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ABSTRACT

Wind scatterometry is the determination of vector winds over the earth’s
oceans using radar data from a satellite scatterometer. In this thesis I develop three
techniques which can augment current methods of wind retrieval from scatterometer data.
In the first part I investigate methods of obtaining reliable error covariance estimates on
retrieved wind. After expanding the accepted statistical measurement model to incorporate
geophysical model function uncertainty, I derive the Cramer-Rao bound for both point-wise
and model-based retrieved winds and show that it can be used as an approximation to
the covariance. In the second part I develop a method to eliminate wind aliases using a
hypothesis testing procedure based on a likelihood ratio statistic. I then apply this method
to both point-wise and model-based retrieved winds with significant success, showing that,
especially with model-based wind fields, a single wind estimate can often be retrieved from
the data alone. In the third part of this thesis, I develop three additional wind field models
for use in model-based retrieval and compare them with previously used models.
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Chapter 1

INTRODUCTION

1.1 Background

Accurate short-term weather prediction is an important element of modern

science. We commonly rely on the five-day forecast to plan our excursions and outdoor

activities. More importantly, many industries including transportation and agriculture rely

on weather prediction in order to make crucial decisions. Unfortunately, weather prediction

is often hindered by lack of knowledge of current global weather conditions. Before the

age of satellites for monitoring the earth, information about current conditions was limited

to isolated weather stations. This means that over the oceans, where 3/4 of weather occurs,

almost nothing was known about daily weather conditions.

Satellites have made it possible to understand current weather conditions on

a global scale. An important piece of weather information for meteorology is accurate

high-resolution near-surface winds over the ocean. In 1978 the experimental Seasat

scatterometer (SASS) first demonstrated that a radar could accurately infer vector winds

over the ocean’s surface from space at an unprecedented spatial resolution and frequency

(Davison and Harrison, 1990; Levy and Brown, 1991; Stoffelen and Cats, 1991).

A wind scatterometer such as the one on-board Seasat is an active instrument

that sends pulses of microwave radiation to the earth and measures the return power. From

this measurement it infers the normalized radar cross section,��, of the ocean surface.

With a set of these noisy�� measurements, the wind vector can be estimated using a

relationship between surface wind over the ocean and��. This relationship is known as the

Geophysical Model Function (GMF).

SASS operated at 14.6 GHz (Ku-band) with either horizontal or vertical

polarization and nominally used two measurements of�� to estimate the wind velocity

over a 50km by 50km cell(Grantham et al., 1977; Johnson et al., 1980). A spacecraft power

failure shortened the SASS mission, but the SASS successes prompted further plans for

wind scatterometers.

In July 1991 the European Space Agency (ESA) launched its first wind

scatterometer on-board the ERS-1 (European Remote Sensing-1) satellite. This wind
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scatterometer operates at 5.3 GHz (C-band) with vertical polarization and makes three

measurements over each cell of a 25km by 25km grid from which wind velocity is

estimated on a 50km by 50km grid (Attema, 1991). ESA launched a second identical

scatterometer on-board ERS-2 on April 20, 1995, but technical difficulties made the wind

data unavailable until the summer of 1996.

NASA has plans for two of its own wind scatterometers: NSCAT (NASA

SCATterometer) to be launched in August, 1996 on-board a Japanese satellite, ADEOS

(ADvanced Earth Observing System), and SeaWinds to be launched in 1999. NSCAT will

take four measurements over each cell of a 25km by 25km grid and will nominally retrieve

wind over a 50km by 50km grid, although 25km by 25km retrieval is possible (Naderi

et al., 1991).

1.2 Current wind retrieval methods

There are two general methodologies employed for wind retrieval using scat-

terometer measurements: point-wise wind retrieval and model-based wind retrieval. Since

there is a relationship between�� measurements and the wind vector over a single patch of

the ocean surface, wind may be estimated patch-by-patch from the�� measurements over

just that patch. Such wind retrieval is conveniently named point-wise retrieval and each

patch is called awind vector cell. As will be explained in more detail in Section 2.3, the

nature of the geophysical model function which relates�� to winds is such that a single

wind vector estimate can rarely, if ever, be resolved from only�� measurements (Long and

Mendel, 1990a). Typically, a second step called ‘‘dealiasing’’ is used to select from among

the several ambiguities a single wind vector in each cell. The dealiasing procedure relies

on ad hocconsiderations of how wind should behave from cell to cell and is consequently

more difficult to analyze.

As a result of these difficulties the second approach to wind retrieval known as

model-based retrieval has been suggested and developed (Long and Mendel, 1990b). This

method uses a wind field model covering several wind vector cells. The�� measurements

are then used to estimate the parameters of the model. This method of wind retrieval has

limitations. The chief problem is that estimating the parameters of the wind field model

becomes a maximization problem with multiple local maxima in a multi-dimensional space.

The task of finding all significant local maxima is difficult with the current wind field

model.
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One missing element in both methods of wind retrieval is that no information

is reported about the possible error in the retrieved wind. While simulations have been

used traditionally (Leotta and Long, 1989), no reliable procedure for reporting error on

each wind estimate has been established and so error estimates on retrieved wind are not

commonly reported.

1.3 Summary of Contributions

The contributions of this thesis can be divided into three categories each of

which address some problem in current wind scatterometry.

The first major contribution of this thesis is to address the problem of error

estimates on retrieved winds. As the statistical model used for the�� measurements

is the most important factor affecting the reliability of such error estimates, I pursue an

investigation into this statistical model. Using this model, I develop a method of determining

approximate error-bars on both point-wise and model-based retrieved winds. Part of this

development involves the derivation of the Cramer-Rao bound for both point-wise and

model-based wind retrieval.

The second major contribution of this thesis is to apply the statistical model used

for wind retrieval to develop a decision-theory-based method of distinguishing among the

maxima of a maximum-likelihood equation such as the one used in wind estimation. For

both point-wise and model-based retrieval the likelihood function has multiple maxima,

only a few of which are large enough to be believable. I apply decision theory to aid in

determining which maxima actually correspond to wind estimates that statistically support

the measurements.

While the previous two contributions address problems in both point-wise and

model-based retrieval, the final general contribution is focused on model-based retrieval. I

investigate alternative wind field models using a basis-field concept in order to improve the

practical implementation of model-based retrieval by reducing the number of parameters

to be estimated.

To demonstrate the applicability of these contributions, actual data from the

ERS-1 scatterometer will be used as will simulated data from NSCAT. Nonetheless, the

derivations in this thesis can be generally applied to any of the scatterometers previously

mentioned.
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Chapter 2

WIND SCATTEROMETRY BACKGROUND

2.1 Overview

In order to understand the contributions made by this thesis, it is important to

review some fundamentals of wind scatterometry. As a result, this chapter is included to

discuss in more detail scatterometers and how wind can be estimated from scatterometer

data. This will be accomplished by first briefly describing a scatterometer and how a

measurement of normalized radar cross section,��, is made. Second, the Geophysical

Model Function which relates the ocean wind vector to�� will be described. Third, a

statistical model of the backscatter measurements will be presented which is useful in

developing a method of point-wise wind retrieval using�� data. Finally, model-based wind

retrieval will be reviewed as an extension to point-wise retrieval.

2.2 Scatterometers

2.2.1 Radar equation

A scatterometer is an active instrument designed to measure the scattering

properties of a target. Refer to Figure 2.1. The scatterometer transmits pulses of

electromagnetic radiation and receives the energy scattered off the target. The scattering

properties of the target are grouped into a single parameter,��, known as the differential

scattering cross section. This parameter is a combination of the transmitting gain back

towards the antenna and the fraction of intercepted power scattered instead of absorbed.

The returned power is related to�� and the transmitted power according to the radar

equation (Ulaby et al., 1982):

Pr =
PtG

2�2A

(4�)3R4
��; (2.1)

wherePt is the power transmitted,G is the gain of the transmitting antenna,� is the

wavelength of the electromagnetic wave,A is the effective illuminated area, andR is the

distance from the scatterometer to the target. All the parameters relating�� to the power
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Figure 2.1: Demonstration of scatterometer operation.

received can be grouped into one constantC so that

Pr = C��:

Note that knowing both the gain of the scatterometer antenna and the distance

to the target are imperative to being able to infer�� from the received power measurement.

To make a measurement of��, the scatterometer transmits a pulse of radiation and makes

a power measurement,Ps of received power. Due to the presence of background noise

it then makes a noise-only power measurement,Pn, and determines the return power as

P̂r = Ps � Pn. The measurement,z, of the radar scattering cross section is then inferred

using the radar parameters,C.

z =
P̂r
C

2.2.2 ERS-1 and NSCAT instruments

This thesis involves data from ERS-1 and simulated data from NSCAT so a

brief description of these instruments is given. Both of these scatterometers are fan-beam

scatterometers with illumination patterns shown in Figure 2.2. Both instruments coregister
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Figure 2.2: Measurement geometry for ERS-1 and NSCAT satellites.

the�� measurements onto a rectangular grid of cells aligned with subsatellite along-track

and cross-track directions, called wind vector cells, within which wind can be estimated.

On the other hand, there are notable differences between the two instruments that affect

wind retrieval beyond the obvious geometry differences. One of these is the way in which

the two instruments construct a grid of wind vector cells.

The instrument on ERS-1 uses yaw-steering, programmed such that the effects

of the earth’s rotation is counteracted, to coregister the�� measurements onto 19 nodes

(Attema, 1991). Ten of these nodes correspond to center points of 50km by 50km cells

that span the swath. The other 9 nodes are placed between these ten to generate 19 nodes

separated by 25km. Three measurements are provided by ESA at each node, one for each

of the beams. Wind can be retrieved at each of the 19 cross-track nodes using the three

measurements resulting in 25km by 25km sampling of the wind field. While sampled at

25km by 25km the effective resolution is 50km by 50km (Davis, 1993).
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The NSCAT instrument uses digital Doppler processing to colocate the��

measurements onto 24 cross-track wind vector cells that span each 600km swath. Wind can

then be retrieved at true 25km by 25km resolution using the�� measurements from each

cell (Naderi et al., 1991). In order to improve wind retrieval accuracy, the measurements

are further grouped into 50km by 50km cells over which the wind vectors are estimated.

This results in 12 cross-track wind vector cells on each side of the spacecraft.

There are other notable differences between the two instruments. ERS-1 operates

at 5.6 GHz (C-band) and uses a different Geophysical Model Function than NSCAT which

operates at 14 GHz (Ku-band). ERS-1 transmits only vertically polarized pulses from its

three beams, while NSCAT transmits both vertical and horizontal polarization from its

center beam. The result is that NSCAT nominally has four available measurements from

which to retrieve wind over the 25km by 25km cells instead of three. A final important

difference between the two instruments is level of transmit-power: ERS-1 transmits

approximately 5kW peak power compared to about 100W peak power for NSCAT. As a

result, the signal-to-noise ratio is higher for ERS-1 than for NSCAT.

2.3 Geophysical model function

With a general understanding of how�� measurements are made, consider how

these measurements are used to estimate (retrieve) wind velocity over the ocean. There

is an indirect relationship between the wind blowing over the ocean surface and the radar

scattering cross section,��, which the scatterometer measures. Wind creates waves on the

ocean surface. The waves determine how much the ocean reflects electromagnetic energy.

This correlation between wind velocity and�� allows estimation of wind from��.

The reliability of the wind estimate based on�� data is directly related to our

understanding of the relationship between wind velocity and��. Several studies have been

made on the connection between wind and waves and between wind and�� (Donelan

and W.J. Pierson, 1987; Jones et al., 1977). These studies show that the connection is a

complex one. As a result, developing a theoretically based model of the dependence of

�� on wind velocity derived from first principles is extremely unwieldy. Consequently,

empirical studies have been made to understand the relationship. Out of these studies have

come operational Geophysical Model Functions (GMF) which relate wind velocity to��.
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The GMF may be generally expressed as

�� =M(�; U; �; f; p)

whereU is the wind speed,� is the azimuth angle between the wind direction and the radar

azimuth angle,� is the radar incidence angle,f is the frequency of the radar, andp is the

polarization of the transmitted energy (horizontal or vertical). Usually the frequency,f , is

fixed for a particular instrument. In addition, it is often desirable to express the dependence

on the wind direction,�, and radar azimuth angle, , separately. As a result we often write

�� =M(�; U;  � �; p) =M(�; U; �;  ; p):

The direction convention chosen for the azimuth angle and wind direction is arbitrary as

long as it is consistent since only the difference is important to the GMF. We will assume

the convention of measuring these angles in degrees clockwise from north.

Several functional forms have been proposed for the GMF. A common approach,

however, is to simply store the empirically-derived data points in a multi-dimensional table

and interpolate intermediate values (Naderi et al., 1991). This is the approach used in this

thesis.

According to the relationship predicted by the GMF,�� is a function of only

wind speed, relative wind direction, and radar incidence angle. However, other factors

such as sea temperature, local salinity, and long gravity waves also affect the relationship.

Thus there is some uncertainty, or modeling error, in the GMF (Long, 1989).

Given a GMF, wind estimation (or retrieval) becomes an inversion problem.

Measurements of�� are taken at known values of and�. Values ofU and� are then

selected as the wind estimate in order to be statistically consistent with these observations.

Examining the SASS-2 GMF

In this section the SASS-2 GMF (Wentz et al., 1984), derived for (Ku-band)

from Seasat data, will be examined in order to illustrate its dependence on wind speed and

direction. This will aid in understanding the problems associated with inverting the model

function to obtain wind estimates.

Figure 2.3 shows plots ofM versus relative azimuth angle,�, for several values

of wind speed and incidence angle. Notice thecos(2�) dependence on azimuth angle.
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There is also a general trend of increasing�� for increasing wind speed. In addition,��

decreases as incidence angle increases.

Considering the monotonic trend of�� for increasing wind speed, it is not

surprising that wind speed estimation is fairly accurate using most estimation techniques.

The double-cosine dependence on wind direction, however, makes it difficult to estimate

wind direction from�� data. In particular, notice the similarity of�� when measured with

a relative azimuth angle of0� and180�, especially at low incidence angles and low wind

speeds. This upwind/downwind similarity makes it very difficult to uniquely resolve a

single wind direction from noisy�� measurements. As will be seen later, usually a set of

at least two wind velocities, called aliases, must be returned over each region as possible

wind solutions.

Figure 2.3 also shows that more than one wind speed and direction can give

rise to the same value of�� for fixed radar incidence and azimuth angles. Consider the

upper-left plot in the figure, and notice that for any value of� there will be one speed

which gives rise to�� = 0:5. As a result, multiple measurements are needed to define a

finite set of possible wind vectors.

Another way to visualize the model function as it relates to wind retrieval and

see more clearly the need for multiple measurements is to plot the locus of wind velocities

that give rise to a single�� for fixed radar incidence and azimuth angles. In Figure 2.4(a)

such a plot is shown for three sets of radar angles encountered with data from the ERS-1

scatterometer. Figure 2.4(b) shows the same type of plot for four sets of radar angles

representative of data from the NSCAT scatterometer. These plots were generated by

choosing a wind speed and direction and generating�� values using the C-band GMF

(CMODFDP) for ERS-1 (Freilich and Dunbar, 1993) and SASS-2 for NSCAT. For each

radar incidence and azimuth angle, all the wind speeds and directions that would induce

that�� were plotted as a single curve. The true wind speed and direction chosen was 10

m/s and45�.

As shown in Figure 2.2, the beams on ERS-1 are spaced about45� apart with the

fore and aft beams at the same incidence angle and the middle beam at a lower incidence

angle. Figure 2.4(a) shows that according to the GMF all three of these measurements

are needed to uniquely determine a wind velocity. This figure also shows that there

is a near intersection point approximately180� from the true wind direction due to the

upwind/downwind similarity. In the presence of noise, it is almost always impossible to
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distinguish this alias from the true wind velocity as the effect of noise is to move the curves

vertically.

The beams on NSCAT are similar to those on ERS-1 except for the center

beam which is offset from45� as shown in Figure 2.2. In addition, two polarizations are

measured on the middle beam so that nominally four measurements are made over each

25km region. The plot in Figure 2.4(b) shows that the second polarization on the middle

beam does not add significant extra information as to the true wind velocity. Notice that

the180� alias is also present for NSCAT measurements.

2.4 Statistical Models of Measured Backscatter

2.4.1 Motivation for studying statistical models

In general, wind estimation can be considered in the class of image recon-

struction problems. The�� measurements are the observed ‘‘image’’ and the wind to be

retrieved is the true ‘‘image’’. The�� measurements are corrupted by noise that is in

general multiplicative, that is to say the statistics of the noise are dependent on the actual

�� value. At each pixel, or cell, in a region the wind velocity is mapped to a set of�� values

through a so-called point non-linearity, corresponding to the actual scattering properties of

the wind-driven surface. Noise corrupts the true�� values during measurement. The job of

wind retrieval is to restore the original wind ‘‘image’’ from the observed�� ‘‘image’’.

There are several properties of this image reconstruction problem that make it

particularly difficult to perform. The most impeding difficulty is the non-linear mapping

between wind velocity and��. Because this mapping is not only non-linear but non-unique,

it is at best extremely difficult to resolve a single wind direction even with a high signal-to-

noise ratio. At worst, six wind directions could reasonably give rise to the observations. A

second difficulty is that the ‘‘image’’ to be restored has two values per pixel (wind speed

and direction) and the observed ‘‘image’’ has many values per pixel corresponding to the

different radar looks necessary to infer a finite set of wind velocities.

These difficulties could explain why the techniques of image restoration have

not been widely applied to the wind retrieval problem. Instead, traditional estimation

techniques have been most often used to retrieve wind from measured��, e.g.maximum-

likelihood estimation. In fact, the working algorithm that JPL (Jet Propulsion Laboratory)

will use for NSCAT retrieval is a maximum likelihood estimation procedure (Dunbar et al.,
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1988).

Since many wind estimation procedures, including those used in current wind

retrieval techniques rely on a statistical model of the measurements, the next section

presents a statistical model of��. In the following z represents a�� measurement,��t
represents the true value of�� that would have been measured in a noise free environment,

andC represents the parameters in the radar equation as shown in Section 2.2.

2.4.2 Model explanation

Many kinds of estimation procedures are dependent on a model for the proba-

bility density of the observations conditioned on the object to be estimated. In this case

we are concerned with the probability density function (PDF) of the measured value of

normalized radar cross sectionz conditioned on the wind velocityw. The components of

wind velocity can be in either polar (U; �) or rectangular (u; v) form1. This PDF is denoted

pz(zjw). Whilew can be treated as either deterministic or random, it is traditionally treated

as deterministic.

For completeness, this section presents a general model of the�� measurements

1It is convention to measure� clockwise from north so thatu = U sin(�) andv = U cos(�).
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introduced by Long (1989) and shown in Figure 2.5. This model accounts for most sources

of variability in �� given a fixed wind velocity. In practice a more simplistic statistical

model is employed, so the assumptions leading to this PDF for the measurements are also

outlined.

Assuming fixed incidence angle, azimuth angle, and polarization, the wind

vector gives rise to a predicted normalized radar cross section of the ocean surface given

by the GMF:

��m =M(�;w;  ; p): (2.2)

Although wind is a dominant factor, it is not the only factor affecting��. As a result, even

with a fixed wind vector, there will still be some variability in the true value of��. This

uncertainty can be modeled by defining a new random variable,��t :

��t = ��m(1 +Kpmv1); (2.3)

wherev1 is a zero-mean, unit-variance Gaussian random variable. Note thatKpm is in

general a function of the wind vector. The true�� of the surface,��t , is scaled by the

true radar equation parameter,C, to get a true power return,Pr. The measurement of the

returned power made by the scatterometer is corrupted by instrument noise and background

noise. This source of uncertainty can be modeled by representing the scatterometer estimate

of the returned power as a random variableP̂r:

P̂r = Pr(1 +Kpcv2) = C��t (1 +Kpcv2): (2.4)

Note again thatKpc is in general a function ofPr andv2 is another zero-mean, unit-variance

Gaussian random variable. The measured value of returned power is then divided by an

estimate of the radar parameters,Ĉ, in order to obtain a measurement of��. Uncertainty in

the radar parameter estimate can be modeled by treatingĈ as a random variable through

the introduction of another zero-mean, unit-variance Gaussian random variable:

Ĉ = C(1 +Kprv3): (2.5)

Combining these expressions, the resulting�� measurement can be written as

z =
P̂r

Ĉr

=
M(�;w;  ; p)(1 +Kpmv1)(1 +Kpcv2)

1 +Kprv3
(2.6)
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This is a formidable model, especially when it is recognized thatKpm can be

a function ofw, andKpc can be a function ofC��t . Compounding the problem is that

the only piece of this model that is well understood isKpc. There has been much effort

placed in understanding the noise model for the power measurements. It is typically given

as (Naderi et al., 1991)

K2
pc = �+

�1
Pr=Pn

+

1

P 2
r =P

2
n

; (2.7)

wherePn is the measured background noise power,Pr = C��t is the true return power

from the ocean surface, and�; �1 and
1 are values that depend on the instrument design

and are reported with the satellite data. (For ERS-1, the signal to noise ratio is large enough

that it is assumed that�1 � 
1 � 0.)

Since this is the only well understood source of noise, frequently it is assumed

that it is the only source of noise. In other words it is assumed thatKpm = 0 andKpr = 0.

With these assumptions, the measurement model becomes (note that the dependencies of

the GMF on radar incidence and azimuth angles, wind velocity, and radar polarization have

been suppressed).

z = M(1 +Kpcv2); (2.8)

Kpc =

s
�+

�1Pn
CM +


1P 2
n

C2M2
;

=

s
�+

�

M +



M2
: (2.9)

With this model, it is apparent thatz is a Gaussian random variable with mean

M and variance&z = �M2 + �M + 
 (� = 
 = 0 for ERS-1). While the assumptions

used to obtain this model may be strained, they do allow us to use a comfortable density

function forpz(zjw).

pz(zjw) =
1q
2�&2z

exp

"
�(z �M(�;w;  ; p))2

2&2z

#
; (2.10)

&2z = �M2(�;w;  ; p) + �M(�;w;  ; p) + 
: (2.11)

This is the probability distribution on the measurementsz that is commonly used to estimate

wind from scatterometer measurements of��.
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2.5 Point-wise Wind Retrieval

2.5.1 Method

As described above, at least two measurements at different azimuth angles are

required to obtain a finite set of wind estimates. We denote each measurement,zk, and

the measurement vector,z = [z1; : : : ; zK]. Associated with each measurement is a set

of radar information. In particular, values are given for the radar azimuth and incidence

angles ( ; �), theKpc-equation constants (�; �; 
), and (for NSCAT measurements) the

electromagnetic polarization of the antenna (p = horizontal/vertical). These values are also

subscripted by the index,k, given tozk. Since the commonly used model accounts only

for communication noise, it is reasonable to assume that the elements ofz are statistically

independent. In addition, we simplify notation by writingM(�k; U; �;  k; pk) asMk with

the dependence on the wind implied, and the dependence on the radar values expressed by

the subscript,k. As a result, the joint distribution ofz can be written as

pz(zjw) =
KY
k=1

1

&zk
p
2�

exp

"�(zk �Mk)2

2&2zk

#
; (2.12)

&2zk = �kM2
k + �kMk + 
k: (2.13)

With this statistical model of the measurements given the wind, the wind is

estimated given observations,z0, by selecting the wind vector̂w = (Û ; �̂) that gives the

maximum value of the density function. This is simply maximum likelihood estimation:

ŵ = arg max
w

pz(z0jw) (2.14)

An equivalent but more computationally tractable problem is to maximize the log-likelihood

function overw:

ŵ = arg max
w

L(w; z0); (2.15)

L(w; z0) = log pz(z0jw)

= �
KX
k=1

(
[zk �M2

k]

2&2zk
+

1

2
log[&2zk ] +

1

2
log(2�)

)
: (2.16)

The empirical dependence ofMk onw requires that the optimization ofL(w; z0) be done

numerically.

This function typically has several local maxima due to the symmetry inherent

in the GMF. Figure 2.6(a) shows a representative normalized likelihood function from an
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Figure 2.6: Example likelihood functions used in wind retrieval for both ERS-1 and
NSCAT.

actual ERS-1 wind vector cell. Notice the presence of two dominant peaks which indicate

possible wind solutions. Figure 2.6(b) shows the log-likelihood function for the same wind

vector cell. This plot makes evident that the likelihood function has more than two local

maxima, even though the other maxima are not as significant as the first two. Similar plots

for simulated NSCAT measurements are shown in Figures 2.6(c) and 2.6(d). Notice that

the smaller signal-to-noise ratio for NSCAT measurements widens the peaks.
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In typical wind retrieval all of these local maxima are saved for each wind vector

cell as possible wind solutions. Each of these possible solutions is called an ambiguity,

or alias. As is evident from the figures, the set of wind solutions have similar speeds but

widely varying directions, and some are more likely solutions than others.

A second step called dealiasing, or ambiguity removal, must be performed

to choose a single wind field. This step takes into account that wind from cell to cell

is correlated. One particular method that is used is an iterative median-filter algorithm

described in detail by Shaffer (Shaffer et al., 1991). Briefly, all cells are initialized to

the wind estimates giving the highest likelihood values. On each pass, the wind vector in

the center of a moving window is replaced by the ambiguity closest to the median of the

window. This is repeated until no changes occur.

2.5.2 Problems with point-wise retrieval

Although point-wise retrieval is a useful method for wind field estimation over

the ocean, it does have short-comings. One of the problems is the unjustified technique

of keeping all local maxima of the likelihood function. It seems reasonable to keep local

maxima that are comparable in magnitude to the global maximum, but to keep maxima

that are much smaller than the global maximum seems to ignore the basic philosophy of

maximum likelihood estimation: choose the wind vector that maximizes the probability of

observing the measurements. Passing wind estimates on to the dealiasing step that give

rise to significantly lower maxima ignores the fact that such a wind vector would only with

very low probability have given rise to the observed measurements. This complicates the

dealiasing step and decreases the reliability of the retrieved wind.

Another short-coming of point-wise retrieval is the lack of any derived error-

bars for the wind estimates. Part of this problem is due to the lack of understanding about

how to model uncertainty in the GMF which relates wind to��. Since the wind estimate

depends directly on the�� measurements, knowledge about the distribution of the wind

estimate depends on a reliable model of the�� measurement distribution. Even though

little is understood about all noise sources in the�� measurements, approximations can be

made in order to give more specific information as to the accuracy of wind estimates.

A final shortcoming of point-wise wind retrieval is the dealiasing step, which is

largelyad hocand difficult to analyze. In addition, it can be error prone over large regions

due to selection of the wrong alias. In order to remove this complicated dealiasing step,
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model-based wind retrieval was developed. This technique will be described in the next

section.

