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ABSTRACT

Windowed Factorized Backprojection for Pulsed and LFM-CW Stripmap SAR

Kyra M. Moon
Department of Electrical Engineering

Master of Science

Factorized backprojection is a processing algorithm for reconstructing images from data
collected by synthetic aperture radar (SAR) systems. Factorized backprojection requires less com-
putation than conventional time-domain backprojection with little loss in accuracy for straight-line
motion. However, its implementation is not as straightforward as direct backprojection. Further,
implementing an azimuth window has been difficult in previous versions of factorized backpro-
jection. This thesis provides a new, easily parallelizable formulation of factorized backprojection
designed for both pulsed and linearly frequency modulated continuous wave (LFM-CW) stripmap
SAR data. A method of easily implementing an azimuth window as part of the factorized back-
projection algorithm is introduced. The approximations made in factorized backprojection are
investigated and a detailed analysis of the corresponding errors is provided. We compare the per-
formance of windowed factorized backprojection to direct backprojection for simulated and actual
SAR data.

Keywords: synthetic aperture radar (SAR), image reconstruction, factorized backprojection, back-
projection
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Chapter 1

Introduction

Synthetic aperture radar (SAR) can generate high-resolution images using a short antenna

and a large bandwidth [1] [2]. SAR creates images by transmitting and receiving electromagnetic

waves and differentiating objects based on the radar echoes returned from them. Images can be

created day or night and in inclement weather since radar does not depend on light to create images.

A common method for collecting data with SAR is to attach a short antenna to an aircraft.

This antenna sends out electromagnetic pulses as the aircraft moves, enabling synthesis of a long

linear array. Since a longer antenna provides finer resolution than a short antenna, this linear array

provides finer resolution than a single antenna position. If the antenna is kept orthogonal to the

motion of the aircraft for the duration of the flight, then the SAR operating mode is denoted as

stripmap.

Several algorithms have been proposed for stripmap image reconstruction of SAR data in

both the time domain and frequency domain [3]. A particular time-domain algorithm known as

backprojectionis able to reconstruct well-focused images, even with non-ideal motion such as

when the aircraft does not fly on a straight track. Unfortunately, the computational complexity of

backprojection isO(N3), whereN is the number of pixels in a column of the imaging grid and is

typically in the hundreds or thousands. This can quickly become computationally expensive.

Because of this computational cost,factorized backprojectionwas developed. This algo-

rithm divides the process of backprojection into recursive steps to achieve complexity ofO(N2 logN).

Multiple variations on factorized backprojection have been developed [1] [4] [5] [6] [7] [8]. Al-

though these algorithms successfully generate images from SAR data, none include an implemen-

tation of an azimuth window. Such a window can reduce sidelobes and aliasing at a tradeoff of

some loss of resolution. Additionally, these algorithms are not easily parallelizable.
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This thesis presents a new, easily parallelizable formulation of factorized backprojection

designed for both pulsed and LFM-CW stripmap SAR which facilitates addition of an azimuth

window. I first demonstrate how to implement the algorithm without the azimuth window for

pulsed and LFM-CW SAR data. I then demonstrate how to implement an azimuth window as part

of the factorized backprojection algorithm. The performance of the algorithm is analyzed, includ-

ing an error analysis and evaluation of the computational requirements. I compare performance of

the windowed factorized backprojection algorithms with factorized and conventional time-domain

backprojection.

1.1 Contributions and Outline

The primary contribution of this thesis is the factorized backprojection algorithm I have de-

veloped. Like other factorized backprojection algorithms, this algorithm has computational com-

plexity of O(N2 logN), anN/ logN improvement over conventional backprojection. However, this

new algorithm has the advantage of performing the factorization in columns parallel to the flight

track. Since each column can be reconstructed independent of the others, this allows for easy par-

allelization of the algorithm and allows for the easy implementation of an azimuth window. The

algorithm is valid for both pulsed and LFM-CW SAR with only slight differences between the two.

Additionally, this thesis provides a performance analysis. As with other factorized back-

projection algorithms, this algorithm has a direct tradeoff between computational complexity and

accuracy. The thesis provides an error analysis which allows for the bounds on the overall error to

be predicted prior to implementing the algorithm.

This thesis is organized as follows. In Chapter 2, the background necessary for under-

standing the remainder of the thesis is given. This includes the basics of synthetic aperture radar

operation for pulsed and LFM-CW operating modes, an explanation of various SAR image recon-

struction algorithms, and an overview of past factorized backprojection algorithms.

Chapter 3 describes the basics of the factorized backprojection algorithm for both pulsed

and LFM-CW SAR. It is shown how to incorporate an azimuth window into the factorized back-

projection algorithm. The computational and memory requirements are discussed.

In Chapter 4, the performance of factorized backprojection is analyzed. The errors inherent

to factorized backprojection are discussed. Because pulsed SAR and LFM-CW SAR have slightly

2



different formulations, the errors in each are discussed separately. A brief discussion of errors

caused by range migration is included. Plots demonstrating the efficacy of factorized backprojec-

tion are shown for simulated and real data.

In Chapter 5, some miscellaneous results pertaining to factorized backprojection are pre-

sented which provide further insight into the algorithm. First, an alternate time-domain image

reconstruction algorithm is discussed which uses several similar principles as factorized backpro-

jection. Then, a matrix formulation of factorized backprojection is introduced.

In Chapter 6, conclusions are made and possibilities for future work are discussed. In

Appendix A, pseudo-code is provided. In Appendix B, I provide tables of parameters for the

various data sets used to demonstrate the performance of factorized backprojection.
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Chapter 2

Background

This chapter presents the fundamentals of stripmap synthetic aperture radar processing and

provides an introduction to time-domain SAR image reconstruction. An overview is given of two

SAR modes, namely pulsed and continuous wave SAR. Time-domain image reconstruction is then

discussed. Finally, an overview of past factorized backprojection algorithms is presented.

2.1 Introduction to SAR

Synthetic aperture radar, or SAR, is an active microwave remote sensing technique that

produces high-resolution images of wide areas [9]. This is accomplished by attaching an antenna

to a platform and sending out a series of electromagnetic pulses as the platform moves. The series

of radar echoes from the target area are then received and synthesized to form the image.

SAR imagery differs from optical imagery in a number of ways [9]. Unlike optical imagery,

SAR imagery can be collected day or night since it uses its own electromagnetic waves as illumina-

tion to form images rather than reflected light from the sun as in photography. Furthermore, SAR

data can be collected even in inclement weather since electromagnetic waves can penetrate rain,

snow, or clouds with some attenuation. Additionally, SAR imagery is based on the backscattered

reflectivity. Hence, SAR highlights objects which reflect energy back to the radar antenna such

as buildings and vehicles, whereas optical imagery is brightest for objects which are bright in the

visible spectrum. Another difference is that SAR resolution is independent of the height of the

radar and only depends on the length of the antenna. However, unlike optical imagery which can

be instantaneous, SAR systems require platform motion and thence time to collect enough data

to achieve fine resolution. Thus, SAR imagery and optical imagery are appropriate for different

situations.
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2.2 Basics of SAR

The basic premise of SAR is that a short antenna provides coarse resolution while a long

antenna provides fine resolution. By moving a short antenna along a linear series of positions, a

longer antenna can be synthesized (hence the name synthetic aperture radar).

There are several different SAR imaging modes. The mode discussed in this thesis is

stripmap SAR, which occurs when a fixed antenna points orthogonally to the motion of the plat-

form [3]. Other modes of operation include ScanSAR, Spotlight SAR, and Circular SAR [2] [9].

2.2.1 General SAR Model

Figure 2.1 shows a simple geometric model of a stripmap SAR system. The terms used to

describe the SAR geometry are defined as follows.

Figure 2.1: Radar data acquisition geometry. Adapted from [3]
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Point Target: This is a hypothetical point on the surface that the SAR system is imaging.

Although the SAR system actually images an area, to develop the SAR equations, a single point

target on the ground is considered.

Incidence Angle:The incidence angleθ is the angle between the antenna pointing straight

down and the angle at which a pulse is transmitted.

Azimuth Beamwidth: Thehalf-power beamwidth, or simplybeamwidthθa, is the range

of angles for which the radiation strength is within 3 dB of the maximum strength. In azimuth, the

beamwidth is approximately the wavelength divided by the antenna length in this direction.

Beam Footprint: During the transmission of a particular pulse, the radar antenna projects

a beam onto an area called thebeam footprint. The width of the beam footprint in the azimuth

direction isXa = hθa/cosθ , whereh is the height of the radar platform [2].

Range: The ground range direction, commonly referred to asrange, lies perpendicular to

the radar track.

Azimuth: The azimuth direction lies parallel to the radar track.

Slant Range: The slant range is the distance from a given antenna position (pulse) to a

given target on the ground.

2.2.2 SAR Resolution

Range Resolution

The range resolution corresponds to the minimum distance between two points along the

same range line which can be distinguished from each other. If two points are separated by a

distanceXr , then their respective echoes are separated by a time of flight difference∆t where [2]

∆t =
2Xr

c0
sinθ (2.1)

whereθ is the incidence angle andc0 is the speed of light. As discussed in [2], the smallest

discriminable time difference is 1/B whereB is the bandwidth. Hence, the range resolution is
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given by

2Xr

c0
sinθ = 1/B

⇒ Xr =
c0

2B
sinθ . (2.2)

Azimuth Resolution

The azimuth resolution corresponds to the minimum distance between two points along

the same azimuth line which can be distinguished from each other. For a real aperture (single

antenna), this resolution is equal to the width of the antenna footprint because all the points along

a line spanning that width are returned at the same time because they are equidistant from the

antenna [2]. Thus the azimuth resolution of a real aperture is equal to

Xa = hθa/cosθ = hλ/Lcosθ (2.3)

whereθa is the antenna beamwidth in azimuth,h is the height of the aircraft above the imaging

surface,L is the length of the antenna, andλ is the wavelength of the transmit frequency.

Recall that the length of an antenna is inversely proportional to its beamwidth. Thus, using

a longer antenna decreases the beamwidth, which decreases the width of the footprint and thus

improves the resolution. However, it is frequently costly or impractical to construct a long antenna.

An alternative is to synthesize a long antenna by moving an antenna with lengthL along a linear

array of positions [2]. The width of the antenna footprint for the single antenna is

L =
hλ

Lcosθ
=

2λh
L

. (2.4)

If the antenna is moved along an array of lengthL , then the synthesized array has a beamwidthθs

of

θs≈ λ/L ≈ L/2h (2.5)

and the resulting footprint has width

Xa = hθs = L/2. (2.6)
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Thus, the azimuth resolution of the synthesized antenna depends only upon the length of the phys-

ical antenna, not on the height of the aircraft or the wavelength. This allows for very fine azimuth

resolution that is independent of range, which is one of the chief advantages of SAR.

2.3 Signal Transmission

A frequently used signal sent out by the radar is called a chirp, which can be expressed as

s(t) = A(t)exp
(

j(2π f0t +πkrt
2 +φ)

)
(2.7)

whereA(t) is the signal amplitude,f0 is the initial frequency of the chirp,kr is the chirp rate,

andφ is the starting phase, which is usually neglected [2] [3] [10]. Note that the chirp is linearly

frequency modulated, or LFM. This signal propagates to the target area, and some of it is reflected

back to the radar. The signal received by the radar can be expressed as

sr(t) = A′(t)exp
(

j(2π f0(t− τ)+πkr(t− τ)2 +φ)
)

(2.8)

whereA′(t) is an attenuated version ofA(t) andτ is the two-way time of flight to the target at range

R [11],

τ =
2R
c0

. (2.9)

Two modes of SAR which use this type of signal are pulsed SAR and LFM-CW SAR, discussed

in Section 2.3.1.

2.3.1 Schemes

This thesis discusses two types of SAR systems, namely pulsed SAR and LFM-CW SAR.

