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ABSTRACT

Exploration into the Use of a Software Defined Radio
as a Low-Cost Radar Front-End

Andrew Michael Monk
Department of Electrical and Computer Engineering, BYU
Master of Science

Inspection methods for satellites post-launch are currently expensive and/or dangerous.
To address this, BYU, in conjunction with NASA, is designing a series of small satellites called
CubeSATs. These small satellites are designed to be launched from a satellite and to visually
inspect the launching body. The current satellite revision passively tumbles through space and
is appropriately named the passive inspection cube satellite (PICS). The next revision actively
maintains translation and rotation relative to the launching satellite and is named the translation,
rotation inspection cube satellite (TRICS). One of the necessary sensors aboard this next revision
is the means to detect distance. This work explores the feasibility of using a software defined radio
as a small, low-cost front end for a ranging radar to fulfill this need.

For this work, the LimeSDR-Mini is selected due to its low-cost, small form factor, full
duplex operation, and open-source hardware/software. Additionally, due to the the channel char-
acteristics of space, the linear frequency modulated continuous-wave (LFMCW) radar is selected
as the radar architecture due to its ranging capabilities and simplicity. The LFMCW radar theory
and simulation are presented.

Two programming methods for the LimeSDR-Mini are considered: GNU Radio Compan-
ion and the pyLMS7002Soapy API. GNU Radio Companion is used for initial exploration of the
LimeSDR-Mini and confirms its data streaming (RX and TX) and full duplex capabilities. The
pyLMS7002Soapy API demonstrates further refined control over the LimeSDR-Mini while pro-
viding platform independence and deployability.

This work concludes that the LimeSDR-Mini is capable of acting as the front end for a
ranging radar aboard a small satellite provided the pyLMS7002Soapy API is used for configuration
and control. GNU Radio Companion is not recommended as a programming platform for the
LimeSDR-Mini and the pyLMS7002Soapy API requires further research to fine tune the SDR’s
performance.

Keywords: software defined radio (SDR), radar, linear frequency modulated continuous wave
(LFMCW), application product interface (API)
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CHAPTER 1. INTRODUCTION AND BACKGROUND

Visually inspecting satellites to ensure that they do not have any structural or exterior disre-
pair is quite difficult once they are in orbit. Currently people are sent on space walks or in the case
of the ISS, a large mechanical arm is maneuvered to take pictures of the outside. In both cases, the
procedure can be costly and/or dangerous [1]. In conjunction with NASA, BYU is developing a
series of small satellites called CubeSATs that are 10 x 10 x 10 cm in size. These CubeSATSs are
designed to inspect the exterior of the launching body. The CubeSAT currently in development
is called the PICS (passive inspection cube satellite). As the name suggests, it passively tumbles
through space after being ejected. Cameras are located on each face of the PICS to ensure that no
matter the rotation or translation it has view of the launching satellite. The images can be stitched
together using minimal post-processing to obtain the necessary views.

The next version of CubeSAT, which is still in the proposal phase, is called the TRICS
(translation, rotation inspection cube satellite). The TRICS has control over its translation and
rotation with respect to the launching satellite. This is achieved through magnotorquers and small
thrusters. This reduces the number of cameras to one, which leaves more space, power, and money
for other systems. TRICS requires information about the deploying satellite including, orienta-
tion and distance. Orientation is not explored in this work; however, solving the distance problem
is. This work explores the feasibility of using a software defined radio (SDR) to create a small,
low-cost, ranging radar suitable for use in a small spacecraft. Such a radar would need to have
short range detection (between 50 to 2000 meters), fine range resolution (at most 20 meters), while
being space efficient, cheap, and low power. In order to better understand and fulfill these require-
ments, background information concerning digital signal processing (DSP) and radar hardware is

necessary.



1.1 Digital Signal Processing

The understanding and selection of different radar system architectures is crucial to this
work as it determines how the SDR is programmed. In the case of radar systems, the architecture
can vary from simple continuous frequency transmission to modulated signals [2].

Ranging radars can detect distance by transmitting a signal and waiting for the signal to
come back also known as time of flight (TOF). The TOF can be measured since the waves travel
at the speed of light, providing a relationship between distance and time. The distance d to the
detected object can be calculated according to d = % where ¢ = 2.998 x 10® m/s (the speed of
light) and ¢ is the measured TOF. The result is divided by two since the signal has to travel the
distance twice (to and from). Due to the fact that the speed of light is so fast, measuring this time
can be difficult with low-cost hardware and many techniques have been developed to address this

problem. Here we consider a number of DSP aspects that play a part in radars.

