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ABSTRACT

RapidSCAT Slice Spatial Response Function Contour Parameterization

John Clyde Niedfeldt
Department of Electrical Engineering Engineering, BYU

Master of Science

The spatial response function (SRF) of the backscatter measurements for a radar
scatterometer is often used in reconstruction. It has been found that in many cases the SRF
can be approximated as a binary function that is 1 inside the - 6 dB contour of the SRF
and 0 outside. This improves the computation speed of reconstruction. Computing the SRF
contour can still be a lengthy computation, which can be simplified by precomputing and
tabulating key SRF contours. The tabular parameterization for many spinning scatterome-
ters, i.e., QuikSCAT, is straight-forward. For RapidSCAT, this estimation is more involved
than other radars due to the irregular orbit of its host platform, the International Space
Station (ISS). This thesis presents a process for parameterizing the slice contours for Rapid-
SCAT that are acceptable for reconstruction purposes. This thesis develops a new process
for parameterizing slice contours. First, RapidSCAT SRFs are calculated using XfactorRS3 ,
and -6 dB slice contours are found using matplotlib. Then, a suitable filter is found for reduc-
ing noise present in slice contours due to quantization error and interpolation inaccuracies.
Afterwards, the polygon comparison algorithm is used to determine a set of approximation
points. With the approximation points selected, the 3-rd order linear approximation is cal-
culated using parameters available in the L1B data files for RapidSCAT. Finally, analysis of
the parameterization is performed.

Overall, I developed a process that parameterizes RapidSCAT slice contours with
an average root mean square (RMS) error of roughly 1.5 km. This is acceptable for the
application of the slice parameterization algorithm and significantly reduces computation
compared to fully computing the SRF.
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Chapter 1

Introduction

Radars have been used for decades to gather information about what is around us.

Military radars are used to detect incoming missiles, aircraft, maritime vessels, and other

threats and is also used for surveillance. Weather radars are a class of radar used for measur-

ing current weather conditions. Data from space-based radars is used for measuring wind-

speed over the ocean, composition of gases in our atmosphere, tracking icebergs, oil-spill

extent, and more. Truly, radars are essential to many parts of our society today.

One of the inherent difficulties of a space-based radar—such as a scatterometer—is

its relatively low resolution. We desire to generate images with increased resolution com-

pared to conventional radar, since generally each low resolution radar footprint can cover

many square kilometers. One method to increase the image resolution is to use “reconstruc-

tion”. Reconstruction entails taking measurements with overlapping footprints and using

an inversion algorithm to calculate the backscatter at a each of the overlapping locations

that make up the measurements. To make the process of reconstruction simpler, there are

some approximations and estimations that can be applied. In practice, these contours are

usually pre-calculated [8]. For prior space-based radars, such as QuikSCAT, this is a straight

forward process due to the consistent orbit of the radar, but RapidSCAT is a different story.

Unlike other radars, RapidSCAT is located on the International Space Station (ISS)

which has a variable attitude and orbit height. This, in addition to other challenges associ-

ated with being hosted by the ISS, makes estimating contours to be used for reconstruction

more difficult with RapidSCAT than for almost any other scatterometer. Accounting for
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these variations and determining a reliable method of calculating pulse contours is the focus

of this thesis.

In this thesis I calculate a 3-rd order linear parameterization of slice contours versus

orbit position and antenna rotation for RapidSCAT for use in reconstruction. To accom-

plish this, first the spatial response functions (SRFs) of selected measurements are calculated.

From the SRFs, the -6 dB slice contours are found, which are the main building block for this

thesis. The -6 dB slice contours are then filtered to reduce noise. Afterwards, the contours

are approximated using a predetermined number of points.The parameterization of the ap-

proximated slice contours is then calculated. Finally, an analysis of the parameterization is

presented. The parameterization enables rapid computation of measurement SRF contours

for any orbit position and antenna angle.

An outline of this thesis is as follows. Basic concepts necessary to the thesis are

introduced in Chapter 2. The calculation of SRFs, and approximation of slice contours is

explained in Chapter 3. The parameterization and analysis are covered in Chapter 4. Finally,

a summary and ideas for future work are presented in Chapter 5.
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Chapter 2

Background

This chapter provides some background for this thesis. Scatterometers are reviewed

in Section 2.1. The two primary scatterometers used in this text, QuikSCAT and Rapid-

SCAT, are reviewed in Sections 2.2 and 2.3, respectively. Thereafter an overview of image

reconstruction is presented in Section 2.7.

2.1 Scatterometers

A radar scatterometer is defined as a device used for measuring the radar scattering

coefficient quantitatively [9]. RapidSCAT is such a device. It sends out electromagnetic

waves which hit the earth, part of which typically reflects back to RapidSCAT which then

measures the return power. Utilizing the profile of the power return, the backscatter char-

acteristics of the surface are calculated. The main measure of the scattering characteristics

of the surface used in this study is the normalized radar scattering coefficient (σ0), also

known as the backscatter coefficient, or normalized radar cross-section. σ0 differs from the

radar cross-section (σ) in that it compensates for the area illuminated by the beam so that

measurements can accurately be related one to another.

Scatterometers can be used to gather information about geophysical properties, which

can be used for various studies that benefit society. Some examples of data that can be col-

lected, as well as applications for said data, are given hereafter. Ocean wind measurements

are used in weather prediction and ocean studies [10, 11]. Iceberg tracking [12–14] is es-

sential for safe maritime transport of goods. Forest extent measurements enable study of

3



forests, such as the Amazon rainforest, and used for measuring deforestation. Snow cover-

age extent [15, 16], as well as Antarctic and Arctic ice extent [17, 18], are used in studies

of global warming. Oil spill mapping [19–21] is invaluable for nature preservation as it aids

in determining containment boundaries as well as estimating the effectiveness of cleanup

efforts.

2.2 SeaWinds on QuikSCAT

This section covers the essential information pertaining to the SeaWinds scatterom-

eter on QuikSCAT. The SeaWinds scatterometer on QuikSCAT–hereafter referred to as

QuikSCAT–commenced its mission in 1999 [22]. It was originally launched to fill the gap in

Ku-Band ocean wind data left by the failure of NSCAT—the NASA Scatterometer launched

in August of 1996—and was to be decommissioned with the launch of SeaWinds aboard

ADEOS-II —referred to as SeaWinds—2.5 years later. QuikSCAT went on to surpass ex-

pectations and its data was used for calculating sea winds for the next 10 years—many years

after SeaWinds on ADEOS-II failed—until 2009 when a ball bearing seized up, causing the

antenna to stop spinning. An illustration of the scatterometer aboard its host instrument

can be seen in Figure 2.1.

QuikSCAT, whose geometry can be seen in Figure 2.2, is a rotating, pencil-beam

scatterometer. Pencil-beam scatterometers illuminate an approximately elliptical area on

the incident surface, which in the case of QuikSCAT is the result of the antenna being a

parabolic reflector. It also has a sun-synchronous polar orbit, which means it maintains the

same orientation with respect to the sun year-round. A figure demonstrating the definition

of a sun-synchronous orbit is shown in Figure 2.3. The importance of a sun-synchronous

orbit is that the radar’s measurements in this orbit are then all at the same local time of

day. For instance, QuikSCAT’s measurements near the equator are taken at 6 am or 6 pm

local time. This is important for ensuring that data from subsequent orbits can be related

to a particular orbit with regard to diurnal effects (which is discussed more in Section 2.3).