These are delineated primarily by the length of the chirp.

If the chirp is short enough that a chirp can be transmitted and received before the next chirp

is sent out, then the operating scheme is calledpulsed SAR. This allows for a monostatic system

since the same antenna can be used for both transmit and receive. It also permits the start-stop

assumption, which is that the antenna is stationary between transmit and receive [3].
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If the chirp is long enough that the echo is received before it is entirely transmitted, then

the operating scheme is calledlinearly frequency modulated-continuous wave, or LFM-CW. This

scheme requires two separate antennas for transmit and receive but maximizes the pulse length,

thus requiring less power to achieve the same effective SNR. This allows for smaller and thus

cheaper SAR systems [12].

A complication for LFM-CW signals comes due to the movement of the platform between

transmit and receive. Due to the constant motion of the platform,τ, the two-way travel time to a

target, can be difficult to calculate because the signal travels a different distance to and from the

target. However, for most applications this difference in distances can be neglected [12].

2.4 SAR Image Formation

In modern digital SAR processing, there are two primary steps to reconstruct a well-focused

image from the received signal: range compression and azimuth compression [12]. These are

discussed in the following sections.

2.4.1 Range Compression

Once the radar echoes have been received, the data must be range compressed. Range

compression is performed by matched filtering the received signal with the expected signal, a

time-delayed copy of the chirp that was transmitted [12]. This is typically accomplished via an

FFT, complex multiply, and IFFT.

Range Compression for Pulsed SAR

For pulsed SAR, recall that the received signal is of the form

sr(t) = A′(t)exp( j(2π f0(t− τ)+πkr(t− τ)2 +φ)). (2.10)

9



The Fourier transform ofsr(t) can be expressed as [12]

Sr( fr) =
∫

τ+tp

τ

sr(t) ·exp(− j2π frt)dt

= B( fr) ·exp

(
− j

2πτkr f0 +2πτkr fr +π f 2
r

kr

)
(2.11)

wheretp is the pulse length andB( fr) is a complex function which can be approximated by a rect

function.

The Fourier transform of the time-reversed conjugate of the chirp is

Hrc( fr) =
∫ tp

0
exp(− jπkr(−t)2) ·exp(− j2π frt)

= B′( fr) ·exp

(
j
π f 2

r

kr

)
(2.12)

whereB′( fr) is approximately the same asB( fr).

Sr andHrc are multiplied together to yield

Sh( fr) = Sr( fr) ·Hrc( fr) = B( fr)B′( fr) ·exp(− j2πτ( f0 + fr)) (2.13)

and the inverse Fourier transform is

src(t) =
∫ tp·kr

0
Sh( fr) ·exp( j2π frt)d fr

=
sin(tpπkr(t− τ))exp( jπkrtp(t− τ)− j2π f0τ)

πkr(t− τ)

= tpsinc(tpπkr(t− τ)) ·exp( jπkrtp(t− τ)− j2π f0τ)

≈ tp ·sinc(tpπkr(t− τ)) ·exp(− j2π f0τ). (2.14)

The peak of the sinc function occurs att = τ = 2R/c0, giving

src(t = 2R/c0) = exp

{
− j

4πR
λ

}
. (2.15)

The range-compressed signalsrc must then be azimuth compressed.
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Range Compression for LFM-CW SAR

Typically, a small LFM-CW SAR may be limited to a small sampling bandwidth due to

hardware constraints [12]. This small bandwidth may limit the imaging swath. To overcome this

limitation, a delayed dechirp may be used to shift more ranges into the sampling bandwidth. This

allows the bandwidth to be maximized since no bandwidth is wasted on any range nearer to the

platform than a set minimum range.

However, the delayed dechirp requires additional computations prior to range compression.

Recall that the received signal is of the form

sr(t) = exp
[

j(φ +2π f0(t− τ)+πkr(t− τ)2)
]
. (2.16)

The received signal is then mixed with a copy of the transmit signal delayed byd

std(t) = exp
[

j(φ +2π f0(t−d)+πkr(t−d)2)
]
. (2.17)

The dechirped signal is given by multiplying Eq. (2.16) by the complex conjugate of Eq. (2.17),

resulting in [11]

sdc(t) = exp
{

j
[
2πkrt(τ −d)+2π f0(τ −d)−πkr(τ2−d2)

]}
. (2.18)

As before, the range Fourier transform of the signal is calculated, yielding

SR( fr) =
∫

τ+tp

τ

sdc(t)exp(− j2π frt)dt

= tpsinc[tp( fr +krd−krτ)]exp( jπΦrc) (2.19)

wheretp is the pulse length and

Φrc = krtp(τ −d)− frtp +
4krR(τ −d)

c0
+2 f0(τ −d)−kr(τ2−d2)− 4 frR

c0
. (2.20)

SR is the range-compressed signal which must then be azimuth compressed.
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2.4.2 Azimuth Compression

Once the data has been range compressed, it must be compressed in the azimuth direction

to be fully focused. Azimuth compression is necessary because the data has been collected over

a series of short antenna positions which must be consolidated into one long synthetic antenna.

This can be accomplished via a matched filter, i.e., multiplying the range-compressed signal by the

conjugate of the expected phase in the azimuth direction.

Frequency-Domain Azimuth Compression

The traditional approach to azimuth compression is called the Range-Doppler Algorithm,

or RDA [3]. This algorithm performs azimuth compression in the frequency domain. Basic RDA

consists of an azimuth FFT, range-cell migration correction, azimuth matched filtering, and an

azimuth IFFT.

Recall that the range-compressed signal from a pulsed SAR has the form

src(t) = tp ·sinc[tpπkr(t−2R/c0)] ·exp(− j4πR/λ ) . (2.21)

The rangeR can be considered a function ofη , whereη is the slow-time (corresponding to pulse

position). Then

R(η) =
√

R2
0 +V2

r η2 ≈ R0 +
V2

r η2

2R0
(2.22)

whereR0 is the range of closest approach (the minimum distance from a target to the flight track)

andVr is the velocity of the flight track. The range-compressed signal can be rewritten as

src(t,η)≈ tp ·sinc(tpπkr(t−2R(η)/c0))wa(η −ηc) ·exp(− j4π/λR0)exp(− j2π/λV2
r η

2)

(2.23)

wherewa(η −ηc) is an azimuth envelope similar to a sinc-squared function andηc is the Doppler

centroid frequency [3]. Since the phase is a function ofη2, the signal has linear FM characteristics,

with the linear FM rate being

Ka =
2V2

r

λR0
. (2.24)
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An azimuth FFT is then performed to transform the data into the range Doppler domain.

The relationship between azimuth frequency and time is

fη =−Kaη . (2.25)

Thus, the azimuth FFT can be expressed as

S1(t, fη) = FFT{src(τ,η)}

= rect

[
t−

2Rrd( fη)
c0

]
Wa( fη − fηc)exp

(
− j

4πR0

λ

)
exp

(
jπ

f 2
η

Ka

)
(2.26)

where

Rrd( fη)≈ R0 +
V2

r

2R0

(
fη
Ka

)2

= R0 +
λ 2R0 f 2

η

8V2
r

. (2.27)

The next step in RDA is range migration correction.Range migrationis caused when all

the returns from a target are not contained within the same range bin (range resolution element). If

an antenna has a narrow beamwidth, then all of the pulses which contain the target in their footprint

are roughly the same distance from the target, so little to no range migration occurs. However, an

antenna with a wider beamwidth is more likely to cause range migration because a greater range

of pulses include the target in their beamwidth.

RDA operates under the assumption that a target stays in the same range bin across the

length of the synthetic aperture. However, if the antenna has a wide enough beamwidth, then this

assumption is no longer valid. In order to correct for range migration, all of the radar returns

corresponding to a given target must be assigned to the same range bin, namely the range bin

corresponding toR0 for the target. This can be accomplished by performing a range interpolation

operation in the range Doppler domain [3]. The amount of range migration to correct is given by

∆R( fη) =
λ 2R0 f 2

η

8V2
r

. (2.28)
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The range-migration-corrected signal is

S2(t, fη) = rect

(
t− 2R0

c0

)
Wa( fη − fηc)exp

(
− j

4πR0

λ

)
exp

(
jπ

f 2
η

Ka

)
. (2.29)

Following range-cell migration correction, a matched filter is applied to focus the data in the az-

imuth direction. Since the data is already in the range Doppler domain, it is convenient to perform

the matched filtering in this domain as a function of slant range and azimuth frequency. The

matched filterHaz is the complex conjugate of exp( jπ f 2
η/Ka),

Haz( fη) = exp

(
− jπ

f 2
η

Ka

)
. (2.30)

S2 is multiplied byHaz to yield

S(t, fη) = rect(t−2R0/c0)W( fη − fηc)exp

(
− j

4πR0

λ

)
. (2.31)

Finally, the range Doppler domain dataS(t, fη) is transformed back to the time domain via

an azimuth IFFT. This yields

sac(t,η) = IFFT
{

S(t, fη)
}

= sinc[tpπkr(t− τ)] · pa(η)exp

(
− j

4π f0R
c0

)
exp( j2π fηcη) (2.32)

wherepa is the amplitude of the azimuth impulse response (a sinc-like function) [3] . The range

and azimuth envelopes indicate that the target is positioned att = 2R/c andη = 0. This process is

repeated for each range bin.

Although RDA is efficient and fairly accurate, it can require a large computational load to

accurately correct for range migration. Other frequency-domain algorithms have been developed

to handle the range migration such as the chirp-scaling algorithm and theω−K algorithm [3] [10].
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Pulsed SAR Backprojection

To eliminate the complications caused by range cell migration, azimuth compression can be

done in the time domain. Time-domain image reconstruction can be exact, handle range migration,

and handle a variety of flight tracks [13]. The disadvantage of the time-domain technique is the

high computational requirement.

A common time-domain matched filtering technique is called backprojection. This process

coherently integrates the radar data over each antenna position to form the image. Given a pixel at

locationp, the backprojected imageA(p) is given by [5] [14]

A(p) =
∫ ∞

−∞
R(d(η , p))exp( j4πd(η , p)/λ )dη (2.33)

whereA(p) is the complex pixel value,λ is the wavelength of the transmit frequency,d(η , p) is the

distance between the pixelp and the along-track position at slow-time indexη , andR(d(η , p)) is

the baseband range-compressed echo data interpolated to the distanced(η , p). Backprojection nor-

mally operates on digitized echo data. We obtain such data by first digitizing the range-compressed

datas(t,η) in discrete pulses where each pulse numbern corresponds to the along-track position at

time η , the slow-time index. We then interpolate this digitized signal to provide an indexed value

for each ranged[n, p] from a pulsen to the center some pixelp on the image grid. This interpolated

data is denoted asR(d[n, p]). This equation can be then represented in the time domain as

A(p) = ∑
n

R(d[n, p])exp( j4πd[n, p]/λ ). (2.34)

Note that the expected phase ofR(d[n, p]) is exp(− j4πd[n, p]/λ ), so the summation acts as the

azimuth matched filter.

LFM-CW SAR Backprojection

Similar to backprojection for pulsed SAR, backprojection for LFM-CW SAR consists of

coherently summing the radar data to generate the image. The equation for LFM-CW SAR back-
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projection for a pixelp can be written as [11] [15]

A(p) = ∑
n

R(d[n, p]−Kx[n, p]/d[n, p])exp{ jΦe(d[n, p])} (2.35)

where

Φe(d[n, p]) =
4πkrd[n, p]2

c2
0

− 4πd[n, p]
λ

−πkrd2 +2π f0d (2.36)

whered[n, p] is the distance from thenth pulse to a pixelp, R(d[n, p]−Kx[n, p]/d[n, p]) is the

motion-corrected range-compressed SAR data interpolated to slant ranged[n, p] (see [12]),d is

the dechirp delay,kr is the chirp rate,f0 is the transmit frequency, andλ is the wavelength of the

transmit frequency.