1. Channel characteristics - The channel is the space that the signals travel through. On Earth,
it is polluted with physical objects (clutter) and other electromagnetic signals (interference),
which can have negative effects on the signal propagation, fidelity, and amplitude. Some
physical objects can be opaque to the signal and absorb the signal, causing the radar to detect
nothing. Other electromagnetic signals can be detected by the radar receiver and give false
positives, constructively or deconstructively couple to the signal fundamentally altering the
signal. In addition to these obstacles, each channel has a has an intrinsic attenuation based on
the contents of the channel. As an electromagnetic signal passes through the channel, there
is calculable attenuation that depends on frequency and travelled distance [3]. For example,
on earth the channel is filled with air, which is nitrogen and oxygen gas. In space the channel
is different due to the lack of obstacles and atmosphere. Without these factors, a signal can
propagate in free space with negligible attenuation and interference and targets are easier to

detect since there is no clutter.

2. Signal characteristics - The capabilities of a radar are largely determined by the kind of
signal it transmits. For example, the simplest radar technique is to transmit a pure sinusoid.
Since the signal itself does not have any special features other than repeating every period,

it is difficult to extract timing information from the signal [4]. It is tempting to think that
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it is possible to tell distance if the received signal is less than one half period delayed; the
distance data could be calculated since the instantaneous differential voltage would be non-
zero, but this is not true since the possibly complex nature of the channel can introduce phase

attenuation and skew.

However a simple, single frequency radar is most useful for detecting velocity according
to the Doppler effect. If the detected object is moving fast relative to the radar, then the return
signal has a higher frequency. This difference in frequency from transmit to receive is pro-
cessed to detect velocity. The concept of the Doppler radar, called a continuous wave (CW)
radar, is logically expanded to the linear frequency modulated continuous wave (LFMCW)

radar.

The signal produced by an LFMCW radar changes steadily from an initial to target fre-
quency (typically low to high) and repeats. The unique characteristic in this signal is that
the frequency difference versus time is related to the target distance. This can be used to
detect the distance to an object since the radar is transmitting one frequency and receiv-
ing another frequency simultaneously. The difference in these frequencies is correlated to
the TOF. Other more complicated signals are often used in other applications where signal

integrity is necessary or where there are other special needs.

. Maximum range - Channel attenuation and signal processing constraints both have limiting
affects on a ranging radar’s maximum detectable range. Channel attenuation affects maxi-
mum range by swallowing the signal in noise if the object is too far away. The strength of
a signal drops off quadratically because the transmit energy is spread over an quadratically
increasing area as the radius, or distance of travel, increases linearly according to 2 [3].

As the energy spreads out thinner and thinner, so too does the return signal.

The transmit signal also affects the maximum usable range. As previously noted, range
is often detected by measuring the time difference between the transmit and receive signals,
for example with frequency modulation. The frequency modulation needs to restart as the
trend cannot continue indefinitely, as that would require infinite memory or bandwidth/mixed
signal IC resolution respectively. When the pattern repeats, the time defining characteristic

is also lost. Often the maximum range can also be increased, by increasing the time duration



of the frequency modulation or the length of the bitstream. This phenomenon of not knowing

the the actual distance due to chirp or bitstream repeats is known as range ambiguity [5].

4. Range resolution - Lastly, range resolution is essentially the countable distances that the
radar can detect. Each increment in range resolution can be called a bin, a quantized value.
If a detected object is eleven meters away, but the radar’s range resolution is ten meters, the
radar reports that it is ten meters away. On the other hand, if the object is sixteen meters away
and its range resolution is still ten meters, the reported distance is twenty meters. Therefore
necessary resolution needs to be considered. If the radar is expected to detect objects ten
kilometers away, then a range resolution of ten to even one hundred meters may not be so
bad, but if it is expected to detect objects within one hundred meters, then a finer range
resolution is necessary. Range resolution is determined by the bandwidth of transmitted
data. Higher bandwidth results in finer range resolution. There are techniques involving

overlapping bins, but their complexity and applications are outside the scope of this work.

