations, however,
is that the significant peaks of large predicted uncertainty are “washed” out by the
simulations. This is most notable at low wind speeds (5 m/s) for near swath where the
Cramer-Rao bound predicts an extremely high standard deviation in the wind direction.
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One explanation for the discrepancy is premature termination of the algorithm for finding

the maximum of the log-likelihood function. The reason the Cramer-Rao bound predicts
a large variance in the estimate at certain places is that the log-likelihood function has
small second derivatives and is extremely flat in a large neighborhood near the true local
maximum. As a result, the wind retrieval algorithm may more easily select a near-maximum
as the solution instead of the true maximum which can be some distance away.

Additional simulation studies show that this “washing” out effect in the
simulations occurs whenever a large peak variance is predicted by the Cramer-Rao bound.
All of this effect cannot be attributed to premature termination of the maximization
algorithm. Another explanation is that since the wind estimator is outperforming the best
unbiased estimate at certain true wind vectors, it must be a biased estimate at these wind
vectors. This leads us to wonder whether or not the Cramer-Rao bound even applies.
However, the figures show that for most values of true wind, the Cramer-Rao bound agrees
well with simulations. As a result we conclude that the estimate is unbiased at most true
wind vectors with a covariance approximately equal to the unbiased Cramer-Rao bound. In
Appendix B we describe how to approximate the bias and then use the biased Cramer-Rao
bound to approximate the covariance for these wind vectors where the unbiased Cramer-Rao
bound approximation appears to over-predict the variance calculated from simulations.

Besides showing that the wind estimator is nearly efficient, Figures 3.5 to 3.7
also reveal interesting facts about the dependence of wind uncertainty on the true wind
direction. The most prominent features on the plots are the large peaks at certain wind
directions. These large peaks occur when the true direction is aligned with the azimuth
direction of the fore or aft beam, with larger peaks occuring when the wind is pointing
along the direction of the beam.

This result can be understood by recalling that the fore and aft beams are at
the same incidence angle and separated Byrd@zimuth angle. In addition, upwind and
crosswind relative azimuth angles give maxima and minima respectively in the GMF for a
given wind speed. Consequently, for a fixed wind speed if the wind is aligned with the aft
beam then aft will see a maximuai return while the fore beam will see a minimum.

The situation is reversed when we &% and consider a plot of wind speeds that
would give rise to that° measurement as a function of wind direction. This is illustrated
in Figure 3.8 where the° is fixed and a plot of wind speeds and wind directions that could
generate that® is graphed for each of the three beams. The true wind is 5 m/s and aligned
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Figure 3.8: Locus of wind vectors that would give rise to measurements obtained with
no noise when the true wind is 5 m/s at 120°.

with the aft beam at 120

According to the aft beam, a 12Wind direction gives a maximum® return
for each wind speed. Thus whef is fixed, a smaller wind speed is necessary at° 120
generate the fixed® than for other wind directions. As a result, there is minimum for the
aft beam at 120in Figure 3.8. The reverse is true for the fore beam.

This reasoning only emphasizes the fact that the wind vector (given by the
intersection of the three curves in the figure) is at point where the fore and aft beam curves
are tangent. It is clear that adding even a small amount of noise to this problem (which has
the effect of shifting the curves up and down) can wildly shift the direction value of the
intersection point. As a result, the prediction of large variance at certain wind directions
made by the Cramer-Rao bound can be interpreted physically as due to the GMF.

Other interesting trends are evident from Figures 3.5 to 3.7. One of these is
the general result that wind estimate uncertainty generally decreases from near swath to
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Figure 3.9: ERS-1 dependence of wind estimate uncertainty on cell location within a
swath.

far swath, especially in the direction estimate. This is shown more clearly in Figure 3.9
which shows the lower bound on the standard deviation of both wind speed and wind
direction estimates plotted against cross-track location for several wind speeds. The true
wind direction corresponds to one of the peaks in the previous Figures.

This decreasing trend from near to far swath can be understood by noting that
azimuth modulation, i.e. upwind/crosswind ratio, increases for increasing incidence angle,
and far swath is measured with a greater incidence angle than near swath. As a result, there
is more direction information in the measurements at far swath than at near swath.

So far, all of the results we have presented for the Cramer-Rao bound have
assumed that there is no error in the GMF (¥€,, = 0). As we have already discussed
that this is unrealistic, we would like to observe the effect thigi has on the estimates of
standard deviation. To do this we examine the worst-case wind direction (aligned with the
aft beam) for a far-track swath. Refer to Figure 3.10. Note that the uncertainty in the wind
estimate is quite sensitive 16,,,, especially at low wind speeds. This can be understood in
light of the large transmit power (and therefore snig)l) of the scatterometer on ERS-1.
Since very little noise is assumed in the first place, increasing it changes the estimation
situation considerably.
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NSCAT

In order to understand estimates of retrieved wind uncertainty given by the
Cramer-Rao bound for NSCAT, it is helpful to briefly review NSCAT measurement
geometry. At 50 km resolution there are left and right swaths each containing 12 cross-
track cells in which wind is estimated. There are nominally sixteen measurements for each
cell (four from each beam). For each swath, two beams are separa¢ed loyazimuth
while a third beam is separated b§° from one of the first two. The third beam is also at a
lower incidence angle and transmits/receives both vertical and horizontal polarization.

In the following figures (3.11 to 3.13) we repeat several of the same figures that
we constructed for the ERS-1 geometry but with the NSCAT geometry. Several of the same
observations can be made as were made for ERS-1. For example the same “smoothing”
of the predicted variance peak by the simulations can be seen. There are some notable
differences, however. One difference is that due to the asymmetrical distribution of the
beams, there is one very large variance peak when the true direction is aligned with the
fore or aft beam depending on which one the center beam is closest to (different for left
and right swaths). Another notable difference is that wind direction uncertainty decreases
for decreasing wind speed. This is in contrast to ERS-1 and is due to the increased
azimuth modulation of the Ku-band (14 GHz) GMF for low wind speeds. A final important
difference is that NSCAT is less sensitive/tg,, than ERS-1 suggesting that with realistic
values ofK,,,,, NSCAT may retrieve wind more accurately.

3.3.5 Model-based Results

This section is included in order to apply the model-based Cramer-Rao bound in
approximating the covariance of model-based wind estimates. Using representative wind
fields, the dependency on cell location of the covariance of model-based wind estimates
is shown. In addition, some insight into the relationship between model-based covariance
and point-wise covariance is drawn using an example wind field. This is followed by a
demonstration of how the number of parameters used in the wind-field model can affect
the covariance of the model-based estimates. ERS-1 geometry is assumed but the results
are qualitatively similar for NSCAT geometry. In this section it is assumed Ahat is
zero as non-zerd,,, only increases the overall uncertainty without changing the general
behavior of the results. In addition, Long’s wind field model discussed in Section 2.6.2 is
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Figure 3.11: Comparison of standard deviation for wind speed and direction estimates
between those computed with Cramer-Rao bound and simulated values at far-track swath

location (NSCAT).

54



Speed error vs. cross track (Kpm = 0)

Direction error vs. cross track (Kpm = 0)

w
w al

N
13}

=
o

[N

Lower bound on speed std (m/s)
N

6 8
Cross—track cell

2 gsof
2 3 g
o 15m/g 0] o g
£ x 25 m/s Q25 x 25 m/g
E ©
» 1.5¢ 2
©
g §%9
@ g
& 1f 515
e] c
% o
S g 10F
0.5 §
3 ’W g 5r
o
-
O Il Il I I I J G L L Il Il I J
2 4 10 12 2 4 10 12

6 8
Cross—track cell

Figure 3.12: NSCAT dependence of wind estimate uncertainty on cell location within

a swath.

Far swath speed error vs. Kpm

Far swath direction error vs. Kpm

30r
+ 5mls
+ 5mls o 15 m/g
o 15m/s 25+ x 25 m/s
x  25m/s

[N}
Q

H
o

|

Lower bound on direction std (Degrees)

OSM °
0 . . . . ) 0 . . . . .
0 0.05 0.1 0.15 0.2 0.25 0 0.05 0.1 0.15 0.2 0.25

Kpm

Kpm

Figure 3.13: NSCAT dependence of wind estimate uncertainty on Kpn, for far-swath.

55



used throughout.

Figure 3.14 shows how the variance of model-based direction and speed
estimates depends on cell location in the region. The data for this figure was calculated
by averaging the speed and direction computed using the model-based Cramer-Rao bound.
The ascending portion of ERS-1 orbit 4452 was used to obtain the radar angles and noise
parameters. A simulated wind field mapped to this orbit was used to generate the true
model parameters needed by the Cramer-Rao bound. Notice that both speed and direction
standard deviations are on average lower in the center of the region than along the borders.

It is also of interest to compare the covariance of model-based wind estimates
to that of point-wise wind estimates. To demonstrate some of the relationships for a
particular wind field using ERS-1 geometry, Figure 3.15 is included. To produce this
figure a simulated wind field was selected as the true wind field. Using the point-wise
Cramer-Rao bound, the covariance of the wind estimate in rectangular coordinates was
calculated for each cell location in the region. In addition, the model-based Cramer-Rao
bound was calculated for the projected wind fieW,» = F'/'TW, with I’ created using
Long’s model with 22 unknown parametérgssuming jointly Gaussian distributions for
theu, v estimates, each covariance was used to calculate a 90% concentration ellipse for the
wind vector estimate (Scharf, 1991, p. 225). The concentration ellipses are centered around
the simulated wind field for the point-wise estimates, but for the model-based estimates
they are centered around the projected wind field.

From this figure it is clear that point-wise estimates improve with increasing
cross-track direction (increasing incidence angle). In addition, this figure shows that
model-based wind estimates have concentration ellipses which are elongated with respect
to point-wise wind estimates. As a result, the model-based speed estimates have lower
variance than point-wise estimatesOn the other hand, this elongation also means that
the model-based direction estimates have higher variance than the point-wise estimates at
nearly all but the first few cross-track locations.

Figure 3.15 was generated using a model with 22 parameters. However, the
particular wind field used as a true wind in this example can be well-modeled by fewer
than 22 parameters. The model parameters which do little to reduce modeling error for

*Second-order curl and divergence parameterized boundary conditions model with 10 boundary condition
parameters
®Recall, however, that modeling error also contributes to total model-based retrieval error
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model-based (dashed) wind estimates calculated using the Cramer-Rao bound for a particu-
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rectangular, u,v space. The axis for all the subplots is given by the upper left-hand corner
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this particular wind field serve as nuisance parameters in model-based estimation. The
uncertainty in estimating these unimportant parameters increases the overall uncertainty in
the model-based retrieved wind. Improved model-based estimation could be obtained by
using fewer parameters in the model, corresponding to the most-important colurfins of
for this particular wind field.

Figure 3.16 shows how using fewer parameters in the model reduces the extent
of the model-based concentration ellipses while not significantly affecting the projection
error. In this figure, a 12-parameter model was used corresponding to the most important
columns of the 22-parametét for this particular wind fielfl. Notice that the direction
uncertainty is substantially reduced with little increase in projection error.

One conclusion that can be drawn from this last example is that model-based
estimation often has two conflicting requirements for selecting a model. The first is to
reduce modeling error which is generally done by increasing the number of columns of
F. On the other hand, increasing the columnstotan increase the uncertainty in the
model-based estimate, particularly in wind directioAn ideal model for the wind would
therefore have the number of parameters which would minimize some cost functional based
on both modeling and estimation error. This ideal model would probably be wind field
dependent.

3.3.6 Summary

In this section we have derived the Cramer-Rao bound on the covariance of wind
estimates for both point-wise and model-based estimators. In addition, some calculated
results were used to show typical wind errors obtained in wind retrieval as well as to
compare the ERS-1 and NSCAT scatterometers. In fact, this demonstrates one of the most
useful aspects of the Cramer-Rao bound as it applies to scatterometers: its ability to rapidly
compare scatterometer designs in terms of wind retrieval accuracy.

One limitation of the Cramer-Rao bound is that it gives us the best performance
possible, but does not give us any direct information about the performance of the particular
estimator we are using. As a result of this limitation, in the next section we demonstrate

“These were precisely those columns remaining in Long’s 12-parameter model constructed with constant
curl and divergence and 10 boundary condition parameters.

"It should be noted that increasing the number of columng aloes not always increase uncertainty.
When#'is 200 x 200, then model-based uncertainty is exactly equal to point-wise uncertainty. (See Appendix
D).
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Figure 3.16: Concentration ellipses for both point-wise (solid) and 12-parameter
model-based (dashed) wind estimates calculated using the Cramer-Rao bound for a particu-
lar “true” wind field and corresponding projected field. Note that the ellipses are plotted in
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an alternative approach which attempts to approximate the covariance of the wind retrieval
using a direct approach.
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3.4 Direct Covariance Approximation

In this section we adapt the work of Fessler (1995; 1996) to finding an
approximation of the covariance of each wind estimate. This technique applies to both
model-based and point-wise wind estimates, but we will limit a detailed description to the
point-wise case in order to facilitate explanation of the technique.

Fessler has described how the mean and covariance of implicitly defined
estimators can be approximated using a Taylor series and the implicit function theorem
(Fessler, 1995; Fessler, 1996). We apply this technique to approximating the covariance of
the wind estimate obtained using maximum likelihood.

3.4.1 Method

The general approach is to recognize that the wind estimate is a function of
the measurements of. As a result, uncertainty in the measurements translates directly
to uncertainty in the estimate. The function relatifgmeasurements to wind estimate
is implicitly defined. We can find derivatives of this function and thereby construct a
Taylor-series approximation to the implicit function. Then, how the covariance of the wind
estimate depends on the covariance ofdheneasurements can be determined directly.

The wind estimate for both point-wise and model-based retrieval can be written
as

W = arg max [L(w,z)], (3.77)

wherel(w, z) is the log-likelihood function given by Eqg. (3.27) for point-wise retrieval.

Since all local maxima are considered as wind estimates, the above equation
defines a set of wind estimatgsv,, }. Each wind estimate is called a wind alias. At
each wind alias, the implicit function that relates the wind estimate to the measurements is
implicitly defined by solutions to the following (column) vector equation:

_ OL(w,z)"

0= —— |y, (3.78)

This vector equation consists pequations, whergis the number of elementsin(p = 2

for point-wise estimatiory = 2M N for model-based estimation). Each row of this vector
equation is listed explicitly for the point-wise case in Egs. (3.28) and (3.29). As long
as the Jacobian of this set of equations is non-zero at the @oift, ), then the general
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implicit function theorem states that these equations define a unique smooth function in the
neighborhood ofz, w,,):

W, = h,(2), (3.79)

and the derivatives may be computed by implicit differentiation (Marsden and Tromba,
1988, p. 287).

We can use this theorem and the unique smooth function it guarantees to
formally define what we mean by a wind-alias random vector. Specifically, a given true
wind, w, gives rise to measuremenss,which we model as random variables with mean
z = [M(w)]. Given this mean value there is a set of functi¢hg(z)} valid for z near
z. Each function defines a wind-alias random vector, (sincez is a random vector).
Notice that the implicit function theorem is not specific about what it means tebez.
Clearly the utility of this definition for the wind-alias random vector breaks down if the
variance ot is larger than the neighborhood of validity of the functlor{z). We will not
investigate this difficulty in this thesis, but only mention that this can become a problem in
low-wind speed conditions where the peaks of the maximum likelihood equation are not
well isolated.