Although backprojection is straightforward to implement and can handle a variety of flight

tracks, it can be computationally expensive. To obtain an image withM×N pixels fromL equally

spaced antenna pulse positions, a total ofL×M×N square root calculations and transcendental

computations must be performed, corresponding to a computational complexity ofO(N3). This

can become costly asL,M, andN become large.

2.5 History of Factorized Backprojection

An alternative to backprojection is factorized backprojection, a time-domain algorithm

which takes advantage of the redundancy of the SAR data to achieve complexity ofO(N2 logN).

This redundancy is created because single small antennas correspond to wide beamwidth or coarse

resolution, which allows for data reuse within the same range bin.

Historically, there have been two general approaches to factorized backprojection, namely

the quadtree approach and the polar approach, or a combination of the two. The basics of the two

major approaches are discussed in the following sections.

2.5.1 Quadtree Approach to Factorized Backprojection

One formulation of factorized backprojection introduced by Rofheart and McCorkle [4]

performs the factorization in the context of a quadtree. Several variations on the quadtree have

been developed [5] [6].
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The quadtree approach divides the image reconstruction into a series of stages. In the first

stage, all of the pulses are used to reconstruct the image with coarse resolution. In subsequent

stages, the resolution of the image improves by a factor of four as an image is partitioned into

square subimages until the final stage where a subimage is the size of a high-resolution pixel (see

Fig. 2.2).

(a) Step 1 (b) Step 2 (c) Step 3

Figure 2.2: Illustration of the quadtree-based factorized backprojection algorithm. In the first step,
short antenna arrays are used to reconstruct images with coarse resolution. As the length of the antenna
arrays increases, the resolution becomes finer until the antenna array is the entire SAR array and the
image has the desired resolution.

The algorithm is as follows. First, the distance from each pulse to the center of the image

is calculated, and the corresponding range-compressed data is stored. For the next step, adjacent

pulses are combined to form longer subapertures, and the image is split into four subimages. Then,

the distance from the center of each subaperture to the center of each subimage is found. The

corresponding range-compressed data corresponding to each subimage/subaperture pair is formed

by recursively combining the parent data stored from the previous step. As long as the parent

data corresponds to the same range bin as the child data, the parent data can be reused without

error. Note that as the algorithm progresses, each subaperture increases in length, corresponding

to narrower beamwidth. Simultaneously, the subimage becomes smaller, so it is still possible for

the parent data and child data to correspond to the same smaller range bin.

This process continues until a subaperture consists of the entire length of the antenna array

and a subimage is the size of a high-resolution pixel. The child data is backprojected, and the

image is reconstructed.
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The quadtree approach achieves its computational gain because as the number of subimages

increases by a factor of four in each step, the number of subapertures decreases by the same factor.

Thus, the total computational complexity of each step isO(N2). The total number of steps isx,

where 4x = N = number of high-resolution pixels. Solving forx, x = log4N, so the algorithm has

complexityO(N2 logN).

Despite its computational gains, quadtree backprojection has several disadvantages. Be-

cause of the assumption that parent data corresponds to the same range bin as the child data, there

can be high errors when the parent data is sparsely sampled over the entire imaging grid. Thus, the

algorithm must be complemented with a mechanism of controlling the error to prevent image qual-

ity degradation [1]. Additionally, the algorithm is not easily parallelizable and does not include an

implementation of an azimuth window to reduce sidelobes.

2.5.2 Polar Approach to Factorized Backprojection

An alternate approach to factorized backprojection is to represent images in local polar

coordinates to reduce the number of operations [1] [7] [16]. As shown in Fig. 2.3, adjacent aperture

positions have essentially the same circular pattern within a triangle shaped subimage. Hence, data

corresponding to one aperture can be reused in an adjacent aperture with little loss in accuracy.

Figure 2.3: Subaperture beam formation. Adapted from [1].
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The algorithm is similar to the quadtree algorithm in that it is divided into a series of

steps wherein the resolution increases as the subaperture increases in length. However, unlike

the quadtree algorithm, the data is kept in polar form where the coordinates of the polar grid

correspond to the center of a given subaperture. This allows for efficient computation of data

within the beamwidth of the given aperture.

On the first step, a subaperture is simply an antenna position, corresponding to wide

beamwidth. For each range bin within the given beamwidth of the subaperture, a single data

point is computed, corresponding to coarse resolution.

On the next step, two adjacent subapertures are combined to create a longer subaperture

with narrower beamwidth. The narrower beamwidth allows for finer angular resolution which is

obtained by combining coarse resolution beams from the parent subapertures. The new backpro-

jection data is then computed by interpolation in range and angle of data from two parent sets

of beams corresponding to the parent subapertures. Note that the number of operations stays

constant over each step because the number of subapertures decreases at the same rate as the reso-

lution increases. This process of increasing the angular resolution while decreasing the number of

subapertures continues until the beamwidth of each subaperture is narrow enough to achieve the

desired resolution. The computed beam points are then located on a Cartesian grid. Since each of

the logN processing stage has the same number of operationsN2, the computational complexity is

O(N2 logN).

Although the polar factorized backprojection algorithm achieves low computational com-

plexity, there are several shortcomings. Because of the polar nature of the algorithm, it is better

suited for spotlight SAR than stripmap SAR and for ultrawideband signals rather than bandpass

signals. Thus, it can be difficult to implement polar factorized backprojection for stripmap SAR.

Furthermore, the interpolation of the polar data onto a Cartesian grid can be computationally in-

tense.

Additionally, the polar factorized backprojection algorithm has high memory requirements

in order to store the intermediate results. To overcome these requirements, factorization into

quadtrees is required, with a penalty in computational gain. Finally, as with the quadtree algo-

rithm, this algorithm is not easily parallelizable and includes no implementation of an azimuth

window.
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2.5.3 Factorized Backprojection for Stripmap SAR

Although most of the past work for factorized backprojection has been done for spotlight

SAR, there has been some research on efficient algorithms for stripmap SAR [17]. These algo-

rithms achieve their efficiency by reusing data from adjacent pulses because two adjacent pulses

have similar antenna footprints. To achieve fine resolution, the data is upsampled and then inter-

polated.

Though the factorized backprojection algorithms developed up to this point have been com-

putationally efficient, they have all had their drawbacks for stripmap SAR. Many algorithms both

for spotlight and stripmap SAR have required upsampling and interpolation, which can be com-

putationally inefficient. Additionally, no previous algorithm included the implementation of an

azimuth window. The factorized backprojection algorithm introduced in the following chapter

overcomes these limitations while providing a relatively straightforward implementation of a fac-

torized backprojection algorithm.
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Chapter 3

Windowed Factorized Backprojection for Stripmap SAR

This chapter introduces a new formulation of a factorized backprojection algorithm. Unlike

past algorithms, this algorithm is designed specifically for pulsed and LFM-CW stripmap SAR and

takes advantage of stripmap geometry to achieve lower computational complexity. It is also shown

in this chapter how to utilize the stripmap geometry to implement an azimuth window as part of

the factorized backprojection algorithm. Finally, the computational and memory requirements of

the algorithms are discussed.

3.1 Factorized Backprojection for Pulsed SAR

In factorized backprojection, the image reconstruction is divided into a series of steps in

which the resolution of the image becomes finer as the length of a synthetic subaperture increases.

The geometry of the SAR array allows the interpolated radar data associated with the subapertures

of the previous step to be used in subsequent steps, reducing the required computation at a tradeoff

of some loss of accuracy.

Although the formulation of factorized backprojection presented here uses the same recur-

sive principles as the previous algorithms, there are some notable differences. First, this particular

implementation is designed for stripmap SAR and assumes that the flight track is straight. Second,

rather than divide the image into square subimages or use polar coordinates, we split the image

into columns, which are defined as a region of the image one pixel wide in the range direction (see

Fig. 3.1). By splitting the image into columns, both the explanation and the implementation of the

algorithm are simplified. Additionally, the algorithm can be easily parallelized since each column

can be computed independent of the others. A high-level flow diagram highlighting the major steps

of this factorized backproejction algorithm is shown in Fig. 3.2.
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Figure 3.1: Left: Notional antenna phase center positions. Each position corresponds to the antenna
location for a transmit/receive pulse. Right: Imaging grid with a single column highlighted.

We now describe this factorized backprojection algorithm in detail. Suppose there areL

collected pulses with which we wish to image an area comprised ofM ×N pixels. Then, the

number of stages is min{log2L, log2M}, in addition to a preliminary stage. For this explanation,

we assumeL = M = N = 4 and that the pulses and pixels are equally spaced. In practice, however,

L, M, andN do not need to be equal, nor do the pulses and pixels need to be equally spaced. We

note that a pixel must lie in the beamwidth of the real aperture to be fully reconstructed. For pixels

on the edge of an image, reconstruction requires antenna positions that extend beyond the imaging

grid.

Initially, each subaperture corresponds to the actual antenna positions for each collected

pulse, but in later steps it corresponds to the combination of two or more adjacent antenna positions.

We divide the image into subimages, or sections of columns. Initially, a subimage consists of a

single large area covering the entire column, but by the final stage, each of the multiple subimages

is a single pixel of the column. (To reduce error, a subimage may initially consist of a portion

of a column rather than the entire column, but this increases the total number of computations

despite decreasing the number of steps.) Because the same algorithm is applied for each column

independent of the other columns, we concentrate on a single column in this explanation.

Since the central positions of both subimages and subapertures change for each step of the

factorization, we introduce some notation to aid in the explanation. Letn(s)
i index the center of the
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Figure 3.2: Flow diagram for factorized backprojection.

ith subaperture on thesth step. Letp(s)
k index the center of thekth subimage on thesth step in the

along track direction. The distance from theith subaperture center to thekth subimage is denoted

d[n(s)
i , p(s)

k ] (see Fig. 3.3) and the interpolated range-compressed complex SAR data set associated

with this subaperture-subimage pair is denotedR(d[n(s)
i , p(s)

k ]). In the preliminary step, the data set

is the range-compressed SAR data interpolated to slant range, but in subsequent steps the data set

is formed from combinations of elements from the parent data set.

23



In the preliminary step of the algorithm, the distance from each subaperture center (pulse)

to a subimage center is calculated. Since our example involves four pulses and one initial subimage,

this step requires four distance calculations. In Fig. 3.4(a), which shows the preliminary step of

the algorithm, the central pixel is denotedp(0)
0 , and each pulse is denoted asn(0)

i , i = 0...3. Once

each distance[n(0)
i , p(0)

0 ] has been calculated, the radar echo dataR(d[n(0)
i , p(0)

0 ]) is found from the

range-compressed SAR data.

For the first factorization step, the number of subapertures is decreased by a factor of two

by combining the parent subapertures into longer child subapertures. Because the resulting sub-

apertures are longer than the parent subapertures, the corresponding beamwidth is narrower. In

addition, the subimage is divided in half so that there are two pixels per column rather than one

(see Fig. 3.4(b)).

The distance from each subaperture centern(1)
i to each subimage centerp(1)

k is calculated,

wheren(1)
i has coordinates(xi ,yi ,zi) andp(1)

k has coordinates(xk,yk,zk). Then, the distance from

each parent subaperture centern(0)
j to each subimage centerp(1)

k is calculated or approximated.

Given a parent subaperturen(0)
j with coordinates(x j ,y j ,zj), the distance fromn(0)

j to thekth subim-

age center is given by

d[n(0)
j , p(1)

k ] =
√

(x j −xk)2 +(y j −yk)2 +(zj −zk)2. (3.1)

If the flight track is ideal (i.e., parallel to the image column) and the imaging area is flat, then the

distance can be approximated using the first terms of a Taylor series:

d[n(0)
j , p(1)

k ]≈ d[n(1)
i , p(1)

k ]+∆r (3.2)

where

∆r =
2(yi −y j)(y j −yk)+(y j −yi)2

2d[n(1)
i , p(1)

k ]
(3.3)

(see Fig. 3.4(c)). Note that for our column-based algorithm where the area to be imaged is a flat

surface,x j = xi andzj = zi .