Because this work focuses primarily on space applications, many of these considerations
can be simplified. Channel characteristics are simplified as there is nearly zero channel attenua-
tion and interference is small since other electromagnetic sources are minimal. Due to the lack
of interfering communications, much simpler transmission schemes can be employed. As such,
an LFMCW radar is considered a good choice due to its simplicity and ability to detect range,
fitting the requirements for the TRICS. Maximum range and range resolution in LFMCW radars
are considered in the simulation chapter, but it is sufficient to say that in LFMCW radars the chirp/-
modulation duration and bandwidth of the signal need to be balanced. As one increases, the slope
of the corresponding Doppler time plot (frequency vs time) of the chirp changes. A steep slope
necessitates higher resolution mixed signal hardware, while a shallower slope requires a higher
bandwidth radio. Both of these can become quite expensive. In order to keep the cost down,
range resolution and maximum range need to be carefully considered in tandem with hardware

constraints.



1.2 Hardware

Radar hardware can be simplified to a radio transmitter and receiver operating together con-
nected by a processor for control and calculations. The core building blocks are signal generators,
oscillators, mixers, analog to digital and digital to analog converters (ADCs and DACs)), filters, and
amplifiers. Transmitters and receivers both use these components but vary slightly in underlying
architecture and use. In addition to using the basic radio hardware requirements, a radar needs to
perform DSP on the transmit and receive signals in order to determine velocity, distance, or both.
To do this, typically a digital processor of some sort is also available in the system. Some of the

fundamentals components are discussed here.

1. Signal generators/Synthesizers - In CW radars, the signal generator may seem fairly trivial
as a simple sinusoid wave is all that is needed. However, even this simple signal can be dif-
ficult to generate. There are many different techniques for generating simple sinusoids from
analog oscillators to digitization. When more complex radar transmit signals are needed, the

signal generation design problem similarly becomes more complex.

Regardless of the signal generation method, there are a few metrics, most notably stability
and spectral purity, which are distinct yet related [6]. The stability of a sinusoid is essentially
how much the signal deviates from the signal’s formula, excluding noise. For example, a
CW signal is defined as V = ¢/’ (note that in this thesis, signals are written in complex
form for simplicity). If the signal’s amplitude varies, but still has the expected period, the
signal is considered to have poor signal stability even though it is technically the correct
frequency. Spectral purity, is fundamental. Ideally the FFT of a CW signal (V = ¢/?) is a
delta function at @. When this signal is generated and measured using a spectrum analyzer
or the FFT function on an oscilloscope, we see a spike at @ surrounded by a skirt. A skirt
is the sloping off from the point of interest off to the noise floor. This means that the power
in the signal is not purely concentrated in the desired frequency, but instead has some power

leakage to the surrounding frequencies.

2. Amplifiers - Amplifiers in radars are needed to boost signal strength for transmission and
processing. Typically there are two notable amplifiers. On the transmit side, a power am-

plifier (PA) is used to boost the power of the signal before feeding it into the antenna. It is
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important to emphasize that a power amplifier boosts power instead of voltage since many
amplifiers only boost voltage with relatively little current behind it. Antennas need power
to transmit a strong signal and voltage alone does not afford this as P = VI. Conversely,
the receive side of the radar uses a low noise amplifier (LNA). These are specially designed
amplifiers that increase the signal with minimal noise. This increases the signal to noise ratio

(SNR) which in turn makes it easier for the DSP to correctly process the desired signal.

. Mixed-signal hardware - The choice of analog to digital converters (ADCs) and digital to
analog converters (DACs) within a radar system is crucial as it largely defines the bandwidth
of the transmit and receive signals. This is due to the Nyquist theorem. Nyquist states that it
is only possible to deterministically reconstruct a signal from periodic sampling if the sample
rate exceeds the maximum signal frequency by a factor of two (fsamp > 2fuax) [4]. ADCs
tend to be the slower of the two mixed signal circuits, since they often operate by sequentially
generating the corresponding bits detailing the input analog voltage. Architectures exist to
address this problem such as pipeline and flash [7]. These architectures have the problem
that as the bit resolution becomes higher, the circuits become non-linearly larger and power
hungry. As such, modest bit resolution (12 to 16 bits) are usually selected as they provide

sufficient resolution while running at speeds that afford acceptable frequency bandwidth.

. Filters - One of the unfortunate side effects of modern transceivers is the generation of
aliased signals. One special case is called an image frequency. These are generated when
downmixing a signal from its carrier frequency to baseband [8]. Fortunately, if the bandwidth
and carrier frequencies are chosen carefully, the image frequency can be removed with a
filter. Filters find place in a number of places along the signal pipeline, both to and from
the channel. Filters can be either analog or digital. The simplest analog filter is an RC filter
consisting of a resistor and capacitor [9]. Depending on the desired configuration, it can be
either a high or low pass. A simple digital filter architecture is a finite impulse response
(FIR) filter [10]. Both analog and digital filters have their place and are used at different

points in a radar.