QuikSCAT’s orbit is Keplerian and can therefore be described by the six Keplerian

Orbit Parameters: eccentricity, semimajor axis length, inclination angle, longitude of ascend-

ing node, argument of periapsis, and the mean anomaly. This allows for an efficient means
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Figure 2.1: Illustration of SeaWinds aboard QuikSCAT [4].

Figure 2.2: Diagram of SeaWinds on QuikSCAT geometry [5].
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Figure 2.3: Sun Synchronous Orbit diagram [6]. The green line represents a sun-synchronous
orbit, which means that it maintains the same orientation with respect to the sun throughout
the year. The red line indicates an orbit which does not compensate for rotation around the
sun.

of defining the orbit with only a few parameters. QuikSCAT’s orbit altitude is located at an

average of 800 km above the earth’s surface. At this distance from the Earth’s surface there

is little atmospheric drag on the satellite, allowing QuikSCAT to maintain a near constant

orbit over its 17 year lifespan.

The consistency of QuikSCAT’s orbit, together with the accuracy and reliability of its

ocean wind measurements, have made its data invaluable to the remote sensing community

at large. Access of various datasets from QuikSCAT can be found at podaac.jpl.nasa.gov.

QuikSCAT is currently in its Post Wind Mission phase, whose main purpose is to calibrate

the RapidSCAT scatterometer. QuikSCAT is scheduled to be decommissioned in Fall of

2016.

6
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Table 2.1: RapidSCAT and QuikSCAT Basics Compared [1]

Parameter RapidSCAT QuikSCAT Unit
Orbital altitude 435 800 km
Antenna size 0.75 1 m
Pulse width 1.0 1.5 ms
PRI 6.0 5.4 ms
Peak radiated power 80 80 W
Incidence angle, 2 beams 49, 56 46, 54 degree
Look angle, 2 beams 45, 50.5 40, 46 degree
Ground-range resolution 0.79, 0.73 0.55, 0.49 km
Azimuth resolution 15.5, 17.3 24.5, 26.0 km
Slant range 600, 678 1095, 1242 km
Ground swath 900, 1100 1410, 1800 km
Data window length 1.4 1.8 ms
NE σ0 -32.8, -31.5 -31.2, -32.2 dB

2.3 RapidSCAT

After QuikSCAT stopped spinning in 2009, NASA decided that a Ku-Band scatterom-

eter should be flown on the ISS. To speed up development and save costs, the engineering

model of QuikSCAT was modified and used as the replacement scatterometer. The mission

was called RapidSCAT. RapidSCAT was launched in the fall of 2014, and is currently aboard

the International Space Station (ISS). RapidSCAT is due to be decommissioned in Fall of

2016.

A comparison of some of the basic parameters for QuikSCAT and RapidSCAT can

be seen in Table 2.1. Only a few of the parameters of RapidSCAT were modified relative

to QuikSCAT, and as a result RapidSCAT is quite similar to QuikSCAT, which facilitates

calibration, but with some distinct differences. For instance, RapidSCAT’s smaller antenna

size and increased look angle of its beams—due at least partially to the much lower altitude

of RapidSCAT than QuikSCAT—give RapidSCAT a larger ground swath and measurement

area than if the QuikSCAT instrument were at RapidSCAT’s . However, as can be seen in

Table 2.1, the ground swath is still smaller for RapidSCAT.

RapidSCAT has a unique orbit due to its host platform, the ISS. The orbit is a non-

sun-synchronous, non-polar orbit that precesses much more rapidly than QuikSCAT. The

7



Figure 2.4: Graphs showing the progression of the ISS orbit [1]. The ISS orbit slowly evolves
and eventually covers every latitude—for all longitudes—over the course of two months.

overlay of orbits spanning various time periods is shown in Figure 2.4. While generally a

precession of an orbit into different local times of day—such as that shown in Figure 2.4—

might not be desirable for most applications, this phenomenon allows the measurement of

diurnal cycles. Diurnal cycles are processes that vary throughout the course of the day,

such as temperature or wind velocity. Every two months, the ISS orbit processes such that

RapidSCAT passes above each location between ±60 latitude at most times of the day, as

seen in Figure 2.4. This allows us to look at various parameters as never before, such as

modeling how the winds over the ocean vary from month-to-month and season-to-season.

While it would be excellent to get a measurement at every location for each time of day, it

is not possible with RapidSCAT.
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Figure 2.5: Plot of ISS height versus the revolution number for RapidSCAT. The revolution
number is the number of orbits since the instrument was placed in orbit.

In addition to the other non-standard orbit qualities, RapidSCAT additionally has

a non-Keplerian orbit. Simply stated, this means that calculations become more time con-

suming. The altitude of the spacecraft also varies significantly over time, which has a big

impact on the Xfactor (which is introduced in Section 2.4). A plot of the spacecraft height

can be seen in Figure 2.5.

Another attribute of RapidSCAT that makes correlating data between orbits more

difficult is the large attitude range when compared to QuikSCAT. Figure 2.6 shows the roll,

pitch, and yaw values for the ISS across various orbits. The roll and pitch variations seen

here are much larger than QuikSCAT’s, which affects Xfactor calculations. The Xfactor is

introduced in Section 2.4.

2.4 XfactorRS3

The XfactorRS3 program and equations are referenced at various points in this work

and are introduced here. The Xfactor is derived from the Radar Equation following the

derivation in [8].

9



163 189 237 269 297 315 344 381 406 437 468
Orbit

−1.5

−1.0

−0.5

0.0

0.5

1.0

1.5

D
eg

re
es

Roll

163 189 237 269 297 315 344 381 406 437 468
Orbit

0.2

0.4

0.6

0.8

1.0

1.2

1.4

D
eg

re
es

Pitch

163 189 237 269 297 315 344 381 406 437 468
Orbit

−20

0

20

40

60

80

100

D
eg

re
es

Yaw

Figure 2.6: Plots of ISS roll, pitch, and yaw for various orbits. QuikSCAT attitudes would
appear as lines with 0◦ slopes.

The monostatic radar equation is defined in [9] as

Pr =
λ2

(4π)3

∑
i∈F

PtiG
2
iσ

oδAiGF,i

R4
i

, (2.1)

where i indicates a specific cell in the footprint F , Pt is the power transmitted, Pr is the

power received, G is the antenna gain, σ0 is the normalized radar cross-section (normalized

backscatter coefficient), R is the range, λ is the wavelength, δA is the area of each cell, and

GF is the gain of the slice filter band for the signal. This is computationally expensive,

so in order to simplify and reduce computation time, three variables—σ0, Pt, and Gp—are

assumed constant over the footprint. Implementing this into the equation results in

P̄r =
λ2

(4π)3
PtG

2
pσ

o
∑
i∈F

δAiGF,i

R4
i

=
λ2

(4π)3
PtG

2
pσ

o
∑
i∈F

SRF (i)
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Figure 2.7: Example integration grid for a RapidSCAT egg and slice 6.

with

SRF (i) =
δAiGF,i

R4
i

, (2.2)

where P̄r is the approximate return power and SRF (i) is the spatial response function.