Because the child subapertures are longer than the original subapertures, there is no pre-

viously interpolated radar data corresponding exactly to these new subapertures. However, we
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Figure 3.3: Illustration of distance calculations for factorized backprojection algorithm. (a) Distance
from current subaperture centers to current subimage centers for preliminary step; (b) distance from
current subaperture centers to current subimage centers for first step; (c) distance from parent subaper-
ture centers to one of two current subimage centers for first step; (d) distance from current subaperture
centers to current subimage centers for second step; (e) distance from parent subaperture centers to one
of four current subimage centers for second step.
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can construct data setsR(d[n(s)
i , p(s)

k ]) corresponding to these longer subapertures by combining

the data sets from parent subapertures and multiplying by a phase factor to compensate for the

difference in distances:

R(d[n(s)
i , p(s)

k ]) = ∑
n j3ni

R(d[n(s−1)
j , p(s)

k ])exp( j4π/λ∆r j) (3.4)

where

∆r j = d[n(s−1)
j , p(s)

k ]−d[n(s)
j , p(s)

k ] (3.5)

or if the prior distances are calculated with a Taylor series approximation,

∆r j =
2(yi −y j)(y j −yk)+(y j −yi)2

2d[n(s)
i , p(s)

k ]
. (3.6)

Rather than directly calculatingR(d[n(s−1)
j , p(s)

k ]), we approximate it by data sets formed

in the previous step because these parent data sets include the phase factor as shown in Eq. (3.4).

R(d[n(s−1)
j , p(s)

k ]) is then given by

R(d[n(s−1)
j , p(s)

k ])≈ R(d[n(s−1)
j , p(s−1)

bk/2c ]). (3.7)

If d[n(s−1)
j , p(s)

k ] = d[n(s−1)
j , p(s−1)

bk/2c ], then the approximation is exact since both values correspond

to the same range bin. However, if the distances are not equal, the approximate data set may

not correspond to the same range bin as the correct data set, so there may be quantization error.

Additionally, if the distances are not equal, the incorrect phase may be computed in Eq. (3.4). We

discuss these errors more in Section 4.1.

For the remaining iterations, the process of lengthening subapertures and decreasing subim-

age size continues until a subimage is a single pixel and there is only one subaperture covering the

full length with centernc (see Fig. 3.4(d) and 3.4(e)). The backprojected image for a pixelpk is

given by

A(pk) = R(d[nc, pk])exp( j4π/λd[nc, pk]). (3.8)
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SinceR(d[nc, pk]) has been formed from parent data sets each corresponding to smaller subaper-

tures, if we considerR(d[nc, pk]) in terms of its parent data sets we find

A(pk) =∑
n

R(d[n, pk])exp{ j4π/λ (d[n, pk]−d[nc, pk])}exp{ j4π/λd[nc, pk]}

=∑
n

R(d[n, pk])exp{ j4π/λd[n, pk]} (3.9)

which is the original backprojection equation shown in Eq. (2.34). Due to some quantization error,

the expansion is not exact, so the image may have some loss of accuracy. This loss of accuracy is

discussed more in Chapter 4.

3.2 Factorized Backprojection for LFM-CW SAR

In this section, we discuss how to implement factorized backprojection for LFM-CW SAR.

There are few differences between factorized backprojection for pulsed and LFM-CW SAR, with

the most notable difference in the two algorithms being the formulation of the phase. This is due

to the different formulation of the backprojection equation, which is given by

A(p) = ∑
n

R(d[n, p]−Kx[n, p]/d[n, p])exp{ jΦe(d[n, p])} (3.10)

where

Φe(d[n, p]) =
4πkrd[n, p]2

c2
0

− 4πd[n, p]
λ

−πkrd2 +2π f0d (3.11)

whered[n, p] is the distance from thenth pulse to a pixelp, R(d[n, p]−Kx[n, p]/d[n, p]) is the

motion-corrected range-compressed SAR data interpolated to slant ranged[n, p] (see [12]),d is

the dechirp delay,kr is the chirp rate,f0 is the transmit frequency, andλ is the wavelength of the

transmit frequency. For the sake of simplicity we choose to neglectKx[n, p]/d[n, p] to make the

factorization easier, though this causes a slight defocusing of the image.Φe(d[n, p]) is split into

separate terms as

Φe(d[n, p]) = ρ(d[n, p])+δ (3.12)

where

ρ(d[n, p]) =
4πkrd[n, p]2

c2
0

− 4πd[n, p]
λ
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and

δ =−πkrd2 +2π f0d.

The backprojection equation serves as the basis for the LFM-CW factorized backprojection algo-

rithm.

As with pulsed SAR, in the preliminary step of the algorithm, the distance from each sub-

aperture center (pulse) to a subimage center is calculated. Once each distance[n(0)
i , p(0)

0 ] has been

calculated, the radar echo dataR(d[n(0)
i , p(0)

0 ]) is found from the range-compressed SAR data. For

the first factorization step, the number of subapertures is decreased by a factor of two by combin-

ing the parent subapertures into longer child subapertures. Because the resulting subapertures are

longer than the parent subapertures, the corresponding beamwidth is narrower. In addition, the

subimage is divided in half so that there are two pixels per column rather than one (see Fig. 3.4(b))

The distance from each subaperture centern(1)
i to each subimage centerp(1)

k is then calcu-

lated, wheren(1)
i has coordinates(xi ,yi ,zi) andp(1)

k has coordinates(xk,yk,zk). Then, the distance

from each parent subaperture centern(0)
j to each subimage centerp(1)

k is calculated or approxi-

mated.

Because the child subapertures are longer than the original subapertures, there is no previ-

ously interpolated radar data corresponding exactly to these new subapertures. However, as with

pulsed SAR, we can construct intermediate data setsR(d[n(s)
i , p(s)

k ]) corresponding to these longer

subapertures by combining the data sets from parent subapertures and multiplying by a phase factor

to compensate for the difference in distances:

R(d[n(s)
i , p(s)

k ]) = ∑
n j3ni

R(d[n(s−1)
j , p(s)

k ])exp( j∆ρ j) (3.13)

where

∆ρ j = ρ(d[n(s−1)
j , p(s)

k ])−ρ(d[n(s)
j , p(s)

k ]). (3.14)

Note that the phase factor∆ρ j is not the same as the phase factor∆r j given for pulsed SAR.
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Rather than directly calculatingR(d[n(s−1)
j , p(s)

k ]), we approximate it by data sets formed in

the previous step, i.e.,

R(d[n(s−1)
j , p(s)

k ])≈ R(d[n(s−1)
j , p(s−1)

bk/2c ]). (3.15)

The errors caused by this approximation are discussed in Section 4.1.

For the remaining iterations, the process of lengthening subapertures and decreasing subim-

age size continues until a subimage is a single pixel and there is only one subaperture covering the

full length with centernc (see Fig. 3.4(d) and 3.4(e)). The backprojected image for a pixelpk is

given by

A(pk) = R(d[nc, pk])exp{ j(ρ(d[nc, pk])+δ )}. (3.16)

SinceR(d[nc, pk]) has been formed from parent data sets each corresponding to smaller subaper-

tures, if we considerR(d[nc, pk]) in terms of its parent data sets we find

A(pk) =∑
n

R(d[n, pk])exp{ j [ρ(d[n, pk])−ρ(d[nc, pk])]}exp{ j [ρ(d[nc, pk])+δ ]}

=∑
n

R(d[n, pk])exp{ j (ρ(d[nc, pk])+δ )}

=∑
n

R(d[n, pk])exp{ jΦe(d[n, pk])} (3.17)

which is similar to the original backprojection equation shown in Eq. (3.10). Due to some quanti-

zation error, the expansion is not exact, so the image may have some loss of accuracy.

3.3 Windowed Factorized Backprojection

In SAR image processing, an azimuth window is often applied to minimize azimuth alias-

ing and suppress sidelobes at a cost of some loss in azimuth resolution. In this section, we show

that an azimuth window can also be incorporated into both pulsed and LFM-CW factorized back-

projection with little additional computation.

For direct backprojection, if an azimuth window is desired for some pixelpk, one approach

is to apply a weighting function to the backprojection equation:

A(pk) = ∑
ni

W(ni , pk)R(d[ni , pk])exp( jφ(d[ni , pk])) (3.18)
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whereW(ni , pk) is a weighting function expressed in terms of the pulse numberni and specified

pixel pk andφ is the phase specific to either pulsed or LFM-CW SAR. In this thesis we consider

weighting functions of the form

W(ni , pk) = exp(−(niy− pky)2/a) (3.19)

whereniy is they-coordinate ofni , pky is they-coordinate ofpk, a is some constant, and the azimuth

direction is iny. The output of the weighting function for a given pixelp is a Gaussian curve, thus

creating a window for the given pixel. We call this thedirect window.

In factorized backprojection, implementing an azimuth window is more complex because

the algorithm is divided into a series of steps. Since there is no single equation that depends on

both an individual pulseni and an individual pixelpk, there is no equation where the weighting

termW(ni , pk) used in direct backprojection can be logically inserted. However, an alternative

approach is to include intermediate weighting functions in the formation of the data sets for each

step to create windowed data setsR′(d[n(s)
bi/2sc, p(s)

bk/2S−sc]). Then, in the final step of windowed

factorized backprojection, the equation for a pixelpk takes the form

A(pk) = R′(d[nc, pk])exp( jφ(d[nc, pk])) . (3.20)

If this expression is expanded as in Eq. (3.9), then

A(pk) = ∑
ni

R′(d[ni , pk])exp( jφ(d[ni , pk])) (3.21)

where

R′(d[ni , pk]) = R(d[ni , pk])Weff(ni , pk) (3.22)

whereWeff(ni , pk) is the effective weighting function formed in the steps of the algorithm corre-

sponding to a pulseni and a pixelpk. We call the output of this weighting function thefactorized

window. Due to the factorization, the factorized window is not identical to the direct window.

However, by the proper choice of intermediate weighting functions, the factorized window can be

similar to the direct window.
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We now discuss an intermediate weighting function that is easy to implement and which

creates a factorized window that is similar to the direct window. Consider an intermediate subaper-

ture centern(s)
i with parent subaperture centern(s−1)

j with coordinates(n jx,n jy) and an intermedi-

ate subimage centerp(s)
k with coordinates(pkx, pky). We define an intermediate weighting function

W(n(s−1)
j , pk) to weight the corresponding data set as

R′(d[n(s)
i , p(s)

k ]) = ∑
n j3ni

W(n(s−1)
j , pk)R′(d[n(s−1)

j , p(s)
k ])exp

{
jφ(d[n(s−1)

j , p(s)
k ]−d[n(s)

i , p(s)
k ])
}

(3.23)

where

W(n j , pk) = exp(−|n jy− pky|/a) (3.24)

with a determined as a function of the beamwidth. Given a pulseni and a pixelpk, the resulting

effective weighting function corresponding toni andpk is

Weff(ni , pk) = exp(−|niy− pbk/2Scy|/a)
S

∏
s=2

exp(−|n(s−1)
bi/2scy− p(s)

bk/2S−scy|/a). (3.25)

Figure 3.4 shows plots of the factorized window and direct window for given pixels located

in various locations of an imaging grid. Note that the shape of the factorized window is similar

to the shape of the direct window for each pixel. However, while the direct window has the same

shape regardless of the pixel, the factorized window changes shape slightly for different pixels.

This discrepancy is expected due to the creation of the window over a series of steps.