. Processor - Choosing a processor is a crucial decision. The processor needs to meet the de-

mands of the rest of the system while simultaneously having all the other hardware interface
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and correctly work in tandem. There are three main groups of contenders to fill this need:

microcontrollers, microprocessors, and computers.

Microcontrollers are the simplest of the three choices. They are typically categorized as a
chip that has general purpose input/output (GPIO) pins that can be controlled through code.
The code that is programmed to the chip then runs on loop indefinitely as long as it is pow-
ered. Another attractive aspect is that they are typically self-contained chips, needing very
few external components such as memory or additional specialized compute units. Typically,
the only external necessary components are quartz crystals that provide tight oscillation for
the internal clock. While this does provide ease and flexibility in design and budget, they

tend to be on the lower end of compute capability as well as on-the-fly reconfigurability.

Microprocessors encompass a large gray area between microcontrollers and computers
as they are usually small, low power, and sport GPIO akin to microcontrollers, but boast
higher compute performance and complexity like computers. Perhaps the most prolific mi-
croprocessor is the Raspberry Pi. Microprocessors tend to be more difficult to use in systems,
when not packaged as a single board computer (SBC) like the Raspberry Pi, since they re-
quire more external hardware as it is not provided on the die. This means that external
memory and 1O ports (aside from GPIO) such as USB and ethernet often need dedicated
controller ICs. In addition to the hardware difficulties, many microprocessors are capable
of running full operating systems effectively turning them into mini computers. The power
that this provides is staggering as a scheduler can be run as part of the kernel allowing for
multiple processes to run simultaneously. Unfortunately, this can add additional overhead
since the operating system must be suited for the instruction set of the processor, such as x86

(Intel proprietary), ARM (ARM proprietary), RISC-V (open-source), etc.

The final processor option is to use a computer. The advantage that a computer has over
microcontrollers and microprocessors is most notably its instructions per clock (IPC) and
clock rate. Computer processor designers maximize their IPC and push clock rates since
these two metrics correlate to the amount of data it can process in a given amount of time.
Clock rates on computer processing units (CPUs) are significantly higher than that of micro-

controllers and microprocessors. Further widening the performance gap, computers often



have additional hardware that can substantially increase data throughput such as graphics
cards, for parallelized duplicate operations. All of this comes with a price - computers have

significantly higher cost, power consumption, and lack of GPIO.

1.3 Takeaway

Since this work is focused on determining whether an SDR can cover the hardware needs
of a radar, nearly all of the hardware considerations can be abstracted into the SDR with the ex-
ception of the processor. This does not mean that knowledge of these pieces is unnecessary; in
actuality such knowledge is quite useful. SDRs are not magic boxes that produce and receive sig-
nals mysteriously. Instead they have all of the components previously described, but are designed
in a manner to generalize operation and make said operation programmable. As such, the under-
standing of these core components supports an intelligent SDR selection and details which “knobs
and buttons” to push with code.

In addition to hardware abstraction, the electromagnetics involved in typical radar designs
are not considered as they fall outside the scope of this work. Antenna design and signal condi-
tioning, outside the SDR, fall within the realm of radar actualization. As such, with the DSP and

hardware in mind, a number of selections can be set to guide our exploration.

1. The SDR selected for this work is the LimeSDR-Mini by MyriadRFE. For details why this

SDR was selected, refer to Appendix A.

2. Any processor can be used since the processor is not pertinent to the proposed work. As

such, the processor changes a few times through the work and is discussed as encountered.

3. The LFMCW radar architecture is used since it is the simplest ranging radar [11] and inter-

ferers (physical and electromagnetic) are not problematic in space.

With that in mind, the following chapters explore the feasibility of using the LimeSDR-
Mini as an LEFMCW radar. Chapter 2 covers radar principles and LFMCW radar techniques

through MatLab simulation for DSP understanding; Chapter 3 examines GNU Radio Companion



and its suitability as a programming platform for the SDR; and Chapter 4 explores the LimeSDR-
Mini hardware more closely and how to use the Python API provided by MyriadRF. Supplemental

information and scripts/code are found in the appendices.