With the notion of a wind-alias random vector defined we will cease distin-
guishing aliases by a subscript and simply denote a particular wind aliés-ash(z).

Given the functional form oh we could theoretically determine the statisticswoffrom
the statistics oz. Even though such a form is unavailable, we can expaf in a
Taylor series around, and estimate the covariancewfusing the series expansion. The
derivatives oth can be calculated using implicit differentiation. For simplicity in notation,
in what follows we denote the derivative of a functigiiy), evaluated at a point;,, as

O f (o) /0.

3.4.2 Derivation

The first-order Taylor formula allows us to write:

W = h(z) ~ h(z) + D(z — 2), (3.80)

8In such situations the measurements to not provide enough informatioauoately predict the direction.
This is consistent with the observation that wind direction retrieval is not accurate at low wind speeds.
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whereD = 0h(z)/0z is a (row) derivative matrix with elements

O
N 64 ’

D (3.81)

From this approximation fo&, estimates of the mean and covariancéafan be obtained:

E(W) = h(z), (3.82)
Co = B|(W—BW)(W—Ew)"],
= DE|(z—2)(z—2)"| D",
= DC,DT. (3.83)

Note that this expression depends on the true wind value through the mean and covariance
of the measurements since in point-wise notation,

z = [My- Mg, (3.84)
S 0

C, = , (3.85)
0 2

ands., is given by Eq. (3.17).

The expression for the wind estimate covariance also depends on the derivative
of h with respect to the measurements evaluated at the measurement mean. This derivative
can be calculated using implicit differentiation. Using the chain rule, Eqg. (3.78) can be
differentiated with respect to the measuremerasd evaluated at:

9 [0Lh(z),2)]" 9 [dL(h(z),2)]" 9,
0 = aliaw +a—wliaw ] 9702
0 = D+ D™D, (3.86)
where
9 [oL(h(z),2)]"  [9*L(h(z),2)
D N %[ aW ] _{ 8zj8wi }7 (387)
» 0 [0L(h(z),2)]"  [9*L(h(z),2)

Solving for D, we obtain
D = —(D*)"'D'". (3.89)
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For evaluating the derivatives &g, h(z)), there are at least two options
for determiningh(z). The first option is to perform wind retrieval using noise-free
“measurements” z, calculated from the true wind. An alternative is to recognize from
Eqg. (3.82) thath(z) is a very good approximation to the expected valusvofwhich is
the true wind, so thah(z) ~ w. The latter method has the advantage of avoiding the
maximization required for the first option. As a result, this is the method used to obtain the
results presented below.

For the point-wise case, the derivatives can be explicitly written using Egs.
(3.28) and (3.29) and substituting = M :

11 iaM]
D 2w’ (3.90)
X oMy 1 oM, 02 1 0<2 1 9%2
20 _ _OMi T % : 2 o1
where for clarity
anzzk - asz aMk aMk
Fud 26 My + Bi(1+ K2,)] Fudw T 2 G B (3.92)
6§22 : OM
a—uj = [QEkMk + Br(1 + [&;m)] aw'k' (3.93)

With the details described, we write the resulting covariance estimate for the
retrieved wind by combining Egs. (3.83) and (3.89):

C\i/ — (DQO)_IDHCZ(DH)T(DQO)_I. (394)

Note that we have made use of the symmetryéf.

Eq. (3.94) gives an estimate of the covariance matrix for either point-wise
or model based retrieval. In the following we present some calculations for point-wise
retrieval using both ERS-1 and NSCAT geometries and compare them with Cramer-Rao
calculations shown previously.

3.4.3 Comparisons with Cramer-Rao bound

Figures 3.17 to 3.20 show comparisons between the speed and direction standard
deviations obtained using the Cramer-Rao bound and the direct covariance approximation
developed in the previous section. In Figures 3.17 and %18 = 0 is used, while
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Figure 3.17: Comparison between direct approzimation of covariance and Cramer-Rao
bound. The individual marks are the Cramer-Rao bound while the lines are cubic spline
fits to the direct approzimation date (Kpym =0).
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Figure 3.18: Comparison between direct approximation of covariance and Cramer-Rao
bound. The individual marks are the Cramer-Rao bound while the lines are cubic spline
fits to the direct approzimation date (Kpym =0).
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Figure 3.19: Comparison between direct approximation of covariance and Cramer-Rao
bound. The individual marks are the Cramer-Rao bound while the lines are cubic spline
fits to the direct approzimation data (Kpy, = 0.20).

in Figures 3.19 and 3.2(,,, = 0.20 is used. In order to display representative wind
retrieval conditions, the radar parameters and noise information were selected from three
wind vector cells spanning the ERS-1 swath. In addition, results are shown using simulated
information from one far-swath NSCAT cell.

From these figures some general conclusions can be drawn. One clear conclusion
is that for ERS-1 at low#,,,, values, the Cramer-Rao bound and the direct covariance
approximation return nearly identical values. The results from the Cramer-Rao bound
section show that the estimator is very nearly efficient under these low noise conditions. As
aresult, itis clear that whel,. andK,,,,, are both low the direct covariance approximation
is excellent. In other words, the implicit functidn is well-approximated by a linear
function under low-noise conditions. This is an intuitive result.
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Figure 3.20: Comparison between direct approximation of covariance and Cramer-Rao
bound. The individual marks are the Cramer-Rao bound while the lines are cubic spline
fits to the direct approzimation data (Kpy, = 0.20).
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For NSCAT whenk,,,, = 0, the results are not quite as good. Figure 3.18(b)
shows that the direct covariance approximation results in standard deviations which are
less than the Cramer-Rao bound at certain wind velocities and greater than the bound at
others. This problem of beating the lower bound is best seen in direction standard deviation
estimates. An explanation for this effect is that at certain wind directions, especially where
the Cramer-Rao bound predicts a high variance, the estimator is actually biased, so that the
Cramer-Rao bound does not apply. Therefore, the actual covariance can beat the unbiased
Cramer-Rao bound. However, since at these locations, the results still do not agree with
simulations, it can also be said that at certain wind directions, the implicit funkstismot
well-approximated by a linear function, thus the covariance approximation is poor.

This problem is also evident in wind direction standard-deviation approxima-
tions for ERS-1 at near and mid swath whip,, is large, especially at a wind speed’of
m/s. It should be noted, however, that for ERS-1 whép, is large wind speed variance
approximations have the expected relationship with the lower bound. Figures 3.19 and
3.20(a) show that the wind speed standard deviation computed using the direct approach
are consistently bounded below by the Cramer-Rao bound. Such consistency leads to
the conclusion that the implicit function for wind speed is well approximated by a line
but the estimator is not efficient for larg€,,, values. As a result, for ERS-1 data with
K, ~ 0.20, more accurate wind speed variance estimates can be obtained using the direct
covariance approach than using the Cramer-Rao bound. However, to obtain more accurate
estimates of the wind direction variance, the direct covariance approximation presented
here would need to be extended until the problem of under-prediction of the unbiased
Cramer-Rao bound is removed.

The approximation can be improved by fitting the implicit functidn,with a
second- or higher-order polynomial through expandinig a higher-order Taylor series.
However, this dramatically increases the complexity of the problem. Not only must higher
derivates oh be computed but the covariance becomes a function of higher-order moments
of the measurement vectar

As a result the direct covariance approximation as presented in this section
is only useful as a second-order correction to the wind speed variance predicted by the
Cramer-Rao bound under conditions of larfe,,. Before it is used with confidence,
however, it should be extended to use higher-order derivatives so that the magnitude of the
error incurred in approximating the implicit functioh, by a truncated Taylor series can
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be evaluated.

3.5 Summary of Wind Covariance Estimates

This chapter has discussed the problem of calculating the covariance of retrieved
wind for both point-wise and model-based approaches. In order to present a more realistic
picture of errors in wind estimates, the noise model of dhemeasurements was first
expanded to include uncertainty in the GMF. The resulting noise model has an increased
variance according to the fixed value &f,, assumed.

With this noise model, the Cramer-Rao bound was derived as an estimate to
the covariance of winds retrieved using both point-wise and model-based approaches.
Comparison of the bound to simulated point-wise retrieval shows that the Cramer-Rao
bound is a good approximation to the covariance of point-wise retrieved winds. The
accuracy of the approximation decreases for increasing noise levels and at certain wind
directions where the predicted variance is high. For, model-based retrieval, the asymptotic
property of maximum likelihood estimators justifies use of the bound to approximate the
model-based covariance.

Results show that uncertainty in wind retrieval is highly sensitive to the direction
of the true wind. In particular, high retrieval uncertainty is expected when the true wind
aligns with either the fore or aft beam. In addition, wind retrieval uncertainty is adversely
affected by large values ok, particularly for the ERS-1 instrument. Uncertainty of
NSCAT-retrieved winds is less influenced ;.. The ability to compare scatterometer
designs easily with respect to wind retrieval uncertainty has implications for using the
Cramer-Rao bound as a wind-scatterometer design tool.

Since the covariance wind estimate is not guaranteed to be the Cramer-Rao
bound, another method of obtaining covariance estimates was briefly developed and applied
to point-wise wind retrieval. The results showed that a much more complicated extension
would need to be implemented in order to reliably obtain covariance estimates more
accurate than the Cramer-Rao bound.
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Chapter 4

DISTINGUISHING MAXIMA IN THE MAXIMUM-LIKELIHOOD
EQUATION

In the previous chapter, some solutions to the problem of estimating the
uncertainty in the retrieved wind for both model-based and point-wise wind estimates were
presented. Now we turn our attention to a different problem common to both point-wise
and model-based wind retrieval. Both methods obtain a wind estimate by maximizing
an objective function (usually maximum likelihood) which has multiple local maxima.
The usual maximum likelihood procedure is to use the global maximum as the maximum
likelihood estimate. In this case, however, two or more of the maxima are of comparable
magnitude, reducing the justification for selecting only the global maxima as the wind
estimate. As a result, historically all of the local maxima have been kept as possible wind
solutions. A second step, known as dealiasing, is used to select a unique wind vector.
However, accepting all of the local maxima as possible wind solutions may result in the
dealiasing step choosing a solution with a low likelihood value. Choosing a wind vector
with a low likelihood value means that according to the noise model for the measurements,
only with very low probability would the observed measurements have occured if the true
wind were the selected wind vector. The problem for wind retrieval is to distinguish among
the local maxima of the likelihood function and determine which have sufficiently high
likelihood to be considered by the dealiasing step as a legitimate possible wind solution.

In this chapter a decision-theoretic solution to this problem is presented. The
approach used is to use hypothesis-testing procedures on the likelihood-ratio statistic. In
particular, the size of a test fashioned to eliminate the alias from future consideration
is determined. This size represents the probability of throwing out the alias when it
corresponds to the true wind solution. As a result, this size can be used to determine
whether or not the wind alias could be eliminated.

The outline of this chapter proceeds as follows. First a more detailed description
of the problem is given. This is followed by development of a practical decision rule for
both point-wise and model-based retrieval. The technique is then applied to point-wise
retrieved wind fields to demonstrate its effectiveness on ERS-1 and NSCAT data (Oliphant
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and Long, 1996b). Finally, an example of applying the technique to model-based retrieved
winds is presented.

4.1 Problem background

In both point-wise and model-based wind estimation, a maximum likelihood
estimate is used to determine the wind. For point-wise wind estimation the log-likelihood
function is maximized over the wind vector to choose wind estimates. For model-based
retrieval an analogous log-likelihood function is maximized over the model parameters to
choose the the wind estimate. In both retrieval methods, a problem surfaces in that more
than one wind vector or set of model parameters gives rise to a significant maximum in the
log-likelihood function. This was demonstrated in Chapter 2 for point-wise wind retrieval.

As a result of this estimation ambiguity, all maxima of the likelihood function
have been traditionally kept as possible wind solutions. However, keeping all wind
estimates which are onlpcal maxima of the likelihood function does not seem to adhere
to the general philosophy of using the maximum likelihood estimate: pick the wind velocity
which gives the largest likelihood that the measurements would have been observed. It
is hard to statistically justify retaining a wind velocity estimate that gives a distinctly
lower likelihood value than the maximum value. The problem, however, has been how to
determine what “distinctly lower” means. Where does one place such a threshold in a
statistically justifiable way?

One answer is to form a decision rule that uses the likelihood function values to
distinguish among the possible wind solutions. For each wind alias in question, a likelihood
ratio statistic is formed with the most likely wind alias. The observed ratio of the likelihood
values is then a realization of that statistic. The probability that such a realization would
have been observed if the wind alias in question were the true wind is evaluated. The
decision whether or not this particular wind alias is legitimate can be made on the basis of
such a probability. In the next section this idea is developed in terms of standard hypothesis
testing where it is found that this probability is the size of a likelihood-ratio decision rule
fashioned to eliminate the alias.
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4.2 Setting up the hypothesis test
4.2.1 General Approach

To establish notation, we form a set of possible wind estimates corresponding
to maxima in the maximum likelihood equation. For point-wise retrieval these are wind
vectors,w, while for model-based retrieval these are projected wind fidlls, = F'X.

For the sake of convenience we describe the development of the hypothesis test in terms of
point-wise retrieved wind vectors which can be generalized to model-based estimates in a
straightforward manner.

For point-wise retrieval we have a set of realizations of wind estimate alias
random variable§w{" } containing generally two to six possible estimates and ordered so
thatx?vél) corresponds to the wind estimate giving the largest likelihood YaM& know
that only one of these estimates corresponds to the true wind solution. In other words
E[w™] = w for a particular value of.

The decision problem is deciding whether or not a particular wind alias deserves
to be considered a possible wind candidate in future dealiasing procedures. In other words,
for eachn the decision is whether or not to eliminat%”) from future dealiasing steps.
Sincex?vél) represents the global maximum of the likelihood function it is always retained
as a possible wind solution. For eaeh> 1, the decision can be expressed in terms of a
hypothesis test. The simple null hypothesis is

Ho:w = E[w™)], (4.1)
leaving a composite alternative hypothesis
Hy:weS—{Bwm}, (4.2)
wheres is a set of expected values of all the wind aliases.
In general, the decision based on the observed vecterofvaluesz, is H, )
whereg¢(z) is a decision rule:

o(z) =

{ 0 ZERl, (43)

1 ZEEl,

with R, a subset oR* with complement?,. As a review, the size of this test is defined
asa, = Pr[rejectH, | Hy] and the power of this test is defined aew*)) = PrlrejectH,

! Note that we have distinguished the realization from the random variable by using the subscript
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| H,] (Scharf, 1991). IdeallyR, is determined so that the decision rule is uniformly most
powerful for each size. This means thatis chosen so that the probability of eliminating

the alias when it should be eliminated is maximized for ewerg H,, while keeping the
probability of throwing out the correct alias to a specified small number. This is a difficult
problem in the given context, and it is not even guaranteed that such a decision rule exists.
As a result we turn to a more practical decision rule based on the likelihood ratio.