3.4 Computational and Memory Requirements

In this section, we discuss the computational and memory requirements associated with the

factorized backprojection algorithms introduced in this chapter. Because the difference between

factorized and windowed factorized backprojection involves only a few multiplies per step, we

assume the computational burden is nearly identical.
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Figure 3.4: Effective factorized and actual weighting functions for various pixels in a column of 64
pixels. Upper left: pixel 1; upper right: pixel 14; lower left: pixel 32; lower right: pixel 45.

3.4.1 Computational Complexity

We now show that the windowed factorized backprojection algorithm has complexityO(N2 logN).

For simplicity’s sake, we assume that there areN antenna positions and the imaging pixel grid has

N×N pixels.

There are a total of log2N steps. For each steps, there are 2s pixels per column,N columns,

andN/2s subapertures. Thus the total number of operations per step is proportional to

OPS = 2s ·N · N
2s

= N2
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so the total number of operations is proportional to

OPS= N2 log2N. (3.26)

This is an N
logN improvement over the direct approach which hasO(N3) operations as discussed

in Section 2.4.2. Note that adding the window adds a few computations per step due to the expo-

nential multiply but does not substantially increase the time. The cost for this lower computational

complexity is a less straightforward algorithm and some error due to approximation. Interpolation

and windowing decrease the error but slightly increase the time.

Note also that each column can be processed independently of the other columns. Thus the

factorized backprojection algorithm can be parallelized efficiently.

3.4.2 Memory Requirements

We now consider the memory requirements of the factorized backprojection algorithm with

N pulses and anL×M grid. If the system can be parallelized, then there is less memory required

than if the system cannot be parallelized. We examine both cases.

Suppose first that the system can be parallelized so that each column of the image can be

processed independently. Since the original data collected by the radar is used only in the first

step, them×N range-compressed data matrix is necessary only for the first step, wherem is the

number of samples corresponding to a given pulse (typically in the thousands). Within this first

step, only the data corresponding to one sample per pulse is necessary for a parallelized system, so

the total memory requirement for the original radar data is bounded byN. After this first step, the

range-compressed data is no longer necessary and can be removed from memory.

For each subsequent step, both a parent data set and a child data set must be recorded. Each

data set corresponds toN/2s pulses andk2s pixels in a column, wherek is the number of initial

subimages, so the size remains constant for each step. Since the parent and child data sets are

required, a total of 2kN memory locations are required. On the final step, there areM memory

locations for theM pixels in each column, but this is generally less than 2kN. Hence, the total

memory required per parallel structure is bounded by 2kN.
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If the system is not parallelized, then theL columns of the grid must be considered simul-

taneously in order to delete the range-compressed data from memory after the first step. Since the

system is not parallelized, the entire range-compressed data matrix must be stored for the first step,

corresponding tomNmemory locations. It is still possible to construct data sets with constant size

kN, but 2L data sets at a time are required rather than the two required for a parallelized struc-

ture. On the final step,LM memory locations are required for theLM pixels on the image grid. If

L < 2kN, the total memory required is bounded byL ·2kN.

3.5 Conclusion

This chapter discussed the formulation of the factorized backprojection algorithm for pulsed

and LFM-CW SAR. This algorithm achieves its computational gain by reusing radar data within

a column and factoring the phase over a series of steps. It was also shown how to implement an

azimuth window. A more thorough performance analysis of the algorithms is given in Chapter 4.
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Chapter 4

Performance Analysis

This chapter discusses the performance of the windowed factorized backprojection algo-

rithm. Sources of errors are discussed and equations are provided which give bounds on the ex-

pected error. Then, example imagery is provided to illustrate the performance of windowed factor-

ized backprojection algorithm for pulsed and LFM-CW SAR compared to direct backprojection.

4.1 Errors in the Factorized Backprojection Algorithm

There are two types of errors associated with factorized backprojection: those caused by

using incorrect distances for phase calculations and those caused by errors in the creation of data

sets from the range interpolated data. We first discuss the phase error for pulsed and LFM-CW

SAR separately. We then discuss the error associated with the creation of data sets (frequently

referred to as range bin error), along with a possible way to minimize range bin error.

4.1.1 Phase Errors in Pulsed SAR

One type of error in factorized backprojection is the phase error caused by not directly

calculating exp{ j4πd[ni , pk]/λ} for each pulseni and pixelpk and instead using an approximation

formed over a series of steps. The effective phase term for a given pulseni and pixelpk is of the

form exp{ j4πd̃[ni , pk]/λ} where

d̃[ni , pk] =
S

∑
s=1

(
d[n(s−1)

bi/2sc, p(s)
bk/2S−sc]−d[n(s)

bi/2s+1c, p(s)
bk/2S−sc]

)
+d[n(S)

bi/2Sc, pk] (4.1)

whereS is the number of steps in the algorithm. We refer tod̃[ni , pk] as thefactorized distance.

Ideally, the actual distanced[ni , pk] equals the factorized distance. However, in practice, this is not

generally true. We can obtain an upper bound on the error by setting a single pixel and pulse as
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reference points and then defining the coordinates of the parent subimages and child subapertures

in terms of these reference points.

Let a pixel pk have coordinates(xk,yk,zk) and let a pulseni have coordinates(xi ,yi ,zi),

where the azimuth direction is along they-axis. LetLI be the length of the imaging grid,P be

the number of pixels in the imaging grid,LA be the length of the antenna array, andN be the

number of pulses. LetR0 be the minimum distance from the SAR array to the column. Let

SP = log2P, SN = log2N, andS= min{SP,SN}. Then, a child subimage centerp(s)
bk/2SP−sc has

coordinates(xk,y
(s)
bk/2SP−sc,zk), where

y(s)
bk/2SP−sc = y(s−1)

bk/2SP−s+1c+(−1)bk/2SP−sc P
2s+1

LI

P−1
. (4.2)

Similarly, a child subaperture centern(s)
bi/2sc has coordinates(xi ,y

(s)
bi/2sc,zi), where

y(s)
bi/2sc = y(s−1)

bi/2s−1c+(−1)bi/2s−1c N
2SN−s+2

LA

N−1
. (4.3)

Let ∆(s)
k = y(s)

bk/2SP−sc−yk and∆(s)
i = y(s)

bi/2sc−yi . Using these relationships, the errorε between the

actual distance and the factorized distance from a pulseni and a pixelpk can be written as

ε =d[ni , pk]−

{
S

∑
s=1

[
d[n(s−1)

bi/2sc, p(s)
bk/2S−sc]−d[n(s)

bi/2s+1c, p(s)
bk/2S−s+1c]

]
+d[n(S)

bi/2Sc, pk]

}

=
√

R2
0 +(yi −yk)2−

{
S

∑
s=1

[√
R2

0 +(yi +∆(s−1)
i −yk−∆(s)

k )2−
√

R2
0 +(yi +∆(s)

i −yk−∆(s)
k )2

]
+
√

R2
0 +(yi +∆S

i −yk)2

}
. (4.4)

We can approximateε by ε̃, whereε̃ is the Taylor series approximation given by

ε̃ =R0 +
1

2R0
(yi −yk)2−

{
S

∑
s=1

[
R0 +

1
2R0

(yi +∆(s−1)
i −yk−∆(s)

k )2−R0

− 1
2R0

(yi +∆(s)
i −yk−∆(s)

k )2
]
+R0 +

1
2R0

(yi +∆(S)
i −yk)2

}
=

1
2R0

{
(yi −yk)2−

S

∑
s=1

[
(yi +∆(s−1)

i −yk−∆(s)
k )2− (yi +∆(s)

i −yk−∆(s)
k )2

]
− (yi +∆(S)

i −yk)2

}
. (4.5)
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By canceling and rearranging terms and noting that∆(0)
i = 0, this equation can be further simplified

as

ε̃ =
1

2R0

[
2

S

∑
s=2

(
∆(s−1)

i ∆(s)
k −∆(s−1)

i ∆(s−1)
k

)
−2∆(S)

i ∆(S)
k

]

=
1

2R0

[
2

S

∑
s=2

(
∆(s−1)

i [∆(s)
k −∆(s−1)

k ]
)
−2∆(S)

i ∆(S)
k

]
. (4.6)

We note that

∆(s)
k −∆(s−1)

k =(y(s)
bk/2SP−sc−yk)− (y(s−1)

bk/2SP−s+1c−yk)

=y(s)
bk/2SP−sc−y(s−1)

bk/2SP−s+1c

=(−1)bk/2SP−sc P
2s+1

LI

P−1

≤ P
2s+1

LI

P−1
. (4.7)

Thus,

ε̃ ≤ 1
2R0

[
2

S

∑
s=2

(
∆(s−1)

i
P

2s+1

LI

P−1

)
−2∆(S)

i ∆(S)
k

]
. (4.8)

Using the triangle inequality, we can further boundε̃ by

ε̃ ≤ 1
2R0

[
2

S

∑
s=2

∣∣∣∣∆(s−1)
i

P
2s+1

LI

P−1

∣∣∣∣+2|∆(S)
i ∆(S)

k |

]
. (4.9)

Since for any given pulseni ,

∆(s)
i ≤ N

2SN−s+1

LA

N−1
≈ LA

2SN−s+1

and for any given pixelpk,

∆(s)
k ≤ P

2s

LI

P−1
≈ LI

2s
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we can further simplify the bound in Eq. (4.9) as

ε̃ ≤ 1
R0

[
S

∑
s=2

(
LA

2SN−s+2

LI

2s+1

)
+

LA

2SN−s+1

LI

2S

]

=
1
R0

[
S

∑
s=2

(
LILA

2SN+3

)
+

LILA

2SN+2

]

=
1
R0

[
(S−1)

LILA

2SN+3 +
2LILA

2SN+3

]
=

1
8R0

(S+1)LILA

2SN
. (4.10)

Note the similarity of this error bound to that given by [1]. From this equation, we see that the

distance error can be reduced by decreasing the length of the image to be reconstructed. Similarly,

by initially dividing a column into several subimages rather than performing factorized backpro-

jection for the entire column, the error is reduced because each subimage is shorter. However, this

requires more computation. Figure 4.1 shows the distance error for simulated data for a given pixel

and varying numbers of initial subimages.

Recall thatε is the difference between the actual distance and factorized distance for a

given pulse and pixel. We may assume that a phase error of exp{ jπ/8} is acceptable, that is, there

is negligible error in the image if

(4π/λ ) |ε| ≤ π/8 (4.11)

which implies

|ε| ≤ λ/32. (4.12)

For the simulation described in Section 4.2.1 whose error plot is shown in Fig. 4.1, the wavelength

of the transmit frequency is 0.0292 m, soλ/32 = 9.1250×10−4. In Fig. 4.1, the bound on the

magnitude of the distance error is less than this value for each initial subimage number.

4.1.2 Phase Errors in LFM-CW SAR

Recall that

ρ(d[ni , pk]) =
4πkrd[ni , pk]2

c2
0

− 4πd[ni , pk]
λ

.
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Figure 4.1: Difference between actual and factorized distances for each pixel within a column and each
pulse in the antenna array for the parameters in Table B.1. (a) error with one initial subimage; (b) error
with two initial subimages; (c) error with four initial subimages; (d) error with eight initial subimages;
(e) error with sixteen initial subimages; (f) error with thirty-two initial subimages (that is, there is zero
phase error because each distance is calculated correctly). Note that if more inital subimages are used,
the magnitude of the error is smaller.
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The effective phase term for a given pulseni and pixelpk is of the form exp{ jρ(d̃[ni , pk])} where

d̃[ni , pk] =
S

∑
s=1

(
d[n(s−1)

bi/2sc, p(s)
bk/2S−sc]−d[n(s)

bi/2s+1c, p(s)
bk/2S−sc]

)
+d[n(S)

bi/2Sc, pk] (4.13)

whereS is the number of steps in the algorithm. We refer tod̃[ni , pk] as thefactorized distance.