CHAPTER 2. LFMCW RADAR AND SIMULATION

Radars work on the same principles as radio communication, such as AM or FM. They
differ from the traditional concept of radio communication by receiving the transmitted signal back
as an echo. The echo that is received can be processed and analyzed, which can then determine the
distance and velocity of the object off which the signal reflected. The simplest way to conceptualize
this operation is that the signal takes time to travel through space, reflect off the object, and return
to the radar. This time can be measured and used to determine the distance of flight. Determining
the distance is not actually this simple. Designing and building a timer that runs fast enough with
sufficient resolution for a short range radar is quite difficult and expensive. Instead, clever signal

design and digital signal processing is typically used to determine actual range and velocity.

2.1 Simulation Requirements

In order to understand where to begin designing a radar using a software defined radio, we
first turn our attention to the underlying concepts and signal processing. To fully grasp these con-
cepts a MatLab simulation was written to provide a sandbox wherein variables could be changed
and the corresponding output observed. To ensure that it is useful, the simulation follows a few
requirements outside typical radar characteristics.

The simulation generates and transmits a linear frequency modulated continuous wave
(LFMCW). The LFMCW is selected for this application as it is one of the simplest forms of radar
capable of detecting distance. Such radars can have issues with the signal getting corrupted due to
its simple nature, but these effects are not a problem as this work is intended for space application
where interferers and channel attenuation are minimal.

In addition to the LFMCW, the script modulates and demodulates the signal for radio com-

munication using an inphase-quadrature (IQ) modulator. 1Q modulators are ubiquitously used in
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SDRs since they can generate any modulation scheme by changing a few parameters. This enables

the SDR to be configurable through code with fixed hardware.

2.2 Signal Analysis and Generation
The starting point of any radar is generation of the transmit signal. For this work, we use

an LFMCW (often called a chirp). Its mathematical model is

VLFMCW(I) _ ej(at2+ﬁt+¢o) 2.1

where «, 3, and ¢, are the chirp bandwidth, the base frequency, and initial phase, respectively. To

understand this formula and decide what the parameters are, consider

V(t) =Acos(2mft) (2.2)
=Acos(¢(1)). (2.3)
Eq. 2.2 is a sinusoid continuing from ¢ = —oo to ¢ = oo at the constant frequency f. Eq. 2.3 states

that the sinusoid can also be described by the phase function ¢ () described as

0(1) =g+ 21 | ' floydr 2.4

where f(7) is the desired frequency, which is not necessarily constant. To have the signal change
linearly, we use f(7) = ct + f,. Ultimately, after working through the math, the final formula
comes out as

V(t) = cos (%m%rzn fot+¢o) (2.5)

where f, is the chirp starting/base frequency, f is the chirp ending frequency, 7T is the chirp
duration in seconds, and ¢, is the initial phase. Comparing Eqgs. 2.1 and 2.5, we define o, 8, and
@. The difference between Egs. 2.1 and 2.5 becomes apparent when comparing the two equations

after using Euler’s identity on Eq. 2.1,
Viemew (1) = cos(ou? + Bt + @) + jsin(ou? + Bt + ¢). (2.6)
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Eq. 2.5 is a purely real signal whereas Eq. 2.1 has both a real and imaginary part. In addition, the
real and imaginary portions of Eq. 2.6 are 90° out of phase from each other. This means that the
real and imaginary parts are orthogonal or in quadrature. The fact that there is a real and imaginary
portion to Eq. 2.1 is one of the reasons we choose to use Eq. 2.1 over Eq. 2.5, as discussed at the

end of the chapter.

alpha = fbw*pi/T;

> beta = 2%pix*xf0;
s phi = 0;

bb_lfmcw = exp(lj*(alpha.*t_part.”2 + beta.*t_part + phi));

Listing 2.1: Simulation Chirp Generation

Listing 2.1 gives a MatLab code snippet that generates the LFMCW. Note that f; — f, from
Eq. 2.5 is replaced with fw = f1 — fo since it is the bandwidth of the chirp signal. In the case
of an LFMCW radar, as the bandwidth increases, the range resolution of the radar also increases

according to
C

p— E .
In the case of the LimeSDR-Mini, the maximum possible bandwidth is 30.62 MHz. Since a finer

s, 2.7)

range resolution is desirable, the maximum bandwidth of the LimeSDR-Mini is used in our simu-
lation.

Note that on line 3 of Listing 2.1, ¢, = 0. This is because the receive signal is processed in
relation to the transmitted signal. Any phase offset in the transmit signal is the same in the return

signal, thus the initial phase is irrelevant.

2.3 1Q Modulation

As stated previously, SDRs are able to generate any radio signal thanks to 1Q modulation.
This enables any modulation scheme through easily changed parameters and fixed hardware. To
understand 1Q modulation, an understanding of mixing is necessary.