Further expanding the equation we find

Pr =
σ0

X
, (2.3)

where

X =
Ccal
NNp,t

∑
i∈F

Pt,ig
2
i δAiGF,i

R4
i

=
Ccal
NNp,t

∑
i∈F

SRF (i)

and

Ccal =

(
λ2

(4π)3

)(
G2
pLcalPcal

Lsys

)
,

where X is the XfactorRS3 , Ccal is a calibration variable, Lcal is the product of the calibration

losses, Lsys is the product of the system losses, and Pcal is the calibration power used.

Currently, the radar equation cannot accurately be computed in real time. Thus, the

Xfactor is precalculated for various positions and other needed positions are interpolated.

An example of a nominal (or standard position) Xfactor table for both an egg and a slice of

RapidSCAT can be seen in Figure 2.7.

In the event of an attitude perturbation, it is desirable to have an easy correction

scheme so that the Xfactor does not need to be recalculated. After various tests, it was
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Figure 2.8: X plotted as a function of ∆f . The red line is the 3rd order fitted curve.

found that parameterizing the Xfactor with respect to ∆f is a reliable parameterization,

where the different data are collected by calculating X for various attitude positions from

nominal. ∆f is explained in Section 2.5. An example of a relationship between X and ∆f

can be seen in Figure 2.8.

2.5 ∆f

The frequency shift, also known as ∆f , is essential to the definition of slices as well

as defining the effect of perturbations on the Xfactor. ∆f is a combination of range and

Doppler bins, where a “bin” is a select set of time delays and frequency ranges. This section

explains the mathematical definition of ∆f .

∆f is given as

∆f = (fnom − fpert + ferr) · T ·NFFT ,

where

fnom = fdnom +Rconstant · rnom,

fpert = fdpert +Rconstant · rpert,

12



and

Rconstant =
2 · ChirpRate
SpeedLight

.

Reorganized this is

∆f =

(
fdnom − fdpert +

2 · ChirpRate
SpeedLight

· (rnom − rpert)
)
· T ·NFFT .

In these equations T is the sample period andNFFT is the number of points in the FFT, which

are 2.114e-6 seconds and 1024, respectively, according to the Xfactor code. The Chirp-Rate

is approximately 250 kHz/ms.

2.6 Eggs and Slices

Throughout this work “eggs” and “slices” are referred to. These have relation to the

spatial response function. The spatial response function, eggs, and slices are explained in

the next few paragraphs.

The spatial response function (SRF) is a measure of the power returned from each

location on the surface being imaged as seen by the instrument, and is determined according

to 2.2. Various aspects,which are primarily due to the radar equation, feed into determining

the spatial response function, given in Equation (2.1), including: antenna response at trans-

mit, antenna response at receive, topography of the imaged surface, and range gate clipping.

When all these aspects are taken into account, the spatial response can be calculated, as

shown in the left image of Figure 2.9. The left image is a plot of what is considered the

spatial response of the sensor, and also the image from which the egg is derived.

The egg is the contour of the main lobe response within -6 dB of the maximum power

return, and is shown by the black contour in Figure 2.9. This value is commonly used for

low-resolution, low-noise imaging as well as for calibration. For QuikSCAT and RapidSCAT,

the egg return power is not measured directly, but instead is a sum of the inner 8 of 12 slices.

A slice is the power return over a specific set of frequency shift bins (∆f) of the

dechirped echo. An overview of ∆f is given in Section 2.5. On QuikSCAT and RapidSCAT

there are range bins—which differentiate locations on the ground by looking at the return

13
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Figure 2.9: The RapidSCAT Xfactor egg and slice processor responses. In practice, the egg
response is calculated using a sum of the slice responses.
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Figure 2.10: All azimuth angles, both beams, all valid inner slices at a position near the
equator. The spacecraft is moving northeast.

time—and frequency bins, which differentiate locations on the ground utilizing the Doppler

effect. A slice, in essence, is a certain combination of range and Doppler bins. Plotting the

slice contours for 36 different azimuth angles produces the plot shown in Figure 2.10.
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σ0(θ;x, y) σ0[x, y] = A+ B(θ − 40◦)

Imaging algorithm

observed through SRF
σ0 measurements

observation geometry, SRF

Parameters:

• Iterations (SIR only)

• Pixel size

• Region

Sampling Reconstruction

Figure 2.11: The sampling and reconstruction process. The sampling process is already
determined by instrument design and orbit geometry. For reconstruction, σ0[x, y] is rep-
resented from the QuikSCAT measurements, subject to parameters such as pixel size and
reconstruction algorithm. [7]

2.7 Reconstruction

Reconstruction is the ultimate purpose of accurately determining the SRF slice con-

tours. Reconstruction is a process that takes individual measurements and tries to recreate

the original backscatter image on a fine resolution grid. This process is outlined in Fig-

ure 2.11.

An example of this process is shown in Figure 2.12. In the left image in this plot,

the boresight locations of the σ0 measurements on the surface are shown. In the right side

image, the -6 dB contours of the SRF are shown. These approximately determine which

parts of the surface contribute to the measurement’s value. Using this information allows

the reconstruction to infer a finer grid [23].
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Figure 2.12: Examples of grid algorithm (left) and ave algorithm (right). Using a knowledge
of the contours of the egg contours (green ellipses), the ave algorithm can determine infor-
mation on a finer grid than the grid method, which is also known as the “drop in a bucket”
method. [7]
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Chapter 3

Contour Preparation

This section describes the methodology used in finding a parameterization for slice

contours. Determining a reliable method of slice parameterization improves computation

speed of image reconstruction methods while maintaining reasonable accuracy. For an

overview of image reconstruction and the role of eggs and slices in reconstruction see Sec-

tion 2.7.

First, the various data used are introduced in Section 3.1. The calculation of slice

contours is explained in Section 3.2, and filtered in Section 3.3. After filtering, the contours

are correlated to one another as described in Section 3.4, which enables slice approximation

according to the method explained in Section 3.5. After approximation, the method of

selecting valid contours is introduced in Section 3.6. The parameterization is calculated in

Section 4.1. Lastly, the results of the parameterization are compared to the original slice

contours in Section 4.2.

3.1 Data Used

This section covers the data used in producing the slice contours used for parameter-

ization as well as providing an introduction to L1B data. Section 3.1.1 explains what data

is used and produced as well as metadata generated from XfactorRS3 , while Section 3.1.2

introduces the L1B dataset.

17



3.1.1 Xfactor

The XfactorRS3 program is essential in generating the data used in this research. The

main data required for this research are the slice integration grids, such as the one shown in

Figure 3.1, which is metadata produced while running XfactorRS3 . The integration grids

are defined in the Brigham Young University XfactorRS3 program. The antenna pattern,

range and Doppler tracking tables, and ephemeris and attitude data are evaluated for each

location and time of interest.