Ideally, the actual distanced[ni , pk] equals the factorized distance. However, in practice, this is not

generally true since the factorized distance is formed by computing the distance between subaper-

ture and subimage centers on each step rather than the distance between the actual pulse and pixel.

This creates a phase error (in radians) of

ε =ρ(d[ni , pk])−ρ(d̃[ni , pk]) (4.14)

=
4π

λ
ε1 +

4πkr

c2
0

ε2

where

ε1 = d[ni , pk]− d̃[ni , pk]

and

ε2 = d[ni , pk]2− d̃[ni , pk]2.

We can obtain an upper bound on the error by setting a single pixel and pulse as reference points

and then defining the coordinates of the parent subimages and child subapertures in terms of these

reference points.

Let a pixel pk have coordinates(xk,yk,zk) and let a pulseni have coordinates(xi ,yi ,zi),

where the azimuth direction is along they-axis. LetLI be the length of the imaging grid,P be

the number of pixels in the imaging grid,LA be the length of the antenna array, andN be the

number of pulses. LetR0 be the minimum distance from the SAR array to the column. Let

SP = log2P, SN = log2N, andS= min{SP,SN}. Then, a child subimage centerp(s)
bk/2SP−sc has

coordinates(xk,y
(s)
bk/2SP−sc,zk), where

y(s)
bk/2SP−sc = y(s−1)

bk/2SP−s+1c+(−1)bk/2SP−sc P
2s+1

LI

P−1
. (4.15)
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Similarly, a child subaperture centern(s)
bi/2sc has coordinates(xi ,y

(s)
bi/2sc,zi), where

y(s)
bi/2sc = y(s−1)

bi/2s−1c+(−1)bi/2s−1c N
2SN−s+2

LA

N−1
. (4.16)

Let ∆(s)
k = y(s)

bk/2SP−sc−yk and∆(s)
i = y(s)

bi/2sc−yi . Using these relationships, the errorε1 between the

actual distance and the factorized distance from a pulseni and a pixelpk can be written as

ε1 =d[ni , pk]−

{
S

∑
s=1

[
d[n(s−1)

bi/2sc, p(s)
bk/2S−sc]−d[n(s)

bi/2s+1c, p(s)
bk/2S−s+1c]

]
+d[n(S)

bi/2Sc, pk]

}

=
√

R2
0 +(yi −yk)2−

{
S

∑
s=1

[√
R2

0 +(yi +∆(s−1)
i −yk−∆(s)

k )2−
√

R2
0 +(yi +∆(s)

i −yk−∆(s)
k )2

]
+
√

R2
0 +(yi +∆S

i −yk)2

}
. (4.17)

We can approximateε1 by ε̃1, whereε̃1 is the Taylor series approximation given by

ε̃1 =R0 +
1

2R0
(yi −yk)2−

{
S

∑
s=1

[
R0 +

1
2R0

(yi +∆(s−1)
i −yk−∆(s)

k )2−R0

− 1
2R0

(yi +∆(s)
i −yk−∆(s)

k )2
]
+R0 +

1
2R0

(yi +∆(S)
i −yk)2

}
=

1
2R0

{
(yi −yk)2−

S

∑
s=1

[
(yi +∆(s−1)

i −yk−∆(s)
k )2− (yi +∆(s)

i −yk−∆(s)
k )2

]
− (yi +∆(S)

i −yk)2

}
.

(4.18)

By canceling and rearranging terms, this equation can be further simplified as

ε̃1 =
1

2R0

[
2

S

∑
s=2

(
∆(s−1)

i ∆(s)
k −∆(s−1)

i ∆(s−1)
k

)
−2∆(S)

i ∆(S)
k

]

=
1

2R0

[
2

S

∑
s=2

(
∆(s−1)

i [∆(s)
k −∆(s−1)

k ]
)
−2∆(S)

i ∆(S)
k

]
. (4.19)
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We note that

∆(s)
k −∆(s−1)

k =(y(s)
bk/2SP−sc−yk)− (y(s−1)

bk/2SP−s+1c−yk)

=y(s)
bk/2SP−sc−y(s−1)

bk/2SP−s+1c

=(−1)bk/2SP−sc P
2s+1

LI

P−1

≤ P
2s+1

LI

P−1
. (4.20)

Thus,

ε̃1 ≤
1

2R0

[
2

S

∑
s=2

(
∆(s−1)

i
P

2s+1

LI

P−1

)
−2∆(S)

i ∆(S)
k

]
. (4.21)

Using the triangle inequality, we can further boundε̃1 by

ε̃1 ≤
1

2R0

[
2

S

∑
s=2

(∣∣∣∣∆(s−1)
i

P
2s+1

LI

P−1

∣∣∣∣)+2|∆(S)
i ∆(S)

k |

]
. (4.22)

Since for any given pulseni ,

∆(s)
i ≤ N

2SN−s+1

LA

N−1
≈ LA

2SN−s+1

and for any given pixelpk,

∆(s)
k ≤ P

2s

LI

P−1
≈ LI

2s

we can further simplify the bound in Eq. (4.22) as

ε̃1 ≤
1
R0

[
S

∑
s=2

(
LA

2SN−s+2

LI

2s+1

)
+

LA

2SN−s+1

LI

2S

]

=
1
R0

[
S

∑
s=2

(
LILA

2SN+3

)
+

LILA

2SN+2

]

=
1
R0

[
(S−1)

LILA

2SN+3 +
2LILA

2SN+3

]
=

1
8R0

(S+1)LILA

2SN
. (4.23)
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To obtainε2, we follow a similar procedure. We note that

ε2 =d[ni , pk]2− d̃[ni , pk]2

=(d[ni , pk]− d̃[ni , pk])(d[ni , pk]+ d̃[ni , pk])

=ε1(d[ni , pk]+ d̃[ni , pk])

≈ε1(2R0) (4.24)

to find

ε2 ≤
1
4

(S+1)LILA

2SN
. (4.25)

Hence,

ε ≤
∣∣∣∣4π

λ
ε1

∣∣∣∣+ ∣∣∣∣4πkr

c2 ε2

∣∣∣∣ (4.26)

≈4π

λ

1
8R0

(S+1)LILA

2SN
+

4π|kr |
c2

0

1
4

(S+1)LILA

2SN
.

From this equation, we see that the distance error can be reduced by decreasing the length of the

image to be reconstructed. Similarly, by initially dividing a column into several subimages rather

than performing factorized backprojection for the entire column, the error is reduced because each

subimage is shorter. However, this requires more computation.

4.1.3 Range Bin Error for Pulsed and LFM-CW SAR

Recall that in the creation of the data setR(d[n(s)
i , p(s)

k ]), we make the approximation

R(d[n(s−1)
j , p(s)

k ])≈ R(d[n(s−1)
j , p(s−1)

bk/2c ]). (4.27)

That is, we assume that the radar data associated with a given subaperture and subimage is the

same as the radar data associated with the subaperture and the parent subimage. Since data is

considered constant over a range bin, this assumption is true so long as both subimages lie within

the same range bin. However, if both subimages do not lie in the same range bin, then the data

corresponding to the child subimage is assigned to wrong range bin, causing errors. This range bin
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error is caused when the antenna has either an extremely narrow beamwidth or a moderately wide

beamwidth.

When the antenna has a narrow beamwidth, a given pulse may contain the center of the

column in its beamwidth but not the edge of the column (see Fig. 4.2). However, since the data

assigned to the center of the column is also assigned to the edge of the column, factorized back-

projection introduces spurious data to the edge of the column. The window discussed in Section

3.3 minimizes these errors.

When the antenna has a moderately wide beamwidth such that the entire column is con-

tained within the beamwidth, the edge of the column and the center of the column may not lie

within the same range bin depending on the curvature of the footprint (see Fig. 4.3) Thus, the as-

sumption that data at the center of a column is the same data at the edge of a column is incorrect.

Additionally, the assumption that the center and edge of the column are roughly the same distance

from the pulse can be incorrect, causing further errors.

Figure 4.2: Illustration of antenna array and column where single antenna has narrow beamwidth. Note
that the indicated antenna footprint does not cover pixels on the edges of the column. Hence, assigning
data corresponding to the central pixel to pixels on the edge causes errors.
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Figure 4.3: Illustration of antenna array and column where single antenna has moderately wide
beamwidth. Note that the entire column is covered by the antenna footprint, but three different range
bins from a single pulse (indicated in various shades of gray) correspond to the column. Hence, assign-
ing data corresponding to the central pixel to pixels on the edge causes errors.

In either case, if it does not appear that the range bins corresponding to each pulse and the

column align, one solution is to partition columns into subimages, referred to for the remainder of

the section as subcolumns. Each subcolumn has the property that the center of the subcolumn and

the edges of the subcolumn correspond to the same range bin for each pulse which contains the

center of the subcolumn in its footprint.

A potential algorithm is as follows. Begin with the first pixelp in the column. Consider

the footprint of the pulse positionn which is directly perpendicular to thep (that is, at the range

of closest approach to thep). Determine which pixels in the column fall in the same range bin

of n as the first pixel. The first pixelp1 that does not fall into the correct range bin marks the

beginning of the next subcolumn (see Fig. 4.4). Consider the footprint of the pulse positionn1 at

the range of closest approach fromp1. Determine which pixels belowp1 lie in the same range bin

of n1 as p1. The pixelp2 that does not fall into the correct range bin marks the beginning of the

next subcolumn, and the process continues until all pixels are assigned to some subcolumn. As

an added precaution, the algorithm can then be performed from bottom to top, further partitioning

subcolumns as deemed necessary.

45



Figure 4.4: Illustration of partitioning of subcolumns

4.2 Performance Evaluation and Example Imagery

In this section we display images formed by factorized and windowed factorized backpro-

jection for pulsed and LFM-CW SAR and compare them to images formed with direct backpro-

jection.

4.2.1 Results for an Ideal Track for Pulsed SAR

We first assume that the flight track is ideal, that is, straight and level, with uniform spacing.

Figure 4.5 shows the impulse response (IPR) of a point target created with noise-free simulated data

acquired from an L-band pulsed SAR (parameters given in Table B.1) which was reconstructed

with direct backprojection. Figure 4.6 shows the IPR of the same point target reconstructed with

factorized backprojection. Note that both images have notable azimuth sidelobes.

When a window is added to the direct backprojection image, the image quality improves, al-

though the resolution is slightly degraded as evidenced by the wider target main lobe (see Fig. 4.7).

When the window is applied to the factorized backprojection image, the image has reduced side-

lobes and similar resolution loss. Figure 4.8 shows the windowed factorized backprojection image

where each pixel has been normalized by the area of the effective window on the pixel. Note that

the width of the main lobe in the azimuth direction for both windowed images is slightly wider,
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Figure 4.5: IPR of point target generated from simulated SAR data collected from an ideal track with
parameters given in Table B.1 using direct backprojection. Upper left: power image (linear scale);
upper right: contour plot; lower left: range slice through peak; lower right: azimuth slice through peak.

resulting in slightly coarser resolution. However, the sidelobes in the azimuth direction have been

reduced considerably from Fig. 4.6 to Fig. 4.8.

4.2.2 Results on a Non-Ideal Track for Pulsed SAR

If the flight track is non-ideal, then factorized backprojection becomes less accurate because

the range bins corresponding to a child subaperture may differ from the range bins corresponding

to a parent subaperture (see [1] for a more complete analysis). To illustrate this, we simulate

a non-ideal flight track with a sinusoidal movement at an amplitude of 1 m (which spans more

than one range bin). In Figs. 4.9, 4.10, 4.11, and 4.12, the IPR is shown when the flight track

is non-ideal for an image reconstructed with direct, windowed direct, factorized, and windowed

factorized backprojection, respectively. As shown in Fig. 4.11, factorized backprojection alone
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Figure 4.6: IPR of point target generated from simulated SAR data collected on an ideal track with
parameters given in Table B.1 using factorized backprojection. See caption for Fig. 4.5.

can be unsuitable for dealing with non-ideal tracks. However, windowed factorized backprojection

improves the image quality to an extent.