2.6 Model-based wind retrieval

2.6.1 Method

To overcome some of the problems with the dealiasing step of point-wise wind

retrieval, model-based wind retrieval was introduced by Long and Mendel (1990a). In

model-based estimation, the wind vectors over a large region are estimated at the same

time. These wind vectors are combined into a single wind field:

W =

266666666664

w1

...

wl

...

wMN

377777777775
; (2.17)

wherel is the lexicographical index into anM �N matrix. This wind-field matrix is made

up of M cross-track rows withN along-track wind vectors. The wind vector in thelth

lexicographical cell of this matrix is denoted,wl = (Ul; �l) = (ul; vl).

The�� measurements over the region from which the estimate is to be made

are grouped into a large measurement vector:

Z =

266666666664

z1
...

zl
...

zMN

377777777775
: (2.18)

In this block vector,zl is a variable length vector representing the measurements taken

over thelth lexicographical cell in the region. It is sometimes convenient to represent the

individual elements of each measurement vector and so we establish notation. Thekth

measurement in thelth vector ofZ will be denotedZk;l. Associated with each measurement,

Zk;l, is a set of radar information. Values are given for the radar azimuth and incidence

angles ( ; �), theKpc equation constants (�; �; 
), and (for NSCAT measurements) the
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electromagnetic polarization of the antenna (p = horizontal/vertical). These values will

also be subscripted by the index,k; l, given toZk;l.

The joint probability density function of the large measurement vector is

constructed from the marginal distributions of the measurements over each cell by

assuming independence. As a result,

pZ(ZjW) =
MNY
l=1

K(l)Y
k=1

1p
2�&Zk;l

exp

24� (Zk;l �Mk;l)
2

2&2Zk;l

35 ;
&Zk;l = �k;lM2

k;l + �k;lMk;l + 
k;l; (2.19)

whereK(l) represents the number of measurements inzl. In addition, to simplify notation

we have writtenM(�k;l; Ul; �l;  k;l; pk;l) asMk;l.

The key element of model-based estimation is the introduction of a wind

model to introduce correlation in the wind field. This model can be written generally as

W = g(X), whereg is a mapping from a dimensionally smaller space of model parameters,

X, to the2MN dimension space of sampled wind fields.

Instead of directly estimating the wind using Eq. (2.19), the model parameters

are first estimated using maximum likelihood

X̂ = argmax
X

flog pZ [Zjg(X)]g : (2.20)

Then the wind estimate is determined asŴ = g(X̂). Note that the same problem of

multiple solutions exists due to the symmetry of the GMF. This time, however, many fewer

wind fields need to be pieced together to cover a satellite track so the task of dealiasing

becomes much simpler.

2.6.2 Status of model-based retrieval

The model in current use is a linear model derived from first principles but

which assumes a low-order polynomial curl and divergence field along with a low-order

polynomial for the required boundary conditions (Long and Mendel, 1990a). Without

going into all the details, the model can be represented by the linear equation.

W = FX (2.21)

The matrixF is 2MN �Mx whereM � N is the wind field region size andMx is the

number of parameters in the model. The number of parameters can be varied according to
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the model order desired. In this model, the elements ofW are defined to be the rectangular,

(u; v) components of the wind vectors in the region. In addition all of theu components

are lexicographically ordered into the wind-field vector prior to row-scanning all of thev

components. Specifically,W is defined as

W =

2666666666666666666666666664

u1
...

ul
...

uMN

v1
...

vl
...

vMN

3777777777777777777777777775

; (2.22)

wherel is the lexicographical index into theM �N region.

The current limitation of model-based retrieval is the lack of a suitable algorithm

for finding all of the important local maxima expected from the log-likelihood function.

Part of this problem is due to the large number of model parameters to be estimated. The

other part of this problem is the existence of unimportant local maxima inhibiting the

search. Another missing element in model-based retrieval is the same as for point-wise

retrieval: a field-by-field estimate of the error in retrieved winds.
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Chapter 3

ERROR ESTIMATION IN WIND RETRIEVAL

3.1 Statistical Model Revisited

The most important factor in determining a reliable error estimate for retrieved

winds is a realistic model of the noise in the measurements. In Section 2.4.2 a commonly

used distribution was presented. As discussed in that section this statistical model makes

two assumptions that while simplifying the estimation procedure leave doubts about its

accuracy in determining error estimates for wind retrieval. The first simplifying assumption

often made is that the GMF is completely accurate in relating wind velocities to��. The

second assumption is that the radar parameter,C, is known exactly. Both of these are only

approximations that need improvement in order to report reliable covariance estimates of

retrieved wind. The purpose of this first section is to ameliorate the problem by tighting the

first assumption. In particular, this section examines the effect on the probability density

function of the measurements if random error in the GMF is allowed.

In order to perform this investigation, the general model for the measurements

introduced by Long (1989) and given by Eq. (2.6) is used. As uncertainty in the radar

parameter,C, is not considered here,Kpr is still assumed to be zero. As part of the

investigation on the effect of keeping a non-zero value forKpm, a more detailed discussion

of uncertainty in the GMF is presented.

3.1.1 Uncertainty in the GMF

The Geophysical Model Function can be most generally thought of as an

empirically derived table indexed by four independent variables: incidence angle, relative

azimuth angle between the wind direction and the radar antenna, wind speed, and

polarization. There is a fifth independent variable, frequency. Since current scatterometers

operate at a single frequency a separate table is constructed for each desired operating

frequency (14 GHz for NSCAT and 5.6 GHz for ERS-1). The complexity involved in

deriving the GMF makes assessment of GMF uncertainty difficult.

As a result, we will assume a simple model for GMF uncertainty and determine

the effect on the overall�� measurement model. Regardless of the experiments used to
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derive the GMF, it will always maintain a certain degree of inaccuracy since wind velocity

is not the only geophysical parameter affecting�� of the ocean surface. Other factors

can feasibly modify�� of the ocean surface: long-waves, distance from land, sea-surface

temperature, and salinity are a few parameters that can also influence��. The current GMF

ignores all of these factors and assumes that wind velocity is the only source of�� changes.

To account for the inaccuracy of this presumption one method is to treat the

true�� of the ocean surface as a random variable,��t , with mean given by the GMF and

variance given by a table similar to the GMF. In principle this table could be constructed

empirically using the data collected to form the GMF. It could be constructed using the

additional variability of�� measurements for the same wind velocity not accounted for

by instrument noise and background radiation. In general, this would be a function of the

same parameters as the GMF. To obtain a general idea of how uncertainty in��t translates

to uncertainty in wind estimates, we deal only with the variance of��t and assume��t is a

Gaussian random variable.

Since multiple measurements must be used to estimate wind velocity, it is

more realistic to consider��t as a random process with dependence on radar measurement

angles and polarization. This allows consideration of the correlation between��t from the

different sets of radar angles and polarization that are used to retrieve wind. However, no

prior correlation information on��t is available, and it is not the purpose of this thesis to

construct such information; therefore, we assume that the��t random process is completely

uncorrelated. Given the prior Gaussian assumption, we effectively assume that different

realizations of��t are independent for the purposes of estimating the wind. As a result, we

only need to consider��t as a random variable.

To clarify the description given in the preceding paragraphs, letM(�;  �
�;U; p) represent the GMF for a given frequency, incidence angle, relative azimuth angle,

wind speed, and polarization. Associated with the GMF is a hypothetical variance of the

GMF denoted,V(�;  � �;U; p) which accounts for the model function uncertainty. Then,

for a particular set of�; �; U; andp; ��t is modeled as a Gaussian random variable with

meanM and varianceV.

It is customary in scatterometry to define the normalized standard deviation,

Kp of a random variable. To distinguish it from other noise sources, theKp of ��t is called
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Figure 3.1: Model for �� measurements used in this thesis.

Kpm, and defined as

Kpm =

pV
M : (3.1)

Then��t can be written as

��t =M(1 +Kpmv1); (3.2)

wherev1 is a zero-mean unit variance Gaussian random variable. Note thatKpm is generally

a function of�;  � �;U; andp, as well as frequency. Using this notation, the probability

density function of��t (the true normalized radar cross section of the ocean surface) can be

written for a fixed wind velocity,w, as

p��t (�
�
t jw) =

1q
2�M2K2

pm

exp

"
�(��t �M)2

2M2K2
pm

#
: (3.3)

3.1.2 Effect of GMF uncertainty on overall measurement model

With a model for uncertainty in the GMF, the effect on the overall measurement

model can be explored. Consider Figure 3.1 which is a simplified block-diagram similar to

Figure 2.5 but showing only communication noise and GMF uncertainty. From this figure

we see that

z =M(1 +Kpmv1)(1 +Kpcv2) = ��t (1 +Kpcv2); (3.4)

whereKpc is given by Eq. (2.9) withM replaced by��t :

Kpc =

s
� +

�

��t
+




��t
2 : (3.5)
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Now z is the product of two normal random variables which are not completely

independent sinceKpc depends on��t . As a result, the density function ofz is difficult

to derive directly. However, using conditional probability we can formulate an integral

expression for the density function ofz:

pz(zjw) =
Z
��t

pz;��t (z; �
�
t jw) d��t ;

=
Z
��t

pzj��t (zj��t ) p��t (��t jw)

pz(zjw) =
Z
��t

exp
�
� (z���t )

2

2(���t
2+���t+
)

�
q
2�(���t

2 + ���t + 
)

exp
�
� (��t�M)2

2M2K2
pm

�
q
2�M2K2

pm

d��t (3.6)

It is evident that this density function is not Gaussian. To see its shape,

representative plots are shown in Figure 3.2 for particular values ofM,Kpm, �, �, and
.

For all butKpm these values were chosen to correspond to actual ERS-1 data and expected

NSCAT data. The value forKpm was chosen based on research done by P. Johnson (1996)

in estimatingKpm for C-band (ERS-1). For comparison, a plot of a true Gaussian density

with the same mean and variance is shown as well. Although not exactly Gaussian, the

distribution is near-Gaussian. When� is small, as for ERS-1 data, the distribution is almost

exactly Gaussian. When� is larger, as for NSCAT data, the distribution is skewed to the

left.

While there is not a simple closed form expression for Eq. (3.6), we can obtain

a useful closed expression forp(zjw) if we make one very reasonable assumption. Note

thatKpc is only dependent on��t when� and
 are non-zero. In addition,� and
 are

usually very close to zero and much smaller than�. In fact, simply setting them to zero has

no visually perceivable effect on the density shown in Figure 3.2(b). As a result,Kpc can

be made independent of��t with little effect on the model by using the mean of��t instead

of ��t in the equation forKpc:

Kpc =

s
�+

�

M +



M2
: (3.7)

Now,Kpc is no longer a function of��t so thatz is the product of twoindependentnormal

random variables.

While this assumption still does not make the density function easy to express,

it does allow straight-forward computation of the central moments. This ultimately allows
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and variance. The two curves in (a) are nearly identical.
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an expression forpz(zjw) to be written using an expansion in Hermite polynomials whose

coefficients are determined by these central moments. This is a useful expansion technique

for approximating near-Gaussian distributions and is outlined in Appendix A.

The result is

p(zjw) =
e
�

(z��)2

2�2p
2��2

"
1 +

1X
k=3

CkHk

 
z � �p
2�2

!#
; (3.8)

Ck =

b k�3
2 cX

n=0

(�1)n
�
�k�2n � �Nk�2n

�
n!(k � 2n)!�k=2�n2 2k=2+n

: (3.9)

In these equations,�m is themth central moment ofpz(zjw), � is the mean ofpz(zjw),

and�Nm is themth moment of a zero-mean Gaussian with variance�2. It is well known

that�Nm = 0 for m odd and�Nm = (m� 1)!!�m2 for m even. We now derive an expression

for �m assumingKpc is independent of��t , but first we need�.

� = E[z] = E[M(1 +Kpmv1)(1 +Kpcv2)];

= ME[1 +Kpmv1 +Kpcv2 +KpmKpcv1v2]

= M(1 +KpmE[v1] +KpcE[v2] +KpmKpcE[v1]E[v2])

= M: (3.10)
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Now the central moments can be computed using iterated conditional expecta-

tions and the binomial expansion:

�m = E [(z �M)m] ;

= E fE [(z � ��t + ��t +M)mj��t ]g ;
= E

(
E

"
mX
k=0

 
m

k

!
(z � ��t )

kj��t
#
(��t �M)m�k

)
;

=
mX
k=0
k even

 
m

k

!
(k � 1)!!Kk

pcE
h
��t

k(��t �M)m�k
i
;

=
mX
k=0
k even

 
m

k

!
(k � 1)!!Kk

pcE
h
(��t �M+M)k(��t �M)m�k

i
;

=
mX
k=0
k even

 
m

k

!
(k � 1)!!Kk

pcE

"
kX
l=0

 
k

l

!
Ml(��t �M)k�l(��t �M)m�k

#
;

=
mX
k=0
k even

kX
l=0

 
m

k

! 
k

l

!
Ml(k � 1)!!Kk

pcE
h
(��t �M)m�l

i
;

=
mX
k=0
k even

kX
l=0

m-l even

 
m

k

! 
k

l

!
Ml(k � 1)!!Kk

pc(m� l � 1)!!Km�l
pm Mm�l;

= Mm
mX
k=0
k even

kX
l=0

m-l even

 
m

k

! 
k

l

!
(k � 1)!!(m� l � 1)!!Kk

pcK
m�l
pm : (3.11)

In these equations,

n!! =

8<: 1� 3� � � � � n n � 1 (n odd)

1 n = �1: (3.12)

This compact expression for the central moments can be rewritten for oddm and evenm:

�m odd = Mm

m�1
2X

k=0

k�1X
l=0

 
m

2k

! 
2k

2l + 1

!
(2k � 1)!!(m� 2l � 2)!!K2k

pcK
m�2l�1
pm ;

�m even = Mm

m
2X

k=0

kX
l=0

 
m

2k

! 
2k

2l

!
(2k � 1)!!(m� 2l � 1)!!K2k

pcK
m�2l
pm : (3.13)

While it is useful to have a complete expression for the probability distribution

pz(zjw) given by Eq. (3.8), usually only the first few moments are needed to approximate

the true distribution accurately. As a result, the first four central moments are explicitly
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Table 3.1: Central moments, �m, for m = 2 : : :5 for the expanded probability model of
the measurements z given the wind w.
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Figure 3.3: Comparison of actual density function to a Gaussian with a �rst order
correction factor.

listed in Table 3.1. Figure 3.3 shows how well the probability density function in Eq. (3.8)

fits the actual density function when using only a third-moment correction factor.

Given the preceding analysis, which describes in detail the density function of

the measurementsz, a question that begs response arises: ‘‘How should we apply this

distribution to wind estimation?’’ It seems overzealous to use the exact density function
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given by Eqs. (3.6) or (3.8). Not only are these equations unwieldy but they are obtained by

simplistically assuming Gaussian statistics for��t . As a result, it is reasonable to use only

the the first two moments of the resulting distribution and assume that the measurements

are Gaussian-distributed with meanM and variance�2 =M2(K2
pc +K2

pm +K2
pcK

2
pm).

For ERS-1 data, whereKpc (=
p
�) is small, the exact distribution is so close

to Gaussian that it is reasonable to assume it is Gaussian. For NSCAT data whereKpc is

not as small, the distribution has a high enough third moment to distinguish itself visually

from a true Gaussian. In the next section we investigate the effect of this difference on

wind estimation.

3.1.3 Effect on Wind Estimation

The effect on wind estimation for NSCAT data of using a Gaussian model for

the measurements when they are not truly Gaussian can be explored through simulations.

The wind is retrieved using two different probability models to observe if the different

retrieval methods have any effect on the speed and direction distribution of the estimates.

The first probability model used in retrieving wind is a strictly Gaussian model

with variance�2 = M2(K2
pc + K2

pm +K2
pcK

2
pm). The second is a near-Gaussian model

with a third moment correction using (3.8):

p(zjw) � 1p
2��2

e
�

(z�M)2

2�2

"
1 +

M3K2
pcK

2
pm

2
p
2�3=22

H3

 
z �Mp

2�2

!#
(3.14)

whereH3(x) = 8x3 � 12x. In both of these models, the multiple measurements used to

retrieve the wind are assumed independent.

For the simulations in this sections, we chose a true wind vector and then

constructed the measurements according to the multiplicative noise model given in (3.4).

A presumably large value ofKpm (= 0:20) was chosen and values ofKpc were computed

based on noise information supplied with the simulated NSCAT data.

Three cell locations in an NSCAT swath were chosen: one near the subsatellite

track, one mid-way in the swath, and one far from the subsatellite track. In each cell,

eighteen simulations were performed with 2000 retrievals per simulation. The eighteen

different true wind vectors chosen for the simulations comprised the product space of three

speeds (5,15,25 m/s) and six directions (0�; 60�; 120�; 180�; 240�; 300�). With the data from

each simulation, two sample distributions were constructed, one for wind retrieved using

the Gaussian probability model and one for wind retrieved using the corrected model.
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Figure 3.4: Distributions for wind retrieved using a Gaussian model and a third-
moment correction model.

In every case tested, the two distributions matched exceptionally well. In fact,

Figures 3.4(a) and 3.4(b) present the worst cases encountered for the speed and direction

distributions respectively. These figures were chosen based on visual inspection of all of

the calculated distributions.

Under worst-case scenarios, which these figures represent, the effect of assuming

a Gaussian model to retrieve the wind is to introduce a small bias into the retrieval. When

compared to the overall variance of the simulated distributions, this bias is quite small. As

a result, we conclude this investigation by stating that there is almost no important effect

on wind retrieval of using a Gaussian model instead of the true model derived by assuming

independent, Gaussian noise in the GMF.

3.1.4 Final measurement model

Since the effect of the non-Gaussian PDF on wind estimation is small, and it

is much easier to deal with Gaussian statistics, the measurement model used in the rest of

this paper is Gaussian. In addition, we assume that the multiple measurements needed for

wind estimation are independent1. As a result, the joint density of the measurements used

1This assumption is probably not a good one for uncertainty due to geophysical modeling error. Further
research needs to be done in this area to determine the effect on wind retrieval of correlation of GMF
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for wind retrieval is

pz(zjw) =
KY
k=1

1

&zk
p
2�
e
�(zk�Mk)

2

2&2zk ; (3.15)

&2zk = M2
k(K

2
pc +K2

pm +K2
pcK

2
pm); (3.16)

= �kM2
k + (�kMk + 
k)

�
1 +K2

pm

�
; (3.17)

�k = �k +K2
pm + �kK

2
pm: (3.18)

For model-based retrieval we write the density function ofpZ(ZjW) = pZ(ZjX):

pZ(ZjX) =
MNY
l=1

K(l)Y
k=1

1p
2�&Zk;l

e

�(Zk;l�Mk;l)
2

2&2
Zk;l ; (3.19)

&2Zk;l = �k;lM2
k;l + (�k;lMk;l + 
k;l)

�
1 +K2

pm

�
; (3.20)

�k;l = �k;l +K2
pm + �k;lK

2
pm: (3.21)

As only rough estimates ofK2
pm are available, it is treated as a constant in this thesis.

Notice that we assumeW = FX �WF in the above noise model for wind field retrieval.

As a result, the estimation model does not account for possible wind field modeling error.

The effect of this omission on the results presented in this thesis is an area that should be

addressed in future research.

The form of the probability density functions for both point-wise and model-

based retrieval are essentially identical. As a result, statistical techniques applied to

point-wise retrieval can be almost directly applied to model-based retrieval. The only

modifications are due to the difference in what is being estimated: in point-wise retrieval a

single wind vector is retrieved, while in model-based retrieval, the model parameters for a

wind field are estimated from which the wind-field estimate is derived.

3.2 Application of new model

In the previous section an enhanced model of�� measurements was presented

by incorporating uncertainty in the GMF which relates�� to wind velocity. Including this

uncertainty gives more confidence in the measurement model from which error estimates

on retrieved wind can be inferred.

The following two sections use the model developed in the previous section

to discuss two different approaches for determining a measure of uncertainty in both

modeling error among the measurements used to retrieve wind
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point-wise and model-based retrieved winds. Both approaches attempt to approximate

the covariance matrix of the wind estimate. The first approach is to assume that the

wind estimator is efficient and use the Cramer-Rao bound as the covariance of the wind

estimator. The second approach is to expand the implicit function that relates the��

measurements and the wind estimate in a Taylor series and to use this series to approximate

the covariance of the wind estimate. In both cases, we assume that the estimate is unbiased--

-taking advantage of this asymptotic property of maximum likelihood estimators. Although

unbiasedness is not guaranteed for a finite number of measurements, simulations suggest

that the maximum likelihood estimate is sufficiently unbiased for our purposes (Leotta and

Long, 1989; however, see Appendix B).

With the mean and covariance of the wind estimate determined, a confidence

interval can be developed using a Gaussian assumption with concentration ellipses. Two

difficulties must be dealt with, however, in order to make sense of the results that follow.

Both methods of approximation give the mean and covariance of the wind

estimate as a function of the true wind. Since the true wind is unknown during wind

retrieval, one wonders if such a result is useful in reporting uncertainty in actual wind

estimates. The best solution would be to obtain a set estimate of the wind in which we

estimate a region for which we arex% sure that the true wind lies. This is a difficult

problem. Alternatively, we could take a conservative approach in determining a confidence

region for the wind estimate by varying the true wind around the calculated wind estimate

and using the largest calculated covariance as the covariance for the concentration ellipse.

In this thesis, however, a simpler approach is used. The covariance matrix of the wind

estimate is calculated assuming the estimate is the true wind. This technique allows simple

reporting of wind retrieval uncertainty for a particular wind estimate.

The other important difficulty with making covariance estimates of retrieved

winds is the inherent multiple-solution problem of wind estimation. In general, after

maximizing the likelihood function there is not a single wind estimate of the true wind.

This makes it difficult to talk about the statistics ofthewind estimate until after dealiasing

has been accomplished. Trying to account for this dealiasing step in a complete statistical

development ofthewind estimate is formidable.

However, useful results are possible if we ignore the dealiasing step and focus

attention on the wind aliases themselves2. One of the aliases has an expected value over

2A formal definition of wind aliases is deferred to Section 3.4.1.
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the measurements which is the true wind. As a result, we determine the covariance of all

of the aliases. Then, when one wind vector is chosen in the dealiasing step, a covariance

will be associated with it. This covariance can be reported along with the retrieved wind as

an estimate of wind retrieval error. While this does not convey the complete error picture

since dealiasing error is ignored, it does provide a quantitative measure of how sensitive

each alias is to the noisy measurements.

Most of the time treating each wind alias as random vector dependent on the

measurements makes simple mathematical sense as the wind aliases usually correspond to

well-separated maxima of the likelihood function. If the peaks are not well separated due

to high noise levels (which can occur in point-wise wind retrieval at low wind speeds)

it is usually because the measurements are not providing enough information to make a

prediction of the wind direction.

With the understanding that we are investigating the statistics of each wind alias

separately, we proceed to develop methods of approximating the covariance of these wind

estimates.
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3.3 Cramer-Rao Bound for Wind Scatterometry

In the previous section a model of�� measurements was constructed that

attempts to incorporate uncertainty in the GMF which maps wind velocity to��. With this

uncertainty included we can with more confidence proceed to approximate the uncertainty

in the wind estimate made from the�� measurements. The first technique used is to apply

the Cramer-Rao (C-R) bound as an approximation to the covariance matrix. Since the

maximum likelihood estimator used in wind retrieval is asymptotically efficient, we expect

that for a sufficiently large number of measurements the C-R bound will be equal to the

covariance matrix of the wind estimates.

We first describe the C-R bound and give its general form. A derivation of the

C-R bound for point-wise retrieval is then presented and used to obtain the model-based C-R

bound. Finally selected results of the bound applied to both point-wise and model-based

retrieval are presented for ERS-1 and NSCAT measurement geometries. Some of these

results were presented previously by Oliphant and Long (1996a).

3.3.1 Description of Cramer-Rao Bound

The Cramer-Rao bound gives the lower bound on the error covariance matrix

of any unbiased estimator. It depends on the probability model of the measurements and

answers the question: ‘‘Given the uncertainty in the measurements, what is the least amount

of uncertainty in any unbiased estimate made from the measurements?’’ This lower bound

is the inverse of the Fisher information matrix,J , defined for the wind estimation problem

as

J = E

8<:
"
@L(w; z)

@w

#T
@L(w; z)

@w

9=; ; (3.22)

wherew can represent either the point-wise or model-based wind vector and expectation is

taken over the measurements,z. HereL is the log-likelihood function for either point-wise

or model-based retrieval, and the derivative with respect to the wind vector is a row

operator.

To describe the Cramer-Rao bound in more detail, letŵ be an estimate of true

windw with

E[ŵ] = w; (3.23)
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then

C = E[(ŵ�w)(ŵ �w)T ] � J�1: (3.24)

3.3.2 Derivation for point-wise retrieval

For point-wise retrievalw is a 2-element vector andJ is a2 � 2 matrix. The

diagonal elements of the inverse ofJ give the lower bound on the variance of the individual

estimators of the elements ofw assuming the estimator is unbiased3. This inverse can be

expressed simply in terms of the elements ofJ resulting in an explicit expression for the

lower bound on the covariance matrix of the point-wise estimate.

C � J�1 =
1

J11J22 � J12J21

24 J22 �J21
�J12 J11

35 ; (3.25)

whereJ12 = J21. We now derive an expression forJij.

For clarity, theij element of the Fisher information matrix for point-wise

retrieval is given as

Jij = E

"
@L(w; z)

@wi

@L(w; z)

@wj

#
; (3.26)

where the expectation operator is performed over the measurementsz. Note that we can

identify eitherw1 = U andw2 = � orw1 = u andw2 = v.