At its core, mixing is simply multiplying one signal by another in the time domain. We

know from digital signal processing that if two signals are multiplied in the time domain then they
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are convolved in the frequency domain. If one of the signals is a sinusoidal, convolution essentially

copies one signal centered around the other (instead of the origin).

— |nput
09 Output 7
Local Oscillator

0.2 4

0.1 1
F— A N . JL JL4

-~ o~

0 L i ‘
-5000 -4000 -3000 -2000 -1000 O 1000 2000 3000 4000 5000
Frequency (f)

Figure 2.1: Convolution example shown in frequency domain. Input is a 500 MHz signal, the local
oscillator frequency is 3 kHz, and the output signal is the input signal centered around each local
oscillator delta.

Fig. 2.1 shows the fast Fourier transform (FFT) of an input, mixing, and output signal. The
input signal is a 500 Hz cosine, the mixing signal is a 3 kHz cosine, and the resulting signal is a
copy of the input cosine copied about the two deltas of the mixing signal. The four deltas of the
upmixed signal have a lower amplitude than the original signal since the input power of the signal
split between four deltas, instead of the original two deltas. The difference in power levels can be
even more drastic in a realized system since there is no such thing as a perfectly efficient system
where no power is lost.

It is very rare that a pure sinusoid is transmitted in an actual communication system. In an
actual communication or system, the transmitted or input signal to the mixer has some bandwidth.

In this case, each blue delta shown in Fig. 2.1 is replaced with the signal spectrum, e.g. a rectan-
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gle. The width of the rectangle shows the bandwidth of the signal. When mixing a signal with
bandwidth, the resulting FFT shows the original rectangles (one positive and one negative), copied
about the mixing signal, just the same as if the input were a single frequency.

IQ Modulation is similar to the mixing method discussed above, but instead of mixing with
a single oscillator frequency, the signal is mixed with one oscillator and another oscillator 90° out
of phase from the first. These two oscillators are called inphase and quadrature, respectively. The

basic IQ transmitter is shown in Fig. 2.2 and the basic IQ demodulator is shown in Fig. 2.3.

Inphase Channel

Data Stream A J—Il- X

Local Oscillator

I G
::.'gﬂu‘::

Data Stream B J—Il- X

X

Quadrature Channel

Figure 2.2: Block diagram of a general IQ modulator with two input data streams output to a single
antenna.

If the local oscillator is outputting a cosine wave, then the same signal with 90° offset is a
sine wave. Looking at the FFT for a cosine and sine wave in Fig. 2.4, we can see that both have
a positive delta in the positive frequency space, but in the negative frequency space, they have op-

posite signs. If these two signals are added together, the negative frequency deltas cancel, leaving
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Figure 2.3: Block diagram of general 1Q demodulator with input antenna and resultant data
streams.

only a positive frequency delta. This resultant signal can be described using Euler’s Identity:

V = cos(wt) £ jsin(wr) (2.8)
= eI, (2.9)

real (bb_full) .*cos (2*pi*flo.*xt_full);

tx_inph

imag (bb_full) .*xsin(2*pi*flo.*xt_full);

s tx = tx_inph + tx_quad;

Listing 2.2: LFMCW upmixing using inphase-quadrature modulator as depicted in Fig. 2.2.

Listing 2.2 provides a MatLab script to produce an upmixed complex signal using an 1Q
modulator. The complex signal is split by using the real and imag functions. These two parts are
treated as the inphase and quadrature data streams into the IQ modulator. Each are multiplied with

the respective portion of the complex modulator and added together.
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Figure 2.4: Example FFTs of sinusoidal waves. The small spikes below and above the deltas are
artifacts from actualizing the FFTs with a finite number of samples. Left: FFT of cos(2x f); Right:
FFT of jsin(27f).

Similar to how the signal is modulated using an IQ oscillator, the demodulator, or receiver,
works through the same principles. When the signal is received at the antenna, the signal is fed
into both the inphase and quadrature channels of the receiver. With careful design, the signals can
be recovered without ambiguity.

Demodulating is done through the same process as modulating. This is helpful because it
can utilize the same hardware and techniques used for modulating. Unfortunately it also generates
unwanted high frequency signals. Fig. 2.1 shows the FFT of a modulated signal. Fig. 2.5 shows
that when a modulated signal is mixed with the same local oscillator again, for demodulation, extra
signals are produced at high frequency. These frequencies are called image frequencies. To remove
the unwanted signals, the signal is put through a low pass filter.