The NASA Jet Propulsion Laboratory (JPL) supplies the inner and outer beam an-

tenna pattern files which are read in XfactorRS3 . The antenna gain patterns seen in Equa-

tion (2.1) are assumed constant across all orbits and are essential for determining the SRF.

The input attitude data—the roll, pitch, and yaw—can be seen in Figure 2.6. The x, y, and

z positions and velocities are given by the ephemeris data file.

Another important set of information includes the Doppler and range tracking tables.

As the ISS orbit changes, the Doppler frequency range as well as gate timing range varies.

If uncompensated, clipping of the main lobe of the processor response can occur resulting

in poor estimates of the Xfactor as well as an inaccurate estimate of the slice contours. In

order to compensate, range and Doppler tracking tables are created and used to change the

range-gate timings and Doppler frequencies being used. Using these tables avoids clipping

of the main lobe of the processor response and allows accurate calculations of the Xfactor.

With this information, the XfactorRS3 program is run. The XfactorRS3 program

produces the integration grids for eggs and slices from which the contours are calculated.

A total of 45 different orbits are used to provide the integration grids used in this

thesis. The orbits are spread in time with different attitude and ephemeris data for each

revolution and selected based on having different Doppler tracking tables.

3.1.2 L1B

L1B is one of the data formats for QuikSCAT and RapidSCAT data distributed by

JPL. The L1B data layout, which is explained hereafter, is representative of the data from

which a parameterization is made.
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Table 3.1: NASA Processing Levels [2]

Data Level Description
Level 0 Reconstructed, unprocessed instrument and payload data at full reso-

lution, with any and all communications artifacts (e.g., synchronization
frames, communications headers, duplicate data) removed.

Level 1A Reconstructed, unprocessed instrument data at full resolution, time-
referenced, and annotated with ancillary information, including radio-
metric and geometric calibration coefficients and georeferencing parame-
ters (e.g., platform ephemeris) computed and appended but not applied
to Level 0 data.

Level 1B Level 1A data that have been processed to sensor units, e.g. including
QuikSCAT.

Level 2 Derived geophysical variables at the same resolution and location as
Level 1 source data.

Level 3 Variables mapped on uniform space-time grid scales, usually with some
completeness and consistency checks.

The basic data levels of interest, as defined by NASA, are shown in Table 3.1. L1B

provides the highest level processed data available to the public before wind processing. The

developed parameterization is based on the parameters of the RapidSCAT L1B file.

An explanation of the parameters in a QuikSCAT L1B file is given in [3], which is

similar to the L1B files of RapidSCAT. For reference, the L1B parameters of interest in this

thesis are given with their descriptions in Table 3.2, where descriptions are obtained from [3].

3.2 Find the Contours

Once the slice integration grids have been determined and the SRF calculated, the

contours are then determined. A contour is defined as the -6 dB contour of the normalized

SRF for a given slice. The SRF is introduced in Section 2.6. The contours are determined

using linear interpolation between grid points and then finding where the interpolated lines

intersect the contour level using the matplotlib.pyplot.contour package in Python 3.5. After

finding the intersection points, the points are then arranged into contours. A contour overlaid
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Table 3.2: Selected L1B File Parameters from [3]

L1B Parameter Description
rev number An assigned revolution number based on the spacecraft orbital his-

tory. Each revolution begins and ends at the southernmost orbital
latitude.

orbit time The spacecraft time which the SeaWinds Command and Data Sub-
system (CDS) assigns to the telemetry data packet. Orbit time
records the clock counts as they are reported in the telemetry
packet.

sc lat The geodetic latitude of the location on the spacecraft nadir track.
sc lon The east longitude of the location on the spacecraft nadir track.
sc alt The spacecraft nadir altitude relative to the reference ellipsoid at

the time specified in data element frame time.
x pos The X component of spacecraft position in the Earth Centered Ro-

tating (ECR) coordinate system.
y pos The Y component of spacecraft position in the Earth Centered Ro-

tating (ECR) coordinate system.
z pos The Z component of spacecraft position in the Earth Centered Ro-

tating (ECR) coordinate system.
x vel The X component of spacecraft velocity in the Earth Centered Ro-

tating (ECR) coordinate system.
y vel The Y component of spacecraft velocity in the Earth Centered Ro-

tating (ECR) coordinate system.
z vel The Z component of spacecraft velocity in the Earth Centered Ro-

tating (ECR) coordinate system.
roll The angular rotation about the y-axis of the ISS spacecraft fixed

right handed coordinate system.
pitch The angular rotation about the x-axis of the ISS spacecraft fixed

right handed coordinate system.
yaw The angular rotation about the z-axis of the ISS spacecraft fixed

right handed coordinate system.
frequency shift The shift in the baseband frequency of a scatterometer pulse due

to various measurement conditions.
antenna azimuth The calculated azimuth of the SeaWinds antenna at the instant

when the radiation from the scatterometer pulse impacts the earths
surface.

x factor The conversion factor from the energy measurement to the nor-
malized radar cross section value for each of the slices of a whole
scatterometer pulse.

20



−0.6 −0.4 −0.2 0.0 0.2 0.4 0.6 0.8

∆ Longitude (degrees)

−0.8

−0.6

−0.4

−0.2

0.0

0.2

0.4

0.6

0.8

1.0
∆

La
tit

ud
e

(d
eg

re
es

)

Slice 6 -6 dB Contour

−180

−165

−150

−135

−120

−105

−90

−75

−60

dB

Figure 3.1: The RapidSCAT Xfactor slice processor response at a particular azimuth angle
and orbit position for Slice 6.

on the integration grid from which it is derived can be seen in Figure 3.1. Figure 3.2 shows

an example of the slice contours for a particular pulse for the inner beam.

3.3 Filter the Contours

The calculated slice contours are filtered to mitigate the effects of quantization error

inherent in digitized data. When generating the contour for a slice or egg the contour

locations are quantized to grid centers. This induces noise in the reported location. In order

to reduce this noise—which encourages greater accuracy in parameterization of contours—

while enabling a more conservative estimate of the slice contours, a Blackman filter of length

7 is applied to each array of km east and km north locations of the -6 dB contours. This

filter length is sufficiently long to reduce the effects of noise and quantization error without
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Figure 3.2: An example of the inner 8 out of the 12 slices for RapidSCAT. Slices 1 and 12
are rarely used as they are considered “guard bands”. The axes “km north” and “km east”
are defined with respect to the boresight of the antenna. Measurements taken at 0 degrees
azimuth, ascending pass of equator, with the spacecraft heading northeast.

significantly altering the shape of the contour. A Blackman filter is used due to the wide

main lobe and the low side lobes in the Fourier transform, which in essence means the filter

accepts slow changes but resists (smooths) fast (noisy) changes. The original contour, along

with its filtered version, can be seen in Figure 3.3. For a more in depth view, including

turning functions and derivatives, see Figure 3.4.
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Figure 3.3: An example slice contour and its filtered version. Notice that the filtered contour
closely resembles that of the original.

3.4 Relation of Contours

To approximate the slice contours, the filtered contour is compared to a pre-defined

standard contour. In order to correlate two contours, we must determine the orientation

difference and the corresponding points on each contour.