Recalling the equation for the likelihood functionpz(zjw) given by Eq. (3.15)

we write the log-likelihood function as

L(w; z) = �
KX
k=1

"
(zk �Mk)

2

2&2zk
+

1

2
log

�
2�&2zk

�#
: (3.27)

For reference, the partials of the log-likelihood function can be explicitly written

for use in the Fisher information matrix:

@L(w; z)

@w1
=

KX
k=1

@Mk

@w1

zk �Mk

&2zk
+

"
(zk �Mk)

2

2&4zk
� 1

2&2zk

#
@&2zk
@w1

; (3.28)

@L(w; z)

@w2
=

KX
k=1

@Mk

@w2

zk �Mk

&2zk
+

"
(zk �Mk)2

2&4zk
� 1

2&2zk

#
@&2zk
@w2

; (3.29)

3Simulations and use of a maximum likelihood estimate ofw suggest that̂w is generally unbiased, (Later
results suggest that at certain wind directions the estimate is somewhat biased. See Appendix B.)
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where, using Eq. (3.17) and assumingKpm is constant,

@&2zk
@w1

= 2(�k +K2
pm + �kK

2
pm)Mk

@Mk

@w1
+ �k(1 +K2

pm)
@Mk

@w1
;

=
h
2�kMk + �k(1 +K2

pm)
i @Mk

@w1
; (3.30)

@&2zk
@w2

= 2(�k +K2
pm + �kK

2
pm)Mk

@Mk

@w2
+ �k(1 +K2

pm)
@Mk

@w2
;

=
h
2�kMk + �k(1 +K2

pm)
i @Mk

@w2
: (3.31)

Theij element of the Fisher matrix can be expanded as

Jij = E

(
KX
k=1

@Mk

@wi

zk �Mk

&2zk
+

"
(zk �Mk)2

2&4zk
� 1

2&2zk

#
@&2zk
@wi

)

�
(

KX
k=1

@Mk

@wj

zk �Mk

&2zk
+

"
(zk �Mk)2

2&4zk
� 1

2&2zk

#
@&2zk
@wj

)
; (3.32)

=
KX
k=1

KX
l=1

E

(
@Mk

@wi

zk �Mk

&2zk
+

"
(zk �Mk)2

2&4zk
� 1

2&2zk

#
@&2zk
@wi

)

�
(
@Ml

@wj

zl �Ml

&2zl
+

"
(zl �Ml)2

2&4zl
� 1

2&2zl

#
@&2zl
@wj

)
: (3.33)

This expression can be simplified by using the fact that the measurements,zk, are assumed

independent. As a result,

E[g(zk)h(zl)] = E[g(zk)]E[h(zl)] k 6= l; (3.34)

for functionsg andh. Using this it is clear that

E[(zk �Mk)(zl �Ml)] = &2zk�kl;

E[(zk �Mk)] = 0;

E[(zl �Ml)(zk �Mk)
2] = 0;

E[(zk �Mk)
2(zl �Ml)

2] = &2zk&
2
zl
+ 2&4zk�kl;
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Making these substitutions allows simplification of the result:

Jij =
KX
k=1

KX
l=1

(
@Mk

@wi

&2zk�kl

&2zk&
2
zl

@Ml

@wj

+
@&2zk
@wi

"
&2zk&

2
zl
+ 2&4zk�kl

4&4zk &
4
zl

� &2zk
4&4zk&

2
zl

� &2zl
4&2zk &

4
zl

+
1

4&2zk &
2
zl

#
@&2zl
@wj

)
;

=
KX
k=1

KX
l=1

"
@Mk

@wi

�kl
&2zl

@Ml

@wj
+
@&2zk
@wi

�kl
2&4zl

@&2zl
@wj

#
;

=
KX
k=1

"
@Mk

@wi

1

&2zk

@Mk

@wj
+
@&2zk
@wi

1

2&4zk

@&2zk
@wj

#
: (3.35)

This expression can be further simplified by substituting from Eqs. (3.30) and

(3.31)

Jij =
KX
k=1

"
1

�kM2
k + (�kMk + 
k)(1 +K2

pm)

+
(2�kMk + �k(1 +K2

pm))
2

2(�kM2
k + (�kMk + 
k)(1 +K2

pm))
2

#
@Mk

@wi

@Mk

@wj
: (3.36)

It is interesting to note that when�k = 
k = 0 (the ERS-1 noise model) this expression

simplifies even further to

Jij =
KX
k=1

"
1

�kM2
k

+
2

M2
k

#
@Mk

@wi

@Mk

@wj
: (3.37)

It is also useful to express the Fisher information matrix using matrix notation.

To this end, note that theij element ofJ has the general form

Jij =
KX
k=1

akbk;ibk;j: (3.38)

Thus,J can be written as

J = GTAG; (3.39)

whereA is aK �K diagonal matrix with elements

Akk =
1

�kM2
k + (�kMk + 
k)(1 +K2

pm)
+

(2�kMk + �k(1 +K2
pm))

2

2(�kM2
k + (�kMk + 
k)(1 +K2

pm))
2
;

(3.40)
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andG is aK � 2 (row) derivative matrix:

G =
@M
@w

=

(
@Mi

@wj

)
: (3.41)

We can verify Equation (3.35) by comparing it with the derivation given by

Scharf (1991) for a general multivariate normal model. In this model,X is a random

sample consisting ofM independent,N -dimensional, normal random vectors. The mean

of each of theM random vectors is theN � 1 vectorm(�) �m where� is the parameter

vector. Similarly,R(�) � R is theN � N covariance matrix of each of theM random

vectors. The joint distribution of the random sample can be written as

f�(x) = (2�)�MN=2jRj�M=2 exp

"
�1

2

MX
i=1

(xi �m)TR�1(xi �m)

#
:

(3.42)

When this is the joint distribution, the elements of the Fisher information matrix can be

expressed are

Jij =
M

2
tr

 
R�1@R

@�i
R�1@R

@�j

!
+M

@mT

@�i
R�1@m

@�j
: (3.43)

In our case, the random samplez is the one measurement atK different azimuth

and incidence looks by the scatterometer. As a result,M = 1. Using the measurement

model, two identifications can be made:

m =

26664
M1

...

MK

37775 (3.44)

R =

26664
&2z1 0

...

0 &2zK

37775 (3.45)

With these identifications, it can be shown that Equation (3.35) gives the same value for

elements of the Fisher information matrix as Equation (3.43) taken from Scharf (1991).

This completes the derivation of the lower bound on the covariance of the

point-wise estimate of the wind. We now extend this result to model-based wind retrieval

and determine an estimate of the covariance of model-based wind estimates.
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3.3.3 Covariance of model-based wind estimate

Before directly applying the Cramer-Rao bound to model-based wind estimates,

we first take a closer look at the error covariance matrix for model-based retrieval.

Ce
W

= E
h
Ŵ�W

i h
Ŵ �W

iT
: (3.46)

Here,W is the true wind-field vector and̂W is the estimate calculated by estimating the

model-parameters,̂X, and mapping them through the model:

Ŵ = F X̂: (3.47)

This error covariance matrix may be rewritten as

Ce
W

= E
h
Ŵ �EŴ + EŴ �W

i h
Ŵ � EŴ+ EŴ �W

iT
= E

h
Ŵ �EŴ

i h
Ŵ� EŴ

iT
+ E

h
EŴ �W

i h
EŴ �W

iT
= CW + CF

W
; (3.48)

where

CW � E
h
Ŵ � EŴ

i h
Ŵ � EŴ

iT
; (3.49)

CF
W

� E
h
EŴ �W

i h
EŴ �W

iT
: (3.50)

When written in this way it is evident that the total error in the model-based wind estimate

is the sum of the covariance matrix of the wind estimate,CW, and the modeling error,CF
W

.

AssumeX̂ is an unbiased estimate of the true model parameters:

EX̂ = X = F yW; (3.51)

and

EŴ = FX = FF yW =WF : (3.52)

Consequently, we can rewrite the modeling error as

CF
W

=
�
FF y� I

�
WWT

�
FF y� I

�T
;

=
�
FF y� I

�
WWT

�
FF y� I

�
: (3.53)

This error represents how accurately the model portrays real wind and is one of the

considerations in developing a wind model. Since this section does not deal directly with
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wind modeling, we focus only on approximatingCW using the Cramer-Rao bound and

recognize that the total error in model-based-retrieved winds includes some modeling error

as well.

In order to use the Cramer-Rao bound to approximate the covariance of the wind

estimate, it is important to recognize that the bound only directly applies to the parameter

being estimated. In model-based wind retrieval the estimated object is a parameter vector,

X. As a result, to find an approximation to the covariance of the wind estimate, we first

approximate the covariance of the model parameters using the Cramer-Rao bound and then

useŴ = F X̂ to estimate the covariance of the wind-field vector:

CW = E
h
Ŵ � EŴ

i h
Ŵ �EŴ

iT
;

= E
h
F X̂� FEX̂

i h
F X̂� FEX̂

iT
;

= F
h
X̂ � EX̂

i h
X̂ � EX̂

iT
F T ;

= FCXF
T : (3.54)

SinceX̂ is estimated using maximum likelihood, it is asymptotically unbiased

with covariance equal to the Cramer-Rao bound. With the large number of measurements

over theM �N region used to estimatêX it is reasonable to assume thatX̂ is unbiased

and its covariance can be well-approximated by the Cramer-Rao bound:

CX � J�1
X
; (3.55)

whereJX is the Fisher information matrix of the model parameters:

JX = E

8<:
"
@L(X;Z)

@X

#T
@L(X;Z)

@X

9=; : (3.56)

With this expression for the covariance on the model parameters, the covariance on the

wind-field estimate can be well-approximated as

CW � FJ�1
X
F T : (3.57)

To calculate the elements ofJX we recognize that the likelihood function

for estimatingX from Z is essentially identical to that used for point-wise retrieval in

estimatingw from z. Consequently, we can simply re-write Eq. (3.35) in model-based

notation as the Fisher matrix for the estimated model parameters:

(JX)ij =
MNX
l=1

K(l)X
k=1

24@Mk;l

@Xi

1

&2Zk;l

@Mk;l

@Xj
+
@&2Zk;l
@Xi

1

2&4Zk;l

@&2Zk;l
@Xj

35 : (3.58)
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The only difference between this equation and the corresponding one derived for the

point-wise case is that the partial derivatives are taken with respect to the model parameters

Xi and the double indexing specifies not only which measurement over a single cell but

also which cell over a large region.

This expression can be further simplified as in the point-wisecase by substituting

from Eqs. (3.30) and (3.31)

(JX)ij =
MNX
l=1

K(l)X
k=1

"
1

�k;lM2
k;l + (�k;lMk;l + 
k;l)(1 +K2

pm)
+

(2�k;lMk;l + �k;l(1 +K2
pm))

2

2(�k;lM2
k;l + (�k;lMk;l + 
k;l)(1 +K2

pm))
2

#
@Mk;l

@Xi

@Mk;l

@Xj
(3.59)

It is again interesting to write the expression for� = 
 = 0 (the ERS-1 noise model) which

simplifies it even further to

(JX)ij =
MNX
l=1

K(l)X
k=1

"
1

�k;lM2
k;l

+
2

M2
k;l

#
@Mk;l

@Xi

@Mk;l

@Xj

: (3.60)

As with the point-wise expression,JX can be written using matrix multiplication:

JX = GTAG; (3.61)

whereA is anL � L diagonal matrix, withL =
PMN

l K(l), having elements

Al0l0 =
1

�l0M2
l0 + (�l0Ml0 + 
l0)(1 +K2

pm)
+

(2�l0Ml0 + �l0(1 +K2
pm))

2

2(�l0M2
l0 + (�l0Ml0 + 
l0)(1 +K2

pm))
2
:

(3.62)

Herel0 is a new index that subsumesk andl. In addition,G is anL�Mx (row) derivative

matrix:

G =
@M
@X

=

26664
@M1
@X
...

@MMN

@X

37775 ; (3.63)

where@Ml=@X is aK(l)�Mx sub-matrix containing the derivatives of the model function

with respect to the model parameters for all the measurements in celll.

These partial derivatives with respect to the model parameters can be calculated

using the chain rule. First, note thatMl is only a function of the wind components in cell,

l. Then, definewp
l to be the wind vector in thelth lexicographical cell written in polar
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form (with � measured in degrees clockwise from North). Similarly, we definewr
l to be

the wind vector written using rectangular coordinates. Then,

@Ml

@X
=
@Ml

@wp
l

@wp
l

@wr
l

@wr
l

@X
; (3.64)

where for clarity,

@Ml

@wp
l

=

26664
@M1;l

@Ul

@M1;l

@�l
...

...
@MK(l);l

@Ul

@MK(l);l

@�l

37775 ; (3.65)

@wp
l

@wr
l

=

24 @Ul
@ul

@Ul
@vl

@�l
@ul

@�l
@vl

35 =

24 sin
�
�l�
180

�
cos

�
�l�
180

�
180
�Ul

cos
�
�l�
180

�
� 180

�Ul
sin

�
�l�
180

�
35 ; (3.66)

@wr
l

@X
=

24 @ul
@X1

� � � @ul
@XMx

@vl
@X1

� � � @vl
@XMx

35 =

24 Fl

Fl+MN

35 ; (3.67)

whereFl is defined to be thelth row of F . Note that the last derivative is written

assuming the common rectangular-component ordering of the individual wind vectors into

the wind-field vector,W, given by Eq. (2.22).

With this expression for the partial derivatives, the expression forG given by

Eq. (3.63) can be rewritten as

G =

266664
@M1
@wp

1

@wp
1

@wr
1

0

...

0 @MMN

@wp
MN

@w
p

MN

@wr
MN

377775

266666666664

F1

F1+MN

...

FMN

F2MN

377777777775
; (3.68)

= T�F; (3.69)

whereT is theL� 2MN block-diagonal matrix of derivatives:

T =

266664
@M1
@wp

1

@wp
1

@wr
1

0

...

0 @MMN

@wp
MN

@wp
MN

@wr
MN

377775 ; (3.70)

and� is a permutation matrix calculated to interleave the rows ofF as necessary. In

particular, it is the2MN � 2MN identity matrix with rowk permuted according to the
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map:

k 7!
8<: 2k � 1 k �MN;

k �MN + 1 k > MN:
(3.71)

With these definitions, the Fisher information matrix for the model parameters

can be written in matrix notation as

JX = F T�TT TAT�F; (3.72)

= F TQF; (3.73)

whereQ = �TT TAT� is 2MN � 2MN and dependent on the GMF and its derivates

calculated atWF = FX.

With the Fisher information matrix of the model-parameters calculated, the

lower bound on the covariance of the wind-field vector can be calculated as shown

previously:

CW = FJ�1
X
F T = F (F TQF )�1F T : (3.74)

The rank of this covariance matrix is at most the rank ofF which is less than2MN . This

means that certain linear combinations of the individual wind-vector estimates comprising

W are completely correlated. Most of the time, however, interest is only in theMN

sub-matrices ofCW along the main diagonal which specify the covariance matrices of the

individual wind vectors in theM �N region.

As the current wind field model is written in terms of the rectangular components

of the wind, the covariance matrix is that of the rectangular components of the wind vector.

In order to write the covariance for the wind-field vector in polar form, at least two simple

methods are possible.

In the first approach realizations of a random vector,~WF , with covariance

matrix given byCW and mean given byWF corresponding to the cell in the region are

generated as outlined. This random vector is then mapped to the polar version and the

sample covariance calculated.

An alternative approach is to use a first-order Taylor series for calculating the

wind-field vector in polar form,Wp
F in terms of the wind-field vector in rectangular form,

Wr
F . Then, the covariance ofWp

F can be calculated fromCW using

CWp =
@Wp

@Wr
CW

@Wp

@Wr

T

; (3.75)
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where

@Wp

@Wr
=

266664
@wp

1
@wr

1
0

...

0
@wp

MN

@wr
MN

377775 : (3.76)

Of course this approximation will be quite poor if the covariance is very large.

Using these expressions, the lower bound on the covariance of the model-based

estimate can be calculated for the entire wind field or for each wind vector cell in the region

in both (U; �) and (u; v) coordinates. It should be noted again that since the wind-field

model is not perfect, modeling error is also introduced into the model-based wind estimate.

As a result the total error is the sum of the covariance calculated here and the modeling

error shown earlier. Some idea of the magnitude of this bias can be obtained by fitting the

model to point-wise retrieved winds and measuring the fit error (Long, 1989).

3.3.4 Point-wise Results

There are two key results with respect to the point-wise Cramer-Rao bound.

The first result is that the wind estimate is nearly efficient for most true wind velocities so

that the Cramer-Rao bound is a reasonable estimate of the covariance. The second result

is that the covariance of the wind estimate grows particularly large for certain true wind

directions. In the following we will demonstrate these two results for both ERS-1 and

NSCAT geometries.

ERS-1

As a review of ERS-1 wind estimation geometry, for each wind vector cell

three measurements are taken at azimuth angles 45� apart with the center beam at a lower

incidence angle. At 25km resolution, there are 19 cross-track cells each with a different set

of incidence angles for the measurement

In order to evaluate the performance of the wind retrieval estimator, we chose

three cross-track locations which can be labeled far, mid, and near with respect to the

subsatellite track. We evaluated the Cramer-Rao bound on the standard deviation of

the speed and direction estimates at these locations for a variety of true wind speeds

and directions. For these same true wind velocities we also performed a Monte Carlo

simulation wherein�� measurements are simulated according to the assumed model and
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Figure 3.5: Comparison of standard deviation for wind speed and direction estimates
between those computed with Cramer-Rao bound and simulated values at near-track swath
location (ERS-1).

wind is retrieved using the maximum likelihood algorithm. The sample standard deviation

for both the speed and direction was then computed so that it can be compared with the

lower bound. Figures 3.5 to 3.7 show the results.

These figures all show that simulations are in good agreement with the Cramer-

Rao bound indicating that the wind estimator is nearly efficient, especially at far swath.

There is some discrepancy between simulations and the bound at mid-swath for 25 m/s winds

which can be attributed to small sample size in the simulation-based variance estimate. The

most notable discrepancy between the Cramer-Rao bound and the simulations, however,

is that the significant peaks of large predicted uncertainty are ‘‘washed’’ out by the

simulations. This is most notable at low wind speeds (5 m/s) for near swath where the

Cramer-Rao bound predicts an extremely high standard deviation in the wind direction.
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(b) Simulations

Figure 3.6: Comparison of standard deviation for wind speed and direction estimates
between those computed with Cramer-Rao bound and simulated values at mid-track swath
location (ERS-1).
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Figure 3.7: Comparison of standard deviation for wind speed and direction estimates
between those computed with Cramer-Rao bound and simulated values at far-track swath
location (ERS-1).
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One explanation for the discrepancy is premature termination of the algorithm for finding

the maximum of the log-likelihood function. The reason the Cramer-Rao bound predicts

a large variance in the estimate at certain places is that the log-likelihood function has

small second derivatives and is extremely flat in a large neighborhood near the true local

maximum. As a result, the wind retrieval algorithm may more easily select a near-maximum

as the solution instead of the true maximum which can be some distance away.

Additional simulation studies show that this ‘‘washing’’ out effect in the

simulations occurs whenever a large peak variance is predicted by the Cramer-Rao bound.

All of this effect cannot be attributed to premature termination of the maximization

algorithm. Another explanation is that since the wind estimator is outperforming the best

unbiased estimate at certain true wind vectors, it must be a biased estimate at these wind

vectors. This leads us to wonder whether or not the Cramer-Rao bound even applies.

However, the figures show that for most values of true wind, the Cramer-Rao bound agrees

well with simulations. As a result we conclude that the estimate is unbiased at most true

wind vectors with a covariance approximately equal to the unbiased Cramer-Rao bound. In

Appendix B we describe how to approximate the bias and then use the biased Cramer-Rao

bound to approximate the covariance for these wind vectors where the unbiased Cramer-Rao

bound approximation appears to over-predict the variance calculated from simulations.

Besides showing that the wind estimator is nearly efficient, Figures 3.5 to 3.7

also reveal interesting facts about the dependence of wind uncertainty on the true wind

direction. The most prominent features on the plots are the large peaks at certain wind

directions. These large peaks occur when the true direction is aligned with the azimuth

direction of the fore or aft beam, with larger peaks occuring when the wind is pointing

along the direction of the beam.

This result can be understood by recalling that the fore and aft beams are at

the same incidence angle and separated by 90� in azimuth angle. In addition, upwind and

crosswind relative azimuth angles give maxima and minima respectively in the GMF for a

given wind speed. Consequently, for a fixed wind speed if the wind is aligned with the aft

beam then aft will see a maximum�� return while the fore beam will see a minimum.

The situation is reversed when we fix�� and consider a plot of wind speeds that

would give rise to that�� measurement as a function of wind direction. This is illustrated

in Figure 3.8 where the�� is fixed and a plot of wind speeds and wind directions that could

generate that�� is graphed for each of the three beams. The true wind is 5 m/s and aligned
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Figure 3.8: Locus of wind vectors that would give rise to measurements obtained with
no noise when the true wind is 5 m/s at 120�.

with the aft beam at 120�.

According to the aft beam, a 120� wind direction gives a maximum�� return

for each wind speed. Thus when�� is fixed, a smaller wind speed is necessary at 120� to

generate the fixed�� than for other wind directions. As a result, there is minimum for the

aft beam at 120� in Figure 3.8. The reverse is true for the fore beam.

This reasoning only emphasizes the fact that the wind vector (given by the

intersection of the three curves in the figure) is at point where the fore and aft beam curves

are tangent. It is clear that adding even a small amount of noise to this problem (which has

the effect of shifting the curves up and down) can wildly shift the direction value of the

intersection point. As a result, the prediction of large variance at certain wind directions

made by the Cramer-Rao bound can be interpreted physically as due to the GMF.

Other interesting trends are evident from Figures 3.5 to 3.7. One of these is

the general result that wind estimate uncertainty generally decreases from near swath to
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Figure 3.9: ERS-1 dependence of wind estimate uncertainty on cell location within a
swath.

far swath, especially in the direction estimate. This is shown more clearly in Figure 3.9

which shows the lower bound on the standard deviation of both wind speed and wind

direction estimates plotted against cross-track location for several wind speeds. The true

wind direction corresponds to one of the peaks in the previous Figures.

This decreasing trend from near to far swath can be understood by noting that

azimuth modulation, i.e. upwind/crosswind ratio, increases for increasing incidence angle,

and far swath is measured with a greater incidence angle than near swath. As a result, there

is more direction information in the measurements at far swath than at near swath.

So far, all of the results we have presented for the Cramer-Rao bound have

assumed that there is no error in the GMF (i.e.Kpm = 0). As we have already discussed

that this is unrealistic, we would like to observe the effect thatKpm has on the estimates of

standard deviation. To do this we examine the worst-case wind direction (aligned with the

aft beam) for a far-track swath. Refer to Figure 3.10. Note that the uncertainty in the wind

estimate is quite sensitive toKpm especially at low wind speeds. This can be understood in

light of the large transmit power (and therefore smallKpc) of the scatterometer on ERS-1.

Since very little noise is assumed in the first place, increasing it changes the estimation

situation considerably.
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Figure 3.10: ERS-1 dependence of wind estimate uncertainty on Kpm for far-swath.
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NSCAT

In order to understand estimates of retrieved wind uncertainty given by the

Cramer-Rao bound for NSCAT, it is helpful to briefly review NSCAT measurement

geometry. At 50 km resolution there are left and right swaths each containing 12 cross-

track cells in which wind is estimated. There are nominally sixteen measurements for each

cell (four from each beam). For each swath, two beams are separated by90� in azimuth

while a third beam is separated by20� from one of the first two. The third beam is also at a

lower incidence angle and transmits/receives both vertical and horizontal polarization.

In the following figures (3.11 to 3.13) we repeat several of the same figures that

we constructed for the ERS-1 geometry but with the NSCAT geometry. Several of the same

observations can be made as were made for ERS-1. For example the same ‘‘smoothing’’

of the predicted variance peak by the simulations can be seen. There are some notable

differences, however. One difference is that due to the asymmetrical distribution of the

beams, there is one very large variance peak when the true direction is aligned with the

fore or aft beam depending on which one the center beam is closest to (different for left

and right swaths). Another notable difference is that wind direction uncertainty decreases

for decreasing wind speed. This is in contrast to ERS-1 and is due to the increased

azimuth modulation of the Ku-band (14 GHz) GMF for low wind speeds. A final important

difference is that NSCAT is less sensitive toKpm than ERS-1 suggesting that with realistic

values ofKpm, NSCAT may retrieve wind more accurately.

3.3.5 Model-based Results

This section is included in order to apply the model-based Cramer-Rao bound in

approximating the covariance of model-based wind estimates. Using representative wind

fields, the dependency on cell location of the covariance of model-based wind estimates

is shown. In addition, some insight into the relationship between model-based covariance

and point-wise covariance is drawn using an example wind field. This is followed by a

demonstration of how the number of parameters used in the wind-field model can affect

the covariance of the model-based estimates. ERS-1 geometry is assumed but the results

are qualitatively similar for NSCAT geometry. In this section it is assumed thatKpm is

zero as non-zeroKpm only increases the overall uncertainty without changing the general

behavior of the results. In addition, Long’s wind field model discussed in Section 2.6.2 is
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Figure 3.11: Comparison of standard deviation for wind speed and direction estimates
between those computed with Cramer-Rao bound and simulated values at far-track swath
location (NSCAT).
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Figure 3.12: NSCAT dependence of wind estimate uncertainty on cell location within
a swath.
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Figure 3.13: NSCAT dependence of wind estimate uncertainty on Kpm for far-swath.
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used throughout.

Figure 3.14 shows how the variance of model-based direction and speed

estimates depends on cell location in the region. The data for this figure was calculated

by averaging the speed and direction computed using the model-based Cramer-Rao bound.

The ascending portion of ERS-1 orbit 4452 was used to obtain the radar angles and noise

parameters. A simulated wind field mapped to this orbit was used to generate the true

model parameters needed by the Cramer-Rao bound. Notice that both speed and direction

standard deviations are on average lower in the center of the region than along the borders.

It is also of interest to compare the covariance of model-based wind estimates

to that of point-wise wind estimates. To demonstrate some of the relationships for a

particular wind field using ERS-1 geometry, Figure 3.15 is included. To produce this

figure a simulated wind field was selected as the true wind field. Using the point-wise

Cramer-Rao bound, the covariance of the wind estimate in rectangular coordinates was

calculated for each cell location in the region. In addition, the model-based Cramer-Rao

bound was calculated for the projected wind field,WF = FF yW, with F created using

Long’s model with 22 unknown parameters4. Assuming jointly Gaussian distributions for

theu; v estimates, each covariance was used to calculate a 90% concentration ellipse for the

wind vector estimate (Scharf, 1991, p. 225). The concentration ellipses are centered around

the simulated wind field for the point-wise estimates, but for the model-based estimates

they are centered around the projected wind field.

From this figure it is clear that point-wise estimates improve with increasing

cross-track direction (increasing incidence angle). In addition, this figure shows that

model-based wind estimates have concentration ellipses which are elongated with respect

to point-wise wind estimates. As a result, the model-based speed estimates have lower

variance than point-wise estimates5. On the other hand, this elongation also means that

the model-based direction estimates have higher variance than the point-wise estimates at

nearly all but the first few cross-track locations.

Figure 3.15 was generated using a model with 22 parameters. However, the

particular wind field used as a true wind in this example can be well-modeled by fewer

than 22 parameters. The model parameters which do little to reduce modeling error for

4Second-order curl and divergence parameterized boundary conditions model with 10 boundary condition
parameters

5Recall, however, that modeling error also contributes to total model-based retrieval error
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Figure 3.14: The top plot shows RMS direction standard deviation as a function of
location in the model region. The bottom plot shows RMS speed standard deviation as a
function of location. The Cramer-Rao bound for 129 simulated wind �elds mapped to the
geometry of the ascending portion of ERS-1 orbit 4452 were used to compute the RMS
values.
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Figure 3.15: Concentration ellipses for both point-wise (solid) and 22-parameter
model-based (dashed) wind estimates calculated using the Cramer-Rao bound for a particu-
lar \true" wind �eld and corresponding projected �eld. Note that the ellipses are plotted in
rectangular, u; v space. The axis for all the subplots is given by the upper left-hand corner
subplot. Cross-track is across the page (1 to 10), and along-track is down the page.
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this particular wind field serve as nuisance parameters in model-based estimation. The

uncertainty in estimating these unimportant parameters increases the overall uncertainty in

the model-based retrieved wind. Improved model-based estimation could be obtained by

using fewer parameters in the model, corresponding to the most-important columns ofF

for this particular wind field.