In the case of the IQ modulator, the process of mixing with the local oscillator and filtering
is done twice, once for the inphase and quadrature channels, as shown in Fig. 2.3. Once the signal

is demodulated and filtered, the original data stream is restored at baseband, with some attenuation.
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Figure 2.5: Example of a simple demodulation using the output signal from Fig. 2.1 with the same
local oscillator frequency of 3 kHz.

rx_inph = rx.*cos (2*pixflo.*xt_full);

rx_quad = rx.*sin(2*pi*xflo.*xt_full);

;s bb_inph = lowpass(rx_inph, 2*fbw, fmax/T);

bb_quad = lowpass(rx_quad, 2*xfbw, fmax/T);
Listing 2.3: LFMCW demodulation using an IQ modulator and per channel low pass filtering.
Listing 2.3 shows the signal rx being demodulated using the inphase mixer on line one

and the quadrature mixer on line two. Then lines three and four show the signal being filtered to

remove the image frequencies, resulting in the baseband inphase and quadrature signals.

2.4 Range Detection

As stated in the background to this chapter, by employing clever signal design, range esti-
mation can be done through digital signal processing. The overall range detection process is shown

in Fig. 2.6.
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Figure 2.6: General DSP process for LFMCW radar range detection.

It is possible to detect the range of an object by observing the power spectral density (PSD)
of the product between the transmitted and received signals due to the changing frequency charac-
teristic of the chirp. When the signal travels and reflects off an object, it returns with some delay.
Due to this delay and the changing frequency of the chirp, the received instantaneous frequency is
a fixed difference from the current transmit frequency. This frequency difference, as well as the
corresponding time delta, is visible in the doppler time plot of an arbitrary chirp in Fig. 2.7 as 0
and 7, respectively.

Noting that

O _ fow (2.10)

it is possible to convert between 0 and 7.

The first step in finding the range of the target is multiplying the received signal with the
transmitted signal. Since they are complex, it is a conjugate multiplication. This is the point that
the characteristics of the LFMCW are important. The fact that the transmit and receive signals are
the same differing only by a sample delay (which directly correlates to a time delay), if the two
signals are multiplied together, the result is a constant frequency equaling the difference of the two

input frequencies.
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Figure 2.7: Example doppler time plot of arbitrary transmit and receive (LFMCW) signals with
frequency and time deltas marked (6 and 7 respectively).

To help visualize this point, consider the following equations.

x(t) = /210 (2.11)
y(t) =" 2.12)
z(t) = x()y(¢) (2.13)

where x(¢) and y(¢) are the input signals to our conjugate multiplication and z(z) is the output.
Note that signal x(7) has a frequency of 10 Hz and signal y(¢) has a frequency of 7 Hz. Both input
signals are shown in Fig. 2.8 and the resulting signal z(¢) is shown in Fig. 2.9. As expected, signal
z(t) has a frequency of 3 Hz, which is the difference between signals x(¢) and y(t).

When this principle is extended to the LFMCW, despite being a non-constant frequency,
the result is the same since the frequency delta between the signals is constant, as depicted in

Fig. 2.7, and the constant frequency output from our simulation is shown in Fig. 2.10.
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Figure 2.8: Example complex input signals (real portions) over one second. Left: complex sinusoid
with a frequency of 10 Hz. Right: complex sinusoid with a frequency of 7 Hz.

The fact that the conjugate multiplication between two complex signals differing by a con-
stant 0 is the reason that the LFMCW is considered a clever signal. As the distance that the signal
travels increases, the time delay increases as well. The delay in time results in a greater frequency
difference, which then translates to a higher constant frequency.

The next step in range detection is to find the PSD of the signal. The PSD, or power
spectral density, is the amount of signal power/energy there is for a given frequency. Theoretically,
the frequency with the most energy is the detected range of the target in terms of frequency.

To find the PSD, first the FFT of the constant frequency from the conjugate multiplication
is taken. The output from the FFT is a complex signal and to see the energy in a given frequency,
the magnitude of the signal is taken at the frequency in question. In other words, the PSD is the

magnitude of the FFT which is given by

PSD = y/real (FFT)? + imag (FFT)?. (2.14)
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Figure 2.9: Resulting signal (real portion) of the conjugate multiplication of the signals in Fig. 2.8.

The PSD of the constant frequency depicted in Fig. 2.10 is given in Fig. 2.11.