4.2.2 Practical Approach

As an alternative to the general decision rule, we develop a practical decision
rule for each wind alias«{ > 1). This rule allows elimination of improbable aliases
(though perhaps not optimally in the sense of Neyman-Pearson) while still keeping the
probability of throwing out the correct alias to a small numlegr, Using the probability
density function given in Eq. (3.15) (or in Eqg. (3.19) for model-based retrieval) form the
log-likelihood-ratio statistic,

A (n)
Y w) n
g g(pz<zvaé”> @

so thatA(zg) € (—o0,0). Then form a threshold decision rule based on the observed
measurements, :

)0 A(zo) > &,
#lz0) = { 1 A(zo) < k. (4-3)

At this juncture one point regarding acceptancéigishould be clarified. Even
though the decision may be in favor & for a particular wind alias, this does not imply
that this wind alias actually corresponds to the true wind. This would be true only if the
power of the test is very high for each wind vector in the alternate hypothesis set (so
that the probability of choosingl/, when the true wind is in the alternative set is very
low). This is unlikely given thatv\" has a larger likelihood value than the wind alias
in question. In recognition of this caveat, it is evident that this test cannot eliminate the
dealiasing problem completely. The real gain for wind dealiasing from this test comes
when the measurements statistically corroborate acceptanée aid therefore rejection
of Hy. This allows confident elimination of the alias in question from future dealiasing
steps.
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Standard hypothesis testing procedure is to choose the «jzeso that the
probability of rejectingH, when it should be accepted is satisfactorily smaé, an
acceptably low probability of eliminating the alias corresponding to the correct wind is
chosen. Then for each hypothesis test (one for each wind alias) the resulting threshold
k € (—o0,0) is calculated and the observed value of the statidtiégs compared against
this threshold to determine which hypothesis to accept. In this case, however, the purpose
of the test is to eliminate wind aliases whenever it is statistically justifiable. As a result,
we turn the standard hypothesis testing paradigm around a bit and start by choosing the
decision threshold to be equal to the observed likelihood statistic= A(z,). This
guarantees that the test eliminates the alias. Then thesjz@f the test is computed.

If the size is acceptably small.€., the probability of eliminating the alias when it is the
true wind is low), the decision rule is implemented and the alias is eliminated from future
consideration. If the size is too large thgdecision rule is ignored and the wind vector is
kept as a possible wind solution.

4.3 Determining the size of the test
4.3.1 Defining a related statistic

In order to apply the alias-elimination methodology outlined in the previous
section, a formula for the sizey, as a function of;, is neede#t

ap = Prob[A(z) < ko |w = E[W™]] = Fi (ko). (4.6)

To calculateay, the GMF needs to be evaluated at different wind velocity
vectors so we establish a simplified notation. For a given measuremergpresented in
the likelihood function we denote the value of the GMF evaluated at wind velocity vector
w{" (with the radar information associated with) asM,.., i.e. if wi” = (U ¢(")
then

The value of the GMF evaluated at a general wind vector= (U, ¢), using radar
information associated with; is

2pPerhaps we should defim%”) andag”) for eachn > 1 in order to emphasize that the test is separately
applied for each wind alias and that the sizes of each test are different, but for notational simplicity we do not.
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For model-based retrieval we extend this notation so that

My = MOy, Ul(n)v ¢§n)7 Uk 1y Pril)- (4.9)
Using this notation and Eq. (3.15) we can wrkéz) as
K 2 2
Skyn (25 — M) (2 — M)
Az) ==Y |log [ 22 + ) VAN 4.10
(Z) kZ::l [ o (gk,l) ng,n leg,l ( )
where

Sin = M+ (BsMpn + ) (14 K2,). (4.11)

with € = ap + [X’Zm + Oék[(gm

With foresight we define several terms useful in simplifying this expression:

K
el Sk,

o = A= Me (4.13)

Sk

5 (Mg — M)

y Z(2 k; zk, ) 7 (4.14)
k=1 (%,1 - gk,n)

Y = —A(z)—a+tb (4.15)
2
Sk 1 1

s (L oty 4.16

ck 2 (qfn §1§,1) ( )
2 M _M — 2 M —M n

4 - S (M k1) = Sia (M k) (4.17)

Sk(SE1 — Skn)
With these definitions, it is shown in Appendix C that Eq. (4.10) can be written as

K

—A(Z) —a—+ h = Z Ck(l'k — dk)z,
k=1
K

Y = ch(l’k—dk)z. (418)

k=1
Given a particular value of the wind vectos;, eachx; is a zero-mean, unit-variance
Gaussian random variable. Thus, can be computed as the probability thgta random
variable which is related tqa, is greater than or equal g = —x¢ — a + b:

ao(ko,w) = Prob[A(z) < ko |w = E[w™]], (4.19)
= Prob[Y > —kg —a+b|w = E[Ww]], (4.20)
= 1—Fy(—kp—a+Db) :/Oo fr(y)dy . (4.22)

Yo
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The density function o™ can, in theory, be derived from the zero-mean, unit-variance
normal density functions af;, sinceY’ is a quadratic function of each.. Also, since each

¢, anddy, is parameterized by the wind vectaf,is also parameterized by the wind vector
which we have indicated by writing, explicitly as a function ofv.

4.3.2 Finding an explicit formula for the size

In order to finda, for a givenk,, the density function ot” is needed. Since
each of the measurementsis assumed independent in the measurement modislthe
sum of independent random variables.

K
Y=Y R, (4.22)
k=1

whereR), = ¢ (x—dy)*. As aresultfy (y) can be written as the inverse Laplace transform
of the product of the moment generating functiong:pf

1
frly) = — / eI Dy (s)ds | (4.23)
27 Jo
1 K
— _ sY .
- = /C e ,E O, (53 cx, di)ds, (4.24)

where (' is a vertical line in the region of convergence ®f (s). In this expression,
Op, (s;ck, di) is the moment generating function 8f;:

bp, (s) = /_Z e’ fr, (r; ek, d). (4.25)

Thus, to calculate the density bfthe density of eaclfir, (r; cx, dr) must be calculated and
then used to calculat®g, (s).

Calculating the density of fz,

Given a zero-mean, unit-variance random variableye want to calculate the
density of R = ¢(z — d)?, which we denotefr(r; ¢, d). This is accomplished using the
fundamental theorem of statistics which states that to figi@t) for a specificr, find the
real roots of- = ¢(x) denoting themz,,,. In the region where no real roots exfsf(r) = 0,
otherwise,

o Solew)
[r(r) = ; IEIk (4.26)
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Applying this to finding the density oR, we see that = ¢g(z) = ¢(z — d)* has two real
roots provided-c > 0:

v = d+ 2 (4.27)
v, = d— g. (4.28)
As aresult|¢'(z1)| = |¢'(z2)| = 24/cr. Therefore,
1
filrsed) = —— [fx(d+ o)+ fuld — W)] Ure). (4.29)

In this equation//(x) is the unit step function defined to be zero fox 0 and one for
x> 0.

By substituting in the density function for a zero-mean, unit-variance random
variable, the density fok can be rewritten as

1 —l(d—l—\/r_/c)2 —l(d— T/C)2
e d) = } 2 2 Ulre). 4.30
fR(r7 C, ) \/ﬁ\/@ [e —I_ € (TC) ( )
This equation can be simplified using hyperbolic cosines to
fr(r;e,d) = \/Q_F;\/Ee_ée_% cosh (dﬁ) Ulre). (4.32)

This density function is right-sided dfis positive or left-sided it is negative. This density
can be recognized as that of a scaled non-central chi-square random variable.

Calculating the moment generating function of R

Since we now have the density function &f calculating®r(s;c,d) is a
straightforward task:

Pp(s;c,d) = B{e ) = /_OO e’ fr(r;e,d)dr . (4.32)

Substituting in the density function we obtain,
o0 e’ —%(d—l—w/r/c)2 —%(d— T/C)2
_ d 4.33
/0 \ 2w/ 4er [e e re )

Br(s;c<0,d) = /_0 L[e‘%(“\/r/c) G ”C)]dr. (4.34)

Pr(s;e>0,d) =

V2r/der
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With a change of variables,= |/r /¢, these equations become

2
00 ceScU

Op(sic>0,d) = T e gy 4.35

plsie>0.d) = |5 o e ] du (4.35)
o0 Cescu2 1 2 1 2

Bp(sic < 0,d) = —/ 3+ =R gy 4.36

r(sic <0.d) o Fe T du. (436)

This can be combined into one expression for both positive and negative
scu2

> e
0o 27

Each part of this integral can be evaluated separately by completing the square in the
exponents. The final result is

Qp(s;c,d) = [e_%(d+“)2 + e_%(d_“)Z)] du. (4.37)

1 d*cs 1
) — _— R —. 4.
r(sied) 1 — 2es P (1 — 205) ’ Slste < 2 (4.38)

Obtaining an explicit formula for «q

With the moment generating function of ea¢h calculated, the moment
generating function fo¥” can be written as

Py (s) = ﬁ ;exp dzi (4.39)
i V1= 2¢s 1 —2¢1s /)’

where the region of convergence is giveri:by

1 1
Re{s} € [_2|min(0,{ck})|7 QmaX(O,{ck})] (4.40)

Note that the imaginary axis is always in the region of convergence so that the Fourier
transform offy (y) exists and is equal tdy (s) evaluated along the imaginary axis. As a
result, we can write the density ¢f (y), and hencey,, using Fourier transforms:

1 o] o] .
ao(ko, W) = ﬂ/ / e "oy (jrv)dr dy . (4.412)
yo J—oo

Interchanging the order of integration,

1 o] o] .
ao(ko, W) = ﬂ/ dv CI)y(jl/)/ dy e ", (4.42)
—c0 %0

341/0 = o0
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The inner integral can be recognized as the Fourier transform of a shifted unit-step function,
U(y — yo), with v as the transform variable. As a result,

ap(ko, W) = i/OO dv q)y(jy)e_j”yo []il/ + 71'5(1/)] ,
1

= —(I)Y 2 / dl/ —ivyo . (443)
g

We can simplify this a little further by first noting thdty (0) = 1 and then
defining G(v) = 1/ve="» &y (jv). Sincefy(y) is a real function®y (—jv) = &3 (jv)
andG(—v) = —G*(v). Consequently, the real part of the integrand is antisymmetric while
the imaginary part of the integrand is symmetric. Hergecan be written as

11 e 1
Ozo(/io,w):§—|—;/0 dy IM{—e ™" Dy (jv) . (4.44)

Explicitly writing the imaginary part we can express this equation as

L 1 g sin[f(v)]
SR A i i) 4.45
ag(ko, W) 2—|—ﬂ_/0 v 0o () (4.45)
2

O(v) = —l/yo—l—z [1 _ll/_diczkl/z %tan_l(chl/)], (4.46)

K 922 2
— 1+ 42t/ Skl 4.47
) = TL0 -+ aeb e 2 (@47

This expression can be trivially modified to match a similar expression fory, given in
the literature (Imhof, 1961).

4.4 Using estimate of wind instead of expected value.

In order to determiney, we need to know”[w,] (where the expectation is
done over the measurement$,so that each;, andd; can be calculated. Unfortunately,
given only one realization of each wind alias calculated by wind retrieval, the expected
values are unknown. In its place we can use the realization,afetermined by the wind
retrieval procedure. This is our best approximatio:{e,,]. To illustrate the sensitivity
of oy to this substitution Figures 4.1 and 4.2 shawas a function of wind velocity. For
these figures, actual scatterometer data from a particular ERS-1 cell was used to calculate
oy for several values of wind velocity around each wind alias using Eq. (4.44). Figure 4.3
shows a similar plot using simulated NSCAT data.
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Figure 4.1: Dependence on wind velocity of g with K,y = 0 for the wind aliases
of a mid-swath ERS-1 cell wn the ascending portion of orbit 7220. The apparent peaks

of the last 4 figures is actually the effect of numerical round-off error. The surfaces are
essentially flat.
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Figure 4.2: Dependence on wind velocity of g with Kpy, = 0.20 for the wind aliases
of a mid-swath ERS-1 cell in the ascending portion of orbit 7220.
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Figure 4.3: Dependence on wind velocity of ag with Kpp = 0 and Ky = 0.20 for the
wind aliases of a near-swath simulated NSCAT cell.
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These figures show that, changes as a function of the true wind vector.
However, the change is small enough that it can be accounted for in practical alias
elimination by choosing a more conservative threshold for what valug f considered
low enough to eliminate the alias. Thus, the true wind vector need not be known.

Since in practiceq, is calculated for each alias with = x?vé”), M, can be
replaced withM,, ,, in the expressions faf, andd;. As a resultc, andd;, simplify to
[refer to EQs. (4.16) and (4.17)]:

1 Sien
N ) 4.48
* 2 ( §13,1) 7 ( )
4 — §k,n(-/\;tk,n —sz,l)' (4.49)
Sk~ Skn

For completeness in calculatiing, vy, in EQ. (4.44) is

yo = logpa(zo| %) — log pu(zo| W) — a + b, (4.50)
K

a« = > log (g’“—”) (4.51)
1 Sk,1

h — i (Mk,l - Mk,n)2‘

= o2(E - <)

If the retrieved value of the wind alias is used, the test for wind alias elimination

(4.52)

essentially becomes a calculation of the probability that an observed log-likelihood statistic
value would be so small if the alias in question were really the true wind. Since there
does not seem to be a simple closed-form expressionfove must perform a numerical
integration for each alias in order to decide to eliminate it or not. This can add significant
processing time to the wind retrieval process. Note, however, that an exact calculation of
ap is not necessarily needed. Consider the values,ah the final four plots of Figure

4.1. These values are small enough that a relatively tight upper-boung ayuld suffice

in order to determine that the trug is small enough. To be useful, this upper bound
should be both easy to compute and tight enough that it can be used effectively to eliminate
aliases. In the next section, such a bound is described.
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4.5 Determining an upper-bound for the size

The Markov inequality states that if the density of a random varialdezero
for x < 0, then for any > 0,

I
Prlc > ] < —. (4.53)
&
With our random variabl@”, form a new random variable = ¢*¥, wheres is
an arbitrary real number. Since an exponential can never be negative for real values of
the density of: is zero forz < 0. In addition, ify, is any real number, therf* > (. Thus,
the conditions of the Markov inequality are satisfied with- ¢*¥ ande = e** so

E sY
P > ) < LA (4.54)

e5Yo

If we require thats > 0 then we can immediately see that

ag = PrlY >y
= Prle?¥ > e*%]

< e Py (s) s> 0. (4.55)

The above equation is one version of the Chernoff bound. Since it holds for all real, positive
s in the region of convergence @f,-, we can calculate a bound at any such value afd
use that as the bound fas.

The tightest Chernoff bound is found by finding the real, positive valueiof
the region of convergence that minimizes* ¢y (s). However, since the bound is also
valid for any value ofs > 0 in the region of convergence, a single value for the bound
could be used for all tests. Experiments using scatterometer data show that the commonly
used bound given by = 1 is tight enough to eliminate many aliases. Choosinrg 1, in
the Chernoff bound, the bound far becomes

K 1 ( dzck )
ap e PPy (1) =e ¥ ex k . 456
oz eey(l) = ] =sme |75 (4.56)

To evaluate how the Chernoff bound compares with the actual value of
computed using numerical integration, Figures 4.4 and 4.5 are given. Figure 4.4 presents
two scatter plots showing how the best Chernoff bound compares to the true size for two
different values off{,,,,. In Figure 4.5 a similar plot shows the results for wind estimates
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Performance of Chernoff bound (i, = 0)
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o

logyg(bound)= p; logio(at) + P,
P, = 0.9204
P, = 0.6744
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p,=0.7538
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Figure 4.4: Comparison of the best Chernoff bound with the numerically calculated
value of oy for ERS-1 data.

using NSCAT data. Also shown in these plots is an approximate linear fit in log-log space
to the data. These plots were constructed by calculating both the best Chernoff bound and
the actual value o, for all aliases in the wind vector cells of the ascending portion of
an actual ERS-1 and a simulated NSCAT orbit. These plots suggest that the bound is a
good one. Moreover, the information on the plots can be used in interpreting the computed
Chernoff bound in an alias-elimination algorithm.