Figure 3.16 shows how using fewer parameters in the model reduces the extent

of the model-based concentration ellipses while not significantly affecting the projection

error. In this figure, a 12-parameter model was used corresponding to the most important

columns of the 22-parameterF for this particular wind field6. Notice that the direction

uncertainty is substantially reduced with little increase in projection error.

One conclusion that can be drawn from this last example is that model-based

estimation often has two conflicting requirements for selecting a model. The first is to

reduce modeling error which is generally done by increasing the number of columns of

F . On the other hand, increasing the columns ofF can increase the uncertainty in the

model-based estimate, particularly in wind direction7. An ideal model for the wind would

therefore have the number of parameters which would minimize some cost functional based

on both modeling and estimation error. This ideal model would probably be wind field

dependent.

3.3.6 Summary

In this section we have derived the Cramer-Rao bound on the covariance of wind

estimates for both point-wise and model-based estimators. In addition, some calculated

results were used to show typical wind errors obtained in wind retrieval as well as to

compare the ERS-1 and NSCAT scatterometers. In fact, this demonstrates one of the most

useful aspects of the Cramer-Rao bound as it applies to scatterometers: its ability to rapidly

compare scatterometer designs in terms of wind retrieval accuracy.

One limitation of the Cramer-Rao bound is that it gives us the best performance

possible, but does not give us any direct information about the performance of the particular

estimator we are using. As a result of this limitation, in the next section we demonstrate

6These were precisely those columns remaining in Long’s 12-parameter model constructed with constant
curl and divergence and 10 boundary condition parameters.

7It should be noted that increasing the number of columns ofF does not always increase uncertainty.
WhenF is200�200, then model-based uncertainty is exactly equal to point-wise uncertainty. (See Appendix
D).
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Figure 3.16: Concentration ellipses for both point-wise (solid) and 12-parameter
model-based (dashed) wind estimates calculated using the Cramer-Rao bound for a particu-
lar \true" wind �eld and corresponding projected �eld. Note that the ellipses are plotted in
rectangular, u; v space. The axis for all the subplots is given by the upper left-hand corner
subplot. Cross-track is across the page (1 to 10), and along-track is down the page.
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an alternative approach which attempts to approximate the covariance of the wind retrieval

using a direct approach.
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3.4 Direct Covariance Approximation

In this section we adapt the work of Fessler (1995; 1996) to finding an

approximation of the covariance of each wind estimate. This technique applies to both

model-based and point-wise wind estimates, but we will limit a detailed description to the

point-wise case in order to facilitate explanation of the technique.

Fessler has described how the mean and covariance of implicitly defined

estimators can be approximated using a Taylor series and the implicit function theorem

(Fessler, 1995; Fessler, 1996). We apply this technique to approximating the covariance of

the wind estimate obtained using maximum likelihood.

3.4.1 Method

The general approach is to recognize that the wind estimate is a function of

the measurements of��. As a result, uncertainty in the measurements translates directly

to uncertainty in the estimate. The function relating�� measurements to wind estimate

is implicitly defined. We can find derivatives of this function and thereby construct a

Taylor-series approximation to the implicit function. Then, how the covariance of the wind

estimate depends on the covariance of the�� measurements can be determined directly.

The wind estimate for both point-wise and model-based retrieval can be written

as

ŵ = arg max
w

[L(w; z)] ; (3.77)

whereL(w; z) is the log-likelihood function given by Eq. (3.27) for point-wise retrieval.

Since all local maxima are considered as wind estimates, the above equation

defines a set of wind estimatesfŵng. Each wind estimate is called a wind alias. At

each wind alias, the implicit function that relates the wind estimate to the measurements is

implicitly defined by solutions to the following (column) vector equation:

0 =
@L(w; z)

@w

T

jw=ŵ; (3.78)

This vector equation consists ofp equations, wherep is the number of elements inw (p = 2

for point-wise estimation,p = 2MN for model-based estimation). Each row of this vector

equation is listed explicitly for the point-wise case in Eqs. (3.28) and (3.29). As long

as the Jacobian of this set of equations is non-zero at the point(z; ŵn), then the general
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implicit function theorem states that these equations define a unique smooth function in the

neighborhood of(z; ŵn):

ŵn = hn(z); (3.79)

and the derivatives may be computed by implicit differentiation (Marsden and Tromba,

1988, p. 287).

We can use this theorem and the unique smooth function it guarantees to

formally define what we mean by a wind-alias random vector. Specifically, a given true

wind,w, gives rise to measurements,z, which we model as random variables with mean

�z = [Mk(w)]. Given this mean value there is a set of functionsfhn(z)g valid for z near

�z. Each function defines a wind-alias random vector,ŵn (sincez is a random vector).

Notice that the implicit function theorem is not specific about what it means to benear�z.

Clearly the utility of this definition for the wind-alias random vector breaks down if the

variance ofz is larger than the neighborhood of validity of the functionhn(z). We will not

investigate this difficulty in this thesis, but only mention that this can become a problem in

low-wind speed conditions where the peaks of the maximum likelihood equation are not

well isolated8.

With the notion of a wind-alias random vector defined we will cease distin-

guishing aliases by a subscript and simply denote a particular wind alias asŵ = h(z).

Given the functional form ofh we could theoretically determine the statistics ofŵ from

the statistics ofz. Even though such a form is unavailable, we can expandh(z) in a

Taylor series around�z, and estimate the covariance ofŵ using the series expansion. The

derivatives ofh can be calculated using implicit differentiation. For simplicity in notation,

in what follows we denote the derivative of a function,f(x), evaluated at a point,x0, as

@f(x0)=@x.

3.4.2 Derivation

The first-order Taylor formula allows us to write:

ŵ = h(z) � h(�z) +D(z� �z); (3.80)

8In such situations the measurements to not provide enough information toaccurately predict the direction.
This is consistent with the observation that wind direction retrieval is not accurate at low wind speeds.
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whereD = @h(�z)=@z is a (row) derivative matrix with elements

Dij =
@hi
@zj

: (3.81)

From this approximation for̂w, estimates of the mean and covariance ofŵ can be obtained:

E (ŵ) = h (�z) ; (3.82)

Cŵ = E
h
(ŵ �Eŵ)(ŵ � Eŵ)T

i
;

= DE
h
(z� �z)(z� �z)T

i
DT ;

= DCzD
T : (3.83)

Note that this expression depends on the true wind value through the mean and covariance

of the measurements since in point-wise notation,

�z = [M1 � � �MK]
T
; (3.84)

Cz =

26664
&2z1 0

...

0 &2zK

37775 ; (3.85)

and&zk is given by Eq. (3.17).

The expression for the wind estimate covariance also depends on the derivative

of h with respect to the measurements evaluated at the measurement mean. This derivative

can be calculated using implicit differentiation. Using the chain rule, Eq. (3.78) can be

differentiated with respect to the measurementsz and evaluated at�z:

0 =
@

@z

"
@L(h(�z); �z)

@w

#T
+

@

@w

"
@L(h(�z); �z)

@w

#T
@

@z
h(�z);

0 = D11 +D20D; (3.86)

where

D11 =
@

@z

"
@L(h(�z); �z)

@w

#T
=

(
@2L(h(�z); �z)

@zj@wi

)
; (3.87)

D20 =
@

@w

"
@L(h(�z); �z)

@w

#T
=

(
@2L(h(�z); �z)

@wi@wj

)
: (3.88)

Solving forD, we obtain

D = �(D20)�1D11: (3.89)
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For evaluating the derivatives at(�z;h(�z)), there are at least two options

for determiningh(�z). The first option is to perform wind retrieval using noise-free

‘‘measurements’’,�z, calculated from the true wind. An alternative is to recognize from

Eq. (3.82) thath(�z) is a very good approximation to the expected value ofŵ, which is

the true wind, so thath(�z) � w. The latter method has the advantage of avoiding the

maximization required for the first option. As a result, this is the method used to obtain the

results presented below.

For the point-wise case, the derivatives can be explicitly written using Eqs.

(3.28) and (3.29) and substituting�zk =Mk:

D11
ij =

1

&2zj

@Mj

@wi
; (3.90)

D20
ij =

KX
k=1

"
�@Mk

@wi

1

&2zk

@Mk

@wj
+
@&2zk
@wi

1

2&4zk

@&2zk
@wj

� 1

2&2zk

@2&2zk
@wi@wj

#
; (3.91)

where for clarity

@2&2zk
@wi@wj

=
h
2�kMk + �k(1 +K2

pm)
i @2Mk

@wi@wj
+ 2�k

@Mk

@wi

@Mk

@wj
; (3.92)

@&2zk
@wi

=
h
2�kMk + �k(1 +K2

pm)
i @Mk

@wi
: (3.93)

With the details described, we write the resulting covariance estimate for the

retrieved wind by combining Eqs. (3.83) and (3.89):

Cŵ = (D20)�1D11Cz(D
11)T (D20)�1: (3.94)

Note that we have made use of the symmetry ofD20.

Eq. (3.94) gives an estimate of the covariance matrix for either point-wise

or model based retrieval. In the following we present some calculations for point-wise

retrieval using both ERS-1 and NSCAT geometries and compare them with Cramer-Rao

calculations shown previously.

3.4.3 Comparisons with Cramer-Rao bound

Figures 3.17 to 3.20 show comparisons between the speed and direction standard

deviations obtained using the Cramer-Rao bound and the direct covariance approximation

developed in the previous section. In Figures 3.17 and 3.18Kpm = 0 is used, while
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Figure 3.17: Comparison between direct approximation of covariance and Cramer-Rao
bound. The individual marks are the Cramer-Rao bound while the lines are cubic spline
�ts to the direct approximation data (Kpm = 0).
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Figure 3.18: Comparison between direct approximation of covariance and Cramer-Rao
bound. The individual marks are the Cramer-Rao bound while the lines are cubic spline
�ts to the direct approximation data (Kpm = 0).
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Figure 3.19: Comparison between direct approximation of covariance and Cramer-Rao
bound. The individual marks are the Cramer-Rao bound while the lines are cubic spline
�ts to the direct approximation data (Kpm = 0:20).

in Figures 3.19 and 3.20Kpm = 0:20 is used. In order to display representative wind

retrieval conditions, the radar parameters and noise information were selected from three

wind vector cells spanning the ERS-1 swath. In addition, results are shown using simulated

information from one far-swath NSCAT cell.

From these figures some general conclusions can be drawn. One clear conclusion

is that for ERS-1 at lowKpm values, the Cramer-Rao bound and the direct covariance

approximation return nearly identical values. The results from the Cramer-Rao bound

section show that the estimator is very nearly efficient under these low noise conditions. As

a result, it is clear that whenKpc andKpm are both low the direct covariance approximation

is excellent. In other words, the implicit functionh is well-approximated by a linear

function under low-noise conditions. This is an intuitive result.

68



5 m/s 
15 m/s
25 m/s

5 m/s 
15 m/s
25 m/s

0 50 100 150 200 250 300 350
0

0.5

1

1.5

2

2.5

3

True wind direction (Degrees)

B
ou

nd
 o

n 
sp

ee
d 

st
d 

(m
/s

)

Far swath speed error (Kpm = 0.20)

0 50 100 150 200 250 300 350
0

5

10

15

20

25

True wind direction (Degrees)

B
ou

nd
 o

n 
di

re
ct

io
n 

st
d 

(D
eg

.)

Far swath direction error (Kpm = 0.20)

(a) ERS-1 far swath

5 m/s 
15 m/s
25 m/s

5 m/s 
15 m/s
25 m/s

0 50 100 150 200 250 300 350
0

1

2

3

4

5

True wind direction (Degrees)
B

ou
nd

 o
n 

sp
ee

d 
st

d 
(m

/s
)

Far swath speed error (Kpm = 0.20)

0 50 100 150 200 250 300 350
0

20

40

60

80

100

120

True wind direction (Degrees)

B
ou

nd
 o

n 
di

re
ct

io
n 

st
d 

(D
eg

.)

Far swath direction error (Kpm = 0.20)

(b) NSCAT far swath

Figure 3.20: Comparison between direct approximation of covariance and Cramer-Rao
bound. The individual marks are the Cramer-Rao bound while the lines are cubic spline
�ts to the direct approximation data (Kpm = 0:20).
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For NSCAT whenKpm = 0, the results are not quite as good. Figure 3.18(b)

shows that the direct covariance approximation results in standard deviations which are

less than the Cramer-Rao bound at certain wind velocities and greater than the bound at

others. This problem of beating the lower bound is best seen in direction standard deviation

estimates. An explanation for this effect is that at certain wind directions, especially where

the Cramer-Rao bound predicts a high variance, the estimator is actually biased, so that the

Cramer-Rao bound does not apply. Therefore, the actual covariance can beat the unbiased

Cramer-Rao bound. However, since at these locations, the results still do not agree with

simulations, it can also be said that at certain wind directions, the implicit functionh is not

well-approximated by a linear function, thus the covariance approximation is poor.

This problem is also evident in wind direction standard-deviation approxima-

tions for ERS-1 at near and mid swath whenKpm is large, especially at a wind speed of5

m/s. It should be noted, however, that for ERS-1 whenKpm is large wind speed variance

approximations have the expected relationship with the lower bound. Figures 3.19 and

3.20(a) show that the wind speed standard deviation computed using the direct approach

are consistently bounded below by the Cramer-Rao bound. Such consistency leads to

the conclusion that the implicit function for wind speed is well approximated by a line

but the estimator is not efficient for largeKpm values. As a result, for ERS-1 data with

Kpm � 0:20, more accurate wind speed variance estimates can be obtained using the direct

covariance approach than using the Cramer-Rao bound. However, to obtain more accurate

estimates of the wind direction variance, the direct covariance approximation presented

here would need to be extended until the problem of under-prediction of the unbiased

Cramer-Rao bound is removed.

The approximation can be improved by fitting the implicit function,h, with a

second- or higher-order polynomial through expandingh in a higher-order Taylor series.

However, this dramatically increases the complexity of the problem. Not only must higher

derivates ofh be computed but the covariance becomes a function of higher-order moments

of the measurement vectorz.

As a result the direct covariance approximation as presented in this section

is only useful as a second-order correction to the wind speed variance predicted by the

Cramer-Rao bound under conditions of largeKpm. Before it is used with confidence,

however, it should be extended to use higher-order derivatives so that the magnitude of the

error incurred in approximating the implicit function,h, by a truncated Taylor series can
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be evaluated.

3.5 Summary of Wind Covariance Estimates

This chapter has discussed the problem of calculating the covariance of retrieved

wind for both point-wise and model-based approaches. In order to present a more realistic

picture of errors in wind estimates, the noise model of the�� measurements was first

expanded to include uncertainty in the GMF. The resulting noise model has an increased

variance according to the fixed value ofKpm assumed.

With this noise model, the Cramer-Rao bound was derived as an estimate to

the covariance of winds retrieved using both point-wise and model-based approaches.

Comparison of the bound to simulated point-wise retrieval shows that the Cramer-Rao

bound is a good approximation to the covariance of point-wise retrieved winds. The

accuracy of the approximation decreases for increasing noise levels and at certain wind

directions where the predicted variance is high. For, model-based retrieval, the asymptotic

property of maximum likelihood estimators justifies use of the bound to approximate the

model-based covariance.

Results show that uncertainty in wind retrieval is highly sensitive to the direction

of the true wind. In particular, high retrieval uncertainty is expected when the true wind

aligns with either the fore or aft beam. In addition, wind retrieval uncertainty is adversely

affected by large values ofKpm particularly for the ERS-1 instrument. Uncertainty of

NSCAT-retrieved winds is less influenced byKpm. The ability to compare scatterometer

designs easily with respect to wind retrieval uncertainty has implications for using the

Cramer-Rao bound as a wind-scatterometer design tool.

Since the covariance wind estimate is not guaranteed to be the Cramer-Rao

bound, another method of obtaining covariance estimates was briefly developed and applied

to point-wise wind retrieval. The results showed that a much more complicated extension

would need to be implemented in order to reliably obtain covariance estimates more

accurate than the Cramer-Rao bound.
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Chapter 4

DISTINGUISHING MAXIMA IN THE MAXIMUM-LIKELIHOOD

EQUATION

In the previous chapter, some solutions to the problem of estimating the

uncertainty in the retrieved wind for both model-based and point-wise wind estimates were

presented. Now we turn our attention to a different problem common to both point-wise

and model-based wind retrieval. Both methods obtain a wind estimate by maximizing

an objective function (usually maximum likelihood) which has multiple local maxima.

The usual maximum likelihood procedure is to use the global maximum as the maximum

likelihood estimate. In this case, however, two or more of the maxima are of comparable

magnitude, reducing the justification for selecting only the global maxima as the wind

estimate. As a result, historically all of the local maxima have been kept as possible wind

solutions. A second step, known as dealiasing, is used to select a unique wind vector.

However, accepting all of the local maxima as possible wind solutions may result in the

dealiasing step choosing a solution with a low likelihood value. Choosing a wind vector

with a low likelihood value means that according to the noise model for the measurements,

only with very low probability would the observed measurements have occured if the true

wind were the selected wind vector. The problem for wind retrieval is to distinguish among

the local maxima of the likelihood function and determine which have sufficiently high

likelihood to be considered by the dealiasing step as a legitimate possible wind solution.

In this chapter a decision-theoretic solution to this problem is presented. The

approach used is to use hypothesis-testing procedures on the likelihood-ratio statistic. In

particular, the size of a test fashioned to eliminate the alias from future consideration

is determined. This size represents the probability of throwing out the alias when it

corresponds to the true wind solution. As a result, this size can be used to determine

whether or not the wind alias could be eliminated.

The outline of this chapter proceeds as follows. First a more detailed description

of the problem is given. This is followed by development of a practical decision rule for

both point-wise and model-based retrieval. The technique is then applied to point-wise

retrieved wind fields to demonstrate its effectiveness on ERS-1 and NSCAT data (Oliphant
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and Long, 1996b). Finally, an example of applying the technique to model-based retrieved

winds is presented.

4.1 Problem background

In both point-wise and model-based wind estimation, a maximum likelihood

estimate is used to determine the wind. For point-wise wind estimation the log-likelihood

function is maximized over the wind vector to choose wind estimates. For model-based

retrieval an analogous log-likelihood function is maximized over the model parameters to

choose the the wind estimate. In both retrieval methods, a problem surfaces in that more

than one wind vector or set of model parameters gives rise to a significant maximum in the

log-likelihood function. This was demonstrated in Chapter 2 for point-wise wind retrieval.

As a result of this estimation ambiguity, all maxima of the likelihood function

have been traditionally kept as possible wind solutions. However, keeping all wind

estimates which are onlylocal maxima of the likelihood function does not seem to adhere

to the general philosophy of using the maximum likelihood estimate: pick the wind velocity

which gives the largest likelihood that the measurements would have been observed. It

is hard to statistically justify retaining a wind velocity estimate that gives a distinctly

lower likelihood value than the maximum value. The problem, however, has been how to

determine what ‘‘distinctly lower’’ means. Where does one place such a threshold in a

statistically justifiable way?

One answer is to form a decision rule that uses the likelihood function values to

distinguish among the possible wind solutions. For each wind alias in question, a likelihood

ratio statistic is formed with the most likely wind alias. The observed ratio of the likelihood

values is then a realization of that statistic. The probability that such a realization would

have been observed if the wind alias in question were the true wind is evaluated. The

decision whether or not this particular wind alias is legitimate can be made on the basis of

such a probability. In the next section this idea is developed in terms of standard hypothesis

testing where it is found that this probability is the size of a likelihood-ratio decision rule

fashioned to eliminate the alias.
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4.2 Setting up the hypothesis test

4.2.1 General Approach

To establish notation, we form a set of possible wind estimates corresponding

to maxima in the maximum likelihood equation. For point-wise retrieval these are wind

vectors,w, while for model-based retrieval these are projected wind fields,WF = FX.

For the sake of convenience we describe the development of the hypothesis test in terms of

point-wise retrieved wind vectors which can be generalized to model-based estimates in a

straightforward manner.

For point-wise retrieval we have a set of realizations of wind estimate alias

random variables
n
ŵ

(n)
0

o
containing generally two to six possible estimates and ordered so

thatŵ(1)
0 corresponds to the wind estimate giving the largest likelihood value1. We know

that only one of these estimates corresponds to the true wind solution. In other words

E[ŵ(n)] = w for a particular value ofn.

The decision problem is deciding whether or not a particular wind alias deserves

to be considered a possible wind candidate in future dealiasing procedures. In other words,

for eachn the decision is whether or not to eliminatêw(n)
0 from future dealiasing steps.

Sinceŵ(1)
0 represents the global maximum of the likelihood function it is always retained

as a possible wind solution. For eachn > 1, the decision can be expressed in terms of a

hypothesis test. The simple null hypothesis is

H0 : w = E[ŵ(n)]; (4.1)

leaving a composite alternative hypothesis

H1 : w 2 S �
n
E[ŵ(n)]

o
; (4.2)

whereS is a set of expected values of all the wind aliases.

In general, the decision based on the observed vector ofK �� values,z, isH�(z)

where�(z) is a decision rule:

�(z) =

8<: 0 z 2 R1;

1 z 2 eR1;
(4.3)

with R1 a subset ofRK with complementeR1. As a review, the size of this test is defined

as�0 = Pr[rejectH0 |H0] and the power of this test is defined as�(w(k)) = Pr[rejectH0

1Note that we have distinguished the realization from the random variable by using the subscript0.
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|H1] (Scharf, 1991). Ideally,R1 is determined so that the decision rule is uniformly most

powerful for each size. This means thatR1 is chosen so that the probability of eliminating

the alias when it should be eliminated is maximized for everyw 2 H1, while keeping the

probability of throwing out the correct alias to a specified small number. This is a difficult

problem in the given context, and it is not even guaranteed that such a decision rule exists.

As a result we turn to a more practical decision rule based on the likelihood ratio.

4.2.2 Practical Approach

As an alternative to the general decision rule, we develop a practical decision

rule for each wind alias (n > 1). This rule allows elimination of improbable aliases

(though perhaps not optimally in the sense of Neyman-Pearson) while still keeping the

probability of throwing out the correct alias to a small number,�0. Using the probability

density function given in Eq. (3.15) (or in Eq. (3.19) for model-based retrieval) form the

log-likelihood-ratio statistic,

�(z) = log

0@pz(zjŵ(n)
0 )

pz(zjŵ(1)
0 )

1A ; (4.4)

so that�(z0) 2 (�1; 0). Then form a threshold decision rule based on the observed

measurementsz0:

�(z0) =

8<: 0 �(z0) > �;

1 �(z0) � �:
(4.5)

At this juncture one point regarding acceptance ofH0 should be clarified. Even

though the decision may be in favor ofH0 for a particular wind alias, this does not imply

that this wind alias actually corresponds to the true wind. This would be true only if the

power of the test is very high for each wind vector in the alternate hypothesis set (so

that the probability of choosingH0 when the true wind is in the alternative set is very

low). This is unlikely given that̂w(1)
0 has a larger likelihood value than the wind alias

in question. In recognition of this caveat, it is evident that this test cannot eliminate the

dealiasing problem completely. The real gain for wind dealiasing from this test comes

when the measurements statistically corroborate acceptance ofH1 and therefore rejection

of H0. This allows confident elimination of the alias in question from future dealiasing

steps.
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Standard hypothesis testing procedure is to choose the size,�0, so that the

probability of rejectingH0 when it should be accepted is satisfactorily small,i.e., an

acceptably low probability of eliminating the alias corresponding to the correct wind is

chosen. Then for each hypothesis test (one for each wind alias) the resulting threshold

� 2 (�1; 0) is calculated and the observed value of the statistic,�, is compared against

this threshold to determine which hypothesis to accept. In this case, however, the purpose

of the test is to eliminate wind aliases whenever it is statistically justifiable. As a result,

we turn the standard hypothesis testing paradigm around a bit and start by choosing the

decision threshold to be equal to the observed likelihood statistic,�0 = �(z0). This

guarantees that the test eliminates the alias. Then the size,�0, of the test is computed.

If the size is acceptably small (i.e., the probability of eliminating the alias when it is the

true wind is low), the decision rule is implemented and the alias is eliminated from future

consideration. If the size is too large the�0-decision rule is ignored and the wind vector is

kept as a possible wind solution.

4.3 Determining the size of the test

4.3.1 Defining a related statistic

In order to apply the alias-elimination methodology outlined in the previous

section, a formula for the size,�0, as a function of�0 is needed2:

�0 = Prob[�(z) � �0 |w = E[ŵ(n)]] = F�(�0): (4.6)

To calculate�0, the GMF needs to be evaluated at different wind velocity

vectors so we establish a simplified notation. For a given measurement,zk, represented in

the likelihood function we denote the value of the GMF evaluated at wind velocity vector

ŵ
(n)
0 (with the radar information associated withzk) asMk;n, i.e., if ŵ(n)

0 = (U (n); �(n))

then

Mk;n =M(�k; U
(n); �(n);  k; pk): (4.7)

The value of the GMF evaluated at a general wind vector,w = (U; �), using radar

information associated withzk is

Mk =M(�k; U; �;  k; pk): (4.8)

2Perhaps we should define�(n)0 and�(n)
0 for eachn > 1 in order to emphasize that the test is separately

applied for each wind alias and that the sizes of each test are different, but for notational simplicity we do not.
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For model-based retrieval we extend this notation so that

Mk;l;n =M(�k;l; U
(n)
l ; �

(n)
l ;  k;l; pk;l): (4.9)

Using this notation and Eq. (3.15) we can write�(z) as

�(z) = �
KX
k=1

"
log

 
&k;n
&k;1

!
+

(zk �Mk;n)2

2&2k;n
� (zk �Mk;1)2

2&2k;1

#
; (4.10)

where

&2k;n = �kM2
k;n + (�kMk;n + 
k)(1 +K2

pm): (4.11)

with �k = �k +K2
pm + �kK

2
pm.

With foresight we define several terms useful in simplifying this expression:

a =
KX
k=1

log

 
&k;n
&k;1

!
; (4.12)

xk =
zk �Mk

&k
; (4.13)

b =
KX
k=1

(Mk;1 �Mk;n)2

2
�
&2k;1 � &2k;n

� ; (4.14)

Y = ��(z)� a+ b; (4.15)

ck =
&2k
2

 
1

&2k;n
� 1

&2k;1

!
; (4.16)

dk =
&2k;n(Mk �Mk;1)� &2k;1(Mk �Mk;n)

&k(&2k;1 � &2k;n)
: (4.17)

With these definitions, it is shown in Appendix C that Eq. (4.10) can be written as

��(z)� a+ b =
KX
k=1

ck(xk � dk)
2;

Y =
KX
k=1

ck(xk � dk)
2: (4.18)

Given a particular value of the wind vector,w, eachxk is a zero-mean, unit-variance

Gaussian random variable. Thus,�0 can be computed as the probability thatY , a random

variable which is related to�, is greater than or equal toy0 = ��0 � a+ b:

�0(�0;w) = Prob[�(z) � �0 |w = E[ŵ(n)]]; (4.19)

= Prob[Y � ��0 � a+ b |w = E[ŵ(n)]]; (4.20)

= 1� FY (��0 � a+ b) =
Z 1

y0
fY (y)dy : (4.21)
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The density function ofY can, in theory, be derived from the zero-mean, unit-variance

normal density functions ofxk sinceY is a quadratic function of eachxk. Also, since each

ck anddk is parameterized by the wind vector,Y is also parameterized by the wind vector

which we have indicated by writing�0 explicitly as a function ofw.