In order to determine the rotation angle of a slice contour, first a reference curve must

be chosen. For this work, the 0 orbit time, 0◦ azimuth contours from an idealized RapidSCAT

orbit are used as the reference case. This enables accurate correlation of points between all

the various RapidSCAT orbits, which vary greatly in orbital and attitude parameters. The

method used to determine slice rotation is the polygon comparison method (PCM) outlined

in Appendix A. The algorithm, originally developed in [24], is explained in Appendix A and
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Figure 3.4: Plots of contours (blue) and filtered contours (red). (a) the contours plotted in
latitude and longitude; (b) the turning functions (see Appendix A); (c) the first derivative of
the turning function for the original contour; (d) the first derivative of the turning function
for the filtered contour; (e) the second derivative of the turning function for the original
contour; (f) the second derivative of the turning function for the filtered contour.
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the reader is encouraged to review that section. The PCM method additionally gives the

correlated starting points between the contours.

The PCM works well and closely matches human intuition of the best fit, but that is

not always desirable. The best fit is sometimes at an angle that is 180◦ off from the rotation

angle we want it compared to. To account for this possibility, a weighting is applied to the

PCM that favors rotations that are closer to a reference angle, which is chosen to be an

estimate of the expected rotation angle.

The calculation of the expected reference angle is dependent on two factors: the orbit

position and the azimuth angle. Figure 3.5 illustrates the rotation angle difference with

respect to antenna azimuth angle and shows that determining the reference angle is not as

simple as many would assume. The wide range of rotation angle values across orbit positions

for a given azimuth angle can be understood through an analysis of Figure 3.6. The figure

shows an example of the effect of orbit position for a single azimuth angle, and in fact is

essential in producing the figure shown in Figure 3.5. The effect of azimuth on Figure 3.5 is

negligible.

3.5 Approximation

The original number of points used to approximate a slice contour varies, though a

good-quality valid contour generally consists of approximately 400 points depending on the

slice and pulse in question. Parameterization requires that we relate comparable points in

different contours in order to ascertain the parameters of interest and to determine consistent,

reliable contour descriptions. To this end, an estimate of each slice contour needs to be

made with a consistent number of points (arbitrarily chosen to be 36, which also matches

the number of azimuth angle measurements) and in a consistent fashion.

This is a more difficult task than originally anticipated due to the change in slice

shape for different azimuth angles. Figure 3.8 shows the effects of rotation on slice 6. It

should be noted that the results shown in Figure 3.8 are a best case scenario as they are

calculated based on an idealized ISS orbit with ideal attitude parameters.

For QuikSCAT, the method developed by by Ivan S. Ashcraft in [25] was used, which

employs an approximation based on a polar coordinate defined version of the contour. Instead
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Figure 3.5: Rotation angle for all 32 orbit times and 36 azimuth angles in a given orbit for
the inner beam. The red point indicates the 0 orbit time, 0 azimuth angle location. Each
vertical set of points span the 32 orbit times for that angle, and more in depth view of the
vertical set of points can be seen in Figure 3.6.

of that method, a new method based upon the polygon comparison method explained in

Appendix A is used because the method used in [25] does not compensate for orbit and

attitude changes present in RapidSCAT’s orbits. The first step is to create an ideal orbit

and calculate, using XfactorRS3 , the integration grids for at least one position, that being

the 0◦ azimuth, 0 orbit time case. This is essential since in order to use the method outlined in

Appendix A there needs to be a second contour, which in order to ensure accurate correlation

of points between different curves, means that we need a reference set of slice shapes. To

satisfy this requirement, the aforementioned ideal slice contours at 0◦ azimuth, 0 orbit time

are used as reference contours.
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Figure 3.6: A characterization of the effect of orbit time on rotation angle. The apparent
sinusoidal nature is a result of the change in direction of the ISS with respect to ground as
it orbits around Earth.

After the ideal case slices have been calculated, the contour points need to be aligned.

When calculating contours, the contour arrays rarely start at the same relative position in the

contour. A useful metric to see how similar the curves are and to determine the orientation

of one with respect to the other is needed. The polygon comparison algorithm explained

in Appendix A fulfills these requirements. While the main purpose of Appendix A is to

define a metric for the difference in shape between two polygons, the method has the side

benefits of finding the correct orientation and correct position of each curve that minimizes

the polygon distance metric introduced in [24]. The start point of the ideal curve is fixed in

order to speed computation as well as to enable easy and accurate correlation. The correlated

starting index of each array—in addition to the rotation compensated curves—can be seen

in Figure A.3.
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Figure 3.7: The residual rotation angle in degrees for a slice after compensating for azimuth
angle rotation when compared to the 0 orbit time, 0◦ azimuth angle case. The red point
indicates the 0 orbit time, 0◦ azimuth angle case.

3.5.1 Determining Important Points

In approximating the shapes of slices, one of the essential operations is to ensure that

critical defining points are determined in a consistent manner between slices so that accurate

correlation is possible. To this end, the method is to use the turning function and look for

the first crossings at intervals along the curve, e.g., for 36 approximation points an point is

chosen every 10◦ of rotation. The results of this approximation can be seen in Figure 3.9.

Notice that this method of approximation handles both sharp corners and gentle slopes very

well.

It should be noted that this method of approximating shapes is only useful if the

function is a monotonic increasing function. The slice contours meet this specification in

nearly all cases, and those that are not monotonic increasing are usually erroneous slices.
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It is also for this reason that the original slice contour needs to be filtered. The effects of

filtering on the turning function can be seen in Figure 3.4. From the set of defining points,

a smaller subset is chosen on which to focus.

3.6 Determine Valid Slices

In parameterizing contours it is necessary to consider that not all contours are valid.

A reliable method of determining slice validity is presented here.

As visually verifying all the accurate slices is impractical. In order to programatically

determine validity of a slice the polygon metric introduced in [24] is used. This metric is

used based on the fact that if the slice has a shape that is greatly dissimilar from the ideal

then the slice is not valid. It should be noted that the data used for determining valid slices

for use in parameterization is not important so long as it gives a reliable estimate.
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Figure 3.10: The method for determining important points graphically demonstrated. Here
8 approximation points are used to define the contour shown above. The black, green, and
red points are all approximation points. The black and green dots are given in order to
correlate the points on the two plots.
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Figure 3.11: Filtering noisy slices based on g-factor. It is evident that the g-factor method
filters more slices than slicemax (see Figure 3.13)., and a visual comparison with some of the
slices the Slice Max method shows that some valid slice contours are being discarded.

One key parameter for determining a slice’s validity is the g-factor. The g-factor is

a measure of the range-gate clipping, or the amount of the egg that is not included in the

power returned. If the valid contours, defined as those having a certain range-gate clipping

threshold, for 36 uniform azimuth angles and 1 orbit position are plotted a figure similar to

Figure 3.11 results. Originally this plot was made with a threshold of 0.9999, which allows

almost no range-gate clipping, but by inspection it was apparent that valid slices were being

thrown out.

Plotting the g-factor with respect to the polygon metric for all slices and for a single

slice can be seen in Figure 3.12. From Figure 3.12 we conclude that the g-factor is insufficient

in determining if slices are valid. One reason the g-factor alone does not accurately determine
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the validity of slices is due to the fact that the g-factor is the fraction of power from the

egg that is present in the used frequency bins, but a particular slice may not include the

egg power lost due to clipping. Applying a more stringent requirement on g-factor results in

losing all but 2 or 3 slices for some aft azimuth angles.