4.2.3 Results with Real Data for Pulsed SAR

Figure 4.13 shows various images generated from real pulsed SAR data of a uniform scene

with a trihedral corner reflector (parameters given in Table B.2). There are 4096 aperture positions

and an image grid of 1024× 1024 pixels, with each pixel 0.5m by 0.3m. Figure 4.14(a) shows

the results of direct backprojection. Figure 4.14(c) shows the same image reconstructed using

factorized backprojection. Note that the corner reflector appears more smeared in the factorized

backprojection image than in the direct backprojection image, mostly due to non-ideal motion.

Figure 4.14(e) shows the image reconstructed with windowed factorized backprojection. Note that

the sidelobes have been compressed slightly and the corner reflector appears less smeared than it
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Figure 4.7: IPR of point target generated from simulated SAR data collected on an ideal track with
parameters given in Table B.1 using direct backprojection with a Gaussian window. See caption for
Fig. 4.5.

did in Fig. 4.14(c), although the overall resolution is somewhat coarser. The IPR of each image is

also shown.

4.2.4 Results for Simulated Data for LFM-CW SAR

Figure 4.15(a) displays the IPR response of a point target created with noise-free simulated

data acquired from an LFM-CW SAR (parameters given in Table B.3) which was reconstructed

with direct backprojection. Figure 4.15(b) shows the IPR of the same point target reconstructed

with windowed factorized backprojection. Although the range and azimuth slices and power image

look similar, the contour plots differ in shape. This is due to the quantized nature of factorized

backprojection. Since adjacent pixels use similar range data, the dropoff is more discrete than

continuous in nature.
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Figure 4.8: IPR of point target generated from simulated SAR data collected on an ideal track with
parameters given in Table B.1 using factorized backprojection with a factorized window. See caption
for Fig. 4.5.

4.2.5 Results for Real Data for LFM-CW SAR

Figure 4.15 shows images generated from real SAR data collected by the BYU/Artemis

microASAR system as flown as part of the Characterization of Arctic Sea Ice Experiment 2009

(CASIE-09) [18]. The parameters are given in Table B.4. Figure 4.16(a) shows the results of direct

backprojection. Figure 4.16(b) shows the same image reconstructed using windowed factorized

backprojection with 11 initial subimages per column. Note that the two images are similar in that

the major features are visible in both. However, the image reconstructed with windowed factorized

backprojection is somewhat degraded compared to the image constructed with direct backpro-

jection in several ways. Some details have been lost in the image reconstructed by windowed

factorized backprojection, and there is some aliasing in the windowed factorized backprojection
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Figure 4.9: IPR of point target generated from simulated SAR data collected on a non-ideal track with
parameters given in Table B.1 using direct backprojection. See caption for Fig. 4.5.

image. The image degradation is due to the non-ideal motion of the radar as well as the implicit

phase error of factorized backprojection.

Although there was no attempt at optimizing the code, windowed factorized backprojection

offered a savings of approximately a factor of 5 in computational time, i.e. 30 minutes compared to

146 minutes. Though this is not as high as the theoretical bound, it does demonstrate the improved

computational complexity of factorized backprojection algorithms even using code which has not

been optimized.

4.3 Conclusion

This chapter provided a performance analysis of factorized backprojection. The phase error

was discussed and an upper bound on the phase error was given. The effects of range bin error

were discussed, and an algorithm was provided to mitigate its effects. Example imagery of SAR
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Figure 4.10: IPR of point target generated from simulated SAR data collected on a non-ideal track
described in the text with parameters given in Table B.1 using direct backprojection with a Gaussian
window. See caption for Fig. 4.5.

data reconstructed windowed factorized backprojection was displayed. Based on the error analysis

and example imagery, it is shown that windowed factorized backprojection approaches the quality

of factorized backprojection although there is inherent error in the algorithm.
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Figure 4.11: IPR of point target generated from simulated SAR data collected on a non-ideal track
described in the text with parameters given in Table B.1 using factorized backprojection. See caption
for Fig. 4.5.
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Figure 4.12: IPR of point target generated from simulated SAR data collected on a non-ideal track de-
scribed in the text with parameters given in Table B.1 using factorized backprojection with a factorized
window. See caption for Fig. 4.5.
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(a) (b)

(c) (d)

(e) (f)

Figure 4.13: Images generated from real SAR data of uniform scene with a trihedral corner reflector.
Parameters given in Table B.2. (a): direct backprojection (in dB); (b): IPR of area outlined by black
rectangle in direct backprojection image; (c): factorized backprojection (in dB); (d): IPR of area out-
lined by black rectangle in factorized backprojection image; (e): windowed factorized backprojection;
(f): IPR for area outlined by black rectangle in windowed factorized backprojection image. See caption
of Fig. 4.5 for labels of IPR. Note that the reconstructed point target is smeared due to the real (and
hence non-ideal) motion of the SAR.
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(a)

(b)

Figure 4.14: IPR of a point target generated from simulated SAR data with parameters given in Table
B.3. (a) IPR for direct backprojection image (upper left: power, upper right: contour plot, lower left:
azimuth slice, lower right: range slice); (b) IPR for windowed factorized backprojection
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(a)

(b)

Figure 4.15: Images generated from real SAR data collected as part of CASIE-09. Parameters given in
Table B.4. (a) LFM-CW direct backprojection (in dB); (b) LFM-CW windowed factorized backprojec-
tion (in dB).
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Chapter 5

Variations on Factorized Backprojection

This chapter discusses variations on factorized backprojection for stripmap SAR. These

algorithms use similar principles as the factorized backprojection algorithm but have different im-

plementations.

The first algorithm discussed is calledCorrect Phase Factorized Backprojection. If the

projected phase error given in Eq. (4.10) is expected to be too high to produce an acceptable

image, then the algorithm presented in the following section may be appropriate.

The second algorithm discussed is a matrix formulation of factorized and windowed fac-

torized backprojection. This matrix formulation provides a concise and consolidated view of fac-

torized backprojection

5.1 Correct Phase Factorized Backprojection

Recall the approximation made on each step of factorized backprojection,

R(d[n(s−1)
j , p(s)

k ])≈ R(d[n(s−1)
j , p(s−1)

bk/2c ]). (5.1)

Since this approximation is made on each step of the algorithm, we find that

R(d[n(s−1)
j , p(s)

k ])≈ R(d[n(0)
j , p(0)

0 ]). (5.2)

That is, the range data associated with a given pulsen(0)
j and the central pixelp(0)

0 is reused for all

pixels pk in the column and the given pulsen(0)
j . (The errors discussed with this assumption are

discussed in Section 4.1.3.)

Thus, rather than performing factorized backprojection, an alternative is to calculate the

correct distance to each pixel from each pulse but reuse the range data corresponding to a single
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pixel in the column. Letp be a pixel in the column andp0 be the central pixel in the column. Then

backprojection equation forp is

A(p) = ∑
n

R(d[n, p0])exp( jφ(d[n, p])) (5.3)

whereφ(d[n, p]) is the phase specific to either pulsed or LFM-CW SAR.

If an azimuth window is desired for some pixelp, a weightingW(n, p) function can easily

be implemented:

A(p) = ∑
n

W(n, p)R(d[n, p0])exp( jφ(d[n, p])) (5.4)

whereW(n, p) is a weighting function expressed in terms of the pulse numbern and specified pixel

p. The direct window introduced in Section 3.3 can be used,

W(n, p) = exp(−(ny− py)2/a) (5.5)

whereny is they-coordinate ofn, py is they-coordinate ofp, a is some constant, and the azimuth

direction is iny.

This formulation has some advantages over both direct and factorized backprojection. The

memory requirements for this algorithm are less than those required for factorized backprojection

since there are no intermediate data sets which must be stored, thus requiring memory for only the

aperture matrix and image.

In addition to requiring less memory, this algorithm tends to create higher quality images

than factorized backprojection. This is because factorized backprojection images tend to have de-

graded quality primarily due to the phase error discussed in Section 4.1. Since this new formulation

uses the correct phases, its only errors are caused by assuming data is in a different range bin (see

Section 4.1.3).

Despite these advantages, there are some drawbacks to this algorithm. The computational

complexity isO(N3) since distances are calculated exactly. Although this may require fewer com-

putations than direct backprojection since range data is only calculated once per pulse per column,

the computational gains are minimal.
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5.2 A Matrix Formulation of Factorized Backprojection

This section demonstrates how the factorized backprojection process can be expressed in

terms of matrix multiplication. We first show the matrices for the first factorization step and

then show how the same structure can be extended to subsequent steps. In this section, we

denoteL as the number of pulses,M as the number of full-resolution pixels in a column, and

S= min{log2L, log2M} as the number of steps (not including a preliminary steps= 0).

On the first (non-preliminary) step of factorized backprojection, assuming that we start

with one initial subimage per column, there are two low-resolution pixels per column. Recall that

the distance from each child subaperture to each pixel is calculated. Then, the distance from each

parent subaperture to each pixel is calculated. The intermediate data sets are constructed as

R(d[n(s)
i , p(s)

k ]) = ∑
n j3ni

R(d[n(s−1)
j , p(s)

k ])exp( j4π/λ∆r j,k) (5.6)

where

∆r j,k = d[n(s−1)
j , p(s)

k ]−d[n(s)
b j/2c, p(s)

k ]. (5.7)

Define∆φ j,k as

∆φ j,k = exp( j4π/λ∆r j,k). (5.8)

Note that whenj is not in a subscript it refers to
√
−1.

Since we use the approximation

R(d[n(s−1)
j , p(s)

k ])≈ R(d[n(s−1)
j , p(s−1)

bk/2c ]), (5.9)

and sincebk/2c= b(k+1)/2cwhenk is even, bothR(d[n(s)
i , p(s)

k ]) andR(d[n(s)
i , p(s)

k+1]) both depend

on R(d[n(s−1)
j , p(s−1)

bk/2c ]) (wherek is even), and they only differ in∆φ j,k. Hence, the computations

for the intermediate data setsR(d[n(s)
i , p(s)

k ]) andR(d[n(s)
i , p(s)

k+1]) can be written as

[
R(d[n(s)

i , p(s)
k ]) R(d[n(s)

i , p(s)
k+1])

]
=
[
R(d[n(s−1)

2ĩ
, p(s−1)

k̃
]) R(d[n(s−1)

2ĩ+1
, p(s−1)

k̃
])
] ∆φ2ĩ,k ∆φ2ĩ,k+1

∆φ2ĩ+1,k ∆φ2ĩ+1,k+1


(5.10)

wherex̃ = b x
2c.
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All of the intermediate data sets in steps= 1 can be computed via the matrix multiplication

[
R(d[n(s)

0 , p(s)
0 ]) R(d[n(s)

0 , p(s)
1 ]) · · · R(d[n(s)

L/2−1, p(s)
0 ]) R(d[n(s)

L/2−1, p(s)
1 ])
]

=[
R(d[n(s−1)

0 , p(s−1)
0 ]) · · · R(d[n(s−1)

L−1 , p(s−1)
0 ])

]

×



∆φ0,0 ∆φ0,1 0 0 · · · 0 0

∆φ1,0 ∆φ1,1 0 0 · · · 0 0

0 0 ∆φ2,0 ∆φ2,1 · · · 0 0

0 0 ∆φ3,0 ∆φ3,1 · · · ...
...