4.3.2 Finding an explicit formula for the size

In order to find�0 for a given�0, the density function ofY is needed. Since

each of the measurementszk is assumed independent in the measurement model,Y is the

sum of independent random variables.

Y =
KX
k=1

Rk; (4.22)

whereRk = ck(xk�dk)2. As a result,fY (y) can be written as the inverse Laplace transform

of the product of the moment generating functions ofRk:

fY (y) =
1

2�

Z
C
e�sy�Y (s)ds ; (4.23)

=
1

2�

Z
C
esy

KY
k=1

�Rk
(s; ck; dk)ds ; (4.24)

whereC is a vertical line in the region of convergence of�Y (s). In this expression,

�Rk
(s; ck; dk) is the moment generating function ofRk:

�Rk
(s) =

Z 1

�1
esrfRk

(r; ck; dk): (4.25)

Thus, to calculate the density ofY the density of eachfRk
(r; ck; dk) must be calculated and

then used to calculate�Rk
(s).

Calculating the density offRk

Given a zero-mean, unit-variance random variable,x, we want to calculate the

density ofR = c(x � d)2, which we denote,fR(r; c; d). This is accomplished using the

fundamental theorem of statistics which states that to findfR(r) for a specificr, find the

real roots ofr = g(x) denoting themxm. In the region where no real roots existfR(r) = 0,

otherwise,

fR(r) =
X
m

fx(xm)

jg0(xm)j : (4.26)
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Applying this to finding the density ofR, we see thatr = g(x) = c(x� d)2 has two real

roots providedrc > 0:

x1 = d +

r
r

c
; (4.27)

x2 = d �
r
r

c
: (4.28)

As a result,jg0(x1)j = jg0(x2)j = 2
p
cr. Therefore,

fR(r; c; d) =
1p
4cr

�
fx(d+

q
r=c) + fx(d�

q
r=c)

�
U(rc): (4.29)

In this equation,U(x) is the unit step function defined to be zero forx < 0 and one for

x � 0.

By substituting in the density function for a zero-mean, unit-variance random

variable, the density forR can be rewritten as

fR(r; c; d) =
1p

2�
p
4cr

24e� 1
2

�
d+
p

r=c

�2
+ e

� 1
2

�
d�
p

r=c

�235U(rc): (4.30)

This equation can be simplified using hyperbolic cosines to

fR(r; c; d) =
1p

2�
p
cr
e�

d2

2 e�
r
2c cosh

�
d

r
r

c

�
U(rc): (4.31)

This density function is right-sided ifc is positive or left-sided ifc is negative. This density

can be recognized as that of a scaled non-central chi-square random variable.

Calculating the moment generating function ofR

Since we now have the density function ofR, calculating�R(s; c; d) is a

straightforward task:

�R(s; c; d) = EfesRg =
Z 1

�1
esrfR(r; c; d)dr : (4.32)

Substituting in the density function we obtain,

�R(s; c > 0; d) =
Z 1

0

esrp
2�
p
4cr

24e� 1
2

�
d+
p

r=c

�2
+ e

� 1
2

�
d�
p

r=c

�235 dr ; (4.33)

�R(s; c < 0; d) =
Z 0

�1

esrp
2�
p
4cr

24e� 1
2

�
d+
p

r=c

�2
+ e

� 1
2

�
d�
p

r=c

�235 dr : (4.34)
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With a change of variables,u =
q
r=c, these equations become

�R(s; c > 0; d) =
Z 1

0

cescu
2

jcjp2�

h
e�

1
2 (d+u)

2
+ e�

1
2 (d�u)

2
i
du ; (4.35)

�R(s; c < 0; d) = �
Z 1

0

cescu
2

jcjp2�

h
e�

1
2 (d+u)

2
+ e�

1
2 (d�u)

2
i
du : (4.36)

This can be combined into one expression for both positive and negativec:

�R(s; c; d) =
Z 1

0

escu
2

p
2�

h
e�

1
2 (d+u)

2
+ e�

1
2 (d�u)

2
i
du : (4.37)

Each part of this integral can be evaluated separately by completing the square in the

exponents. The final result is

�R(s; c; d) =
1p

1 � 2cs
exp

 
d2cs

1� 2cs

!
; Refsgc < 1

2
: (4.38)

Obtaining an explicit formula for �0

With the moment generating function of eachRk calculated, the moment

generating function forY can be written as

�Y (s) =
KY
k=1

1p
1� 2cks

exp

 
d2kcks

1� 2cks

!
; (4.39)

where the region of convergence is given by3:

Refsg 2
"
� 1

2jmin(0; fckg)j ;
1

2max(0; fckg)

#
(4.40)

Note that the imaginary axis is always in the region of convergence so that the Fourier

transform offY (y) exists and is equal to�Y (s) evaluated along the imaginary axis. As a

result, we can write the density offY (y), and hence�0, using Fourier transforms:

�0(�0;w) =
1

2�

Z 1

y0

Z 1

�1
e�j�y�Y (j�)d� dy : (4.41)

Interchanging the order of integration,

�0(�0;w) =
1

2�

Z 1

�1
d� �Y (j�)

Z 1

y0
dy e�j�y : (4.42)

3
�1=0 � �1
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The inner integral can be recognized as the Fourier transform of a shifted unit-step function,

U(y � y0), with � as the transform variable. As a result,

�0(�0;w) =
1

2�

Z 1

�1
d� �Y (j�)e

�j�y0

"
1

j�
+ ��(�)

#
;

=
1

2
�Y (0) +

1

2j�

Z 1

�1
d�

1

�
�(j�)e�j�y0 : (4.43)

We can simplify this a little further by first noting that�Y (0) = 1 and then

definingG(�) = 1=�e�j�y0�Y (j�). SincefY (y) is a real function,�Y (�j�) = ��
Y (j�)

andG(��) = �G�(�). Consequently, the real part of the integrand is antisymmetric while

the imaginary part of the integrand is symmetric. Hence,�0 can be written as

�0(�0;w) =
1

2
+

1

�

Z 1

0
d� Imf1

�
e�j�y0�Y (j�)g: (4.44)

Explicitly writing the imaginary part we can express this equation as

�0(�0;w) =
1

2
+

1

�

Z 1

0
d�

sin[�(�)]

��(�)
; (4.45)

�(�) = ��y0 +
KX
k=1

"
�d2kck

1 + 4c2k�
2
+

1

2
tan�1(2ck�)

#
; (4.46)

�(�) =
KY
k=1

(1 + 4c2k�
2)1=4 exp

 
2�2c2kd

2
k

1 + 4c2k�
2

!
: (4.47)

This expression can be trivially modified to match a similar expression for1� �0 given in

the literature (Imhof, 1961).

4.4 Using estimate of wind instead of expected value.

In order to determine�0 we need to knowE[ŵn] (where the expectation is

done over the measurements,z) so that eachck anddk can be calculated. Unfortunately,

given only one realization of each wind alias calculated by wind retrieval, the expected

values are unknown. In its place we can use the realization ofŵn determined by the wind

retrieval procedure. This is our best approximation toE[ŵn]. To illustrate the sensitivity

of �0 to this substitution Figures 4.1 and 4.2 show�0 as a function of wind velocity. For

these figures, actual scatterometer data from a particular ERS-1 cell was used to calculate

�0 for several values of wind velocity around each wind alias using Eq. (4.44). Figure 4.3

shows a similar plot using simulated NSCAT data.
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Figure 4.1: Dependence on wind velocity of �0 with Kpm = 0 for the wind aliases
of a mid-swath ERS-1 cell in the ascending portion of orbit 7220. The apparent peaks
of the last 4 �gures is actually the e�ect of numerical round-o� error. The surfaces are
essentially 
at.
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Figure 4.2: Dependence on wind velocity of �0 with Kpm = 0:20 for the wind aliases
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These figures show that�0 changes as a function of the true wind vector.

However, the change is small enough that it can be accounted for in practical alias

elimination by choosing a more conservative threshold for what value of�0 is considered

low enough to eliminate the alias. Thus, the true wind vector need not be known.

Since in practice,�0 is calculated for each alias withw = ŵ
(n)
0 , Mk can be

replaced withMk;n in the expressions forck anddk. As a result,ck anddk simplify to

[refer to Eqs. (4.16) and (4.17)]:

ck =
1

2

 
1� &2k;n

&2k;1

!
; (4.48)

dk =
&k;n(Mk;n �Mk;1)

&2k;1 � &2k;n
: (4.49)

For completeness in calculating�0, y0 in Eq. (4.44) is

y0 = log pz(z0jŵ(1)
0 )� log pz(z0jŵ(n)

0 )� a+ b; (4.50)

a =
KX
k=1

log

 
&k;n
&k;1

!
; (4.51)

b =
KX
k=1

(Mk;1 �Mk;n)2

2
�
&2k;1 � &2k;n

� : (4.52)

If the retrieved value of the wind alias is used, the test for wind alias elimination

essentially becomes a calculation of the probability that an observed log-likelihood statistic

value would be so small if the alias in question were really the true wind. Since there

does not seem to be a simple closed-form expression for�0, we must perform a numerical

integration for each alias in order to decide to eliminate it or not. This can add significant

processing time to the wind retrieval process. Note, however, that an exact calculation of

�0 is not necessarily needed. Consider the values of�0 in the final four plots of Figure

4.1. These values are small enough that a relatively tight upper-bound on�0 could suffice

in order to determine that the true�0 is small enough. To be useful, this upper bound

should be both easy to compute and tight enough that it can be used effectively to eliminate

aliases. In the next section, such a bound is described.
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4.5 Determining an upper-bound for the size

The Markov inequality states that if the density of a random variablex is zero

for x < 0, then for any� > 0,

Pr[x � �] � Ex

�
: (4.53)

With our random variableY , form a new random variablex = esY , wheres is

an arbitrary real number. Since an exponential can never be negative for real values ofY ,

the density ofx is zero forx < 0. In addition, ify0 is any real number, thenesy0 > 0. Thus,

the conditions of the Markov inequality are satisfied withx = esY and� = esy0 so

Pr[esY � esy0 ] � EfesY g
esy0

: (4.54)

If we require thats > 0 then we can immediately see that

�0 = Pr[Y � y0]

= Pr[esY � esy0]

� e�sy0�Y (s) s > 0: (4.55)

The above equation is one version of the Chernoff bound. Since it holds for all real, positive

s in the region of convergence of�Y , we can calculate a bound at any such value ofs and

use that as the bound for�0.

The tightest Chernoff bound is found by finding the real, positive value ofs in

the region of convergence that minimizese�sy0�Y (s). However, since the bound is also

valid for any value ofs > 0 in the region of convergence, a single value for the bound

could be used for all tests. Experiments using scatterometer data show that the commonly

used bound given bys = 1 is tight enough to eliminate many aliases. Choosings = 1, in

the Chernoff bound, the bound for�0 becomes

�0 � e�y0�Y (1) = e�y0
KY
k=1

1p
1 � 2ck

exp

 
d2kck

1 � 2ck

!
: (4.56)

To evaluate how the Chernoff bound compares with the actual value of�0

computed using numerical integration, Figures 4.4 and 4.5 are given. Figure 4.4 presents

two scatter plots showing how the best Chernoff bound compares to the true size for two

different values ofKpm. In Figure 4.5 a similar plot shows the results for wind estimates

86



10
−5

10
−4

10
−3

10
−2

10
−1

10
−5

10
−4

10
−3

10
−2

10
−1

True α0

B
es

t u
pp

er
 b

ou
nd

 fo
r α

0

Performance of Chernoff bound (Kpm = 0)

log10(bound) ≈ p1 log10(α0) + p2

p1 = 0.9204

p2 = 0.6744

(a)Kpm = 0

10
−5

10
−4

10
−3

10
−2

10
−1

10
−5

10
−4

10
−3

10
−2

10
−1

Performance of Chernoff bound (Kpm = 0.2)

log10(bound) ≈ p1 log10(α0) + p2

p1 = 1.026

p2 = 0.7538

True α0

B
es

t u
pp

er
 b

ou
nd

 fo
r α

0

(b)Kpm = 0:2

Figure 4.4: Comparison of the best Cherno� bound with the numerically calculated
value of �0 for ERS-1 data.

using NSCAT data. Also shown in these plots is an approximate linear fit in log-log space

to the data. These plots were constructed by calculating both the best Chernoff bound and

the actual value of�0 for all aliases in the wind vector cells of the ascending portion of

an actual ERS-1 and a simulated NSCAT orbit. These plots suggest that the bound is a

good one. Moreover, the information on the plots can be used in interpreting the computed

Chernoff bound in an alias-elimination algorithm.

One convenient way to implement the upper bound is to first calculate thes = 1

bound on�0 for all aliases. For those aliases which cannot be justifiably eliminated based

on the upper bound, the integration can be performed to calculate the true value of�0.

Since the upper bound is simple to calculate and is often enough to support removing the

alias, significant processing time can be saved by avoiding the integration.

4.6 Extension to model-based

Extending the above alias elimination procedure to model-based processing is

straightforward since the measurement model is the same. Instead of eliminating wind-

vector aliases we are trying to eliminate wind-field aliases. We set up the same hypothesis

test and evaluate the size of the test assuming a decision rule that uses the observed

likelihood ratio. The resulting equation for�0 and the upper bound on�0 are exactly the
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value of �0 for simulated NSCAT data.
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same as given by Eqs. (4.44) and (4.55). The only difference is that the moment generating

function andy0 are written to include all of the measurements made over the entire region.

We are given model-based estimates,Ŵ
(n)
0 = F X̂

(n)
0 , representing maxima in

the model-based maximum likelihood equation. We would like to determine which, if any,

of these aliases can be eliminated from future processing. The procedure is precisely the

same as for point-wise estimates, just substituteŴ
(n)
0 for ŵ(n)

0 . There are some notational

differences, however, that need explanation. We need to express the GMF evaluated for

thekth measurement of thelth wind vector in thenth wind-field alias. This is denoted

Mk;l;n =M(�k;l; U
(n)
l ; �

(n)
l ;  k;l; pk;l): (4.57)

The variance of thekth measurement of thelth wind vector in thenth wind-field alias is

denoted similarly:

&2k;l;n = �k;lM2
k;l;n + (�k;lMk;l;n + 
k;l)(1 +K2

pm): (4.58)

With this notation, the model-based moment-generating function for use in

testing thenth wind-field alias can be written:

�Y (s) =
MNY
l=1

K(l)Y
k=1

1p
1� 2ck;ls

exp

 
d2k;lck;ls

1 � 2ck;ls

!
; (4.59)

where the region of convergence is again given by

Refsg 2
"
� 1

2jmin(0; fck;lg)j ;
1

2max(0; fck;lg)

#
: (4.60)

In addition,

ck;l =
1

2

 
1� &2k;l;n

&2k;l;1

!
; (4.61)

dk;l =
&k;l;n(Mk;l;n �Mk;l;1)

&2k;l;1 � &2k;l;n
: (4.62)

The expression fory0 is

y0 = log p(Z0jX(1)
0 )� log p(Z0jX(n)

0 )� a+ b; (4.63)

a =
MNX
l=1

K(l)X
k=1

log

 
&k;l;n
&k;l;1

!
; (4.64)

b =
MNX
l=1

K(l)X
k=1

(Mk;l;n �Mk;l;1)2

2
�
&2k;l;1 � &2k;l;n

� ; (4.65)

whereZ0 is the vector of observed measurements over the region.
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4.7 Application to point-wise wind-alias elimination

In order to evaluate the performance of the statistical test developed in this

chapter on eliminating wind-vector aliases, both ERS-1 and NSCAT is used for point-wise

retrieval.

4.7.1 ERS-1

In this part we evaluate the technique as it applies to ERS-1 data. We consider

both simulated and real data.

Simulated Data

As a first check of the procedure for eliminating wind-vector aliases, several

simulations were performed. The true wind used in these simulations came from the

European Center for Medium-range Weather Forecasting (ECMWF). These wind fields

are described by Long (1989). The noise and radar information from part of a true ERS-1

orbit are used to generate simulated�� measurements with probability density given by the

noise model of Eq. (3.15). The number of aliases in each wind vector cell when applying

the alias-elimination scheme is compared to the number of aliases per wind vector cell

when the scheme is not applied.

The results of these simulations are shown in Figures 4.6 and 4.7 assuming

Kpm = 0. These figures show that the alias-elimination scheme can be effective in

simplifying the dealiasing step by reducing the number of aliases to two in most of the

cells. Particularly interesting is that the alias problem is completely eliminated for several

wind vector cells in both simulated swaths. This indicates that if the signal to noise ratio is

large enough, a single wind estimate can be obtained.

The results presented above indicate that this alias-elimination scheme is

remarkably successful in removing wind aliases, even to the point of eliminating all

aliases at certain cells. However, in performing the simulations we assumed somewhat

unrealistically thatKpm = 0. To see the effect thatKpm has on simulations, we perform

the simulations again only this time lettingKpm = 0:20. The results of this simulation are

shown in Figures 4.8 and 4.9. Notice that alias elimination is not as dramatic as whenKpm

is zero.

The performance of the alias-elimination scheme on simulated data motivates
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Figure 4.6: Performance of alias-elimination scheme on simulated data. Retrieval
geometry and noise information are from the ascending portion of ERS-1 revolution 4452
(Kpm = 0).
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Figure 4.7: Performance of alias-elimination scheme on simulated data. Retrieval
geometry and noise information are from the descending portion of ERS-1 revolution 4459
(Kpm = 0).
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Figure 4.8: Performance of alias-elimination scheme on simulated data. Retrieval
geometry and noise information are from the ascending portion of ERS-1 revolution 4452
(Kpm = 0:20).

0 2 4 6
0

5000

10000

Aliases

N
um

be
r 

of
 c

el
ls

All aliases

33257 aliases
11200 cells
3 aliases/cell

0 2 4 6
0

5000

10000

Aliases

N
um

be
r 

of
 c

el
ls

Surviving after 0.001 threshold

32752 aliases
11200 cells
2.9 aliases/cell
(505 eliminated)
0 aliases closest to true

Figure 4.9: Performance of alias-elimination scheme on simulated data. Retrieval
geometry and noise information are from the descending portion of ERS-1 revolution 4459
(Kpm = 0:20).
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Figure 4.10: Performance of alias-elimination scheme on actual data taken from the
ascending portion of ERS-1 revolution 4452 at 25 km resolution (assuming Kpm = 0).

looking at how effective the alias elimination scheme can be on real data. The question

looms as to what value to pick forKpm when applying the technique to real data. This is a

difficult question for two main reasons. First of all, we have used a simplistic method of

introducing GMF modeling error into the measurements by assuming that all measurements

used to retrieve the wind are corrupted independently by Gaussian noise. The second reason

is that even assuming the independent model is accurate, only rough estimates ofKpm are

available (Johnson et al., 1996). As was evident in simulation, if we assume thatKpm

is near0:20 as estimated by Johnson (1996), then the effectiveness of alias reduction is

drastically diminished. As a result of these difficulties we perform alias-elimination on

actual data assumingKpm = 0, recognizing that caution should be exercised in interpreting

the results, especially when the elimination process completely removes all but the most

likely wind alias.

Actual Data

In Figure 4.10 the overall results of applying the alias-elimination scheme to

actual wind retrieved with the ERS-1 scatterometer assumingKpm = 0 is presented. Note

that nearly all of the wind vector cells return only one or two wind aliases when the

acceptable test size limit is0:001.

To get a more visual representation of the utility of this elimination process,

Figures 4.11 and 4.12 present portions of the swath which generated the results in Figure
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4.10. In these figures the right plot shows an along-track segment of the swath with only

those wind aliases which whose hypothesis test had a size greater than0:001. The left plot

contains all of the wind aliases for the swath.

It is evident from these figures that the dealiasing step is greatly simplified

when hypothesis testing to remove wind aliases is performed. Another interesting feature

of these plots is that over many regions only one consistent estimate of the wind field is

returned. Admittedly, there are some cases where after hypothesis testing adjacent wind

vector cells each return only one wind vector cell which are inconsistent with each other.

This results in an unbelievable wind pattern. For an example of this, see the left plot in

Figure 4.11. Look at along-track 194, cross-track 17, and compare with along-track 195,

cross-track 18. Apparently, the true wind was thrown out as an improbable alias in cell

(195,18). Since this behavior occurs at a frequency that is inconsistent with the accepted

hypothesis test size (.001), it is evident that the model is in error (e.g., Kpm 6= 0). On the

other hand, for this value ofKpm, the elimination scheme was successful at determining a

single consistent wind field for numerous regions. This is rather surprising ifKpm is truly

0:20 as assumed in Figure 4.13 where there is a dramatic loss in the number of wind aliases

eliminated by the scheme.

These results give anecdotal evidence to the idea that GMF modeling error

cannot be ignored, yet assuming large, independent noise sources in the measurement

process to account for modeling error may be overly cautious. Perhaps a better approach

would be to assume some covariance in the GMF modeling error and re-derive the

hypothesis test based on such a model.

In the mean time, the hypothesis test derived in this thesis can still be used

to eliminate aliases effectively if we assumeKpm = 0 and then use a more conservative

acceptable size on the test for alias elimination (e.g., 1e-5 instead of 1e-3). Alternatively,

we can forego an attempt to eliminate all of the aliases and always return at least two wind

vectors.

Another possible approach that deserves more attention than can be granted in

this thesis is to use measurements from neighboring cells to estimate a single, low-resolution

wind vector. This could reduce the noise levels (even for largeKpm) so that the hypothesis

test would have greater power to eliminate aliases. The wind alias at high-resolution could

then be selected as the one closest to the low-resolution wind vector.
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Figure 4.11: E�ectiveness of alias-elimination scheme over a portion of the swath for
ERS-1 orbit 4452, ascending (assuming Kpm = 0).
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Figure 4.12: E�ectiveness of alias-elimination scheme over a portion of the swath for
ERS-1 orbit 4452, ascending (assuming Kpm = 0).
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Figure 4.13: Performance of alias-elimination scheme on actual data taken from the
ascending portion of ERS-1 revolution 4452 at 25 km resolution (assuming Kpm = 0:20).
ESA winds are those estimated by the European Space Agency which operates ERS-1.
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Figure 4.14: Performance of alias-elimination scheme on actual data taken from the
ascending portion of ERS-1 revolution 4452 at 25 km resolution assuming Kpm = 0 and a
size threshold of 1e-5.
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Figure 4.15: Performance of alias-elimination scheme on simulated data. Retrieval
geometry and noise information from a simulated NSCAT orbit at 50 km resolution
(Kpm = 0).

4.7.2 Simulated NSCAT

We expect the results for NSCAT data to be qualitatively similar to those for

ERS-1. Since we have only limited simulated NSCAT data available, only two simulation

results for NSCAT are given. The result in Figure 4.15 assumesKpm = 0, while that of

Figure 4.16 assumesKpm = 0:20.

4.7.3 Discussion

In this section we have seen that applying the elimination scheme to point-wise

retrieved wind fields can greatly ameliorate the dealiasing problem. When the signal to

noise ratio is high enough, the scheme can even select a single wind vector reliably. This

property of being able to select a single wind vector is even more pronounced when the

test is applied to model-based processing as demonstrated in the next section.

4.8 Application to model-based alias elimination

This section is included to give examples that demonstrate how the test

developed in this Chapter can be applied to model-based retrieval. The demonstration

is with ERS-1 data. The test is applied using the same region of ERS-1 data under
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Figure 4.16: Performance of alias-elimination scheme on simulated data. Retrieval
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Wind Field Objective Function �0 bound (s = 1) �0 bound (bests) �0
Case 1:F = I

Most likely -2410.9
First alias -2406.5 0.107 .095 (s = 1:28) 0.015
Second alias -2391.6 6.50e-5 4.08e-5 (s = 1:27) 3.45e-6
Case 2:F 6= I

First alias -2372.0
Second alias -2359.2 1.71e-3 1.51e-3 (s = 0:88) 1.55e-4

Table 4.1: Objective function values and test results for wind-�eld aliases in Figures
4.17 and 4.18. Kpm = 0:13.

two scenarios. In the first scenario we assumeF = I, while in the second we use the

22-parameterF matrix derived by Long (1989).

4.8.1 Case 1:F = I

The first case considered is model-based retrieval in which the model is the

identity matrix,F = I. This is nothing more than point-wise retrieval performed over an

entire wind field simultaneously with a200-variable likelihood function. As a result, this

large objective function has maxima at all possible combinations of point-wise solutions.

To apply the test we compare wind fields giving maxima to the field-likelihood function;

each field is found by combining point-wise wind vector solutions found withKpm = 0:13.

Figure 4.17 shows the selected wind fields along with a plot of all the aliases obtained

using point-wise retrieval in a particular10 � 10 region.

Table 4.14 shows the sizes of the decision rules which eliminate the fields in

Figures 4.17(c) and 4.17(d). These values show that it is statistically reasonable to eliminate

the second wind-field alias. The most likely wind-field alias (based on the measurements)

can be eliminated due to its irregularity, leaving only one realistic wind field. This shows

that when all of the measurements over an entire region are combined together, one wind

field can often be determined (even with largeKpm values).

4Objective function values shown in this table are the values of the negative log-likelihood function with
all constants removed.
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Figure 4.17: (a) All aliases for a wind region in the descending portion of ERS-1 orbit
4448. (b) Wind-�eld alias constructed from most likely point-wise aliases. (c) Wind-�eld
alias constructed from the median �lter solution initialized with the most likely �eld. (d)
Wind-�eld alias constructed from point-wise solutions closest to 180� from wind vectors in
(c).
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Figure 4.18: Optimized model-based wind �elds: (a) initialized with point-wise �eld in
Figure 4.17(c), (b) initialized with �eld obtained by rotating all vectors in Figure 4.17(c)
by 180�.
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4.8.2 Case 2:F 6= I

In the first case no model for the wind field was assumed so thatF = I.

This made the problem a straightforward extension of the point-wise case by avoiding

discussion of wind field modeling error. The test can still be applied to model-based

retrieved wind whereF 6= I. However, in interpreting the size calculation, it is important

to recall that calculation of the size assumes the estimated wind-field alias is the true

wind. If F represents an approximate wind model, then this is not necessarily true. This

is the same problem seen in point-wise estimation of using the estimated wind-vector

alias instead of the true expected value of the wind-vector alias in calculating�0. It is

compounded here by the additional modeling error possible. As a result, test results should

be interpreted more conservatively for model-based retrieval. With this in mind, we give an

example of applying the alias elimination scheme to model-based estimation using Long’s

22-parameterF matrix. Figure 4.18 shows the wind-field aliases in question and Table 4.1

shows the results of the test. Again, we can choose the first wind-field alias as the solution

with confidence.