One convenient way to implement the upper bound is to first calculatethée
bound ona, for all aliases. For those aliases which cannot be justifiably eliminated based
on the upper bound, the integration can be performed to calculate the true valge of
Since the upper bound is simple to calculate and is often enough to support removing the
alias, significant processing time can be saved by avoiding the integration.

4.6 Extension to model-based

Extending the above alias elimination procedure to model-based processing is
straightforward since the measurement model is the same. Instead of eliminating wind-
vector aliases we are trying to eliminate wind-field aliases. We set up the same hypothesis
test and evaluate the size of the test assuming a decision rule that uses the observed
likelihood ratio. The resulting equation fag, and the upper bound om, are exactly the
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Figure 4.5: Comparison of the best Chernoff bound with the numerically calculated
value of oy for stmulated NSCAT data.
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same as given by Egs. (4.44) and (4.55). The only difference is that the moment generating
function andy, are written to include all of the measurements made over the entire region.
We are given model-based estimaféél” = FX\", representing maxima in
the model-based maximum likelihood equation. We would like to determine which, if any,
of these aliases can be eliminated from future processing. The procedure is precisely the
same as for point-wise estimates, just subsm&’tﬁ) for x?vé”). There are some notational
differences, however, that need explanation. We need to express the GMF evaluated for
the kth measurement of thi¢gh wind vector in the:th wind-field alias. This is denoted

Mk,l,n:M(eklaUl 7</51 s Vkts Phil)- (4.57)

The variance of théth measurement of thi&h wind vector in the:th wind-field alias is
denoted similarly:

Sitm = €ratMi o+ (BeaMugn + )L+ K2, (4.58)

With this notation, the model-based moment-generating function for use in
testing thexth wind-field alias can be written:

]\14_][\7 Ii_[ ! ex dicinas (4.59)
1/1 — QCkJS P 11— QCkJS ’ '

=1 k=1

where the region of convergence is again given by

1 1
Rets € [_ 2| min(0, {cg,})|” 2max(0, {ck’l})] - (4.60)

In addition,
1 2
Cri = (1 — n) 5 (461)
2 §k11
n(Mpin— M
oy = Sk, (2 k.l kll) (4.62)
Skl — gkln
The expression foy, is
yo = log p(Z0|X(1)) — log p(Z0|Xé”)) —a+ b, (4.63)
MK K( Sk,
a = ZZI ( ”) (4.64)
=1 k=1 gkll

p o Af:“i: (Mg — My1)?

=1 k=1 2(%11 <;3,z,n)

whereZ, is the vector of observed measurements over the region.

: (4.65)
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4.7 Application to point-wise wind-alias elimination

In order to evaluate the performance of the statistical test developed in this
chapter on eliminating wind-vector aliases, both ERS-1 and NSCAT is used for point-wise
retrieval.

471 ERS-1

In this part we evaluate the technique as it applies to ERS-1 data. We consider
both simulated and real data.

Simulated Data

As a first check of the procedure for eliminating wind-vector aliases, several
simulations were performed. The true wind used in these simulations came from the
European Center for Medium-range Weather Forecasting (ECMWF). These wind fields
are described by Long (1989). The noise and radar information from part of a true ERS-1
orbit are used to generate simulatgdneasurements with probability density given by the
noise model of Eqg. (3.15). The number of aliases in each wind vector cell when applying
the alias-elimination scheme is compared to the number of aliases per wind vector cell
when the scheme is not applied.

The results of these simulations are shown in Figures 4.6 and 4.7 assuming
K,, = 0. These figures show that the alias-elimination scheme can be effective in
simplifying the dealiasing step by reducing the number of aliases to two in most of the
cells. Particularly interesting is that the alias problem is completely eliminated for several
wind vector cells in both simulated swaths. This indicates that if the signal to noise ratio is
large enough, a single wind estimate can be obtained.

The results presented above indicate that this alias-elimination scheme is
remarkably successful in removing wind aliases, even to the point of eliminating all
aliases at certain cells. However, in performing the simulations we assumed somewhat
unrealistically that<,,,, = 0. To see the effect that’,,, has on simulations, we perform
the simulations again only this time lettirig,,,, = 0.20. The results of this simulation are
shown in Figures 4.8 and 4.9. Notice that alias elimination is not as dramatic asiyhen
IS zero.

The performance of the alias-elimination scheme on simulated data motivates
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Figure 4.6: Performance of alias-climination scheme on simulated data. Retrieval
geometry and noise information are from the ascending portion of FRS-1 revolution 4452
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Figure 4.7: Performance of alias-elimination scheme on simulated data. Retrieval
geometry and noise information are from the descending portion of ERS-1 revolution 4459

(Kpm = 0).
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Figure 4.8: Performance of alias-climination scheme on simulated data. Retrieval
geometry and noise information are from the ascending portion of FRS-1 revolution 4452
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Figure 4.9: Performance of alias-climination scheme on simulated data. Retrieval
geometry and noise information are from the descending portion of ERS-1 revolution 4459

(Kpm = 0.20).
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Figure 4.10: Performance of alias-elimination scheme on actual data taken from the
ascending portion of ERS-1 revolution 4452 at 25 km resolution (assuming K, = 0).

looking at how effective the alias elimination scheme can be on real data. The question
looms as to what value to pick fdft,,,, when applying the technique to real data. This is a
difficult question for two main reasons. First of all, we have used a simplistic method of
introducing GMF modeling error into the measurements by assuming that all measurements
used to retrieve the wind are corrupted independently by Gaussian noise. The second reason
is that even assuming the independent model is accurate, only rough estimatgsare
available (Johnson et al., 1996). As was evident in simulation, if we assumethat

is near(.20 as estimated by Johnson (1996), then the effectiveness of alias reduction is
drastically diminished. As a result of these difficulties we perform alias-elimination on
actual data assuming,,, = 0, recognizing that caution should be exercised in interpreting
the results, especially when the elimination process completely removes all but the most
likely wind alias.

Actual Data

In Figure 4.10 the overall results of applying the alias-elimination scheme to
actual wind retrieved with the ERS-1 scatterometer assumiing= 0 is presented. Note
that nearly all of the wind vector cells return only one or two wind aliases when the
acceptable test size limit i5001.

To get a more visual representation of the utility of this elimination process,
Figures 4.11 and 4.12 present portions of the swath which generated the results in Figure
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4.10. In these figures the right plot shows an along-track segment of the swath with only
those wind aliases which whose hypothesis test had a size great@r@hanThe left plot
contains all of the wind aliases for the swath.

It is evident from these figures that the dealiasing step is greatly simplified
when hypothesis testing to remove wind aliases is performed. Another interesting feature
of these plots is that over many regions only one consistent estimate of the wind field is
returned. Admittedly, there are some cases where after hypothesis testing adjacent wind
vector cells each return only one wind vector cell which are inconsistent with each other.
This results in an unbelievable wind pattern. For an example of this, see the left plot in
Figure 4.11. Look at along-track 194, cross-track 17, and compare with along-track 195,
cross-track 18. Apparently, the true wind was thrown out as an improbable alias in cell
(195,18). Since this behavior occurs at a frequency that is inconsistent with the accepted
hypothesis test size (.001), it is evident that the model is in eergr, (1, # 0). On the
other hand, for this value df ., the elimination scheme was successful at determining a
single consistent wind field for numerous regions. This is rather surprisiiig,ifis truly
0.20 as assumed in Figure 4.13 where there is a dramatic loss in the number of wind aliases
eliminated by the scheme.

These results give anecdotal evidence to the idea that GMF modeling error
cannot be ignored, yet assuming large, independent noise sources in the measurement
process to account for modeling error may be overly cautious. Perhaps a better approach
would be to assume some covariance in the GMF modeling error and re-derive the
hypothesis test based on such a model.

In the mean time, the hypothesis test derived in this thesis can still be used
to eliminate aliases effectively if we assumg,, = 0 and then use a more conservative
acceptable size on the test for alias eliminatiergy( 1e-5 instead of 1e-3). Alternatively,
we can forego an attempt to eliminate all of the aliases and always return at least two wind
vectors.

Another possible approach that deserves more attention than can be granted in
this thesis is to use measurements from neighboring cells to estimate a single, low-resolution
wind vector. This could reduce the noise levels (even for l&fge) so that the hypothesis
test would have greater power to eliminate aliases. The wind alias at high-resolution could
then be selected as the one closest to the low-resolution wind vector.
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Figure 4.13: Performance of alias-elimination scheme on actual data taken from the
ascending portion of ERS-1 revolution 4452 at 25 km resolution (assuming K,, = 0.20).
ESA winds are those estimated by the European Space Agency which operates EFRS-1.
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Figure 4.14: Performance of alias-elimination scheme on actual data taken from the

ascending portion of ERS-1 revolution 4452 at 25 km resolution assuming K,p, =0 and a
size threshold of 1e-5.
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Figure 4.15: Performance of alias-elimination scheme on simulated data. Retrieval
geomelry and noise information from a simulated NSCAT orbit at 50 km resolution

(Kpm =0).

4.7.2 Simulated NSCAT

We expect the results for NSCAT data to be qualitatively similar to those for
ERS-1. Since we have only limited simulated NSCAT data available, only two simulation
results for NSCAT are given. The result in Figure 4.15 assufgs = 0, while that of
Figure 4.16 assumeds,,,, = 0.20.

4.7.3 Discussion

In this section we have seen that applying the elimination scheme to point-wise
retrieved wind fields can greatly ameliorate the dealiasing problem. When the signal to
noise ratio is high enough, the scheme can even select a single wind vector reliably. This
property of being able to select a single wind vector is even more pronounced when the
test is applied to model-based processing as demonstrated in the next section.

4.8 Application to model-based alias elimination

This section is included to give examples that demonstrate how the test
developed in this Chapter can be applied to model-based retrieval. The demonstration
is with ERS-1 data. The test is applied using the same region of ERS-1 data under
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Figure 4.16: Performance of alias-elimination scheme on simulated data. Retrieval
geomelry and noise information from a simulated NSCAT orbit at 50 km resolution

(Kpm = 0.2).
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Wind Field | Objective Function] ao bound 6 = 1) | ao bound (best) | «ao
Case 1F =1

Most likely -2410.9

First alias -2406.5 0.107 095 (s = 1.28) 0.015
Second alias -2391.6 6.50e-5 4.08e-5§ = 1.27) | 3.45e-6
Case 2/ # 1

First alias -2372.0

Second alias -2359.2 1.71e-3 1.51e-3¢ = 0.88) | 1.55e-4

Table 4.1: Objective function values and test results for wind-field aliases in Figures
4.17 and 4.18. Kpp, = 0.13.

two scenarios. In the first scenario we assuifme- [, while in the second we use the
22-parametef’ matrix derived by Long (1989).

481 Caselli =1

The first case considered is model-based retrieval in which the model is the
identity matrix, /' = [. This is nothing more than point-wise retrieval performed over an
entire wind field simultaneously with 200-variable likelihood function. As a result, this
large objective function has maxima at all possible combinations of point-wise solutions.
To apply the test we compare wind fields giving maxima to the field-likelihood function;
each field is found by combining point-wise wind vector solutions found Wwith = 0.13.

Figure 4.17 shows the selected wind fields along with a plot of all the aliases obtained
using point-wise retrieval in a particula® x 10 region.

Table 4.1 shows the sizes of the decision rules which eliminate the fields in
Figures4.17(c) and 4.17(d). These values show that it is statistically reasonable to eliminate
the second wind-field alias. The most likely wind-field alias (based on the measurements)
can be eliminated due to its irregularity, leaving only one realistic wind field. This shows
that when all of the measurements over an entire region are combined together, one wind
field can often be determined (even with ladgg,, values).

10bjective function values shown in this table are the values of the negative log-likelihood function with
all constants removed.
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Figure 4.17: (a) All aliases for a wind region in the descending portion of ERS-1 orbit
4448. (b) Wind-field alias constructed from most likely point-wise aliases. (¢) Wind-field
alias constructed from the median filter solution initialized with the most likely field. (d)
Wind-field alias constructed from point-wise solutions closest to 180° from wind vectors in

(c).
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Figure 4.18: Optimized model-based wind fields: (a) initialized with point-wise field in
Figure 4.17(c), (b) initialized with field obtained by rotating all vectors in Figure 4.17(c)
by 180°.

102



482 Case2l'#1]

In the first case no model for the wind field was assumed so that |.
This made the problem a straightforward extension of the point-wise case by avoiding
discussion of wind field modeling error. The test can still be applied to model-based
retrieved wind wherd’ # 1. However, in interpreting the size calculation, it is important
to recall that calculation of the size assumes the estimated wind-field alias is the true
wind. If F' represents an approximate wind model, then this is not necessarily true. This
is the same problem seen in point-wise estimation of using the estimated wind-vector
alias instead of the true expected value of the wind-vector alias in calculagingt is
compounded here by the additional modeling error possible. As a result, test results should
be interpreted more conservatively for model-based retrieval. With this in mind, we give an
example of applying the alias elimination scheme to model-based estimation using Long’s
22-parametef’ matrix. Figure 4.18 shows the wind-field aliases in question and Table 4.1
shows the results of the test. Again, we can choose the first wind-field alias as the solution
with confidence.

4.9 Summary

In this Chapter a method of alias elimination which can be used with both
point-wise and model-based wind retrieval was developed by applying traditional decision
theory. The result is both an integral expression and an upper bound for the size of a
decision rule that always throws out the alias under consideration. Applying this decision
rule to both ERS-1 and simulated NSCAT data shows that it can be used to effectively
eliminate wind aliases. In fact, quite often a single wind field can be selected by applying
the rule to wind-fields. In order to apply the results presented here to current point-wise
wind retrieval, we suggest using a conservative acceptable size threshold (1e-5) and a small
value of K,,,,,(0 t0 0.05).
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Chapter 5

WIND FIELD MODELING

While the previous two chapters have presented improvements to wind scat-
terometry that apply to both point-wise and model-based wind retrieval, this chapter is
devoted to discussing improvements to model-based wind retrieval. Specifically, in this
chapter we discuss alternative wind models to the model developed by Long (1993).

5.1 Motivation

Recall that model-based wind retrieval relies on a model of a discrete wind
field, W = g(X), whereX is a vector of parameters for the model. To be useful in wind
estimation X should have fewer elements th#. In addition, the model should ideally fit
all observable wind fields. This last idealization is a formidable one given the complexity
of wind fields. Long succeeded in deriving a realistic model based on physical principles
by using the fact that any vector field can be written in terms of its curl, its divergence, and
its boundary conditions. Long discretized this basic relationship and wrote the equation
in terms of boundary conditions on the pressure field. In order to reduce the number of
parameters iX, he assumed that the curl and divergence of the wind field could both be
modeled as low-order bivariate polynomials. This allowed him to write a linear equation
for the discrete wind field:

W = I'X. (5.1)

The parameter vectdf contains the coefficients of the bivariate polynomials modeling the
curl and divergence as well as the boundary conditions on the pressure field. The details
of the F' matrix will not be given here but can be found in Long (1989). This model is
called the Non-parameterized Boundary condition (NB) model. This is in contrast to the
Parameterized Boundary Conditions (PBC) model in which the boundary conditions on the
pressure field are parameterized according to a polynomial or Fourier model.