Another option considered for determining the validity of slices is to use the maximum

gain of the SRF, which here is also referred to as slicemax. If the slicemax is too low then

parts or all of the egg are below the noise floor, meaning that the signal-to-noise ratio (SNR)

are too poor to reliably use the data. Basing slice selection by setting a threshold based on

the slicemax results in the plot shown in Figure 3.13, which is made from the same set of

pulses as Figure 3.11. As can be seen, Figure 3.13 has more slices than Figure 3.11 and the

slices contour shapes still resemble the expected valid slice shapes.

Furthermore, comparing the slicemax to the polygon metric from [24] for all slices

and for a single slice results in the plots shown in Figure 3.14. In Figure 3.14 it can be seen

that contours that are greatly dissimilar to the ideal contour—contours that have a large l2

distance—are appear to be limited to slicemax values below -80 dB. Using a combination of

thresholding slicemax, g-factor, and the polygon comparison metric, a set of valid slices is

identified, which are then used for parameterizing slices.
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Figure 3.12: A scatter plot of the g-factor as a function of l2 polygon distance for the over
94,000 pulses analyzed, with points plotted for each slice (top) and for only slice 5 (bottom)
in each pulse. A histogram is overlaid where a bin has a count greater than 10. The top left
corner shows slivers of color where most of the measurements are located.
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Figure 3.13: Filtering noisy slices based on slice max amplitude.
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Chapter 4

Parameterization and Results

4.1 Parameterization

After all contours have been approximated, and valid slices have been determined, a

parameterization can be calculated. The method chosen for performing the parameterization

is the least-squares linear fit of polynomial order 2. Originally a fit for all azimuth angles for

each slice was created, but due to the error of the fit a parameterization is created for each

slice for each azimuth angle. An explanation of the calculation follows.

The base algorithm for a linear fit is of the form

Ax = b

with

A =


p1[1] p2[1] . . . pm[1]

p1[2] p2[2] . . . pm[2]
...

...
. . .

...

p1[n] p2[n] . . . pm[n]


and

b =


kmeast[1] kmnorth[1]

kmeast[2] kmnorth[2]
...

...

kmeast[n] kmnorth[n]

 ,
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where pm is the m-th parameter row vector, kmeast represents the km east row vector from

the egg center for the approximation points, kmnorth represents the km north row vector

from the egg center for the approximation points, and n selects the n-th pulse from the pulses

being used for the parameterization. The parameters represented in pm include: roll, pitch,

yaw, g-factor, polygon distance, orbit position, slant range of boresight, slicemax, xfactor

for the egg, xfactor for the slice. In order to ensure an accurate linear approximation, the

data used for the parameterization is defined as the deviation from the mean for the data.

The mean referred to is the mean calculated for a particular variable, azimuth, and slice

combination.

The m-th parameter row vector, pm, is

pm =
[
v0centered v1centered . . . vOcentered,

]
,

where O is the order of the variable and vcentered represents the data deviation from the

mean. For this thesis the order was arbitrarily chosen to be 3.

4.1.1 Calculate Weightings

In order to solve for the weightings, x, the pseudo inverse must be calculated. The

pseudo inverse is defined as

x = (ATA)−1AT b,

where A and b have been defined previously. It is important to note that the pseudo inverse

only exists if the inverse of ATA exists, which means that A must be full rank, which in

the overdetermined case which means the columns of A must be independent. For certain

azimuth angles, slice combinations the pseudo inverse cannot be calculated. In these cases,

the restraints on what constitutes a valid slice are relaxed which in turn increases the number

of slices used in parameterization. If the relaxed restraints still do not yield enough slice

contours to work with, then the parameterization cannot be calculated. Otherwise, a set of

model coefficients are computed that enable computation of the slice contour at an arbitrary
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orbit position and azimuth angle given the input parameters. To see the results of this

parameterization, see Section 4.2.

4.2 Analysis of Parameterization

In analyzing the results of parameterization we first consider the quality of the slices

used for parameterization. The quality for the inner and outer beams of RapidSCAT can be

seen in Figure 4.1 and Figure 4.2, respectively. For the inner 8 slices the results are quite

good for both inner and outer beams, with inner having more parameterization difficulties

than the outer beam.

The metric used for determining the accuracy of the parameterization is explained

here. First, for each contour used in the parameterization the root mean square (RMS) error

is calculated for the l2 distance between the approximation points and the points estimated

using the parameterization. Afterwards, the mean of the curve l2 RMS error for all curves

utilized in the parameterization is calculated. The results of this calculation for the inner

and outer beams is shown in Figure 4.3 and Figure 4.4, respectively. A white section means

that a parameterization could not be calculated for that case. Here we see that in general

the RMS error across the inner 8 slices averages around 1.5 km l2 RMS error for the inner

beam and a little higher for the outer beam. This is an acceptable level of performance.

The estimations produced are, in general, visually close estimates if the estimation

flags shown in Figures 4.1 to 4.2 are “Good”, and inaccurate estimates if “Warning”. Ex-

amples of a good and a bad estimate can be seen in Figure 4.5 and Figure 4.6, respectively.
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Figure 4.1: Status of each parameterization for the inner beam. Green indicates that the
parameterization used incorporates the slice selection limits mentioned in Section 3.6, orange
indicates the slice selection limits had to be loosened in order to create a usable parameter-
ization, and yellow indicates that creating a slice parameterization was not possible due to
range gate clipping.
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Figure 4.2: Status of each parameterization for the outer beam. Green indicates that the
parameterization used incorporates the slice selection limits mentioned in Section 3.6, orange
indicates the slice selection limits had to be loosened in order to create a usable parameter-
ization, and yellow indicates that creating a slice parameterization was not possible due to
range gate clipping.
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Figure 4.4: Average of l2 RMS errors in km for each curve used for each parameterization
for the outer beam.
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Figure 4.6: A bad estimate obtained using parameterization.
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Chapter 5

Conclusion

A knowledge of the spatial response function (SRF) of the RapidSCAT σ0 measure-

ments allows a user to reconstruct a high resolution image from densely sampled measure-

ments. While a precise evaluation of the SRF for every given point would produce the highest

resolution, calculation of the SRF for every pulse is impracticable as it is too computation-

ally intensive. An alternate approach is to calculate the -6 dB contour for each slice and

assume that the return is uniform inside the contour and negligible outside the contour. The

contour can then be parameterized to enable a much faster computation of the contours for

use in reconstruction.

Previously for QuikSCAT, the parameterization was simple and highly accurate due

to QuikSCAT’s consistent, easily defined orbit. RapidSCAT’s orbit is much less consistent

than that of QuikSCAT such that parameterization is less straight forward. Here we review

the parameterization method used for RapidSCAT, analyze the results, and propose future

work to be done.

The basic process for parameterizing the slice contours is as follows:

1. Compute the SRFs for each slice at multiple azimuths and orbit positions,

2. Compute the -6 dB contours of each slice

3. Filter (smooth) the contours,

4. Approximate contours, aligning the contours appropriately,

5. Determine valid slices to be used in paramterization,
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6. Calculate the parameterization coefficients.