4.9 Summary

In this Chapter a method of alias elimination which can be used with both

point-wise and model-based wind retrieval was developed by applying traditional decision

theory. The result is both an integral expression and an upper bound for the size of a

decision rule that always throws out the alias under consideration. Applying this decision

rule to both ERS-1 and simulated NSCAT data shows that it can be used to effectively

eliminate wind aliases. In fact, quite often a single wind field can be selected by applying

the rule to wind-fields. In order to apply the results presented here to current point-wise

wind retrieval, we suggest using a conservative acceptable size threshold (1e-5) and a small

value ofKpm(0 to 0:05).
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Chapter 5

WIND FIELD MODELING

While the previous two chapters have presented improvements to wind scat-

terometry that apply to both point-wise and model-based wind retrieval, this chapter is

devoted to discussing improvements to model-based wind retrieval. Specifically, in this

chapter we discuss alternative wind models to the model developed by Long (1993).

5.1 Motivation

Recall that model-based wind retrieval relies on a model of a discrete wind

field,W = g(X), whereX is a vector of parameters for the model. To be useful in wind

estimation,X should have fewer elements thanW. In addition, the model should ideally fit

all observable wind fields. This last idealization is a formidable one given the complexity

of wind fields. Long succeeded in deriving a realistic model based on physical principles

by using the fact that any vector field can be written in terms of its curl, its divergence, and

its boundary conditions. Long discretized this basic relationship and wrote the equation

in terms of boundary conditions on the pressure field. In order to reduce the number of

parameters inX, he assumed that the curl and divergence of the wind field could both be

modeled as low-order bivariate polynomials. This allowed him to write a linear equation

for the discrete wind field:

W = FX: (5.1)

The parameter vectorX contains the coefficients of the bivariate polynomials modeling the

curl and divergence as well as the boundary conditions on the pressure field. The details

of theF matrix will not be given here but can be found in Long (1989). This model is

called the Non-parameterized Boundary condition (NB) model. This is in contrast to the

Parameterized Boundary Conditions (PBC) model in which the boundary conditions on the

pressure field are parameterized according to a polynomial or Fourier model.

Both of these models derived by Long are based on the assumption that the

underlying curl and divergence of the wind field can be modeled as a low order polynomial.
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A limitation of this model is that this assumption is not directly based on physics other than

the known fact that wind has a red spectrum on average (Freilich and Chelton, 1986).

Another short-coming of Long’s model is an apparent inconsistency in the

model’s definition. This inconsistency can be seen in comparing curl and divergence

calculated from estimated wind fields using first difference approximations with the

assumed polynomial curl and divergence calculated from the estimated parameters. The

comparison shows that the two calculations do not return comparable results. Given these

difficulties, it seems reasonable to investigate other possible wind field models for use in

model-based retrieval.

The purpose of this chapter is to introduce three such models. These models do

not seek to be ideal wind models based on physics, but are intended to be practical models

that can be tuned to observations. Each model is linear of the form,W = FX, similar to

Long’s model. The difference is the definition of theF matrix.

In the following we adopt a slight change to the convention introduced by Long

in ordering the elements of the wind field into the vector,W. Namely, the wind-field

vector,W, is defined in terms of the rectangular components of each wind velocity:

W =

24 U
V

35 ; (5.2)

whereU is a lexicographically-ordered version of the image formed by taking the east,

rectangular component of each wind vector in the field.V is defined similarly as

the lexicographically-ordered version of the north-rectangular-component image. The

lexicographic ordering is done by varying cross-track most rapidly. Long ordered the wind

vectors by varying along-track most rapidly. The difference is insignificant provided it is

consistent.

5.2 Wind Vector Space and Model Sub-Space

The central idea to wind modeling in this chapter is to change the paradigm

used in looking for a model. Instead of seeking a physics-based model, we use a signal-

processing approach. Consider the wind field vector,W, describing the wind at every cell

in anM �N region as an element in a2MN -dimensional vector space. Define a subset of

the elements of this vector space consisting of observable winds, or ‘‘physical’’ winds. It is

clear that such winds occupy a proper subset of this space as a randomly chosen wind-field
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vector does not ‘‘look’’ like real wind. In order to approximate this subset in a simple and

useful manner we use a vector sub-space spanned by a truncated set ofMx basis vectors.

As a result, winds in the sub-space can be written asWF = FX. The columns ofF

comprise the basis set whose span approximates the subset containing observable winds.

Given a true wind-field vector,W, the closest vector in the sub-space spanned

by the columns ofF can be found provided a definition of distance is given. For this

purpose, the definition of distance on the wind-field vector space is the standard Euclidean

distance:

d2(WF ;W) = (W �WF )
T (W �WF ): (5.3)

With this definition for the distance operator, finding theX vector that minimizes

the distance betweenW andWF = FX for a givenF is straightforward. This is a common

problem in signal-processing applications and the result can be found in many texts (e.g.

page 365 of Scharf). The result is

X = (F TF )�1F TW � F yW; (5.4)

where we have definedF y as the pseudo-inverse ofF . Thus we can write the projection of

the wind field onto the space spanned by the columns ofF as

WF = FF yW: (5.5)

In comparing models it is convenient to use a distance metric normalized by

the length of the wind-field vector and so we define the normalized mean square error of a

projected wind-field vector as

E2
F =

d(W;WF )

d(W;0)
; (5.6)

=
(W �WF )

T (W�WF )

WTW
;

=
WT (I � FF y)T (I � FF y)W

WTW
; (5.7)

(5.8)

whereI is a2MN � 2MN identity matrix. If the columns ofF are orthonormal then this

expression can be simplified further sinceF y = F T :

E2
F =

WT (I � FF T)W

WTW
: (5.9)
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With the concept of a model sub-space developed, wind field modeling can now

be stated as determining the fewest number of basis vectors that reduces the normalized

error of the projected wind field to an acceptable value. In the next three sections we

develop three wind models that attempt to do this. First we describe a data-driven model

where the basis vectors of the Karhunen-Loeve transform are selected as the basis vectors

for the model. The second model assumes that the wind’s rectangular components can

be written using a low-order polynomial. The third model assumes that these rectangular

components can be approximated well with a low-order Fourier series. The last section of

this chapter compares these models with the (PBC) model developed by Long (1989).

5.3 Karhunen-Loeve Basis Wind-Field Vectors

Given a wind-field vector space with elements defined in terms of its rectangular

components we seek a truncated basis,F , with as few basis vectors as possible while

keeping the average error between the true wind field and the model wind field,WF , small.

An alternative way to state the problem is that we seek a model matrix,F , with Mx basis

vectors that minimizes the average error betweenW andWF . It is a well-known property

of the Karhunen-Loeve transform that for any value ofMx the matrixF which minimizes

this basis-restriction error contains columns equal to the largestMx eigenvectors of the

autocorrelation matrix ofW. These are the Karhunen-Loeve (K-L) basis vectors ofW. In

the following a general description detailing how the columns ofF can be calculated from

a data-set of wind fields is described.

5.3.1 Determination of the K-LF matrix

For a givenM � N region size, the columns ofF are theMx eigenvectors

corresponding to the largest eigenvalues of the autocorrelation matrix,R:

R = E
h
WWT

i
(5.10)

Since there is not a functional form forR, the autocorrelation matrix must be estimated.

We do this by calculating the sample average ofWWT .

Without true wind fields to use in estimating the autocorrelation matrix, alternate

wind fields must be employed. One possibility is to use numerical weather prediction

wind fields such as supplied by the European Center for Mid-range Weather Forecasting

(ECMWF). These fields are described by Long (1989). One concern with using these fields
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to develop the K-L model is that since the K-L basis vectors are completely data driven,

the result will be strongly influenced by the model used by ECMWF. Another concern is

that these wind fields are at a resolution of approximately 200 km by 200 km rather than

the typical 25 km or 50 km resolution at which wind is retrieved with scatterometers.

As a result of these concerns, we use point-wise-retrieved wind fields with the

ambiguities removed using a median-filter to estimate the autocorrelation matrix. Even

though these fields have ambiguity removal error and estimation uncertainty, they represent

the best high-resolution data set of true wind fields available.

The estimate ofR is found by computing the sample average of the correlation

matrix forL point-wise-retrieved wind fields:

R � 1

L

LX
n=1

ŴnŴ
T
n : (5.11)

With an estimate ofR, the model matrix,F , can be found by solving the

eigenvector-eigenvalue equation:

RF = F�; (5.12)

where� is a diagonal matrix of the largestMx eigenvalues ofR:

� =

26664
�1 0

...

0 �Mx

37775 ; (5.13)

with �1 � �2 � : : : � �Mx . SinceR is symmetric, a solution exists such thatF TF = I,

whereI is anMx �Mx identity matrix. We choose this solution as the model matrix,F ,

of orderMx. Note that sinceF consists of orthonormalized eigenvectors, projections are

particularly easy to compute:

WF = FF TW: (5.14)

For each column ofF , there is an associated eigenvalue with a useful interpre-

tation. This eigenvalue can be interpreted as the average energy of that column vector in
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the data set used to generateR. To see this, note

� = F TRF; (5.15)

= F T 1

L

 
LX

n=1

ŴnŴ
T
n

!
F; (5.16)

=
1

L

LX
n=1

F TŴn(F
TŴn)

T ; (5.17)

=
1

L

LX
n=1

XnX
T
n : (5.18)

Thus, ifXk;n represents the coefficient of thekth basis vector for thenth wind field in the

data set then

�k =
1

L

LX
n=1

X2
k;n: (5.19)

The larger the eigenvalue, the more important the eigenvector as a basis vector for the

space spanned by the data set. This further justifies using the firstMx ordered eigenvectors

computed from our best estimate of ‘‘real’’ wind as basis vectors of the wind-field.

In the next section we apply the previous development to compute theF matrix

applicable to a10 � 10 region using point-wise wind fields from the ERS-1 scatterometer.

5.3.2 10 � 10 K-L basis wind fields

For ERS-1 the swath is 500 km wide with 19 wind vector cells at 25 km

resolution. As a result, a10 � 10 model region will cover the swath with two regions. It is

therefore, a useful region size for ERS-1 model-based retrieval.

In this section we explore the K-L basis wind-field vectors computed using

ERS-1 point-wise data by plotting several of the vectors. These basis vectors were derived

using point-wise retrieval and a median-filter algorithm. The autocorrelation matrix was

calculated using Eq. (5.11) and more than 200,000 wind fields retrieved over the Pacific

Ocean for 113 ERS-1 revolutions coming from the last week of June 1992, the last week

of September 1992, and the first part of October 1992. All eigenvectors and corresponding

eigenvalues ofR were then found. To form theF matrix for a particular truncated basis

order,Mx eigenvectors corresponding to the largest eigenvalues are selected and placed in

the columns ofF .

In order to determine how many basis wind-field vectors to use in the model

matrix F , it is helpful to look at a plot of the eigenvalues of the autocorrelation matrix.
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Figure 5.1: Logarithmic plot of the eigenvalues of the 10� 10 autocorrelation matrix.
(Note the di�erent vertical scales.)

Figure 5.1 shows such a plot. Notice that on the logarithmic scale natural breaks are evident

which signal important groups of basis vectors for the wind field. These groups and the

values of the eigenvalues can be used as a guide for determining how many basis vectors

to use in theF matrix.

To give a general idea of what the wind field basis vectors look like, Figures

5.2 to 5.4 show the first eighteen basis wind-field vectors re-mapped into a wind field for

plotting. It is interesting that the K-L basis selection procedure pulls out common wind

field features as basis wind-field vectors. For example, the first two basis fields simply

describe a mean wind field. Notice that this mean is the most dominant feature in most

wind fields as evidenced by the large break betweenn = 2 andn = 3 in the eigenvalue

plot in Figure 5.1(a).

Basis fields 3 to 6 are the next important group for wind fields according to the

eigenvalues. Interestingly these correspond to a cyclone (3), two basis fields describing col

points (4 and 5), and a first-order divergent field. These are physically reasonable fields.

The relative values of the eigenvalues also suggests that many wind fields can be modeled

reasonably with just these six basis fields. The next 12 basis vectors show higher order

variability that can occur within the region.

While the K-L basis vectors are theoretically the best ones to choose for
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Figure 5.2: Wind �eld basis vectors 1{6.
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Figure 5.3: Wind �eld basis vectors 6{12.
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Figure 5.4: Wind �eld basis vectors 12{18.
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minimizing the average error in the fewest number of unknowns, it has several disadvantages

that encourage investigation of other wind-field basis vectors. One of these disadvantages

is that the basis vectors must be recomputed if the region size is changed. A related

disadvantage is that since we do not have true wind fields from which to estimate the

autocorrelation matrix, our result will be tainted by the uncertainty in the data set used

to estimateR. While averaging instills confidence in the first several basis vectors, it is

difficult to determine at what point the basis vectors are dominated by noise in the sample

data. Because of these limitations it is useful to discuss other possible models for wind

fields.

5.4 Legendre Polynomial Basis Functions

Both the NB and PBC models of the wind field use a low-order bi-variate

polynomial to model the curl and divergence of a wind field (Long, 1989). If the curl and

divergence are modeled as low order polynomials, then the wind field itself will exhibit

low order polynomial behavior. Recognizing the success of the NB and PBC models in

modeling wind fields, we postulate that each rectangular component of the wind itself can

be modeled as a low order polynomial. In order to avoid numerical difficulties in inverting

matrices constructed from ordinary polynomials, we use orthogonal, Legendre polynomials

as basis functions for theu andv component images of the wind field. In this section, a

derivation of theF matrix useful for representing the wind field with Legendre, orthogonal

polynomials is given.

In Long’s wind field model, the curl and divergence are represented as low-

order polynomials and a basis set consisting offxnyng is used to represent them (1993).

These non-orthogonal polynomials are sufficient for low order polynomials; however, for

polynomial orders of four or more, these polynomials give anF matrix that is badly

conditioned and prone to error in numerical pseudo-inverse computation. Since higher-

order polynomials may need to be used when modeling the wind itself as polynomials, the

evenly-weighted, orthogonal, Legendre polynomials are used as basis functions.

Legendre polynomials are defined on the interval[�1; 1] according to the

following sum:

�n(x) =
1

2n

n=2X
m=0

(�1)m
 
n

m

! 
2n� 2m

n

!
xn�2m x 2 [�1; 1]: (5.20)
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For anM � N region, the sample rowi must be mapped from integers in

[1;M ] to the interval of definition of the polynomials[�1; 1] The column index,j must be

similarly mapped from integers in[1; N ] to [�1; 1]. This is accomplished by the sampling

function:

xi;M =
2(i� 1)

M � 1
� 1 k 2 [1;M ]: (5.21)

Using this function the components of the wind field at each grid location of an

M �N region can be expressed using Legendre polynomials as

Ui;j =
MuX
m=0

Mu�mX
n=0

um;n�(xi;M)�(xj;N); (5.22)

Vi;j =
MvX
m=0

Mv�mX
n=0

vm;n�(xi;M)�(xj;N); (5.23)

so that the indices in the sum satisfym+ n �Mu andm+ n �Mv respectively.

When the matricesU andV are row-scanned into column vectorsU andV , the

relations can be rewritten as

U =
MuX
m=0

MuX
n=0

um;nQm;n; (5.24)

V =
MvX
m=0

MvX
n=0

vm;nQm;n; (5.25)

where theQm;n areMN element (column) vectors whosekth element,qkm;n, is given by

qkm;n = �m(xrow(k);M)�n(xcol(k);N); (5.26)

row(k) =

$
k � 1

N

%
+ 1; (5.27)

col(k) = mod(k � 1; N) + 1; (5.28)

wherebxc is defined as the greatest integer less than or equal tox.

In order to convert the above expressions forU andV into one matrix expression

W = FX, it is necessary to construct aMN � (Mu + 2)(Mu + 1)=2 matrix Qu and a

MN � (Mv + 2)(Mv + 1)=2 matrixQv from theQm;n vectors. From these matrices the

2MN � (Mu + 2)(Mu + 1)=2 + (Mv + 2)(Mv + 1)=2 matrixF can be constructed. The
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details are

W =

24 U
V

35 ; (5.29)

Qu = [Q0;0jQ0;1j � � � jQm;nj � � � jQMu;0] ; (5.30)

Qv = [Q0;0jQ0;1j � � � jQm;nj � � � jQMv;0] ; (5.31)

F =

24 Qu 0

0 Qv

35 : (5.32)

The order of the columns ofQu andQv is important only in determining where the

parametersum;n andvm;n go in theX vector. Using the above equations, theF matrix

can be easily constructed for any model orderMu, Mv and any region sizeM �N . For a

MATLAB implementation of the above description see Appendix F.

5.5 Fourier-series wind model

Investigators have noted that the rectangular components of mesoscale wind

have average power spectral densities that follow an inverse power law where the power is

approximately 2 (Freilich and Chelton, 1986). With this in mind, it is reasonable to develop

a wind field model that uses Fourier basis functions.

The development of the FourierF matrix is similar to the development of the

LegendreF matrix. We write the(i; j) elements of thU andV images as

Uij = uc0;0 +
MuX
m=0

Mu�mX
n=0

�
usm;n sin

�
mi�

M
+
nj�

N

�
+ ucm;n cos

�
mi�

M
+
nj�

N

��
;(5.33)

Vij = vc0;0 +
MvX
m=0

Mv�mX
n=0

�
vsm;n sin

�
mi�

M
+
nj�

N

�
+ vcm;n cos

�
mi�

M
+
nj�

N

��
;(5.34)

where the indices for the summations also satisfy0 < m+ n �Mu and0 < m+ n �Mv

respectively.

When these are row-scanned into column vectors,U andV , we can write

U =
MuX
m=0

Mu�mX
n=0

ucm;nQ
c
m;n +

MuX
m=0

Mu�mX
n=0

usm;nQ
s
m;n; (5.35)

V =
MvX
m=0

Mv�mX
n=0

vcm;nQ
c
m;n +

MvX
m=0

Mv�mX
n=0

vsm;nQ
s
m;n; (5.36)
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whereQc
m;n, andQs

m;n areMN element (column) vectors whosekth elementskqcm;n, and

kq
s
m;n are given by

kq
c
m;n = cos

 
mrow(k)�

M
+
ncol(k)�

N

!
; (5.37)

kq
s
m;n = sin

 
mrow(k)�

M
+
ncol(k)�

N

!
; (5.38)

row(k) =

$
k � 1

N

%
+ 1; (5.39)

col(k) = mod(k � 1; N) + 1: (5.40)

Note thatQs
0;0 is a vector of all zeros.

In order to convert the above expressions forU andV into one matrix expression

W = FX, it is necessary to construct aMN � (Mu + 1)(Mu + 2) � 1 matrixQu and a

MN � (Mv+1)(Mv+2)�1 matrixQv from theQs
m andQc

m vectors. From these matrices

the2MN � (Mu + 1)(Mu + 2) + (Mv + 1)(Mu + 2) � 2 matrix,F , can be constructed.

The details are

W =

24 U

V

35 ; (5.41)

Qu =
h
Qc

0;0jQc
0;1jQs

0;1j � � � jQc
m;nQ

s
m;nj � � � jQc

Mu;0jQs
Mu;0

i
; (5.42)

Qv =
h
Qc

0;0jQc
0;1jQs

0;1j � � � jQc
m;nQ

s
m;nj � � � jQc

Mv;0jQs
Mv;0

i
; (5.43)

F =

24 Qu 0

0 Qv

35 : (5.44)

The order of the columns ofQu andQv determines where the parametersucm;n, usm;n,

vcm;n andvsm;n go in theX vector. Using the above equations, theF matrix can be easily

constructed for any model orderMu, Mv and any region sizeM � N . For a MATLAB

implementation of the above description see Appendix F.

5.6 Comparisons

In the following model comparisons, three types of fit error will be reported:

NRSS vector error, RMS speed error, and RMS direction error. NRSS vector error is a

descriptive acronym for the normalized wind-field vector error defined in Eq. (5.7). RMS

speed error and RMS direction error are the square-root of the mean-squared speed and

direction error respectively.
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To compare the models we first show two examples of ‘‘true’’ wind fields

projected onto the sub-spaces spanned by the different model matrices. Each true wind

field is taken from ERS-1 point-wise-retrieved winds, and the projections are calculated

using Eq. (5.5) and the differentF matrices.

The first true wind field is shown in Figure 5.5 along with projected wind fields

using the PBC and two Karhunen-Loeve (K-L) models. The order of the PBC model was

selected to have 22 unknown model parameters (corresponding to 22 basis vectors). The

two K-L models were selected to have 22 and 6 basis vectors.

Figure 5.6 shows two Legendre and two Fourier model fits to this same true wind

field. The model orders for the first Legendre model were selected to beMu = 3;Mv = 3

to give 20 basis vectors. The model orders for the second Legendre model were selected to

beMu = 1;Mv = 1 to give 6 basis vectors. The model orders for the two Fourier models

were selected to beMu = 2;Mv = 2, andMu = 1;Mv = 1 to give 22 and 10 basis vectors

respectively.

The second true wind field and its projections are shown in Figures 5.7 and 5.8.

From these figures it is apparent that the projection error of all four models is similar for

these particular wind fields.

In order to further evaluate the different wind models suggested above we

calculate the normalized fit error (NRSS) to several thousand simulated wind fields. The

simulated wind fields were generated using European Center for Medium-Range Weather

Forecasting (ECMWF) numerical weather predication winds as described by Long (1989,

p. 215). The average NRSS error was computed using several different model orders for

each model. Figure 5.9 and Table 5.1 shows the average results for 19,197 simulated wind

fields.

In addition, RMS speed and direction error were calculated to give a general

idea of the possible error in speed and direction for a particular wind vector cell when using

a specific wind model. The results of these calculations for the same simulated wind fields

are shown in Figures 5.10 and 5.11 and Tables 5.2 and 5.3

5.7 Summary

In this chapter, three wind field models were developed as alternatives to the

parameterized boundary condition model introduced by Long. It was found that all of

the models have similar projection error for a given number of unknowns, although the

118



0 5 10
576

578

580

582

584

586

Cross Track

A
lo

ng
 T

ra
ck

Point−wise wind field

Vector Length
RMS Speed

=   56.57
=   5.657

0 5 10
576

578

580

582

584

586

Cross Track

A
lo

ng
 T

ra
ck

PBC model (22 unknowns)

NRSS Vector Error
RMS Speed Error
RMS Direction Error

=    0.1623
=    0.5631
=    8.434

0 5 10
576

578

580

582

584

586

Cross Track

A
lo

ng
 T

ra
ck

K−L model (22 unknowns)

NRSS Vector Error
RMS Speed Error
RMS Direction Error

=    0.1331
=    0.3715
=    7.426

0 5 10
576

578

580

582

584

586

Cross Track

A
lo

ng
 T

ra
ck

K−L model (6 unknowns)

NRSS Vector Error
RMS Speed Error
RMS Direction Error

=    0.2523
=    0.703
=    14.32

Figure 5.5: First example of projecting a wind �eld onto PBC and Karhunen-Loeve
models. Wind-�eld taken from ascending portion of ERS-1 revolution 4452.
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Figure 5.6: First example of projecting a wind �eld onto Legendre and Fourier models.
Wind-�eld taken from ascending portion of ERS-1 revolution 4452.
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Figure 5.7: Second Example of projecting a wind �eld onto PBC and Karhunen-Loeve
models. Wind-�eld taken from ascending portion of ERS-1 revolution 4459.
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Figure 5.8: Second Example of projecting a wind �eld onto Legendre and Fourier
models. Wind-�eld taken from ascending portion of ERS-1 revolution 4459.
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Figure 5.9: NRSS projection error as a function of number of unknowns in model for
several models.
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Figure 5.10: RMS speed error as a function of number of unknowns in model for
several models.
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Figure 5.11: RMS direction error as a function of number of unknowns in model for
several models.
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Fourier model performed better on simulated wind fields. Due to the orthonormality of the

Karhunen-Loeve basis and its flexibility in model-order, it is recommended that this basis

set be used in model-based retrieval.
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Average NRSS Errors for Projected Wind Fields
Unknowns K-L Legendre Fourier PBC

2 0.2502 0.2499 0.2499
4 0.1962
6 0.1414 0.1395
8 0.1357
10 0.1311 0.1334 0.1970
12 0.1275 0.1251 0.1361
14 0.1265
16 0.1259 0.1279
18 0.1237
20 0.1226 0.1189
22 0.1219 0.1175 0.1228
24 0.1217
26 0.1215
28 0.1210
30 0.1207 0.1145 0.1186
32 0.1202
34 0.1200
36 0.1198
38 0.1196 0.0918
40 0.1188 0.1155
42 0.1169 0.1114

Table 5.1: NRSS projection errors for four di�erent models as a function of the number
of model parameters.
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RMS Speed Errors for Projected Wind Fields
Unknowns K-L Legendre Fourier PBC

2 1.2083 1.2059 1.2059
4 0.9535
6 0.6780 0.6739
8 0.6468
10 0.6312 0.6294 0.9365
12 0.6079 0.5979 0.6583
14 0.6028
16 0.6000 0.6146
18 0.5887
20 0.5835 0.5640
22 0.5769 0.5532 0.5874
24 0.5760
26 0.5749
28 0.5720
30 0.5706 0.5406 0.5658
32 0.5688
34 0.5681
36 0.5664
38 0.5643 0.4321
40 0.5623 0.5473
42 0.5542 0.5252

Table 5.2: RMS speed errors for four di�erent models as a function of the number of
model parameters.
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RMS Direction Errors for Projected Wind Fields
Unknowns K-L Legendre Fourier PBC

2 21.8350 21.8353 21.8353
4 17.2108
6 12.2157 12.0838
8 11.6990
10 11.1860 11.4178 18.0792
12 10.8591 10.6407 11.5436
14 10.7594
16 10.6881 10.6700
18 10.4715
20 10.3890 10.1015
22 10.3211 9.9649 10.2303
24 10.2930
26 10.2584
28 10.2060
30 10.1535 9.7140 9.8828
32 10.1108
34 10.0838
36 10.0594
38 10.0246 7.8874
40 9.9455 9.6103
42 9.7928 9.3950

Table 5.3: RMS direction errors for four di�erent models as a function of the number
of model parameters.
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Chapter 6

CONCLUSIONS

6.1 Summary of Contributions

In this thesis I have developed three areas which aid wind estimation over the

ocean using scatterometer data. These three general contributions are (1) a method for

estimating error in both point-wise and model-based retrieved winds, (2) a method for

eliminating improbable wind aliases, and (3) alternate wind models for use in model-based

wind retrieval. A more complete summary of each of these main areas follows.

6.1.1 Error estimation in wind retrieval

In Chapter 3 two approaches to estimate error in point-wise and model-based

retrieved winds were developed. As part of this development, a measurement noise model

which includes uncertainty in the Geophysical Model Function (GMF) was developed.

It was found that the resulting noise probability density function could be considered

Gaussian with little effect on wind retrieval for both NSCAT and ERS-1 scatterometers.