Both of these models derived by Long are based on the assumption that the
underlying curl and divergence of the wind field can be modeled as a low order polynomial.
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A limitation of this model is that this assumption is not directly based on physics other than
the known fact that wind has a red spectrum on average (Freilich and Chelton, 1986).

Another short-coming of Long’s model is an apparent inconsistency in the
model’s definition. This inconsistency can be seen in comparing curl and divergence
calculated from estimated wind fields using first difference approximations with the
assumed polynomial curl and divergence calculated from the estimated parameters. The
comparison shows that the two calculations do not return comparable results. Given these
difficulties, it seems reasonable to investigate other possible wind field models for use in
model-based retrieval.

The purpose of this chapter is to introduce three such models. These models do
not seek to be ideal wind models based on physics, but are intended to be practical models
that can be tuned to observations. Each model is linear of the Mfm; F'X, similar to
Long’s model. The difference is the definition of thematrix.

In the following we adopt a slight change to the convention introduced by Long
in ordering the elements of the wind field into the vect®,. Namely, the wind-field
vector,W, is defined in terms of the rectangular components of each wind velocity:

U
W:[V]7 (5.2)

whereU is a lexicographically-ordered version of the image formed by taking the east,
rectangular component of each wind vector in the fiel®. is defined similarly as

the lexicographically-ordered version of the north-rectangular-component image. The
lexicographic ordering is done by varying cross-track most rapidly. Long ordered the wind
vectors by varying along-track most rapidly. The difference is insignificant provided it is

consistent.

5.2 Wind Vector Space and Model Sub-Space

The central idea to wind modeling in this chapter is to change the paradigm
used in looking for a model. Instead of seeking a physics-based model, we use a signal-
processing approach. Consider the wind field vec¥r,describing the wind at every cell
inanM x N region as an element in2a/ N -dimensional vector space. Define a subset of
the elements of this vector space consisting of observable winds, or “physical” winds. It is
clear that such winds occupy a proper subset of this space as a randomly chosen wind-field
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vector does not “look” like real wind. In order to approximate this subset in a simple and
useful manner we use a vector sub-space spanned by a truncated/gebasis vectors.
As a result, winds in the sub-space can be writtetMags = F'X. The columns ofF
comprise the basis set whose span approximates the subset containing observable winds.
Given a true wind-field vectoryV, the closest vector in the sub-space spanned
by the columns off’ can be found provided a definition of distance is given. For this
purpose, the definition of distance on the wind-field vector space is the standard Euclidean
distance:

&(Wr, W) = (W - Wp) (W - Wp). (5.3)

With this definition for the distance operator, finding tievector that minimizes
the distance betwe&V andW = FX for a givenft' is straightforward. Thisis a common
problem in signal-processing applications and the result can be found in manyetgxts (
page 365 of Scharf). The result is

X =(FITF)7'"FTW = F'W, (5.4)

where we have definefl" as the pseudo-inverse 8t Thus we can write the projection of
the wind field onto the space spanned by the column’s a

Wr = FFIW. (5.5)

In comparing models it is convenient to use a distance metric normalized by
the length of the wind-field vector and so we define the normalized mean square error of a
projected wind-field vector as

B2 % (5.6)
B (W—WF)T(W—WF)
- WTI'wW ’
 WT(I— FFY(I — FFHYW
(5.8)

wherel isa2M N x 2M N identity matrix. If the columns ot are orthonormal then this
expression can be simplified further singé = £'7:

W — FFT)W
B WIw
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With the concept of a model sub-space developed, wind field modeling can now
be stated as determining the fewest number of basis vectors that reduces the normalized
error of the projected wind field to an acceptable value. In the next three sections we
develop three wind models that attempt to do this. First we describe a data-driven model
where the basis vectors of the Karhunen-Loeve transform are selected as the basis vectors
for the model. The second model assumes that the wind’s rectangular components can
be written using a low-order polynomial. The third model assumes that these rectangular
components can be approximated well with a low-order Fourier series. The last section of
this chapter compares these models with the (PBC) model developed by Long (1989).

5.3 Karhunen-Loeve Basis Wind-Field Vectors

Given a wind-field vector space with elements defined in terms of its rectangular
components we seek a truncated basis,with as few basis vectors as possible while
keeping the average error between the true wind field and the model windWeldsmall.

An alternative way to state the problem is that we seek a model méatriwjth M, basis
vectors that minimizes the average error betwdeandW . It is a well-known property
of the Karhunen-Loeve transform that for any valuelff the matrix/ which minimizes
this basis-restriction error contains columns equal to the largeseigenvectors of the
autocorrelation matrix oW. These are the Karhunen-Loeve (K-L) basis vectorgvofin
the following a general description detailing how the columnsg'@i&an be calculated from
a data-set of wind fields is described.

5.3.1 Determination of the K-L /" matrix

For a givenM x N region size, the columns df are thelM, eigenvectors
corresponding to the largest eigenvalues of the autocorrelation métrix,

R=E[WW'| (5.10)

Since there is not a functional form fét, the autocorrelation matrix must be estimated.
We do this by calculating the sample averagdow .

Without true wind fields to use in estimating the autocorrelation matrix, alternate
wind fields must be employed. One possibility is to use numerical weather prediction
wind fields such as supplied by the European Center for Mid-range Weather Forecasting
(ECMWEF). These fields are described by Long (1989). One concern with using these fields
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to develop the K-L model is that since the K-L basis vectors are completely data driven,
the result will be strongly influenced by the model used by ECMWEF. Another concern is
that these wind fields are at a resolution of approximately 200 km by 200 km rather than
the typical 25 km or 50 km resolution at which wind is retrieved with scatterometers.

As a result of these concerns, we use point-wise-retrieved wind fields with the
ambiguities removed using a median-filter to estimate the autocorrelation matrix. Even
though these fields have ambiguity removal error and estimation uncertainty, they represent
the best high-resolution data set of true wind fields available.

The estimate of? is found by computing the sample average of the correlation
matrix for L. point-wise-retrieved wind fields:

1

L
7 > W, W (5.11)

n=1

R =~

With an estimate ofi, the model matrix,/’, can be found by solving the
eigenvector-eigenvalue equation:

RF = FA, (5.12)
whereA is a diagonal matrix of the largesi, eigenvalues of::

A 0
A= : (5.13)
0 A,

with A\; > X\, > ... > )\, SinceR is symmetric, a solution exists such that /' = 1,
where/ is anM, x M, identity matrix. We choose this solution as the model maifix,

of order M,.. Note that since” consists of orthonormalized eigenvectors, projections are
particularly easy to compute:

Wi =FFTW. (5.14)

For each column of’, there is an associated eigenvalue with a useful interpre-
tation. This eigenvalue can be interpreted as the average energy of that column vector in
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the data set used to gener&teTo see this, note

A = FTRF, (5.15)
1 (& o
— FTZ (anwg) F, (5.16)
n=1
1 & . .
- ZZ F'W (FTW,)T, (5.17)
n=1
1 L
= ZZanf. (5.18)
n=1

Thus, if X}, , represents the coefficient of tih¢h basis vector for theth wind field in the
data set then

1 L
M= XL (5.19)
n=1

The larger the eigenvalue, the more important the eigenvector as a basis vector for the
space spanned by the data set. This further justifies using théfjrstdered eigenvectors
computed from our best estimate of “real” wind as basis vectors of the wind-field.

In the next section we apply the previous development to compute thatrix
applicable to d0 x 10 region using point-wise wind fields from the ERS-1 scatterometer.

5.3.2 10 x 10 K-L basis wind fields

For ERS-1 the swath is 500 km wide with 19 wind vector cells at 25 km
resolution. As a result, 8) x 10 model region will cover the swath with two regions. It is
therefore, a useful region size for ERS-1 model-based retrieval.

In this section we explore the K-L basis wind-field vectors computed using
ERS-1 point-wise data by plotting several of the vectors. These basis vectors were derived
using point-wise retrieval and a median-filter algorithm. The autocorrelation matrix was
calculated using Eg. (5.11) and more than 200,000 wind fields retrieved over the Pacific
Ocean for 113 ERS-1 revolutions coming from the last week of June 1992, the last week
of September 1992, and the first part of October 1992. All eigenvectors and corresponding
eigenvalues of? were then found. To form thé" matrix for a particular truncated basis
order, M, eigenvectors corresponding to the largest eigenvalues are selected and placed in
the columns off.

In order to determine how many basis wind-field vectors to use in the model
matrix £, it is helpful to look at a plot of the eigenvalues of the autocorrelation matrix.
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Eigenvalues of autocorrelation matrix

Eigenvalues of autocorrelation matrix
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(a) Vectors 1 to 50 (b) Vectors 51 to 200

Figure 5.1: Logarithmic plot of the eigenvalues of the 10 x 10 autocorrelation matriz.
(Note the different vertical scales.)

Figure 5.1 shows such a plot. Notice that on the logarithmic scale natural breaks are evident
which signal important groups of basis vectors for the wind field. These groups and the
values of the eigenvalues can be used as a guide for determining how many basis vectors
to use in thef" matrix.

To give a general idea of what the wind field basis vectors look like, Figures
5.2 to 5.4 show the first eighteen basis wind-field vectors re-mapped into a wind field for
plotting. It is interesting that the K-L basis selection procedure pulls out common wind
field features as basis wind-field vectors. For example, the first two basis fields simply
describe a mean wind field. Notice that this mean is the most dominant feature in most
wind fields as evidenced by the large break betweea 2 andn = 3 in the eigenvalue
plot in Figure 5.1(a).

Basis fields 3 to 6 are the next important group for wind fields according to the
eigenvalues. Interestingly these correspond to a cyclone (3), two basis fields describing col
points (4 and 5), and a first-order divergent field. These are physically reasonable fields.
The relative values of the eigenvalues also suggests that many wind fields can be modeled
reasonably with just these six basis fields. The next 12 basis vectors show higher order
variability that can occur within the region.

While the K-L basis vectors are theoretically the best ones to choose for
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Figure 5.2: Wind field basis vectors 1-6.
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Figure 5.3:

Wind field basts vectors 6-12.
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Figure 5.4: Wind field basis vectors 12-18.
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minimizing the average error in the fewest number of unknowns, it has several disadvantages
that encourage investigation of other wind-field basis vectors. One of these disadvantages
is that the basis vectors must be recomputed if the region size is changed. A related
disadvantage is that since we do not have true wind fields from which to estimate the
autocorrelation matrix, our result will be tainted by the uncertainty in the data set used
to estimateR. While averaging instills confidence in the first several basis vectors, it is
difficult to determine at what point the basis vectors are dominated by noise in the sample
data. Because of these limitations it is useful to discuss other possible models for wind
fields.

5.4 Legendre Polynomial Basis Functions

Both the NB and PBC models of the wind field use a low-order bi-variate
polynomial to model the curl and divergence of a wind field (Long, 1989). If the curl and
divergence are modeled as low order polynomials, then the wind field itself will exhibit
low order polynomial behavior. Recognizing the success of the NB and PBC models in
modeling wind fields, we postulate that each rectangular component of the wind itself can
be modeled as a low order polynomial. In order to avoid numerical difficulties in inverting
matrices constructed from ordinary polynomials, we use orthogonal, Legendre polynomials
as basis functions for the andv component images of the wind field. In this section, a
derivation of thef' matrix useful for representing the wind field with Legendre, orthogonal
polynomials is given.

In Long’s wind field model, the curl and divergence are represented as low-
order polynomials and a basis set consisting&fy™} is used to represent them (1993).
These non-orthogonal polynomials are sufficient for low order polynomials; however, for
polynomial orders of four or more, these polynomials give famatrix that is badly
conditioned and prone to error in numerical pseudo-inverse computation. Since higher-
order polynomials may need to be used when modeling the wind itself as polynomials, the
evenly-weighted, orthogonal, Legendre polynomials are used as basis functions.

Legendre polynomials are defined on the interjal, 1] according to the
following sum:

n

Pn(z) = 217 nf(—l)m(") (2” ) Qm) g mm z € [—1,1]. (5.20)
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For an M x N region, the sample row must be mapped from integers in
[1, M] to the interval of definition of the polynomials-1, 1] The column index; must be
similarly mapped from integers ifi, N] to [—1, 1]. This is accomplished by the sampling
function:
2(1 — 1)
M -1

—1 ke[l M) (5.21)

TiM =

Using this function the components of the wind field at each grid location of an
M x N region can be expressed using Legendre polynomials as

M, M,—m

Ui,j - Z_: Z_: um,n¢(xi,M)¢(x]7N)7 (522)
My My
‘/i,j = Z_: Z_: vm,n¢(xi,M)¢(x]7N)7 (523)

so that the indices in the sum satisfy+ » < M, andm + n < M, respectively.
When the matrice&’ andV are row-scanned into column vectéfandV, the
relations can be rewritten as

M, M,

U= > 2 tnnQun (5.24)

m=0n=0

M, M,

Vo= > Y 0nnQimms (5.25)

m=0n=0

where they),,, , are M N element (column) vectors whos¢h elementgfjm, is given by

qfn,n = Om(Trow(k), ) P (Teol(h), N ) (5.26)
row(k) = V%J +1, (5.27)
collk) = modk—1,N)+1, (5.28)

where|z | is defined as the greatest integer less than or equal to

In order to convert the above expressiondfand}” into one matrix expression
W = FX, itis necessary to constructd N x (M, + 2)(M, + 1)/2 matrix ), and a
MN x (M, + 2)(M, + 1)/2 matrix @, from the(@,, ,, vectors. From these matrices the
2MN x (M, + 2)(M, +1)/2 + (M, + 2)(M, + 1)/2 matrix ' can be constructed. The
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details are

U
W o= -t (5.29)
Qu = [Q0,0|Q0,1| e |an| Y |QMM,O] s (5-30)
Qv = [Q0,0|Q0,1| e |an| Y |QMv,0] s (5-31)
Qo
o fer] s

The order of the columns of), and ), is important only in determining where the
parameters:,, ,, andv,, , go in the X vector. Using the above equations, thematrix
can be easily constructed for any model ordler, M, and any region sizé/ x N. For a
MATLAB implementation of the above description see Appendix F.

5.5 Fourier-series wind model

Investigators have noted that the rectangular components of mesoscale wind
have average power spectral densities that follow an inverse power law where the power is
approximately 2 (Freilich and Chelton, 1986). With this in mind, it is reasonable to develop
a wind field model that uses Fourier basis functions.

The development of the Fouriét matrix is similar to the development of the
Legendref’ matrix. We write thg, j) elements of tH/ andV images as

. My Muzm s . (mam  ngw . miT njyw
Uj = ugo+ Y, >, [umn sm( i + T) + Uy COS( i + T)]@BS)

m=0 n=0

. My My—m s . [(mum  njw miT nJw
Vij = vt Z Z [vmm sm( i + T) + vy, ,, cos ( i + T)] (5.34)

m=0 n=0
where the indices for the summations also safisty m +n < M, and0 < m +n < M,

respectively.
When these are row-scanned into column vecigrandV’, we can write

. M, My—-m M, M,—m

U= > 3 u, Qo+ > u,Qh (5.35)
m=0 n=0 m=0 n=0

o My, My—m My, My—m

D DED DR AN S D DL oA (5.36)
m=0 n=0 m=0 n=0
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where@;, ., and@;, , are M N element (column) vectors whos¢h elements.q;, ,,, and

m,n?

x4y, , are given by

row( k col( %
Ky = COS (m ZW( i + i N )F) , (5.37)
) row( k col(k
W, = s (m Mk nool ”) , (5.38)
E—1
collk) = modk—1,N)+ 1. (5.40)

Note thatQ)j , is a vector of all zeros.