...
... 0 0

... 0 0

0 0 0 · · · 0 ∆φL−2,0 ∆φL−2,1

0 0 0 · · · 0 ∆φL−1,0 ∆φL−1,1


(5.11)

or in general,

Rp(s) = R(s−1)E(s) (5.12)

where

Rp(s) =
[
R(d[n(s)

0 , p(s)
0 ]) · · ·R(d[n(s)

0 , p(s)
2s−1]) · · ·R(d[n(s)

2S−s−1
, p(s)

0 ]) · · ·R(d[n(s)
2S−s−1

, p(s)
2s−1])

]
,

(5.13)

R(s−1) =
[
R(d[n(s−1)

0 , p(s−1)
0 ]) · · ·R(d[n(s−1)

D−1 , p(s−1)
0 ]) · · ·R(d[n(s−1)

0 , p(s−1)
D−1 ]) · · ·R(d[n(s−1)

D−1 , p(s−1)
D−1 ])

]
,

(5.14)

and

E(s) =



∆φ0,0 ∆φ0,1 0 · · · 0

∆φ1,0 ∆φ1,1 0 · · · 0

0 0
... 0 0

0 · · · 0 ∆φD−2,2s−2 ∆φD−2,2s−1

0 · · · 0 ∆φD−1,2s−2 ∆φD−1,2s−1


(5.15)

with D = 2S−(s−1). Note that for each steps, Rp(s) has dimensions 1×LM/2S, R(s−1) has dimen-

sions 1×LM/2S, andE(s) has dimensionsLM/2S×LM/2S.
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To use this matrix formulation to compute all of the intermediate data sets in steps+1 in

a similar fashion,Rp(s) must be permuted. This is becauseRp(s) lists the intermediate data sets in

terms of increasing pixel index and then increasing pulse index, whileR(s−1) lists the intermediate

data sets in terms of increasing subaperture index and then increasing subimage index. In order to

reorderRp(s) to obtainR(s), the permutation schemeP(s) is used, where given an indexn,

P(s)(n) = A·n− (AB−1)
⌊n

B

⌋
(5.16)

whereA = M/2S−s corresponds to the number of subimages in the step andB = L/2s corresponds

to the number of subapertures in the step. Using this permutation scheme,R(s) is obtained by

R(s) = Rp(s)P(s) (5.17)

whereP(s) is the permutation matrix whose rowsi are reordered byP(s)(i).

On the next step,Rp(s+1) can be obtained with the equation

Rp(s+1) = R(s)E(s+1)

= Rp(s)P(s)E(s+1)

= R(s−1)E(s)P(s)E(s+1). (5.18)

Note that eachR(s) depends onR(s−1), which means that eachR(s) depends onR(0) where

R(0) =
[
R(d[n(0)

0 , p(s)
0 ]) R(d[n0)

1 , p(s)
0 ]) · · · R(d[n0

L−1, p(s)
0 ])
]
. (5.19)

On the final stepS,

Rp(S) = R(0)
(

ΠS−1
i=1 E(i)P(i)

)
E(S). (5.20)

The vector of backprojection pixels corresponding to this column is computed as

A = Rp(S)Φ(S) (5.21)
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where

Φ(S) =
[
exp( j4π/λd[n(S)

0 , p(S)
0 ]) exp( j4π/λd[n(S)

0 , p(S)
1 ]) · · · exp( j4π/λd[n(S)

0 , p(S)
M−1])

]T
.

(5.22)

5.2.1 Incorporation of an Azimuth Window

To incorporate the azimuth window discussed in Section 3.3 into the matrix formulation,

recall that a window can be implemented using Eqs. (3.23) and (3.24) with

R′(d[n(s)
i , p(s)

k ]) = ∑
n j3ni

W(n(s−1)
j , pk)R′(d[n(s−1)

j , p(s)
k ])∆φ j,k (5.23)

where

W(n j , pk) = exp(−|n jy− pky|/a). (5.24)

To include theW(n j , pk) term into the matrix formulation, we incorporate it into the matrixE to

create a new matrixEW where

E(s)
W =



∆φ0,0W(n0, p0) ∆φ0,1W(n0, p1) 0 · · · 0

∆φ1,0W(n1, p0) ∆φ1,1W(n1, p1) 0 · · · 0

0 0
... 0 0

0 0 · · · ∆φD−2,2s−2W(nD−2, p2s−2) ∆φD−2,2s−1W(nD−2, p2s−1)

0 0 · · · ∆φD−1,2s−2W(nD−1, p2s−2) ∆φD−1,2s−1W(nD−1, p2s−1)


.

(5.25)

Thus, an azimuth window can be implemented into the matrix formulation with little added com-

putation.

5.3 Conclusion

This chapter discusses alternatives to the factorized backprojection algorithm introduced in

Chapter 3. Correct phase factorized backprojection uses the correct phase but assumes one range

bin per column similar to factorized backprojection. Although it achieves little computational gain

compared to direct backprojection, it offers additional insight behind the principles which allow

factorized backprojection to work.
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This chapter also discusses a matrix formulation of factorized backprojection. The for-

mulation uses a permutation of the data from step to step to perform the factorization. I also

demonstrate how a window can be implemented as part of the matrix formulation.
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Chapter 6

Conclusion

This thesis contributes to the theory of synthetic aperture radar image processing by in-

troducing a new formulation of factorized backprojection for stripmap SAR. This formulation is

easily parallelizable and allows for the easy implementation of a Gaussian azimuth window.

In stripmap SAR, an antenna with a wide beamwidth is moved along an array to generate

high-resolution images. These images can be reconstructed using backprojection, a time-domain

algorithm. Although backprojection is an exact algorithm, it can be computationally expensive.

Unlike backprojection, factorized backprojection takes advantage of the redundancy of the SAR

data caused by using an antenna with a wide beamwidth to achieve a more computationally efficient

algorithm.

This thesis explains how to implement factorized backprojection for both pulsed and LFM-

CW SAR. Then, it is shown how to implement an azimuth window with shape similar to a Gaussian

window. The computational and memory requirements are discussed, and it is shown that factor-

ized backprojection achievesN/ logN improvement over backprojection with only slightly higher

memory requirements.

There are several assumptions that factorized backprojection operates on which can cause

loss of image quality. An expression for the phase error has been developed, and it is shown that

the phase error is dependent on the length of the image, the length of the antenna array, and the

distance from the flight track to the region of interest. A discussion of errors due to range migration

is then provided.
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6.1 Contributions

The contributions of this thesis include the following:

• I have introduced a new factorized backprojection algorithm that can be used to reconstruct

images from both pulsed and LFM-CW stripmap SAR data. This factorized backprojection

algorithm has computational complexityO(N2 logN).

• I have demonstrated how to implement an azimuth window into the algorithm to reduce

sidelobes and prevent aliasing.

• I have presented an error analysis of factorized backprojection. In particular, I have provided

upper bounds for the phase error.

• I have demonstrated how factorized backprojection can be performed via matrix multiplica-

tion.

6.2 Future Work

The work of this thesis can be applied and extended to a variety of research topics. A few

examples are listed below.

1. The formulations of factorized backprojection were based on the assumption that the flight

track was linear. Although it was demonstrated empirically that factorized backprojection

is suitable for some nonlinear flight tracks (see Fig. 4.12), the research can be extended to

include a more thorough analysis of nonlinear flight tracks in general.

2. A small squint angle has been assumed for this analysis. The research can be extended to a

higher squint angle.

3. An algorithm for handling range migration was introduced in Section 4.1.3, but the research

can be extended to find a more computationally efficient algorithm for handling range mi-

gration in factorized backprojection.

4. The azimuth window was chosen to be a Gaussian window. Future work could involve

implementing windows other than the Gaussian window in factorized backprojection.
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5. Some approximations were made for the derivation of factorized backprojection for LFM-

CW factorized backprojection. The research can be extended to implement LFM-CW fac-

torized backprojection without these approximations.

6. It has been shown that factorized backprojection can be implemented, but no implementa-

tion has necessarily been optimal. Future work could include optimizing the code which

implements factorized backprojection.
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Appendix A

Pseudo Code

In this section we provide pseudo-code to illustrate how the factorized backprojection al-
gorithm can be used to form a column of an image from SAR data. The pseudo-code, shown in
Fig. A.2, is based on the flow diagram given in Fig. 3.2, repeated for convenience in Fig. A.1. We
assume that the data has already been range compressed. In other words, the data is in the form
required for direct backprojection. There areN pulses and anM×M imaging grid. The input is
echoData, anN×M matrix . The output isimage, anM×1 image.

Figure A.1: Flow diagram for factorized backprojection.
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/*Create the first data set using all the original echo data*/

for az = 1:numPulses

pulse = rangeInterpolate(echo data associated with azth pulse);

xCent = column center;

azPosition = azth pulse in SAR array;

/*Compute the Euclidean distance between the

pulse position and the column center position*/

distance = dist(azPosition,xCent);

/*convert slant range to A/D sample number */

index = round(distance*dscale + delay)

/*form data set from echo data*/

dataSet = pulse(index);

end

/*Form the image in a series of steps*/

numSTEPS = log2(M)

/*Run through all of the steps*/

for step = 1:numSteps

oldDataSet = dataSet;

oldSubimageCenters = subimageCenters;

/*Run through the new subaperture centers*/

for az = subapertureCenters

/*Run through each subimage center*/

for xCent = subimageCenters

distance = dist(az,xCent);

/*Find the distance from the parent

subaperture center to the current subimage center*/

parentDistance1 = dist(azParent1,xCent)

parentDistance2 = dist(azParent2,xCent)

∆r1= parentDistance1-distance

∆r2= parentDistance2-distance

/*Find the index of the parent subimage in oldSubimageCenters

index = index(xCentParent1);

/*Determine the weight of the window applied on the data set*/

xCentParent1y=the y-coordinate of xCentParent1

xCentParent2y=the y-coordinate of xCentParent2

weight1=exp(-|azy−xCentParent1y|/a)

weight2=exp(-|azy−xCentParent2y|/a)

/*Create the new dataSet*/

dataSet(az,xCent)= oldDataSet(index)*weight1*exp( j4π/λ∆r1)
+ oldDataSet(index)*weight2*exp( j4π/λ∆r2);

/*on the final step, backproject the dataSet to form the image*/

image(x)= image(x)+ dataSet(az,x)*exp( j4π/λ ∗distance);

end

end

end

Figure A.2: Pseudo code
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Appendix B

SAR Parameters

This section contains tables with the processing parameters for the simulated and real SAR
data used in Section 4.2. The parameters for simulated pulsed SAR data are shown in Table B.1,
real pulsed SAR data are shown in Table B.2, simulated LFM-CW SAR data are shown in Table
B.3, and real LFM-CW SAR data are shown in Table B.4.

Table B.1: Summary of simulation processing parameters for Figs. 4.5–4.12.

Chirp Bandwidth (MHz) 500
Center Frequency (GHz) 1.75
Azimuth Beamwidth 30◦

Pulse Repetition Frequency (Hz)1500
Sample Rate (MHz) 500

Table B.2: Summary of processing parameters for Fig. 4.13.

Chirp Bandwidth (MHz) 210
Center Frequency (GHz)1.605
Azimuth Beamwidth 15◦

Chirp Length (µs) 5
Sample Rate (MHz) 500
Range to Target (km) 2.20
Antenna Height (km) 1.48

72



Table B.3: Summary of processing parameters for Fig. 4.14.

Chirp Bandwidth (MHz) 200
Center Frequency (GHz) 10
Azimuth Beamwidth 15◦

Pulse Repetition Frequency (Hz)2000
Sample Rate (MHz) 500

Table B.4: Summary of processing parameters for Fig. 4.15.

Chirp Bandwidth (MHz) 170
Center Frequency (GHz) 5.429
Azimuth Beamwidth 10.9◦

Sample Rate (MHz) 24.49
Chirp Rate (THz) 1.59724
Pulse Repetition Frequency (Hz) 307
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