The following paragraphs explain the findings regarding each of these steps, as well as a

synopsis of the analysis for the parameterization.

Generation of the SRF for multiple orbits is done using the XfactorRS3 program,

developed at BYU. As inputs, real-world data from the ISS and RapidSCAT are passed into

XfactorRS3 . The outputs of the program, for the single output mode, include the spatial

response function, Xfactor, and various other instrument parameters, from which the slice

contours are calculated and the parameterization defined.

After the SRFs are generated, the contours are calculated. To do this the maximum

SRF slice response is found. Using the maximum slice SRF, the contour -6 dB down from the

slice maximum SRF is calculated utilizing the matplotlib package in Python 3. The contour

generated is noisy because of quantization error and the imperfect linear estimation features.

In order to compensate for the noisy contour locations, the contours are filtered. A

Blackman filter of length 7 is used to smooth while maintaining the general shape of the

contours. This aids the accuracy of the parameterization.

Having filtered the contours, the next step is to reduce the number of points along

the contour. The number of contour defining points changes for each pulse and slice. To

approximate the contours and relate them one to another, the polygon comparison method

is used to compute 36 contour approximation points.

Valid slices are determined using thresholds on a combination of slice maximum SRF,

slice gfactor, and polygon l2 distance. Details are elaborated on in Section 3.6.

Having found the approximation points and valid contours, a linear least-squares

parameterization based off of the equation Ax = b is computed. The matrix A has dimensions

of mx25 where m is the number of contours used in parameterization, which is between 2

and 1312 for this thesis. In addition, x is 25xn where n is the number of approximating

points, and b—which represents km east or km north—is mxn. The columns of this include

1 column of ones (the zero-th order) and 3 columns (for orders 1, and 2, 3) each of roll, pitch,

yaw, g-factor, orbit position, slant range, Xfactor of the egg, and Xfactor of the slice.

The estimates are visually close for parameterizations that are classified as “good”

according to the status estimation flag from Figures 4.1 to 4.2. These parameterizations
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can be used to greatly increase the speed of contour estimation for use in reconstruction

algorithms.

5.1 Future Work

There are a number of things that could be done to improve the results. Azimuth

rotation due to change in direction of the spacecraft is not currently well accounted for in the

code. The contours to be approximated are place on a km east, km north grid that is defined

with regard to latitude-longitude. In order to better account for the variation in spacecraft

direction, the contours could be rotated to compensate for the change in spacecraft direction,

which could simplify the parameterization, and then the contours can be rotated back to

their original position. This can be expected to produce a smaller spread of points, which

may be easier to approximate. In addition, rotation could compensate for rotation due to

spacecraft direction, which the current code does not. A variation on this would be to define

the integration grid in XfactorRS3 in terms of along-track and cross-track km. This should

negate the need for a rotation matrix.

Another method to improve the contour parameterization is to include more L1B

parameters in the parameterization. Due to the non-linear variation of the slice contours, it

is likely not possible to have an exact parameterization with a linear model. However, the

more data that can be used in the parameterization the more accurate the estimation be-

comes. Various parameters including spacecraft position in x-y-z, velocity in x-y-z, latitude,

longitude, and height—as well as various other parameters available in L1B files—could be

used as parameters to improve the parameterization.

Yet another possible method to improve approximation is to use the Contour En-

circling Approximation (CEA) method developed. The CEA method is explained in Ap-

pendix B. The advantage of this method—in contrast to the polygon comparison method

from Appendix A—is that CEA works to maximize the encompassed area, which indicates

that the most critical defining points are used in the approximation.

Another option is to generate a “super table”. The premise of a super table is to

generate a set of contours based on a certain combination of parameters. The parameters

would be varied in set amounts in all possible combinations for a set range. With this set of
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tables, the user would simply need to find the tables that most closely match the parameters

of the pulse in question (a simple lookup hierarchy being set up to increase search speed)

and interpolate between the two. This would be a memory intensive method, but would

likely produce a good fit.
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Appendix A

Comparing Polygonal Shapes

Throughout this text, contours of slices—the polygons used in this work—are com-

pared to each other. The original methods used for comparison of slices for QuikSCAT, as

documented in [25], are ineffective for RapidSCAT. A new method for comparing contours

is developed in this thesis based on the metric and algorithm defined in [24] for comparing

polygons. The rest of this appendix give an explanation of the methods outlined [24], as well

a more verbose version of the motivation.

Previously, QuikSCAT slice -6 dB contours were parameterized to compensate for

slice rotation, transformed to compensate for warping due to differences between azimuth

angle of the instrument and the actual slice rotation, and approximated using eight points

defined using a polar definition of the slice contour, as documented in [25]. While the

method is effective for parameterizing QuikSCAT slices, it is not as effective for RapidSCAT

due to the large attitude and orbit perturbations of RapidSCAT which cause significant

slice shape variation. A primary motivation for using the algorithm in [24] for RapidSCAT

parameterization is that it compares polygonal shapes irrespective of scaling and rotation,

and an optimum least-squares rotation is found in the process. An example of this can be

seen in the left plot in Figure A.3, which shows how azimuth angles affect slice shape.

The basic procedure detailed in [24] is as follows: create a normalized turning function

for each contour; find the optimum rotation angle that minimizes the least squares error;

determine the starting point that minimizes the least squares error between two turning

functions. This process is expounded upon in the next few paragraphs.
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Figure A.1: An example turning function for the original and filtered contour cases.

A turning function (ΘA(s)) measures the angle of the counterclockwise tangent as

a function of the arclength s, where some reference point O is chosen on A’s boundary

for reference and A is the contour [24]. An example is shown in Figure A.1. One unique

quality of turning functions that makes them especially useful is that turning functions are

neither spatially dependent nor dependent on absolute rotation. In addition, in Figure A.1

we also see that the arc length is normalized to account for scaling, making this definition

also unaffected by scaling.

With the turning function defined, the algorithm in [24] can be applied. The method

finds the minimum l2 distance between two turning functions. Although this method of

defining a contour is sensitive to non-uniform noise, in this project it is reasonable to assume

small spatially uniform noise.

First, assume that f(s) and g(s) are turning functions, with s being the normalized

arc length. The sum squared error between two turning functions is defined as

h(t, θ) =

∫ 1

0

(f(s+ t)− g(s) + θ)2ds, (A.1)
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where t is the offset arc length and θ is the offset angle. The goal is to find the minimum l2

distance between two turning functions functions according to

d2(A,B) =

{
min

t∈[0,1],θ∈R
h(t, θ)

}1/2

.

This is a minimization problem with two variables, which is more computationally intensive

to solve than an equation with one variable. In order to obtain an equation with one

unknown, the optimum offset angle is used. The optimum offset angle—as derived in [24]—

is

θ∗(t) =

∫ 1

0

(g(s)− f(s+ t))ds

= α− 2πt,

(A.2)

where α =
∫ 1

0
g(s)ds −

∫ 1

0
f(s)ds. By integrating Equation (A.2) into Equation (A.1), an

equation with 1 variable is obtained:

d2(A,B) =

{
min
t∈[0,1]

h(t, θ∗(t))

}1/2

=

{
min
t∈[0,1]

∫ 1

0

(f(s+ t)− g(s) + θ∗(t))2ds

}1/2

.