In order to convert the above expressiondfandl” into one matrix expression
W = FX, itis necessary to constructdN x (M, + 1)(M, + 2) — 1 matrix@,, and a
MN x (M, +1)(M,+2)—1 matrix@, fromthe@? and@):, vectors. From these matrices
the2M N x (M, + 1)(M, + 2) + (M, + 1)(M, + 2) — 2 matrix, £, can be constructed.
The details are

U
W = —_t (5.41)
Qu = [Q5olQ611Q01]1Q5 Q5 0]+ 1Q5s, 0| Qir0] - (5.42)
Qv = |Q50lQ6.1Q01 1 1Q5 . Qil -+ Q5 0| @iro] (5.43)
(. o
F = [0 QU]' (5.44)

The order of the columns of, and @, determines where the parametefs,,, u;, .,
v, , andv; go in theX vector. Using the above equations, thienatrix can be easily
constructed for any model ordér,,, M, and any region sizéd/ x N. For a MATLAB

implementation of the above description see Appendix F.

5.6 Comparisons

In the following model comparisons, three types of fit error will be reported:
NRSS vector error, RMS speed error, and RMS direction error. NRSS vector error is a
descriptive acronym for the normalized wind-field vector error defined in Eq. (5.7). RMS
speed error and RMS direction error are the square-root of the mean-squared speed and
direction error respectively.
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To compare the models we first show two examples of “true” wind fields
projected onto the sub-spaces spanned by the different model matrices. Each true wind
field is taken from ERS-1 point-wise-retrieved winds, and the projections are calculated
using Eq. (5.5) and the differet matrices.

The first true wind field is shown in Figure 5.5 along with projected wind fields
using the PBC and two Karhunen-Loeve (K-L) models. The order of the PBC model was
selected to have 22 unknown model parameters (corresponding to 22 basis vectors). The
two K-L models were selected to have 22 and 6 basis vectors.

Figure 5.6 shows two Legendre and two Fourier model fits to this same true wind
field. The model orders for the first Legendre model were selected fd be 3, M, = 3
to give 20 basis vectors. The model orders for the second Legendre model were selected to
be M,, = 1, M, = 1 to give 6 basis vectors. The model orders for the two Fourier models
were selected to b&/, = 2, M, = 2, andM, = 1, M, = 1 to give 22 and 10 basis vectors
respectively.

The second true wind field and its projections are shown in Figures 5.7 and 5.8.
From these figures it is apparent that the projection error of all four models is similar for
these particular wind fields.

In order to further evaluate the different wind models suggested above we
calculate the normalized fit error (NRSS) to several thousand simulated wind fields. The
simulated wind fields were generated using European Center for Medium-Range Weather
Forecasting (ECMWF) numerical weather predication winds as described by Long (1989,
p. 215). The average NRSS error was computed using several different model orders for
each model. Figure 5.9 and Table 5.1 shows the average results for 19,197 simulated wind
fields.

In addition, RMS speed and direction error were calculated to give a general
idea of the possible error in speed and direction for a particular wind vector cell when using
a specific wind model. The results of these calculations for the same simulated wind fields
are shown in Figures 5.10 and 5.11 and Tables 5.2 and 5.3

5.7 Summary

In this chapter, three wind field models were developed as alternatives to the
parameterized boundary condition model introduced by Long. It was found that all of
the models have similar projection error for a given number of unknowns, although the
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Figure 5.5: First example of projecting a wind field onto PBC and Karhunen-Locve
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Legendre model (20 unknowns) Legendre model (6 unknowns)
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Figure 5.6: First example of projecting a wind field onto Legendre and Fourier models.
Wind-field taken from ascending portion of ERS-1 revolution 4452.
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Point-wise wind field PBC model (22 unknowns)
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Figure 5.7: Second Example of projecting a wind field onto PBC and Karhunen-Loeve
models. Wind-field taken from ascending portion of ERS-1 revolution 4459.
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Figure 5.8: Second Example of projecting a wind field onto Legendre and Fourier
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Comparison of average NRSS error
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Figure 5.9: NRSS projection error as a function of number of unknowns in model for
several models.
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Comparison of RMS speed error
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Figure 5.10: RMS speed error as a function of number of unknowns in model for
several models.
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Comparison of RMS direction error
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Fourier model performed better on simulated wind fields. Due to the orthonormality of the
Karhunen-Loeve basis and its flexibility in model-order, it is recommended that this basis
set be used in model-based retrieval.
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Average NRSS Errors for Projected Wind Fields
Unknowns| K-L | Legendre| Fourier| PBC
2 0.2502| 0.2499 | 0.2499
4 0.1962
6 0.1414| 0.1395
8 0.1357
10 0.1311 0.1334| 0.1970
12 0.1275| 0.1251 0.1361
14 0.1265
16 0.1259 0.1279
18 0.1237
20 0.1226| 0.1189
22 0.1219 0.1175]| 0.1228
24 0.1217
26 0.1215
28 0.1210
30 0.1207| 0.1145 0.1186
32 0.1202
34 0.1200
36 0.1198
38 0.1196 0.0918
40 0.1188 0.1155
42 0.1169| 0.1114

Table 5.1: NRSS projection errors for four different models as a function of the number
of model parameters.
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RMS Speed Errors for Projected Wind Fields
Unknowns| K-L | Legendre| Fourier| PBC
2 1.2083| 1.2059 | 1.2059
4 0.9535
6 0.6780| 0.6739
8 0.6468
10 0.6312 0.6294 | 0.9365
12 0.6079| 0.5979 0.6583
14 0.6028
16 0.6000 0.6146
18 0.5887
20 0.5835| 0.5640
22 0.5769 0.5532| 0.5874
24 0.5760
26 0.5749
28 0.5720
30 0.5706| 0.5406 0.5658
32 0.5688
34 0.5681
36 0.5664
38 0.5643 0.4321
40 0.5623 0.5473
42 0.5542| 0.5252

Table 5.2: RMS speed errors for four different models as a function of the number of
model parameters.
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RMS Direction Errors for Projected Wind Fields
Unknowns| K-L Legendre| Fourier| PBC

2 21.8350| 21.8353 | 21.8353

4 17.2108

6 12.2157 12.0838

8 11.6990

10 11.1860 11.4178| 18.0792
12 10.8591| 10.6407 11.5436
14 10.7594

16 10.6881 10.6700

18 10.4715
20 10.3890, 10.1015

22 10.3211 9.9649 | 10.2303
24 10.2930

26 10.2584

28 10.2060

30 10.1535, 9.7140 9.8828
32 10.1108

34 10.0838

36 10.0594

38 10.0246 7.8874

40 9.9455 9.6103

42 9.7928 | 9.3950

Table 5.3: RMS direction errors for four different models as a function of the number
of model parameters.
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Chapter 6

CONCLUSIONS

6.1 Summary of Contributions

In this thesis | have developed three areas which aid wind estimation over the
ocean using scatterometer data. These three general contributions are (1) a method for
estimating error in both point-wise and model-based retrieved winds, (2) a method for
eliminating improbable wind aliases, and (3) alternate wind models for use in model-based
wind retrieval. A more complete summary of each of these main areas follows.

6.1.1 Error estimation in wind retrieval

In Chapter 3 two approaches to estimate error in point-wise and model-based
retrieved winds were developed. As part of this development, a measurement noise model
which includes uncertainty in the Geophysical Model Function (GMF) was developed.

It was found that the resulting noise probability density function could be considered
Gaussian with little effect on wind retrieval for both NSCAT and ERS-1 scatterometers.

In addition, the Cramer-Rao bound was derived for both point-wise and model-
based retrieval processes as an approximation to the covariance of retrieved winds. Using
this approximation it was shown that the covariance of point-wise retrieved winds is
sensitive to the true wind direction. In particular, if the true wind direction is aligned
with either the fore or aft beam, then estimation uncertainty dramatically increases.
Moreover, comparison of the Cramer-Rao bound with simulations show that the maximum
likelihood estimator for point-wise wind retrieval is nearly efficient for most true wind
vectors. Furthermore, comparing the estimated covariance of model-based and point-wise
retrieved winds shows that model-based wind estimates can have greater variance than
point-wise estimates at some cell locations in a region. This is true especially if the model
contains unimportant basis vectors whose parameters cannot be estimated accurately for
the particular region under consideration, suggesting that a one-size-fits-all linear model
may not be adequate for accurate wind retrieval.

Also in Chapter 3 a direct covariance approximation method using the implicit
function theorem was described and implemented for point-wise retrieved winds. It was
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found that the approximation compares favorably with the Cramer-Rao bound approxima-
tion for many true wind vectors. However, when the estimation uncertainty grows, the
direct covariance approximation differs drastically from the Cramer-Rao bound. As aresult,
it was suggested that to make use of the direct covariance approximation, more terms in
the Taylor expansion would need to be kept at considerable cost in complexity. Therefore,
the Cramer-Rao bound is suggested as the better approximation to the covariance of wind
estimates.

6.1.2 Distinguishing maxima for wind alias elimination

In Chapter 4, a method for eliminating wind aliases for both point-wise and
model-based retrieval was suggested based on a likelihood-ratio decision rule. It was found
that the approach can ameliorate the dealiasing problem in point-wise retrieval and often
eliminate it altogether with model-based retrieval. Even if the approach does not dismiss
the need for dealiasing, it allows a dealiasing algorithm to work with only those winds that
are statistically consistent with the measurements.

6.1.3 Wind field modeling

Finally, in Chapter 5 several additional linear models were proposed for use in
model-based retrieval. All of these models are based on modeling the wind directly instead
of through its curl and divergence. One of these models is a Karhunen-Loeve basis set for
25km wind fields. Comparing the modeling error introduced by each of these models with
Long’s (PBC) model for varying model-orders shows that all models give similar error. The
Fourier model had less modeling error on simulated wind fields although this is probably
a result of the averaging done to obtain these fields. However, it is recommended that
the Karhunen-Loeve model be used in model-based retrieval since it admits the greatest
flexibility in model-order selection and has orthonormal columns.

6.2 Future Research

There are several possible directions for future research which come out of the
essential contributions of this thesis. As a result this section will discuss future research as
it pertains to each of the three basic areas.
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6.2.1 Error estimation in wind retrieval

One area for future research is improving the model usedfoneasurements
and evaluating its effect on wind retrieval. It is evident that geophysical modeling error
must be included to obtain believable estimates of retrieved-wind uncertainty. In this thesis
it was assumed that uncorrelated Gaussian noise was added to each measurement used in
wind retrieval. Research could be done which investigates the effect on wind retrieval of
correlation in the geophysical modeling error. Most importantly in this regard, the effect on
wind estimate uncertainty should be investigated assuming some covariance in the noise
added due to the geophysical model function error. In particular, the Cramer-Rao and/or
the direct covariance estimate should be re-derived with covariance in the measurements
due to modeling error included.

Another extension derived from the Chapter on wind retrieval uncertainty is to
investigate the Cramer-Rao bound on model-based estimates in more depth. In particular,
the effect of wind field modeling error on the estimatesXfshould be investigated to
determine the effect on the uncertainty ¥n An additional extension to the Chapter on
wind retrieval uncertainty is to calculate an error bound on the direct covariance estimate
by using Taylor's second-order remainder formula. This would involve using implicit
differentiation to calculate the second derivatives of the wind estimate function. This would
also be useful in expanding the discussion of bias contained in Appendix B. Of course,
an ideal extension to the work on wind retrieval uncertainty would be the derivation of a
region-estimate of the wind.

6.2.2 Distinguishing maxima for wind alias elimination

There are several possible extensions to the chapter which develops the statistical
test to distinguish among the maxima that correspond to wind aliases. One area of future
research would be to evaluate in more depth the possibility of applying the decision rule to
model-based retrieved winds in order to distinguish a single wind-field among the several
that give maxima to the log-likelihood function. As shown in Chapter 4, application to
model-based winds is straightforward and has the potential to uniquely identify a single
wind field.

Another possible extension to this chapter is to examine the effect of covariance
in the geophysical modeling error as described before. Essentially, this would involve
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a re-derivation of the distribution of the likelihood-ratio statistic assuming covariance
in the o° measurements. Such a derivation would necessarily use a slightly different
approach than the one used in this thesis, since independence was immediately exploited in
calculating the moment generating function. Nonetheless through a linear transformation,
the likelihood-ratio statistic could be brought to a similar form as used in this thesis (Imhof,
1961). As a result, the expression te§ would be essentially the same (with different
definitions forey, di, andyy).

A third possible extension to the work in Chapter 4 is the possibility of using the
test to remove the ambiguity problem completely in some cases by using multi-scale wind
retrieval. There is a definite upwind/downwind asymmetry in the GMF which indicates
that theoretically it should be possible to resolve a single wind direction if the noise is
reduced to a low enough level. Another way to see this is to recall that without noise there
is only one wind velocity that exactly agrees with three or more measurements according to
the GMF. The effect of noise can be reduced by reducing the resolution of wind retrieval.
In other words, more measurements are used for each estimated wind vector and the wind
is retrieved on a 100km by 100km or larger grid. Theoretically, as more measurements
are gathered, the true wind direction could be distinguished by using the statistical test
developed in this thesis. Then, the wind alias closest to this direction could be selected
for wind retrieved on a grid of finer resolution. One limit to this technique is correlation
length in the wind field at the desired resolution. If the winds at this resolution change a
great deal over the larger region, then averaging the measurements from different regions
would “wash out” the true wind direction. Nonetheless, preliminary results suggest that
this technique could work.

6.2.3 Wind field modeling

There are also several possible areas of future research with respect to wind
field modeling. One possible extension involves the Karhunen-Loeve basis. In this thesis
all types of wind fields from both north and south of the equator in the Pacific Ocean were
used as data from which the basis vectors were estimated. One disadvantage of using such
a broad data set, is that specific phenomenological features such as fronts are buried in the
noise. As aresult, a truncated basis may not model certain features such as fronts, well. If a
data set could be generated that includes such specific phenomenological features as fronts
or cyclones then a K-L basis could be estimated from this data set. Then, model-based
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retrieval could be performed by first examining thiemeasurements to determine which
model would “fit” the data and then using that model. This could result in significant
reduction of the number of basis wind-field vectors that need to be used. Such a procedure
could also be implemented with the K-L basis vectors already presented by simply using
models of different orders as the different available models.

Another extension to the area of wind field modeling is to examine wind field
models that directly model speed and direction instead of the rectangular components
of the wind vector. This may result in more useful models. However, such research
would probably have less impact than a model-based approach that used varying models
as described above.

A final path of future research is to compare models with respect to the model-
based Cramer-Rao bound uncertainty derived in Chapter 3. Since this is a function of
the wind field model used, some wind field models may perform better than others. This
estimation precision criteria along with a model accuracy criteria could be used to derive a
future “best” model.
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Appendix A

APPROXIMATING A NEAR-GAUSSIAN DENSITY

Often it is convenient to approximate a near-Gaussian density function using
known functions. The approach outlined in this appendix gives more detail for the technique
given on page 217 of Papoulis (1991). The technique is to expand the error between the real
density and the approximating Gaussian density in Hermite polynomials. The coefficients
can then be determined in terms of the moments of the real density function.