In addition, the Cramer-Rao bound was derived for both point-wise and model-

based retrieval processes as an approximation to the covariance of retrieved winds. Using

this approximation it was shown that the covariance of point-wise retrieved winds is

sensitive to the true wind direction. In particular, if the true wind direction is aligned

with either the fore or aft beam, then estimation uncertainty dramatically increases.

Moreover, comparison of the Cramer-Rao bound with simulations show that the maximum

likelihood estimator for point-wise wind retrieval is nearly efficient for most true wind

vectors. Furthermore, comparing the estimated covariance of model-based and point-wise

retrieved winds shows that model-based wind estimates can have greater variance than

point-wise estimates at some cell locations in a region. This is true especially if the model

contains unimportant basis vectors whose parameters cannot be estimated accurately for

the particular region under consideration, suggesting that a one-size-fits-all linear model

may not be adequate for accurate wind retrieval.

Also in Chapter 3 a direct covariance approximation method using the implicit

function theorem was described and implemented for point-wise retrieved winds. It was
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found that the approximation compares favorably with the Cramer-Rao bound approxima-

tion for many true wind vectors. However, when the estimation uncertainty grows, the

direct covariance approximation differs drastically from the Cramer-Rao bound. As a result,

it was suggested that to make use of the direct covariance approximation, more terms in

the Taylor expansion would need to be kept at considerable cost in complexity. Therefore,

the Cramer-Rao bound is suggested as the better approximation to the covariance of wind

estimates.

6.1.2 Distinguishing maxima for wind alias elimination

In Chapter 4, a method for eliminating wind aliases for both point-wise and

model-based retrieval was suggested based on a likelihood-ratio decision rule. It was found

that the approach can ameliorate the dealiasing problem in point-wise retrieval and often

eliminate it altogether with model-based retrieval. Even if the approach does not dismiss

the need for dealiasing, it allows a dealiasing algorithm to work with only those winds that

are statistically consistent with the measurements.

6.1.3 Wind field modeling

Finally, in Chapter 5 several additional linear models were proposed for use in

model-based retrieval. All of these models are based on modeling the wind directly instead

of through its curl and divergence. One of these models is a Karhunen-Loeve basis set for

25km wind fields. Comparing the modeling error introduced by each of these models with

Long’s (PBC) model for varying model-orders shows that all models give similar error. The

Fourier model had less modeling error on simulated wind fields although this is probably

a result of the averaging done to obtain these fields. However, it is recommended that

the Karhunen-Loeve model be used in model-based retrieval since it admits the greatest

flexibility in model-order selection and has orthonormal columns.

6.2 Future Research

There are several possible directions for future research which come out of the

essential contributions of this thesis. As a result this section will discuss future research as

it pertains to each of the three basic areas.
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6.2.1 Error estimation in wind retrieval

One area for future research is improving the model used for�� measurements

and evaluating its effect on wind retrieval. It is evident that geophysical modeling error

must be included to obtain believable estimates of retrieved-wind uncertainty. In this thesis

it was assumed that uncorrelated Gaussian noise was added to each measurement used in

wind retrieval. Research could be done which investigates the effect on wind retrieval of

correlation in the geophysical modeling error. Most importantly in this regard, the effect on

wind estimate uncertainty should be investigated assuming some covariance in the noise

added due to the geophysical model function error. In particular, the Cramer-Rao and/or

the direct covariance estimate should be re-derived with covariance in the measurements

due to modeling error included.

Another extension derived from the Chapter on wind retrieval uncertainty is to

investigate the Cramer-Rao bound on model-based estimates in more depth. In particular,

the effect of wind field modeling error on the estimates ofX should be investigated to

determine the effect on the uncertainty onX̂. An additional extension to the Chapter on

wind retrieval uncertainty is to calculate an error bound on the direct covariance estimate

by using Taylor’s second-order remainder formula. This would involve using implicit

differentiation to calculate the second derivatives of the wind estimate function. This would

also be useful in expanding the discussion of bias contained in Appendix B. Of course,

an ideal extension to the work on wind retrieval uncertainty would be the derivation of a

region-estimate of the wind.

6.2.2 Distinguishing maxima for wind alias elimination

There are several possible extensions to the chapter which develops the statistical

test to distinguish among the maxima that correspond to wind aliases. One area of future

research would be to evaluate in more depth the possibility of applying the decision rule to

model-based retrieved winds in order to distinguish a single wind-field among the several

that give maxima to the log-likelihood function. As shown in Chapter 4, application to

model-based winds is straightforward and has the potential to uniquely identify a single

wind field.

Another possible extension to this chapter is to examine the effect of covariance

in the geophysical modeling error as described before. Essentially, this would involve
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a re-derivation of the distribution of the likelihood-ratio statistic assuming covariance

in the �� measurements. Such a derivation would necessarily use a slightly different

approach than the one used in this thesis, since independence was immediately exploited in

calculating the moment generating function. Nonetheless through a linear transformation,

the likelihood-ratio statistic could be brought to a similar form as used in this thesis (Imhof,

1961). As a result, the expression for�0 would be essentially the same (with different

definitions forck, dk, andy0).

A third possible extension to the work in Chapter 4 is the possibility of using the

test to remove the ambiguity problem completely in some cases by using multi-scale wind

retrieval. There is a definite upwind/downwind asymmetry in the GMF which indicates

that theoretically it should be possible to resolve a single wind direction if the noise is

reduced to a low enough level. Another way to see this is to recall that without noise there

is only one wind velocity that exactly agrees with three or more measurements according to

the GMF. The effect of noise can be reduced by reducing the resolution of wind retrieval.

In other words, more measurements are used for each estimated wind vector and the wind

is retrieved on a 100km by 100km or larger grid. Theoretically, as more measurements

are gathered, the true wind direction could be distinguished by using the statistical test

developed in this thesis. Then, the wind alias closest to this direction could be selected

for wind retrieved on a grid of finer resolution. One limit to this technique is correlation

length in the wind field at the desired resolution. If the winds at this resolution change a

great deal over the larger region, then averaging the measurements from different regions

would ‘‘wash out’’ the true wind direction. Nonetheless, preliminary results suggest that

this technique could work.

6.2.3 Wind field modeling

There are also several possible areas of future research with respect to wind

field modeling. One possible extension involves the Karhunen-Loeve basis. In this thesis

all types of wind fields from both north and south of the equator in the Pacific Ocean were

used as data from which the basis vectors were estimated. One disadvantage of using such

a broad data set, is that specific phenomenological features such as fronts are buried in the

noise. As a result, a truncated basis may not model certain features such as fronts, well. If a

data set could be generated that includes such specific phenomenological features as fronts

or cyclones then a K-L basis could be estimated from this data set. Then, model-based
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retrieval could be performed by first examining the�� measurements to determine which

model would ‘‘fit’’ the data and then using that model. This could result in significant

reduction of the number of basis wind-field vectors that need to be used. Such a procedure

could also be implemented with the K-L basis vectors already presented by simply using

models of different orders as the different available models.

Another extension to the area of wind field modeling is to examine wind field

models that directly model speed and direction instead of the rectangular components

of the wind vector. This may result in more useful models. However, such research

would probably have less impact than a model-based approach that used varying models

as described above.

A final path of future research is to compare models with respect to the model-

based Cramer-Rao bound uncertainty derived in Chapter 3. Since this is a function of

the wind field model used, some wind field models may perform better than others. This

estimation precision criteria along with a model accuracy criteria could be used to derive a

future ‘‘best’’ model.

134



BIBLIOGRAPHY

Abel, J., ‘‘A bound on mean-square estimate error.’’IEEE Transactions on Information

Theory, vol. 39, no. 5, pp. 1675--1680, 1993.

Attema, E. P., ‘‘The Active Microwave Instrument On-Board the ERS-1 Satellite.’’

Proceedings of the IEEE, vol. 79, no. 6, pp. 791--799, 1991.

Davis, W. B., Enhanced Resolution Imaging from Remotely Sensed Microwave Data.

Master’s thesis, Brigham Young University, 1993.

Davison, J. and D. Harrison, ‘‘Comparison of Seasat Scatterometer Winds with Tropical

Pacific Observations.’’Journal of Geophysical Research, vol. 95, no. C3, pp. 3403--

3410, 1990.

Donelan, M. and J. W.J. Pierson, ‘‘Radar Scattering and Equilibrium Ranges in Wind-

Generated Waves with Application to Scatterometry.’’Journal of Geophysical Re-

search, vol. 92, no. C5, pp. 4971--5029, 1987.

Dunbar, R., S. Hsiao, and B. Lambrigtsen, ‘‘Science Algorithm Specification for the NASA

Scatterometer Project.’’ Vols. 1 & 2, D-5610, NASA Jet Propulsion Laboratory Report

622-107, Pasadena, CA 91103, 1988.

Fessler, J. A., ‘‘Moments of Implicitly Defined Estimators (e.g. ML and MAP): Applications

to Transmission Tomography.’’ InProceedings of the International Conference on

Acoustics, Speech, and Signal Processing, vol. 3662, pp. 2291--2294, IEEE,1995.

Fessler, J. A., ‘‘Mean and Variance of Implicitly Defined Biased Estimators (such as

Penalized Maximum Likelihood): Applications to Tomography.’’IEEE Transactions

on Image Processing, vol. 5, no. 3, pp. 493--506, 1996.

Freilich, M. and D. Chelton, ‘‘Wavenumber Spectra of Pacific Winds Measured by

the Seasat Scatterometer.’’Journal of Physical Oceanography, vol. 16, no. 4, pp.

741--757, 1986.

135



Freilich, M. and R. Dunbar, ‘‘A Preliminary C-band Scatterometer Model Function for the

ERS-1 AMI Instrument.’’ InProceedings of the First ERS-1 Symposium, pp. 79--84,

Cannes, France, ESA, 1993, SP-359.

Grantham, W., E. Bracalente, W. Jones, and J. Johnson, ‘‘The Seasat-A Sattelite Scat-

terometer.’’IEEE Journal of Oceanic Engineering, vol. OE-2, no. 2, pp. 200--206,

1977.

Imhof, J., ‘‘Computing the distribution of quadratic forms in normal variables.’’Biometrika,

vol. 48, no. 3 and 4, pp. 419--426, 1961.

Johnson, J., J. L.A. Williams, E. Bracalente, F. Beck, and W. Grantham, ‘‘Seasat-A Satellite

Scatterometer Instrument Evaluation.’’IEEE Journal of Oceanic Engineering, vol.

OE-5, no. 2, pp. 138--144, 1980.

Johnson, P. E., D. G. Long, and T. E. Oliphant, ‘‘Geophysical Modeling Error in Wind

Scatterometry.’’ InProceedings of the International Geoscience and Remote Sensing

Symposium (IGARSS), vol. 3, pp. 1721--1723, IEEE,1996.

Jones, W., L. Schroeder, and J. Mitchell, ‘‘Aircraft Measurements of the Microwave

Scattering Signature of the Ocean.’’IEEE Journal of Oceanic Engineering, vol. OE-2,

no. 1, pp. 52--61, 1977.

Leotta, D. F. and D. G. Long, ‘‘Probability Distribution of Wind Retrieval Error for the

NASA Scatterometer.’’ InProceedings of the International Geoscience and Remote

Sensing Symposium (IGARSS), vol. 3, pp. 1466--1469, IEEE,1989.

Levy, G. and R. A. Brown, ‘‘Southern Hemisphere Synoptic Weather from a Satellite

Scatterometer.’’Monthly Weather Review, vol. 119, no. 12, pp. 2803--2813, 1991.

Long, D. G., Model-Based Estimation of Wind Fields Over the Oceans from Wind

Scatterometer Measurements. Ph.D. thesis, University of Southern California, 1989.

Long, D. G., ‘‘Wind Field Model-Based Estimation of Seasat Scatterometer Winds.’’

Journal of Geophysical Research, vol. 98, no. C8, pp. 14651--14668, 1993.

Long, D. G. and J. M. Mendel, ‘‘Model-Based Estimation of Wind Fields Over the Ocean

From Wind Scatterometer Measurements, Part I: Development of the Wind Field

136



Model.’’ IEEE Transactions on Geoscience and Remote Sensing, vol. 28, no. 3, pp.

349--360, 1990a.

Long, D. G. and J. M. Mendel, ‘‘Model-Based Estimation of Wind Fields Over the Ocean

From Wind Scatterometer Measurements, Part II: Model Parameter Estimation.’’

IEEE Transactions on Geoscience and Remote Sensing, vol. 28, no. 3, pp. 361--373,

1990b.

Marsden, J. E. and A. J. Tromba,Vector Calculus. W.H. Freeman and Company, 3rd edn.,

1988.

Naderi, F., M. Freilich, and D. Long, ‘‘Spaceborne Radar Measurement of Wind Velocity

Over the Ocean---An Overview of the NSCAT Scatterometer System.’’Proceedings

of the IEEE, vol. 79, no. 6, pp. 850--866, 1991.

Oliphant, T. E. and D. G. Long, ‘‘Cramer-Rao Bound for Wind Estimation from Scat-

terometer Measurement.’’ InProceedings of the International Geoscience and Remote

Sensing Symposium (IGARSS), vol. 3, pp. 1724--1726, IEEE,1996a.

Oliphant, T. E. and D. G. Long, ‘‘Development of a Statistical Method for Eliminating

Improbable Wind Aliases in Scatterometer Wind Retrieval.’’ InProceedings of the

International Geoscience and Remote Sensing Symposium (IGARSS), vol. 3, pp.

1715--1717, IEEE,1996b.

Papoulis, A.,Probability, Random Variables, and Stochastic Processes. McGraw-Hill, 3rd

edn., 1991.

Scharf, L. L., Statistical Signal Processing: Detection, Estimation, and Time Series

Analysis. Addison-Wesley, Reading, Massachusetts, 1991.

Shaffer, S. J., R. S. Dunbar, S. V. Hsiao, and D. G. Long, ‘‘A Median-Filter-Based

Ambiguity Removal Algorithm for NSCAT.’’IEEE Transactions on Geoscience and

Remote Sensing, vol. 29, no. 1, pp. 167--174, 1991.

Stoffelen, A. C. M. and G. J. Cats, ‘‘The Impact of Seasat-A Scatterometer Data on

High-Resolution Analyses and Forecasts: The Devlopment of the QE II Storm.’’

Monthly Weather Review, vol. 119, no. 12, pp. 2794--2802, 1991.

137



Ulaby, F. T., R. K. Moore, and A. K. Fung,Microwave Remote Sensing: Active and

Passive, vol. I. Artech House, Inc., 685 Canton Street Norwood, MA 02062, 1982.

Wentz, F., S. Peteherych, and L. Thomas, ‘‘A Model Function for Ocean Radar Cross

Sections at 14.6 GHz.’’Journal of Geophysical Research, vol. 89, no. C3, pp.

3689--3704, 1984.

138



Appendix A

APPROXIMATING A NEAR-GAUSSIAN DENSITY

Often it is convenient to approximate a near-Gaussian density function using

known functions. The approach outlined in this appendix gives more detail for the technique

given on page 217 of Papoulis (1991). The technique is to expand the error between the real

density and the approximating Gaussian density in Hermite polynomials. The coefficients

can then be determined in terms of the moments of the real density function.

Suppose the density to be approximated is denoted asf(x)with central moments

�m = E [(x� �)n] m > 1; (A.1)

where� is the mean of the density function.

The Gaussian density which matches the mean and variance of this distribution

is

fN (x) =
1p
2��2

e
�

(x��)2

2�2 : (A.2)

The error between the true density function and this Gaussian distribution can

be expanded in Hermite polynomials:

�(x) = f(x)� fN(x); (A.3)

=
1p
2��2

e
� (x��)2

2�2

1X
k=3

CkHk

 
x� �p
2�2

!
: (A.4)

(A.5)

We use (unnormalized) Hermite polynomials defined as

Hk(x) =

b k2 cX
n=0

Dk;nx
k�2n; (A.6)

Dk;n =
(�1)nk!2k�2n
n!(k � 2n)!

: (A.7)

To find the coefficients,Ck, in this expansion, multiply both sides of Eq. (A.4)
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byHn

�
(x� �)=

p
2�2

�
and integrate overx:

Z 1

�1
dx �(x)Hn

 
x� �p
2�2

!
=

Z 1

�1
dx

1p
2��2
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� (x��)2

2�2
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CkHk

 
x� �p
2�2

!
Hn

 
x� �p
2�2

!
;

=
1X
k=3

Ckp
�

Z 1

�1
d� e��

2

Hk(�)Hn(�); (A.8)

where we have made the substitution� = (x� �)=
p
2�2. Using the orthogonality relation

for Hermite polynomials,Z 1

�1
d� e��

2
Hk(�)Hn(�) = 2nn!

p
��k;n; (A.9)

we see that Z 1

�1
dx �(x)Hn

 
x� �p
2�2

!
= 2nn!Cn: (A.10)

Consequently,

Ck =
1

2kk!

Z 1

�1
dx �(x)Hk

 
x� �p
2�2

!
; (A.11)

=
1

2kk!

Z 1

�1
dx

b k
2 cX

n=0

Dk;n

(2�2)
k
2
�n

Z 1

�1
dx (x� �)k�2n [f(x)� fN (x)] ; (A.12)

=
1

2kk!

b k2 cX
n=0

Dk;n

(2�2)
k
2�n

�
�k�2n � �Nk�2n

�
: (A.13)

Note that�0 = �N0 = 1, �1 = �N1 = 0, and�2 = �N2 . As a result, the sum overn can be

rewritten with upper limitk=2 � 2 whenk is even and(k � 1)=2 � 1 whenk is odd. This

can be written for both odd and evenk asb(k � 3)=2c. As a result, we can write

Ck =

b k�3
2 cX

n=0

(�1)n
�
�k�2n � �Nk�2n

�
n!(k � 2n)!�k=2�n2 2k=2+n

: (A.14)

With this expression we can write an expansion for the original probability

density,f(x):

f(x) = �(x) + fN(x);

=
1p
2��2

e
�

(x��)2

2�2

"
1 +

1X
k=3

CkHk

 
x� �p
2�2

!#
: (A.15)
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Appendix B

BIAS IN THE WIND ESTIMATE

This appendix extends the results of Chapter 3 to include a discussion of the

bias in the wind estimate. While the techniques discussed applies to both point-wise

and model-based estimates, implementation and notation will focus exclusively on the

point-wise wind estimate.

In Section 3.3 we assumed that the wind estimate is unbiased or constant-

biased1. Comparing the predicted covariance with simulations showed that this is a

reasonable assumption for most wind vectors. At low incidence angles (near-swath) and

low wind speeds, when the true wind direction is aligned with the fore and/or aft beams, the

unbiased Cramer-Rao bound seriously over-predicts the simulated variance (especially for

the wind direction estimate). This leads us to hypothesize that under these conditions the

wind estimate is biased. In this appendix we derive a method to approximate the wind bias

and then apply the Cramer-Rao bound for biased estimators to approximate the covariance.

This results in an approximation to the covariance of retrieved wind that more closely

follows simulations.

B.1 Approximating the bias

To approximate the bias in the wind estimate, we use the approach discussed

in Section 3.4 and adapted from Fessler (1995; 1996). As a review, in this approach the

implicit function relating the measurements to the wind estimate is expanded in a Taylor

series about the mean of the measurements. In Section 3.4 we used a first-order expansion

to directly approximate the covariance of the wind estimate. In this section, we use the

same first-order expansion to approximate the mean (and therefore the bias) of the wind

estimate.

In particular, we rewrite the equation and its derivation for Eq. (3.82):

ŵ = h(z) � h(�z) +D(z� �z); (B.1)

1Although not explicitly stated in the text, the unbiased Cramer-Rao bound also applies to constant-biased
wind estimates.
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whereD = @h(�z)=@z is a (row) derivative matrix with elements

Dij =
@hi
@zj

: (B.2)

From this approximation for̂w and estimate of the mean ofŵ can be obtained:

E (ŵ) = h (�z) ;

= h [M(w)] : (B.3)

This equation implies that an approximation to the wind estimate bias can be

obtained by applying the wind retrieval maximization algorithm to noise-free ‘‘measure-

ments’’ obtained using the GMF on the true windw. (In this context,M(w) refers to the

vector of��m values needed for wind retrieval.) The wind bias is the difference between

the expected value of the estimate and the true windw. As a result, the bias can be

approximated as:

B(w) � E (ŵ)�w; (B.4)

� h [M(w)]�w: (B.5)

B.2 Biased Cramer-Rao bound

There is a more general version of the Cramer-Rao bound which admits the

possibility of bias in the wind estimate. This bound on the covariance can be expressed as

(Abel, 1993):

C � @E (ŵ)

@w
J�1

"
@E (ŵ)

@w

#T
; (B.6)

� �J�1�T ; (B.7)

where

� =
@E (ŵ)

@w
; (B.8)

so that

�ij =
@E (ŵi)

@wj
: (B.9)
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Because of the bias, the total mean square error includes this covariance as well

as the bias:

MSE� B(w)B(w)T + �J�1�T : (B.10)

� can be approximated using the approximation to the bias derived in the

previous section and the chain rule:

�(w) =
@E (ŵ)

@w
;

� @h [M(w)]

@w
; (B.11)

� @h(z)

@z

@M(w)

@w
; (B.12)

� DG: (B.13)

In this expression we have used notation as in Chapter 3 where

D � @h(z)

@z
; (B.14)

and

G =
@M(w)

@w
: (B.15)

All derivatives are evaluated at the point,(�z;h(�z)) = (M(w);h(M(w))) as in Chapter

3. In that chapter, however, we made the approximation thath(�z) = w (unbiased) to

calculate the derivative matrixD. As a result, the expression for the second derivatives of

the likelihood function given there are not quite correct. As these are necessary to compute

D, they will be given here in their complete form. From Chapter 3 we have

D = �(D20)�1D11; (B.16)

where

D11 =
@

@z

"
@L(h(�z); �z)

@w

#T
=

(
@2L(h(�z); �z)

@zj@wi

)
; (B.17)

D20 =
@

@w

"
@L(h(�z); �z)

@w

#T
=

(
@2L(h(�z); �z)

@wi@wj

)
: (B.18)
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Defining Mk(h(�z)) = fMk, and recalling that�zk = Mk(w) � Mk, we can write the

elements ofD11 andD20:

D11
ij =

1

&2zj

@ fMj

@wi
+
Mj � fMj

&4zj

@&2zj
@wi

; (B.19)
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ij =

KX
k=1

"
�@
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@wi

1
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@ fMk

@wj
+
@&2zk
@wi

1
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@wj

� 1

2&2zk

@2&2zk
@wi@wj

�Mk � fMk

&4zk

 
@ fMk

@wi

@&2zk
@wj

+
@ fMk

@wj
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!
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�@&
2
zk

@wi

(Mk � fMk)2

&6zk

@&2zk
@wj

+
(Mk � fMk)2
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#
; (B.20)

where for clarity

@2&2zk
@wi@wj

=
h
2� fMk + �(1 +K2

pm)
i @2 fMk

@wi@wj
+ 2�

@ fMk

@wi

@ fMk

@wj
; (B.21)

@&2zk
@wi

=
h
2� fMk + �(1 +K2

pm)
i @ fMk

@wi
: (B.22)

Note that the notation emphasizes that the partials ofMk are evaluated ath(�z).

B.3 Examples

This section presents some examples of the wind estimate bias and the biased

Cramer-Rao bound. Both ERS-1 and NSCAT examples are presented. The examples

show that accounting for the bias in the manner described above improves the agreement

between predicted variance and simulation, especially for the unrealistically large values

of covariance predicted at certain true wind directions for near swath, low wind speeds and

largeKpm values. The discrepancy between predictions and simulations found in Chapter

3 is not completely eliminated with this technique but it is improved.

B.3.1 ERS-1

Two examples are chosen for presentation. Since the most marked difference

between simulations and the unbiased Cramer-Rao bound occurs at near swath for low

wind speeds, both of these examples are at near swath. The first example usesKpm = 0

while the second usesKpm = 0:17. The wind cell is the same as that used to generate

Figure 3.5. Figure B.1 compares the approximate bias in the wind estimate as predicted by
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Figure B.1: Comparison of approximate analytic bias with simulated bias for ERS-1
at near swath. Kpm = 0.

Eq. (B.5) to the bias estimated with a simulation ofN = 2000 retrievals. Note that for

wind directions where the unbiased Cramer-Rao bound predicted large variance in the wind

direction estimate, the derivative of the bias with respect to the wind direction becomes

negative. This has the effect of decreasing the variance bound of the wind direction estimate

as shown in Figure B.3(a) for a true wind speed of 5 m/s. Also shown in that figure is a

comparison of the unbiased and biased Cramer-Rao bound with simulations as a function

of true wind direction. Figures B.2 and B.3(b) show similar plots assumingKpm = 0:17.

Notice that the variance reduction effect of the unbiased Cramer-Rao bound is even more

pronounced when the unbiased variance bound is especially high. The discrepancy with

simulations on the wind direction standard deviation is still not completely understood but

may be due to the need for higher order terms in the Taylor-series expansion ofh(z).
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Figure B.2: Comparison of approximate analytic bias with simulated bias for ERS-1
at near swath. Kpm = 0:17.
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Figure B.3: Comparison of Cramer-Rao bound predictions on the standard deviations
of wind speed and wind direction with simulations for ERS-1 at near swath. The standard
deviation of wind speed is shown for a true wind speed of 25 m/s while the standard
deviation of wind direction is shown for a true wind speed of 5 m/s.
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Figure B.4: Comparison of approximate analytic bias with simulated bias for NSCAT
at near swath. Kpm = 0.

B.3.2 NSCAT

Two examples are presented for NSCAT geometry at far swath. One example

assumesKpm = 0, and the other assumesKpm = 0:17. Plots similar to those shown

for ERS-1 data are presented. Again, we conclude that the biased Cramer-Rao bound

improves the agreement with simulations in situations where the unbiased Cramer-Rao

bound predicts unusually high variance. However, it still does not resolve all of the

discrepancies.