An example of applying this algorithm to turning functions to achieve the best shape

alignments can be seen in Figure A.2, which then produces shape alignments similar to those

in Figure A.3.
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Figure A.2: An example of applying the algorithm discussed in this section to two different
turning functions in order to find the minimum distance metric between the shapes.
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Figure A.3: The original contour and rotated slices. Notice how the slice shape changes for
different azimuth angles. These contours are from an idealized orbit for RapidSCAT.
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Appendix B

Contour Encircling Approximation

(CEA) Method

The contour encircling approximation (CEA) method is based on a technique for

approximating a contour by determining it’s proximity to the contour encircling points. An

example of how CEA method works can be seen in Figure B.1. The method defines a circle

outside of the contour made of a discrete number of points whose number is less than that

of the original contour. The approximation points are determined by finding the point in

the original contour whose l2 distance is smallest for each of the contour encircling points.

This method works remarkably well, with the encompassed area having a root mean

square (rms) error of 2.064 km2 for a static radius of 500 km. This radius was chosen with

the assumption that if a chosen static radius is too small then the CEA points are no longer

“encircling” and the approximation is poor. To avoid under-approximating, I chose a radius

that was much larger than any expected slice contour radius to avoid this error.

To verify that that was the best choice, I generated estimation contours for multiple

radii which were at least as large as the contour being measured. The result is shown in

Figure B.2. This figure very clearly shows that the optimum radius—where the optimum

radius is determined to be where the contained area is maximized—is closer to the original

contour than initially thought. Testing for multiple contours at different azimuth angles,

orbit times, and revolutions shows that the optimum radius is dynamic and not static.

While the distinction between static and dynamic may appear to be small, it affects the
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Figure B.1: The Contour Encircling Approximation (CEA) method. The CEA method
works by first encircling the contour to be approximated with a finite number of points
evenly distributed in a circle. Then the nearest points to the curve are found by determining
the point on the original contour with the smallest l2 distance for each encircling point. The
green lines in the image show the nearest neighbor.

noise introduced by estimating the contour. In the next paragraphs I explain a method to

correct for the imprecise estimation of a contour.

I create the histogram shown in Figure B.3 by binning the optimum encircling radius

with respect to original contour radius from multiple revolutions for each slice. Figure B.3

shows that the the original radius is proportional to the optimum encircling radius, and the

approximate scale factor for all the slices is 1.5776. Table B.1 shows the difference between

the dynamic rms encircling radius and the fixed 1.58—where the fixed radius was chosen

as the average linear fit for the inner 8 slices—factor for the encircling radius. As can be

seen the the aforementioned table, the difference between the rms error for dynamic and

fixed radius is minimal and therefore 1.5776 ∗max(contourRadius) can reliably be used for

approximating a slice.
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Figure B.2: The plot of the encircling radius and the resulting estimated contour area. Notice
that the maximum point on the “fitted area” curve is not at the ends but in the middle.

Table B.1: RMS Error for Dynamic vs. 1.5776 Fixed Encircling Radius

Dynamic Fixed Difference

Slice 1 2.2120 2.4229 0.2109
Slice 2 2.3241 2.3842 0.0601
Slice 3 2.2363 2.2535 0.0172
Slice 4 2.0996 2.1041 0.0046
Slice 5 1.9678 1.9679 0.0001
Slice 6 2.0408 2.0447 0.0039
Slice 7 2.0760 2.0984 0.0224
Slice 8 2.0067 2.0479 0.0412
Slice 9 2.0359 2.0881 0.0523
Slice 10 2.1611 2.1863 0.0252
Slice 11 2.2070 2.2074 0.0004
Slice 12 2.2246 2.2421 0.0175
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Figure B.3: A histogram of the original contour radius plotted against the optimum encir-
cling radius for each of the slices. The data is approximately 45 revolutions of data where
revolutions with different Doppler tables are selected. The red line indicates the unbiased
linear fit that minimizes the least square error.
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Appendix C

Analysis of the QuikSCAT Post Wind

Mission (PWM) Data

In 2009, a worn bearing caused QuikSCAT to stop rotating and ushered in QuikSCAT’s

(QS) Post Wind Mission (PWM). The PWM is marked by very narrow tracks that sepa-

rately measure horizontal and vertical polarizations. While QS cannot rotate, the satellite

attitude can be modified to enable the sensor to “look” in different directions.

Currently, QuikSCAT PWM data is being used to help calibrate RapidSCAT as well

as other sensors. But, concern has been expressed that QuikSCAT might not be as accurately

calibrated for it’s post wind mission as it was for its nominal wind mission. One way which

can be used to determine the accuracy of QS’s calibration is to consider the effect of spin on

the X-factor (X).

The Xfactor (X) is part of an approximation of the radar equation, withX relating the

power received to radar backscatter coefficient, or radar cross-section (σ0). The derivation

of the X can be found in Section 2.4

This appendix aims to analyze the Xfactor for QuikSCAT spinning and non-spinning

modes to determine if the sensor is accurately calibrated and can be used for RapidSCAT

calibration.

The Brigham Young University (BYU) Microwave Earth Remote Sensing (MERS)

Laboratory received the plot shown in Figure C.1 from the Jet Propulsion Laboratory (JPL).

An annual cycle in average daily σ0 was expected, but Figure C.1 shows that that is not
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Figure C.1: JPL produced figure which shows that the variance in QuikSCAT average daily
σ0 is not an annual cycle as was expected. This suggests that QuikSCAT might be inaccu-
rately calibrated.

the case. The difference between expected and actual annual cycle may mean that the

QuikSCAT PWM is inaccurately calibrated.

One possible cause for the variation could be that the Xfactor for the non-spinning

case introduces error when compared to the spinning case. To test the theory that the

Xfactor may be responsible, XfactorRS3 is used to calculate the difference between the

spinning and non-spinning cases. The only required change to the code in order to simulate

the non-spinning case is to set the revolutions-per-minute variable to 0. No other changes are

required between the original and PWM modes when computing X. The nominal Xfactor

(X) “egg” values are calculated and shown in Figure C.2. This figure contains nominal X

“egg” images for the (from top to bottom) spin, no-spin, and difference cases for (from left

to right) the inner and outer beams. It can be seen from the difference images for the inner

and outer beams that the non-spinning case can be roughly translated into a fixed bias, with

an accuracy of ±0.04 dB for both the inner and outer beams.
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Figure C.2: Images of nominal X “egg” for the (from top to bottom) spin, no-spin, and
difference cases for (from left to right) the inner and outer beams. It can be seen from the
difference images for the inner and outer beams that the non-spinning case can be roughly
translated into a fixed bias, with a small error that is a function of orbit time and azimuth.
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Checking with JPL, the PWM is indeed being compensated for with a bias. With

this knowledge and the obtained results of our study, it can be affirmed that the QuikSCAT

Xfactor is properly computed for both the spinning and non-spinning cases.
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