Suppose the density to be approximated is denotéthasvith central moments

o = El@—p)"]  m> 1L, (A1)

wherey is the mean of the density function.
The Gaussian density which matches the mean and variance of this distribution

is
1 _(e=w)?
Sn(z) = i (A.2)

The error between the true density function and this Gaussian distribution can
be expanded in Hermite polynomials:

c(z) = flz)— fn(z), (A.3)
. 1 _($2—Ml;)2 i T — Iu

= 27‘_#_26 kZ:;)Cka ( —Qﬂz) . (A4)

(A.5)

We use (unnormalized) Hermite polynomials defined as

14
Hy(z) = Dy =", (A.6)
n=0
(_1)nk[2k—2n
Dy, = ————. A.7
ki nl(k — 2n)! (A7)

To find the coefficients(’, in this expansion, multiply both sides of Eq. (A.4)
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by H,, ((x — #1)//2jz2) and integrate over:

Fracon (552) - [ o () (52)
_ :033’“_/ dae= Hy(a)H, (@), (A.8)

where we have made the substitutior= (= — x)/+/2p2. Using the orthogonality relation
for Hermite polynomials,

/OO do e_a2Hk(oz)Hn(oz) = 2"nI\/T 6k, (A.9)
we see that
/OO dee(x ( ,u) = 2"nlC,. (A.10)
\/2,&2
Consequently,
1 x— [
Cr = M,/ dz () Hy, (ﬁ) (A.11)
15]
1 o0 2 Dkn 00 he
= o) v | de(w—p)T — A.12
s e o [ e ) = ) (A1)
151
1 22 D,
= Qkk’ Z kk (ﬂk—?n - luiv—Qn) : (A13)

0 (2p12)27"

Note thatyy = p) =1, p1 = p¥ =0, andu, = pY. As a result, the sum over can be
rewritten with upper limit: /2 — 2 whenk is even andk — 1)/2 — 1 whenk is odd. This
can be written for both odd and evéras|(k — 3)/2]. As a result, we can write

k-3

L2 (=0 (maan — 0 s,)

Cr = : A.14
' nZ:% nl(k — 2n) k2 ok/24n (A.14)

With this expression we can write an expansion for the original probability
density, f(z):

f@) = elx)+ fnlx),
- \/zime_ l1+§0kﬂk (%)] (A.15)




Appendix B

BIAS IN THE WIND ESTIMATE

This appendix extends the results of Chapter 3 to include a discussion of the
bias in the wind estimate. While the techniques discussed applies to both point-wise
and model-based estimates, implementation and notation will focus exclusively on the
point-wise wind estimate.

In Section 3.3 we assumed that the wind estimate is unbiased or constant-
biased. Comparing the predicted covariance with simulations showed that this is a
reasonable assumption for most wind vectors. At low incidence angles (near-swath) and
low wind speeds, when the true wind direction is aligned with the fore and/or aft beams, the
unbiased Cramer-Rao bound seriously over-predicts the simulated variance (especially for
the wind direction estimate). This leads us to hypothesize that under these conditions the
wind estimate is biased. In this appendix we derive a method to approximate the wind bias
and then apply the Cramer-Rao bound for biased estimators to approximate the covariance.
This results in an approximation to the covariance of retrieved wind that more closely
follows simulations.

B.1 Approximating the bias

To approximate the bias in the wind estimate, we use the approach discussed
in Section 3.4 and adapted from Fessler (1995; 1996). As a review, in this approach the
implicit function relating the measurements to the wind estimate is expanded in a Taylor
series about the mean of the measurements. In Section 3.4 we used a first-order expansion
to directly approximate the covariance of the wind estimate. In this section, we use the
same first-order expansion to approximate the mean (and therefore the bias) of the wind
estimate.

In particular, we rewrite the equation and its derivation for Eq. (3.82):

w = h(z) ~ h(z) + D(z — z), (B.1)

L Although not explicitly stated in the text, the unbiased Cramer-Rao bound also applies to constant-biased
wind estimates.

141



whereD = 0h(z)/0z is a (row) derivative matrix with elements

Oh;
D= (8.2)
From this approximation fo# and estimate of the mean éfcan be obtained:
E(w) = h(z),
= h[M(w)]. (B.3)

This equation implies that an approximation to the wind estimate bias can be
obtained by applying the wind retrieval maximization algorithm to noise-free “measure-
ments” obtained using the GMF on the true wiwd (In this context,\ (w) refers to the
vector ofo;, values needed for wind retrieval.) The wind bias is the difference between
the expected value of the estimate and the true windAs a result, the bias can be
approximated as:

(B.4)
(B.5)

B(w)

Il
2
|
z

.
=
=
2

|

=

B.2 Biased Cramer-Rao bound

There is a more general version of the Cramer-Rao bound which admits the
possibility of bias in the wind estimate. This bound on the covariance can be expressed as
(Abel, 1993):

~ ~ T
o> oFE (W)J_1 OFE (W) 7 (B.6)
ow ow
> T, (B.7)
where
' = o (W), (B.8)
ow
so that
_ OE ()
¥ o, (B.9)
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Because of the bias, the total mean square error includes this covariance as well
as the bias:

MSE > B(w)B(w)l +TJ7'TT. (B.10)

I' can be approximated using the approximation to the bias derived in the
previous section and the chain rule:

0B (w)
F(W) - aw 9
~ MW (B.11)
ow
Oh(z) OM(w)
P — (B.12)
~ DG. (B.13)
In this expression we have used notation as in Chapter 3 where
p =20 (B.14)
0z
and
G = IMW) (B.15)
ow

All derivatives are evaluated at the poi(#, h(z)) = (M(w),h(M(w))) as in Chapter

3. In that chapter, however, we made the approximationlifiai = w (unbiased) to
calculate the derivative matri®. As a result, the expression for the second derivatives of
the likelihood function given there are not quite correct. As these are necessary to compute
D, they will be given here in their complete form. From Chapter 3 we have

D = —(D**)"'D'", (B.16)
where
9 [oL(h(z),2)]"  [9*L(h(z),2)
D N %[ aW ] _{ 8zj8wi }7 (817)
w 0 [0L(h(z),2)]"  [9°L(h(z),2)
b= = 8—W[ ow ] _{ Jw;0w;, } (B.18)
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Defining M (h(z)) = M, and recalling that, = M,(w) = M, we can write the
elements ofD'* and D*°:

i@ﬂ] n M]‘ — Mv]‘ a§z2j

11
D 2 Oy G ow (B.19)
Do — i oMy 1 OMy 0 1 O 1 0%
17 =1 8w¢ §22k aw]‘ 8wi 2§§k aw]' 2§22k awiawj
_Mk—ﬂk 8ﬂk8§§k +8kaa§i _I_Mk—ﬂk aQka
§§k 8wi 8wj 8wj 8wi §22k 8wj8wi
92 (My — Mp)2 02 (M — My)? 9%
- . L B.2
ow; <8 Ow; + 2¢4 dw;0w; |’ (B.20)
where for clarity
anZZk A A -2 aQka 6/\7k 6/\7k
Fud 2 My + B(1+ K2,,)| Fode. T X G (B.21)
agzk 1 -9 a.]\—/tvk
G = [PeMit s+ G T (B.22)

Note that the notation emphasizes that the partialsfgfare evaluated di(z).

B.3 Examples

This section presents some examples of the wind estimate bias and the biased
Cramer-Rao bound. Both ERS-1 and NSCAT examples are presented. The examples
show that accounting for the bias in the manner described above improves the agreement
between predicted variance and simulation, especially for the unrealistically large values
of covariance predicted at certain true wind directions for near swath, low wind speeds and
large K., values. The discrepancy between predictions and simulations found in Chapter
3 is not completely eliminated with this technique but it is improved.

B.3.1 ERS-1

Two examples are chosen for presentation. Since the most marked difference
between simulations and the unbiased Cramer-Rao bound occurs at near swath for low
wind speeds, both of these examples are at near swath. The first exampl€, Lises0
while the second usek,,, = 0.17. The wind cell is the same as that used to generate
Figure 3.5. Figure B.1 compares the approximate bias in the wind estimate as predicted by
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Figure B.1: Comparison of approzimate analytic bias with simulated bias for ERS-1
at near swath. Kpp = 0.

Eq. (B.5) to the bias estimated with a simulation/of= 2000 retrievals. Note that for

wind directions where the unbiased Cramer-Rao bound predicted large variance in the wind
direction estimate, the derivative of the bias with respect to the wind direction becomes
negative. This has the effect of decreasing the variance bound of the wind direction estimate
as shown in Figure B.3(a) for a true wind speed of 5 m/s. Also shown in that figure is a
comparison of the unbiased and biased Cramer-Rao bound with simulations as a function
of true wind direction. Figures B.2 and B.3(b) show similar plots assumipg = 0.17.

Notice that the variance reduction effect of the unbiased Cramer-Rao bound is even more
pronounced when the unbiased variance bound is especially high. The discrepancy with
simulations on the wind direction standard deviation is still not completely understood but
may be due to the need for higher order terms in the Taylor-series expansion) of
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Figure B.2: Comparison of approzrimate analytic bias with simulated bias for ERS-1

at near swath. Kppy = 0.17.
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Figure B.3: Comparison of Cramer-Rao bound predictions on the standard deviations
of wind speed and wind direction with simulations for ERS-1 at near swath. The standard
deviation of wind speed is shown for a ilrue wind speed of 25 m/s while the standard
deviation of wind direction is shown for a true wind speed of 5 m/s.
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Figure B.4: Comparison of approzimate analytic bias with simulated bias for NSCAT
at near swath. Kpp = 0.

Two examples are presented for NSCAT geometry at far swath. One example
assumesk,,, = 0, and the other assumés,,, = 0.17. Plots similar to those shown
for ERS-1 data are presented. Again, we conclude that the biased Cramer-Rao bound
improves the agreement with simulations in situations where the unbiased Cramer-Rao
bound predicts unusually high variance. However, it still does not resolve all of the
discrepancies.

B.4 Conclusion

In this appendix we have derived an approximation to the wind retrieval bias
along with an approximation to the gradient of the bias. The gradient is useful in
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Figure B.5: Comparison of approzimate analytic bias with simulated bias for NSCAT

at near swath. Kppy = 0.17.
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calculating the biased Cramer-Rao bound. The biased Cramer-Rao bound helps explain the
discrepancies between the unbiased Cramer-Rao bound and simulations for certain wind
directions where the unbiased Cramer-Rao bound predicts high variance. Although the
approximations derived here do not completely resolve all the discrepancies, they suggest
that with more accurate approximations to the bias (obtainable by higher order expansions
in the Taylor series used fdr), a more accurate bound could be realized.
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Appendix C

DETAILED ALGEBRA FOR WIND ALIAS ELIMINATION

This appendix is provided to describe the missing steps in Chapter 4 in going
from Eq. (4.10):

K 2 2
Skyn (25 — M) (2 — M)
A(z) = 1 + — — : ; C.1
== [l (22) # gl - o 2
to Eq. (4.18):
K
Y = ch(l'k - dk)z, (C2)
k=1
where
a = Zlog (Z?) (C.3)
BEREIES N ca
K M. — M " 2
p o= 3 W= Min)” (c5)
k=1 2(§k1_§kn)
Y = —A(z) —a+b, (C.6)
2
Sy, 1 1
_ % o C.7
o 2 (% 931)’ (€7
2 (M — M 2 (M — Mg,
4 = Son (M k) = S (M K, )‘ (C.8)

k(1 — Sk
Beginning with,
K

Az) ==Y

k=1

Skon 2o — Min)? (2 — Myq)?
10%(7)+( 2.7 h- 22 1)]’ (€9
k1 Skn Sk

it is straightforward to obtain,

—A(z) —a= i:

k=1

(srar + My — My, )? B (kg + My — Mm)z]

25¢ 25% 4 (€.10)
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Each term in the sum has the form
(pr+4q)*  (pr+s)?

- : (C.12)
r t
Expanding and collecting im we obtain,
2 2 2 2
(&_&)xz_z(fﬁ_fﬂ)x+q__5_, (€12)
r t t r r t
2 2
cx? — 2dex + T S—, (C.13)
r t
where
2 2
¢ = (p— - p—) : (C.14)
r t
g - L (E N lﬁ) 7 (C.15)
c\1t r
ri psr — pqi
= C.16
pA(t —r) rt ’ ( )
rs —tq
= . C.17
p(t =) (€19
By completing the square this expression becomes,
clz —d)?* + f, (C.18)
where
21 .2
fo= —ed®+ qt% (C.19)
r
2 2 2 2
pe(t —r)(rs —tq) q*t — s*r
_ 2
rtp?(t —r)? + rt (C.20)
_ (t - T)(qzt - Szr) - (TS - tQ)z (C 21)
rt(t —r) ’ '
_ q2t2 — q2rt — s%rt 4+ s%r? — s%r? 4 2rtqs — q2t2 (C.22)
N rt(t —r) ’ '
_ _Tt(S - q)2 (C 23)
rt(t—r)’ '
_ _lg=s) (C.24)
(t—r)
Thus, Eq. (C.10) can be written as
K
—Az)—a= |exlar — d)* + fi] . (C.25)

k=1



where

we obtain

as desired.

Ck

dp

i

oMy = Mpa) = ¢ (M — My )

k(Siy = SEn)

(Mk,l - Mk,n)z

2 (st —<t,)

Consequently, defining

K
b=— Z fkv
k=1
—A(Z) — da —|— b = Z Ck(l'k — dk)z,
k=1
Y = Z Ck(l'k — dk)z
k=1
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Appendix D

RELATIONSHIP BETWEEN MODEL-BASED FISHER
INFORMATION MATRIX AND POINT-WISE FISHER
INFORMATION MATRICES WHEN F'HAS RANK 2MN.

In this appendix, it is shown that the model-based Fisher information can be
constructed from the Fisher information matrices of the individual wind vectors in the
region when the model matri¥, has rankR M N, whereM x N is the region size.

Assume that the wind-field vector is formed by row-ordering a wind field.