B.4 Conclusion

In this appendix we have derived an approximation to the wind retrieval bias

along with an approximation to the gradient of the bias. The gradient is useful in
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Figure B.5: Comparison of approximate analytic bias with simulated bias for NSCAT
at near swath. Kpm = 0:17.
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Figure B.6: Comparison of Cramer-Rao bound predictions on the standard deviations
of wind speed and wind direction with simulations for NSCAT at near swath. The standard
deviation of wind speed is shown for a true wind speed of 25 m/s while the standard
deviation of wind direction is shown for a true wind speed of 5 m/s.
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calculating the biased Cramer-Rao bound. The biased Cramer-Rao bound helps explain the

discrepancies between the unbiased Cramer-Rao bound and simulations for certain wind

directions where the unbiased Cramer-Rao bound predicts high variance. Although the

approximations derived here do not completely resolve all the discrepancies, they suggest

that with more accurate approximations to the bias (obtainable by higher order expansions

in the Taylor series used forh), a more accurate bound could be realized.
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Appendix C

DETAILED ALGEBRA FOR WIND ALIAS ELIMINATION

This appendix is provided to describe the missing steps in Chapter 4 in going

from Eq. (4.10):

�(z) = �
KX
k=1

"
log

 
&k;n
&k;1

!
+

(zk �Mk;n)2

2&2k;n
� (zk �Mk;1)2

2&2k;1

#
; (C.1)

to Eq. (4.18):

Y =
KX
k=1

ck(xk � dk)
2; (C.2)

where

a =
KX
k=1

log

 
&k;n
&k;1

!
; (C.3)

xk =
(zk)�Mk

&k
; (C.4)

b =
KX
k=1

(Mk;1 �Mk;n)2

2
�
&2k;1 � &2k;n

� ; (C.5)

Y = ��(z)� a+ b; (C.6)

ck =
&2k
2

 
1

&2k;n
� 1

&2k;1

!
; (C.7)

dk =
&2k;n(Mk �Mk;1)� &2k;1(Mk �Mk;n)

&k(&2k;1 � &2k;n)
: (C.8)

Beginning with,

�(z) = �
KX
k=1

"
log

 
&k;n
&k;1

!
+

(zk �Mk;n)2

2&2k;n
� (zk �Mk;1)2

2&2k;1

#
; (C.9)

it is straightforward to obtain,

��(z)� a =
KX
k=1

"
(&kxk +Mk �Mk;n)2

2&2k;n
� (&kxk +Mk �Mk;1)2

2&2k;1

#
:

(C.10)
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Each term in the sum has the form

(px+ q)2

r
� (px+ s)2

t
: (C.11)

Expanding and collecting inx we obtain, 
p2

r
� p2

t

!
x2 � 2

�
ps

t
� pq

r

�
x+

q2

r
� s2

t
; (C.12)

cx2 � 2dcx+
q2

r
� s2

t
; (C.13)

where

c =

 
p2

r
� p2

t

!
; (C.14)

d =
1

c

�
ps

t
� pq

r

�
; (C.15)

=
rt

p2(t� r)

psr � pqt

rt
; (C.16)

=
rs� tq

p(t� r)
: (C.17)

By completing the square this expression becomes,

c(x� d)2 + f; (C.18)

where

f = �cd2 + q2t� s2r

rt
; (C.19)

= �p
2(t� r)(rs � tq)2

rtp2(t� r)2
+
q2t� s2r

rt
; (C.20)

=
(t� r)(q2t� s2r)� (rs� tq)2

rt(t� r)
; (C.21)

=
q2t2 � q2rt� s2rt+ s2r2 � s2r2 + 2rtqs� q2t2

rt(t� r)
; (C.22)

= �rt(s� q)2

rt(t� r)
; (C.23)

= �(q � s)2

(t� r)
: (C.24)

Thus, Eq. (C.10) can be written as

��(z)� a =
KX
k=1

h
ck(xk � dk)

2 + fk
i
; (C.25)
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where

ck =
&2k
2

 
1

&2k;n
� 1

&2k;1

!
; (C.26)

dk =
&2k;n(Mk �Mk;1) � &2k;1(Mk �Mk;n)

&k(&2k;1 � &2k;n)
; (C.27)

fk = �(Mk;1 �Mk;n)
2

2
�
&2k;1 � &2k;n

� : (C.28)

Consequently, defining

b = �
KX
k=1

fk; (C.29)

we obtain

��(z)� a+ b =
X
k=1

ck(xk � dk)
2; (C.30)

Y =
X
k=1

ck(xk � dk)
2 (C.31)

as desired.
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Appendix D

RELATIONSHIP BETWEEN MODEL-BASED FISHER

INFORMATION MATRIX AND POINT-WISE FISHER

INFORMATION MATRICES WHEN F HAS RANK 2MN .

In this appendix, it is shown that the model-based Fisher information can be

constructed from the Fisher information matrices of the individual wind vectors in the

region when the model matrix,F has rank2MN , whereM �N is the region size.

Assume that the wind-field vector is formed by row-ordering a wind field.

W =

266666666664

w1

...

wl

...

wMN

377777777775
: (D.1)

For a linear model,W = FX, whenF has rank2MN then the model does not restrict the

wind field in anyway. Consequently, the definition ofJW is

JW = E

8<:
"
@L(W;Z)

@W

#T
@L(W;Z)

@W

9=; ; (D.2)

where

L(W;Z) = �
MNX
l=1

K(l)X
k=1

24
�
Zk;l �M2

k;l

�
2&2Zk;l

+
1

2
log

�
2�&2Zk;l

�35 : (D.3)

JW is a2MN � 2MN block-matrix composed ofM �N , 2� 2 blocks. The block in the

mth row andnth column is

Jwm;n = E

8<:
"
@L(W;Z)

@wm

#T
@L(W;Z)

@wn

9=; : (D.4)

The dependence of the log-likelihood equation onwm occurs only inMk;m. As a result,

@L(W;Z)

@wm
=

K(m)X
k=1

@Mk;m

@wm

Zk;m �Mk;m

&2Zk;m
+

24(Zk;m �Mk;m)
2

2&4Zk;m
� 1

2&2Zk;m

35 @&2Zk;m
@wm

(D.5)
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Consequently, we write

Jwm;n = E

8<:
K(m)X
k=1

@Mk;m

@wm

Zk;m �Mk;m
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2&4Zk;n
� 1

2&2Zk;n
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9=; ; (D.6)

where expectation is taken over the measurement vectorZ. If m 6= n, the independence

assumption of the measurements implies that the expectation of the product can be written

as the product of the expectations. Performing the expectations is then straightforward:

Jwm;n =

8<:
K(m)X
k=1

@Mk;m

@wm
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&2Zk;m
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� 1
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24 &2Zk;n
2&4Zk;n

� 1

2&2Zk;n

35 @&2Zk;n
@wn

9=; ; (D.7)

= 0 m 6= n: (D.8)

Thus, only blocks wherem = n survive the expectation soJW can be written

as a block-diagonal matrix where each block is2� 2:

JW =

26664
Jw1 0

...

0 JwMN

37775 : (D.9)
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Appendix E

CALCULATING CURL AND DIVERGENCE OF MODEL WIND

FIELD BY MATRIX MULTIPLICATION

In spectral analysis of the curl and divergence of ERS1-retrieved winds, a

discrepancy between the spectra of the curl and divergence retrieved using two different

methods is observed. The first method uses matrix multiplication between theX vector

and a matrix designed to selected the curl coefficients inX to get the assumed low order

bivariate polynomial value of the curl at each point. A similar matrix is used to obtain the

divergence. The second method, uses first differences on the model-based wind itself to

approximate the curl and divergence.

For both the curl and divergence spectra, the two methods produce spectra that

agree well until wavenumbers are high enough that the waves they represent fit inside one

of the10� 10 regions. Inside this region the two methods produce divergent spectra. This

suggests that the two methods for computing curl and divergence are not equivalent. Since

the first difference approximation is believable, the model formulation which dictates how

curl and divergence are extracted fromX is incorrect. The matrices used to extract curl and

divergence fromX have zero entries for locations corresponding to boundary conditions

in theX vector, apparently indicating that the boundary conditions have an effect on the

curl (and divergence) of the field, a fact not previously considered.

As the model-based wind retrieval method still does an effective job of retrieving

many wind fields, it is desirable to find a matrix that can be multiplied by theX vector to

obtain the correct curl and divergence. The approach to this problem used in this appendix

is to find a numerical derivative that uses all of the available data in a region to find the

curl and divergence. This numerical derivative is given in terms of a matrix that can be

multiplied by a vector (or a matrix) representing a sampled function with the result a vector

(or a matrix) that is the derivative of the function at each sampled value. The derivation of

this matrix is considered in the following.
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E.1 Derivation of the Approximation of Maximum Order Derivative Matrix

The Problem: Given anM�N matrixU with elementsuij representing uniform

samples atx = is andy = jt of a functionf(x; y), find matrices that can be multiplied by

U to approximate, using all available data,@f=@i and@f=@j.

For the remainder of this discussion the functionf(is; jt) is written asf(i; j).

The problem is solved by first finding the correct matrix for@f=@i and then making a

slight modification to find the correct matrix for@f=@j.

This problem can be solved using two seemingly different approaches, yet each

returns the same solution. This first approach is to interpolate (extrapolate) a derivative

estimator function using Lagrange interpolating polynomials. The second approach is to

calculate the derivative of the interpolating polynomial of the function itself.

E.1.1 Interpolating the derivative estimator

One approach to finding a numerical approximation to the derivative with

respect toi is to define the following derivative estimator function:

bgmn(x) =
f(m+ x; n)� f(m;n)

x
: (E.1)

Whenx is an appropriate integer (between1 and the size,M , of the matrix), this definition

can be written with matrix notation as,

bgmn(k) = gk =
um+k;n � um;n

k
: (E.2)

Lettingk run from1�m toM �m (skippingk = 0) in columnn of U ,M � 1

samples of the derivative estimator function can be constructed for each column. Then,

noting that

bgmn(0) � lim
k!0

bgmn(k) =
@f

@i

�����
mn

; (E.3)

interpolation or extrapolation of the constructed samples ofbgmn(x) tox = 0 will provide an

approximation to the derivative. The method of interpolation used is Lagrange polynomial

interpolation.

In anM �N matrixU there is enough data forM � 1 samples of the functionbgmn(x). As mentioned before, these occur atx = k = 1 � m: : :� 1; 1 : : :M �m. The
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Lagrange interpolating polynomial (as a function ofx) that fits these sample points is given

by

Pmn(x) =
M�mX
k=1�m
k 6=0

gk
M�mY
l=1�m
l6=k;0

x� l

k � l
: (E.4)

Therefore,bgmn(0) can be approximated byPmn(0):

Pmn(0) =
M�mX
k=1�m
k 6=0

gk
M�mY
l=1�m
l6=k;0

�l
k � l
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�1X
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1CCA
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1CCA
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k=1
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l
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M�mY
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l
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M�mX
k=1
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m�1Y
l=1

l
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l

l� k
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m�1X
k=1

g�k

 
(�1)k�1 (m� 1)!

(m� 1 � k)!

! 
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!

+
M�mX
k=1

gk

 
(m� 1)!

(m� 1 + k)!

! 
(�1)k�1 (M �m)!

(M �m� k)!

!
:

Substituting Equation (E.2) into this result givesPmn(0) � @f=@ijmn as a linear

combination of elements in thenth column ofU :

Pmn(0) =
m�1X
k=1

�
um�k;n � um;n

k

� 
(�1)k (m� 1)!

(m� 1 � k)!

! 
(M �m)!

(M �m+ k)!

!

�
M�mX
k=1

�
um+k;n � um;n

k

� 
(m� 1)!

(m� 1 + k)!

! 
(�1)k (M �m)!

(M �m� k)!

!
:

Since the above approximation for@f=@ijmn is a linear combination of the

elements in thenth column ofU , it can be expressed as a matrix equation relating the

matrixU to its row-derivative at every point by,

cDU;rows = Di(M)U

whereDi(M) is aM �M matrix whose elementsdim;n are defined by

dim;n =

8>>>><>>>>:
M�mX
k=1

(�1)k(M �m)!(m� 1)!

k(M �m� k)!(m� 1 + k)!
�

m�1X
k=1

(�1)k(M �m)!(m� 1)!

k(M �m+ k)!(m� 1� k)!
m = n;

(�1)m�n(M �m)!(m� 1)!

(m� n)(M � n)!(n� 1)!
m 6= n:
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Letting l = k +m in the first diagonal summation andl = m� k in the second this can be

rewritten as

dim;n =

8>>>>>><>>>>>>:

MX
l=1
l6=m

(�1)l�m(M �m)!(m� 1)!

(l �m)(l� 1)!(M � l)!
m = n;

(�1)m�n(M �m)!(m� 1)!

(m� n)(M � n)!(n� 1)!
m 6= n:

(E.5)

This is the desired result as it gives a matrix for computing amaximumorder approximation

to @f=@ijmn for eachm andn in the matrixU .

This idea can be easily extended to determine a matrix expression for finding

@f=@jjmn for eachm andn in U by realizing that,

cDU;cols =
�cDUT ;rows

�T
=
�
Di(N)UT

�T
= UDT

i (N) = UDj(N): (E.6)

Notice that ifU isM �N , thenDj(N) is anN �N version of theDT
i matrix.

For clarity some examples ofDi(M) are given below.

Di(4) =

26666666664

�11
6

3 �3=2 1=3

�1=3 �1=2 1 �1=6
1=6 �1 1=2 1=3

�1=3 3=2 �3 11
6

37777777775
;

Di(5) =

266666666666664

�25
12 4 �3 4=3 �1=4

�1=4 �5=6 3=2 �1=2 1=12

1=12 �2=3 0 2=3 �1=12
�1=12 1=2 �3=2 5=6 1=4

1=4 �4=3 3 �4 25
12

377777777777775
;
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Di(6) =

26666666666666666664

�137
60

5 �5 10=3 �5=4 1=5

�1=5 �13
12 2 �1 1=3 �1=20

1=20 �1=2 �1=3 1 �1=4 1=30

�1=30 1=4 �1 1=3 1=2 �1=20
1=20 �1=3 1 �2 13

12
1=5

�1=5 5=4 �10=3 5 �5 137
60

37777777777777777775

:

E.1.2 Differentiating the interpolating function

A second approach can be used to derive the sameDi(M) matrix. This

approach has the advantage of returning a simpler expression for the diagonal elements.

This approach uses the samples off(x; y) contained in a given column of matrixU (uk;n

wherek = 1 : : :M ) directly to construct a Lagrange interpolating polynomialQn(x) for

f(x; n). Then @f=@ijmn is approximated by taking the derivative ofQn(x) directly and

evaluatingQ0
n(x) atx = m.

The Lagrange interpolating polynomial forf(x; n) using theM elements of the

nth column ofU is given by

Qn(x) =
MX
k=1

uk;nLk(x); (E.7)

with

Lk(x) =
MY
l=1
l6=k

x� l

k � l
:

The derivative of this polynomial evaluated atx = m, Q0
n(m)(� @f=@ijmn),

can be written as

Q0
n(m) =

MX
k=1

uk;n L
0
k(x)jx=m : (E.8)

Multiple application of the product rule reveals that

L0k(x) =

0BB@ MY
l=1
l6=k

1

k � l

1CCA
0BB@ MX
l=1
l6=k

MY
o=1
o 6=k;l

(x� o)

1CCA :
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Equation (E.8) can be rewritten as a matrix equation to relate the matrixU to its

row-derivative at each point,

cDU;rows = Di(M)U; (E.9)

where this time, the elements ofDi(M) are given bydim;n = L0n(m). To get a better

understanding of this matrix,L0n(m) is evaluated below form = n andm 6= n.

EvaluatingL0n(m) for m = n gives

L0m(m) =

0BB@ MY
l=1
l6=m

1

m� l

1CCA
0BB@ MX

l=1
l6=m

2664 1

(m� l)

MY
o=1
o6=m

(m� o)

3775
1CCA

=
(�1)m�M

(m� 1)!(M �m)!

MX
l=1
l6=m

(�1)M�m(m� 1)!(M �m)!

(m� l)

=
MX
l=1
l 6=m

1

m� l
: (E.10)

Recognizing that form 6= n,

MY
o=1
o6=n;l

(m� o) =

8>>>><>>>>:
MY
o=1

o6=n;m

(m� o) l = m;

0 l 6= m;

allows simplifyingL0n(m) for m 6= n:

L0n(m) =

0BB@ MY
l=1
l6=n

1

n� l

1CCA
0BB@ MX
l=1
l6=n

MY
o=1
o 6=n;l

(m� o)

1CCA

=

0BB@ MY
l=1
l6=n

1

n� l

1CCA
0BB@ MY

o=1
o 6=n;m

(m� o)

1CCA
=

 
(�1)n�M

(n� 1)!(M � n)!

! 
(�1)M�m(m� 1)!(M �m)!

(m� n)

!

=
(�1)n�m(m� 1)!(M �m)!

(m� n)(n� 1)!(M � n)!

=
(�1)m�n(M �m)!(m� 1)!

(m� n)(M � n)!(n� 1)!
: (E.11)
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Using Equations (E.10) and (E.11), the elements ofDi(M), dim;n = L0n(m) can

be explicitly written as

dim;n =

8>>>>>><>>>>>>:

MX
l=1
l 6=m

1

m� l
m = n;

(�1)m�n(M �m)!(m� 1)!

(m� n)(M � n)!(n� 1)!
m 6= n:

(E.12)

The off-diagonal elements can immediately be seen to correspond to those

given in the earlier expression forDi(M). Empirical evidence suggests that the diagonal

elements are the same as well although a proof is not immediately obvious. We expect

the two matrices to be the same since the two methods both use a Lagrange polynomial

interpolator. The second derivation, however, gives a much simpler expression for the

diagonal elements.

E.2 Using the MODA Matrix with a Row-scanned matrix

In the previous section it was shown that an approximation ofmaximumorder

for @f=@ijmn, where samplesf(i; j) are elementsui;j of theM � N matrix U , can be

found with the following equation:

cDU;rows = Di(M)U: (E.13)

It was also shown that a similar expression can be used to find an approximation of

maximumorder for@f=@jjmn:

cDU;cols = UDT
i (N): (E.14)

LetX be a row-scanned version ofX. It can be shown that the matrix equation

A = BC;

whereA isM �N ,B isM �P , andC isP �N , can be written as either the matrix-vector

equation

A = (B 
 IN�N)C

or the matrix-vector equation

A = (IM�M 
 CT )B:
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Here
 represents the Kronecker product for matrices. Using this fact, Equations (E.13)

and (E.14) can be written as

cDU;rows = DxU; (E.15)cDU;cols = DyU; (E.16)

where

Dx = Di(M)
 IN�N ;

Dy = IM�M 
Di(N):

E.3 Using MODA to find �

Given a wind field over anMxN region represented by a vectorX, with

W = FX and

W =

24 U

V

35 ;
the MODA matrix can be used to find the curl and divergence over the region from theX

vector by multiplication by appropriate� matrices. Using the MODA matrix is appropriate

since the wind field represented byX is a well-filtered field with no high-frequency

components.

Represent the row-scanned curl of the wind field in a region byC, and represent

the row-scanned divergence byD. They are related to the row-scanned wind field

componentsU andV through the MODA matrix:

C = �DyU +DxV ;

D = DxU +DyV :

These equations can be rewritten as a matrix equation:24 C

D

35 =

24 �Dy Dx

Dx Dy

3524 U

V

35 : (E.17)

SinceW = FX, we can rewrite Equation (E.17) as

H = �X: (E.18)
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In this equation,

H =

24 C

D

35 ;
and

� =

24 �Dy Dx

Dx Dy

35F: (E.19)

Equation (E.19) gives an appropriate� matrix to use to obtain the curl and divergence from

theX parameters of the wind field.
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Appendix F

MATLAB CODE FOR CALCULATING LEGENDRE AND

FOURIER F MATRICES

F.1 LegendreF matrix

This MATLAB function takes as arguments the size of the region and the model

order in bothu andv and returns the appropriateF matrix using a Legendre polynomial

model.

function Fr = legebas(M,N,Mu,Mv)

% function Fr = legebas(M,N,Mu,Mv)
%
% Returns a Legendre-polynomial Fr matrix for computing
% the wind from the X parameters in the
% model-based wind retrieval technique. MxN is size of region,
% Mu is u-component model order and Mv is v-component model order.
%

%
% Calculate Yu and Yv such that U = Yu*X and V = Yv*X
%

Nu = (Mu+1)*(Mu+2)/2;
Nv = (Mv+1)*(Mv+2)/2;

Yu = [];
Yv = [];
Qmn = zeros(M*N,1);

for m = 0:Mu
for n = 0:Mu-m,

for k=1:M*N,
row = floor((k-1)/N)+1;
col = rem(k-1,N)+1;
Qmn(k) = lege(row,M,m)*lege(col,N,n);

end
Yu = [Yu Qmn];

end
end

for m = 0:Mv
for n=0:Mv-m

for k=1:M*N,
row = floor((k-1)/N)+1;
col = rem(k-1,N)+1;
Qmn(k) = lege(row,M,m)*lege(col,N,n);

end
Yv = [Yv Qmn];

end
end

166



Yu = [Yu zeros(N^2,Nv)];
Yv = [zeros(N^2,Nu) Yv];

Fr = [Yu;Yv];

+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
function phi = lege(k,N,n)

% Computes the Legendre polynomial of order n evaluated at k
% where k lies in interval [1,N].

phi = 0;
for l = 0:floor(n/2),

phi = phi + (-1)^l*binom(n,l)*binom(2*n-2*l,n)*(2*(k-1)/(N-1)-1)^(n-2*l);
end
phi = phi/(2^n);

F.2 Fourier F matrix

This MATLAB function takes as arguments the size of the region and the model

order in bothu andv and returns the appropriateF matrix using a Fourier-series model.

function Fr = fourierbas(M,N,Mu,Mv)

% function Fr = fourierbas(M,N,Mu,Mv)
%
% Returns a Fourier Fr matrix for computing
% the wind from the X parameters in the
% model-based wind retrieval technique. MxN is size of region,
% Mu is u-component model order and Mv is v-component model order.
%

%
% Calculate Yu and Yv such that U = Yu*X and V = Yv*X
%

Nu = (Mu+1)*(Mu+2) - 1;
Nv = (Mv+1)*(Mv+2) - 1;

Yu = ones(M*N,1);
Yv = ones(M*N,1);
Qcm = zeros(M*N,1);
Qsm = zeros(M*N,1);

for m = 0:Mu
for n = 0:Mu-m
if (n+m)>0,

for k=1:M*N,
row = floor((k-1)/N)+1;
col = rem(k-1,N)+1;
Qcm(k) = cos(m*pi*row/M + n*pi*col/N);
Qsm(k) = sin(m*pi*row/M + n*pi*col/N);

end
Yu = [Yu Qcm Qsm];

end
end

end

for m = 0:Mv

167



for n = 0:Mu-m
if (n+m)>0,

for k=1:M*N,
row = floor((k-1)/N)+1;
col = rem(k-1,N)+1;
Qcm(k) = cos(m*pi*row/M + n*pi*col/N);
Qsm(k) = sin(m*pi*row/M + n*pi*col/N);

end
Yv = [Yv Qcm Qsm];

end
end

end

Yu = [Yu zeros(M*N,Nv)];
Yv = [zeros(M*N,Nu) Yv];

Fr = [Yu;Yv];

168


	Title Page: NEW TECHNIQUES FOR WIND SCATTEROMETRY
	ABSTRACT
	ACKNOWLEDGMENTS
	Contents
	List of Tables
	List of Figures
	Chapter 1 INTRODUCTION
	1.1 Background
	1.2 Current wind retrieval methods
	1.3 Summary of Contributions

	Chapter 2 WIND SCATTEROMETRY BACKGROUND
	2.1 Overview
	2.2 Scatterometers
	2.2.1 Radar equation
	2.2.2 ERS-1 and NSCAT instruments

	2.3 Geophysical model function
	2.4 Statistical Models of Measured Backscatter
	2.4.1 Motivation for studying statistical models
	2.4.2 Model explanation

	2.5 Point-wiseWind Retrieval
	2.5.1 Method
	2.5.2 Problems with point-wise retrieval

	2.6 Model-based wind retrieval
	2.6.1 Method
	2.6.2 Status of model-based retrieval


	Chapter 3 ERROR ESTIMATION INWIND RETRIEVAL
	3.1 StatisticalModel Revisited
	3.1.1 Uncertainty in the GMF
	3.1.2 Effect of GMF uncertainty on overall measurement model
	3.1.3 Effect on Wind Estimation
	3.1.4 Final measurement model

	3.2 Application of new model
	3.3 Cramer-Rao Bound forWind Scatterometry
	3.3.1 Description of Cramer-Rao Bound
	3.3.2 Derivation for point-wise retrieval
	3.3.3 Covariance of model-based wind estimate 
	3.3.4 Point-wise Results
	3.3.5 Model-based Results
	3.3.6 Summary

	3.4 Direct Covariance Approximation
	3.4.1 Method
	3.4.2 Derivation
	3.4.3 Comparisons with Cramer-Rao bound

	3.5 Summary of Wind Covariance Estimates

	Chapter 4 DISTINGUISHING MAXIMA IN THEMAXIMUM-LIKELIHOOD EQUATION
	4.1 Problem background
	4.2 Setting up the hypothesis test
	4.2.1 General Approach
	4.2.2 Practical Approach

	4.3 Determining the size of the test
	4.3.1 Defining a related statistic
	4.3.2 Finding an explicit formula for the size

	4.4 Using estimate of wind instead of expected value.
	4.5 Determining an upper-bound for the size
	4.5 Determining an upper-bound for the size
	4.6 Extension to model-based
	4.7 Application to point-wise wind-alias elimination
	4.7.1 ERS-1
	4.7.2 Simulated NSCAT
	4.7.3 Discussion

	4.8 Application to model-based alias elimination
	4.8.1 Case 1: F = I
	4.8.2 Case 2: F (does not equal) I

	4.9 Summary

	Chapter 5 WIND FIELD MODELING
	5.2 Wind Vector Space and Model Sub-Space
	5.3 Karhunen-Loeve Basis Wind-Field Vectors
	5.3.1 Determination of the K-L F matrix
	5.3.2 10 x 10 K-L basis wind fields

	5.4 Legendre Polynomial Basis Functions
	5.5 Fourier-series wind model
	5.6 Comparisons
	5.7 Summary

	Chapter 6 CONCLUSIONS
	6.1 Summary of Contributions
	6.1.1 Error estimation in wind retrieval
	6.1.2 Distinguishing maxima for wind alias elimination
	6.1.3 Wind field modeling

	6.2 Future Research
	6.2.1 Error estimation in wind retrieval
	6.2.2 Distinguishing maxima for wind alias elimination
	6.2.3 Wind field modeling


	BIBLIOGRAPHY
	Appendix A APPROXIMATING A NEAR-GAUSSIAN DENSITY
	Appendix B BIAS IN THE WIND ESTIMATE
	B.1 Approximating the bias
	B.2 Biased Cramer-Rao bound
	B.3 Examples
	B.3.1 ERS-1
	B.3.2 NSCAT

	B.4 Conclusion

	Appendix C DETAILED ALGEBRA FOR WIND ALIAS ELIMINATION
	Appendix D RELATIONSHIP BETWEENMODEL-BASED FISHER INFORMATION MATRIX AND POINT-WISE FISHER INFORMATION MATRICES WHEN F HAS RANK 2MN
	Appendix E CALCULATING CURL AND DIVERGENCE OF MODEL WIND FIELD BY MATRIX MULTIPLICATION
	E.1 Derivation of the Approximation of Maximum Order Derivative Matrix
	E.1.1 Interpolating the derivative estimator
	E.1.2 Differentiating the interpolating function

	E.2 Using the MODA Matrix with a Row-scanned matrix
	E.3 Using MODA to find 

	Appendix F MATLAB CODE FOR CALCULATING LEGENDRE AND FOURIER F MATRICES
	F.1 Legendre F matrix
	F.2 Fourier F matrix