W1

W = le . (D.1)

. WMN -
For a linear modelW = /"X, when/" has rank M N then the model does not restrict the
wind field in anyway. Consequently, the definition.6f is

B OL(W.Z)|" 0L(W.Z)
o = [P0 1080 02
where
MN K() Zk,l _ Mz 1
LW, 2)=-% % (Qf]“l)_|_§log (27s2, )| (D.3)
=1 k=1 ng,l

Jwisa2MN x 2M N block-matrix composed a¥/ x N, 2 x 2 blocks. The block in the
mth row andnrth column is

T
Jur = I { [aLé‘leZ)] Mgv‘: Z)} ‘ (D.4)
The dependence of the log-likelihood equatiornwon occurs only inM,, ... As a result,
IL(W,Z) _ %) Mo o = Mo | (o = M) 1 | 02,
OW ., = 0w, G 2 2%, . 8Wm(D.5)
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Consequently, we write

KO D Mo i — M (Zow = Men)? 1 02 "
S = E{ Z kym Zkm 2 ko keym i keym : ] Z, }
i Owm Zkom 21 m 2 | W
. {IZ“E OMin Zn = M [ (Zi = Mi) 1 ] 03, } (0.6)
= Ow, o 257, . 22, .| Owa

where expectation is taken over the measurement vé&ctdtr m # n, the independence
assumption of the measurements implies that the expectation of the product can be written
as the product of the expectations. Performing the expectations is then straightforward:

- T
BZ(T:H) aMk,m Mk,m - Mk,m + g%kym . 1 8§%k7m
k=1 awm g%k,m Qg%k,m Qg%k,m
K aMk,n Mk,n - Mk,n §%k7n 1 a§%k7n
5 + T o3 , (D.7)
k=1 awn ng,n Zgzk,n Zgzk,n aWn

=0 m # n. (D.8)

Wm,n

oW,

X

Thus, only blocks where: = n survive the expectation séy can be written
as a block-diagonal matrix where each blocR is 2:

. 0
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Appendix E

CALCULATING CURL AND DIVERGENCE OF MODEL WIND
FIELD BY MATRIX MULTIPLICATION

In spectral analysis of the curl and divergence of ERS1-retrieved winds, a
discrepancy between the spectra of the curl and divergence retrieved using two different
methods is observed. The first method uses matrix multiplication betweeX thextor
and a matrix designed to selected the curl coefficiends o get the assumed low order
bivariate polynomial value of the curl at each point. A similar matrix is used to obtain the
divergence. The second method, uses first differences on the model-based wind itself to
approximate the curl and divergence.

For both the curl and divergence spectra, the two methods produce spectra that
agree well until wavenumbers are high enough that the waves they represent fit inside one
of the10 x 10 regions. Inside this region the two methods produce divergent spectra. This
suggests that the two methods for computing curl and divergence are not equivalent. Since
the first difference approximation is believable, the model formulation which dictates how
curl and divergence are extracted fréfris incorrect. The matrices used to extract curl and
divergence fromX have zero entries for locations corresponding to boundary conditions
in the X vector, apparently indicating that the boundary conditions have an effect on the
curl (and divergence) of the field, a fact not previously considered.

As the model-based wind retrieval method still does an effective job of retrieving
many wind fields, it is desirable to find a matrix that can be multiplied byXheector to
obtain the correct curl and divergence. The approach to this problem used in this appendix
is to find a numerical derivative that uses all of the available data in a region to find the
curl and divergence. This numerical derivative is given in terms of a matrix that can be
multiplied by a vector (or a matrix) representing a sampled function with the result a vector
(or a matrix) that is the derivative of the function at each sampled value. The derivation of
this matrix is considered in the following.
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E.1 Derivation of the Approximation of Maximum Order Derivative Matrix

The Problem: Given af/ x N matrixUU with elements:;; representing uniform
samples at = is andy = jt¢ of a functionf(x, y), find matrices that can be multiplied by
U to approximate, using all available daty,/0: anddf/d;.

For the remainder of this discussion the functidns, j¢) is written asf (¢, 7).

The problem is solved by first finding the correct matrix fof /9: and then making a
slight modification to find the correct matrix farf/0;.

This problem can be solved using two seemingly different approaches, yet each
returns the same solution. This first approach is to interpolate (extrapolate) a derivative
estimator function using Lagrange interpolating polynomials. The second approach is to
calculate the derivative of the interpolating polynomial of the function itself.

E.1.1 Interpolating the derivative estimator

One approach to finding a numerical approximation to the derivative with
respect ta is to define the following derivative estimator function:

G () = fm—+a,n)— f(m,n) (E1)

X

Whenz is an appropriate integer (betwekand the size}M, of the matrix), this definition
can be written with matrix notation as,

~ Um+kn — Umn
G (k) = g = 2 p . (E.2)
Letting & run from1 — m to M — m (skippingk = 0) in columnn of U, M — 1
samples of the derivative estimator function can be constructed for each column. Then,
noting that

9o (0) = i Gmn (k) = 571 (E3)

interpolation or extrapolation of the constructed samplgs,ofx) to « = 0 will provide an
approximation to the derivative. The method of interpolation used is Lagrange polynomial
interpolation.

InanM x N matrix U there is enough data fad — 1 samples of the function
gmn(x). As mentioned before, these occunats k =1—m...—1,1...M —m. The
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Lagrange interpolating polynomial (as a functionepthat fits these sample pointsis given
by

M-—m M-—m r—1

S| (= (E4)
k=1—-m {=1-m
k#0 {#E,0

Thereforeg,,.(0) can be approximated b¥,,,,(0):

M-—m M-—m .y

Prn(0) = Z 9k H 1

k=1—-m {=1-m

k#0 1#£k,0
-1 -1 .y M—-m .y M—-m -1 .y M—-m —
:ngﬂ—z( ﬁ)*zgkﬂ—z o
k=1—m I=1—m = - k=1 I=1-m - =1 o
I+ I#£k
= 9—k T 7 — |+ 9k T, 7 P
= -k g kI = i kB4 o L=k
I#£k I#£k
m=1 1y (M —m)!
— _ _1 k—1 (m
,;9’“(( o)\t
Mom (m—1)! (M —m)!
R Sy A _1 k=1 \2& e .
= gk((m—1+k)!) (( ) (M—m—k)!)

Substituting Equation (E.2) into this result gives, (0) ~ df/0:| _asalinear
combination of elements in theh column ofU:

Pa(0) = mi (W) ((—U’“(W(Lnji););) ((;\y{;?;)!)

k=1

B Z () ((ninz;i);)!) ((_N%)'

Since the above approximation forf/0:| is a linear combination of the

elements in theith column of U/, it can be expressed as a matrix equation relating the
matrix U to its row-derivative at every point by,

D\U,rows — Dz(M)U

whereD; (M) isaM x M matrix whose elementén , are defined by

Pl uELER S DO )~ 1)
R o T e T
o (=)™ " (M —m)l(m — 1)!

(m—n)(M —n)(n—1)! m # n.
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Letting/ = k£ 4+ m in the first diagonal summation arid= m — & in the second this can be
rewritten as

M V=M — ) (m— 1)

o e

dw =1 izm (E.5)
Y M —mlm =t
<m—n><M n)l(n — 1)! '

This is the desired result as it gives a matrix for computinggimunorder approximation
to df /0t for eachm andn in the matrixU.
This idea can be easily extended to determine a matrix expression for finding

df/0dj|, .. foreachm andn in U by realizing that,

Ducos= (Durrous) = (Di(NYUT)" = UDF(N) = UD,(N). (E.6)

Notice that ifl/ is M x N, thenD;(N)isanN x N version of theD! matrix.

For clarity some examples @f;(1/) are given below.

~4u3 0 3/2 1/3 ]
D) — —1/3 —1/2 1 —1/6 |
16 -1 1/2  1/3
| -1/3 3/2 =3 %]
2 4 —3  4/3  —1/4 ]
—1/4 —5/6 3/2 —1/2 1/12
Di(5)=1 1/12 —=2/3 0  2/3 —1/12
—1/12 1/2 =3/2 5/6 1/4
| 1/4 —4/3 3 —4 2
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I 5 -5 10/3 —5/4 1/5

60

—1/5 -8 9 ~1 1/3 —1/20

1/20 —1/2 —1/3 1 —1/4 1/30
D;(6) =

~1/30 1/4 -1 1/3 1/2 —1/20

1/20 —-1/3 1 —2 B

~1/5 5/4 -10/3 5 -5 LI

E.1.2 Differentiating the interpolating function

A second approach can be used to derive the sénié/) matrix. This
approach has the advantage of returning a simpler expression for the diagonal elements.
This approach uses the samplesf6f, ) contained in a given column of matriX (uy,,
wherek = 1... M) directly to construct a Lagrange interpolating polynondjal «) for
f(z,n). Thendf/oi|  is approximated by taking the derivative @f,(x) directly and
evaluatingy!,(z) atz = m.

The Lagrange interpolating polynomial fé(x, n) using theM elements of the
nth column ofU is given by

M
Qn(2) = upnli(z), (E.7)
k=1
with
Mo
Lk(l') = H k — l
Zk

The derivative of this polynomial evaluatedat= m, Q)/,(m)(~ Jf/di|_ ),
can be written as

M
k=1

Multiple application of the product rule reveals that

M M M
L(x) = —jé— r—o0
w@) =TI — > II¢ )
i k—1 — -
=1 =1 o=1
£ 12k ok,
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Equation (E.8) can be rewritten as a matrix equation to relate the nhatoxts
row-derivative at each point,

Dirows = Di(M)U, (E.9)

where this time, the elements &f;(M) are given byd:, . = L/ (m). To get a better
understanding of this matrix,/ (m) is evaluated below fom = n andm # n.
EvaluatingL! (m) for m = n gives

som = | || 2 |y o)
I#m I#m otm
_ (=pmM (=DM (m = DM —m)!
 (m = 1DY(M —m)! E (m—1)
I£m
_ ¥ ﬁ (E.10)
Z
Recognizing that forn # n,
M ﬁ (m—o0) l=m,
R R
0(;&:7%171 0 [ £ m,
allows simplifying L’ (m) for m # n:
gm) = [T | |2 T om0
57:'5711 ll;}a oO;ﬁ:nl,l
= H n 1_ [ H (m - 0)
Zn o
_ ( (=™ ((—1)M‘m(m — DM — m)!)
(n— DM —n)! (m—n)
(=) (m = DM — m)!
(m—mn)(n—1DIM —n)!
-1 (M — m)l(m —1)!
_ (DM = m)y ;) . (E.11)



Using Equations (E.10) and (E.11), the element®gfi/), d., , = L/ (m) can
be explicitly written as

M 1 B
PR =Rl (E.12)
myn l#m -

(=)™ "(M —m)l(m —1)! -

(m—n)(M —n)!(n—1)!

The off-diagonal elements can immediately be seen to correspond to those
given in the earlier expression fa@r; (M ). Empirical evidence suggests that the diagonal
elements are the same as well although a proof is not immediately obvious. We expect
the two matrices to be the same since the two methods both use a Lagrange polynomial
interpolator. The second derivation, however, gives a much simpler expression for the
diagonal elements.

E.2 Using the MODA Matrix with a Row-scanned matrix

In the previous section it was shown that an approximatiomakimumorder
for 0f/0¢, ., where sampleg(z,j) are elements;, ; of the M/ x N matrix U, can be
found with the following equation:

Duyrows = Di(M)U. (E.13)

It was also shown that a similar expression can be used to find an approximation of
maximurnorder fordf/dy|,.,.:

D\U,cols = UDZT(N) (E14)
Let X be a row-scanned version &f. It can be shown that the matrix equation
A= BC,

wheredisM x N, BisM x P,andC is P x N, can be written as either the matrix-vector
equation

A= (B®]N><N)C

or the matrix-vector equation
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Here ® represents the Kronecker product for matrices. Using this fact, Equations (E.13)
and (E.14) can be written as

Dt rows = DT, (E.15)
Dot = D, T, (E.16)

where

Dy = Inrxar @ Di(N).

E.3 Using MODA to find I'

Given a wind field over anV/x N region represented by a vect, with
W = FXand

W =

-
the MODA matrix can be used to find the curl and divergence over the region frolX the
vector by multiplication by appropriatématrices. Using the MODA matrix is appropriate
since the wind field represented 3¢ is a well-filtered field with no high-frequency

Y

components.

Represent the row-scanned curl of the wind field in a regio@ bgnd represent
the row-scanned divergence by. They are related to the row-scanned wind field
component$/ andV through the MODA matrix:

¢ = -D,U+D,V,

S
I
&
I~
_|_
3
<

These equations can be rewritten as a matrix equation:

C -p, D, [T
| = — (E.17)
D D, D, V
SinceW = F'X, we can rewrite Equation (E.17) as
H=TIX. (E.18)

164



In this equation,

S A

and

P (E.19)

| -D D
| D. D,

Equation (E.19) gives an appropridtenatrix to use to obtain the curl and divergence from
the X parameters of the wind field.

165



Appendix F

MATLAB CODE FOR CALCULATING LEGENDRE AND
FOURIER F' MATRICES

F.1 LegendreF matrix

This MATLAB function takes as arguments the size of the region and the model
order in bothu andv and returns the appropriaté matrix using a Legendre polynomial
model.
function Fr = legebas(M,N,Mu,Mv)

% function Fr = legebas(M,N,Mu,Mv)

% Returns a Legendre-polynomial Fr matrix for computing

% the wind from the X parameters in the
% model-based wind retrieval technique. MxN is size of region,
% Mu is u-component model order and Mv is v-component model order.

% Calculate Yu and Yv such that U = Yu*X and V = Yv*X

Nu
Nv

(Mu+1)*(Mu+2)/2;
(Mv+1)*(Mv+2)/2;
Yu

0
Yv [;
Qmn = zeros(M*N,1);

for m = 0:Mu
for n = 0:Mu-m,
for k=1:M*N,
row = floor((k-1)/N)+1;
col = rem(k-1,N)+1;
Qmn(k) = lege(row,M,m)*lege(col,N,n);
end
Yu = [Yu Qmn];
end
end

for m = 0:Mv
for n=0:Mv-m
for k=1:M*N,
row = floor((k-1)/N)+1;
col = rem(k-1,N)+1;
Qmn(k) = lege(row,M,m)*lege(col,N,n);
end
Yv = [Yv Qmn];
end
end
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Yu = [Yu zeros(N*2,Nv)];
Yv = [zeros(N*2,Nu) Yv];
Fr = [Yu;Yv];

++++++HH+ A
function phi = lege(k,N,n)

% Computes the Legendre polynomial of order n evaluated at k
% where k lies in interval [1,N].

phi = 0;
for | = O:floor(n/2),
phi = phi + (-1)*binom(n,l)*binom(2*n-2*1,n)*(2*(k-1)/(N-1)-1)"(n-2*1);
end
phi = phi/(2™n);

F.2 Fourier F' matrix

This MATLAB function takes as arguments the size of the region and the model
order in both: andv and returns the appropriatématrix using a Fourier-series model.

function Fr = fourierbas(M,N,Mu,Mv)
% function Fr = fourierbas(M,N,Mu,Mv)

%
% Returns a Fourier Fr matrix for computing

% the wind from the X parameters in the
% model-based wind retrieval technique. MxN is size of region,
% Mu is u-component model order and Mv is v-component model order.

%

%
% Calculate Yu and Yv such that U = Yu*X and V = Yv*X
%

Nu = (Mu+1)*(Mu+2) - 1;
Nv = (Mv+1)*(Mv+2) - 1;
Yu = ones(M*N,1);
Yv = ones(M*N,1);

Qcm = zeros(M*N,1);
Qsm = zeros(M*N,1);

for m = 0:Mu
for n = O0:Mu-m
if (n+m)>0,
for k=1:M*N,
row = floor((k-1)/N)+1;
col = rem(k-1,N)+1;
Qcm(k) = cos(m*pi*row/M + n*pi*col/N);
Qsm(k) = sin(m*pi*row/M + n*pi*col/N);
end
Yu = [Yu Qcm Qsm];
end
end
end

for m = O:Mv
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for n = 0:Mu-m
if (n+m)>0,
for k=1:M*N,
row = floor((k-1)/N)+1;
col = rem(k-1,N)+1;

Qcm(k) = cos(m*pi*row/M + n*pi*col/N);
Qsm(k) = sin(m*pi*row/M + n*pi*col/N);
end
Yv = [Yv Qcm Qsm];
end
end
end
Yu = [Yu zeros(M*N,Nv)];
Yv = [zeros(M*N,Nu) Yv];
Fr = [Yu;Yv];
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