It may seem counterintuitive that the detected frequency is negative; however, remember
that a negative delta is indicative of a complex sinusoid with a negative in the exponent such as
e~ 1/ Using Euler’s Identity, we know that this just means that the imaginary sine portion is
negated. As such, it is a 180° phase rotation in the imaginary portion.

From here, to detect the range, it is just a matter of detecting the peak frequency and
converting it to distance, rather than frequency. Detecting the strongest frequency through code is

trivial, so it is not discussed here. To find the detected range is just a matter of manipulating units

given our chirp rate and the speed of light. Using the following equation results in the detected

range
T
Rang@ - _f‘target_c (2.15)
Jow
where farger 18 the maximum power frequency detected by using the PSD, % is the chirp rate

of the LFMCW, and c is the speed of light. The negative is to account for our negative detected

frequency due to our phase rotated imaginary signal.
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Figure 2.10: Example of constant wave resulting from transmitted and received signal conjugate
multiplication. The high frequency noise (located just right of 7 us) is a result of the chirp restart.

The following code snippet is from the MatLab simulation to detect the simulated range.

delta_.r = c/fbw;

tx_sampled bb_full (index+1:index+sample_window) ;

rx_sampled bb_reconst (index+ch_delay+1l:index+sample_window+

ch_delay) ;

range_data = tx_sampled.*conj(rx_sampled) ;

[f, fft] = plottableFFT(range_data, T, 0);

fft_power abs (fft) /max(abs (fft));

max_power max (fft_power) ;
tgt_bin = find(fft_power == max_power);

tgt_freq = f(tgt_bin);
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Figure 2.11: Example PSD of a given signal generated from the conjugate multiplication between
transmit and receive signals.

>» range = -tgt_freqx*Txdelta_r;

Listing 2.4: Matlab simulation code to implement LFMCW range detection.

2.5 Nonidealities

There are a number of things to consider when designing an LFMCW outside the theoreti-
cal aspects; however, only two are discussed here due to the thesis focus: the maximum detectable

range and channel noise.

2.5.1 Maximum Detectable Range

It is tempting to say, when observing Fig. 2.7, that the maximum detectable range is when
the receive signal returns just before the next chirp is about to transmit. If the receive signal were

to arrive just after the following chirp started, then the signal processing would not be able to tell
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the difference between a close object and a far object. If this were the case, the maximum range

would be given by
cT

Range .. = 5 (2.16)

This, unfortunately, is not quite the case. The system has to be actualizable, and as such, the
receiver of the system needs to digitize the signal coming back in with an analog to digital converter
(ADC). The ADC has a maximum sample rate, and due to Nyquist. This adds another stipulation

on the maximum range. The actual maximum range equation is given by

cT fadc

Rangemax = 7 fo
w

(2.17)

where f,q4c is the maximum sample rate of the ADC and f,, is the bandwidth of the transmit signal.
In almost all cases, the ratio of the bandwidth to ADC sample rate reduces the actual maximum

detectable range. In unusual cases where the ratio is greater than one, Eq. 2.16 is used.

2.5.2 Channel Noise

When the signal is transmitted from the radar, the signal travels through the channel to the
target where it is reflected back to the radar. The received signal includes noise from the channel.
In this MatLab simulation, three cases can be considered: 1) no noise, 2) gaussian white noise,
and 3) uniform white noise. In addition to the noise, the amplitude of the noise is configurable.
Fig. 2.10 shows the conjugate multiplication of a transmit receive pair without noise, whereas
Fig. 2.12 shows the same but with added uniform white noise with an amplitude fifty times greater
than the transmitted signal.

Note that for each of these scenarios, the signal amplitude is the same. As the noise power
increases the signal is completely drowned in the noise. The method described in this chapter
accounts for noise and handles it without additional processing. When the signal is received, it is
put through a low pass filter. This attenuates the noise power outside the desired signal bandwidth,
since the noise i1s white and uniform across all frequencies. Fig. 2.6 shows the PSD for range
detection without channel noise, and Fig. 2.13 shows the PSD for range detection with uniform

white channel noise at fifty times the transmit amplitude.
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Figure 2.12: Example conjugate product of transmit receive pair with added uniform channel noise
fifty times greater than transmit signal.

2.5.3 Antenna Crosstalk

The radar simulated in this chapter is a non-cooperative. All of a non-cooperative radar’s
hardware is located on a single body. As such, the radar body both transmits and detects the same
carrier frequency. Consider a non-cooperative radar that utilizes isotropic antennas. As the signal
travel distance increases linearly, the signal power decreases quadratically, according to 7—2. This
means that the signal travelling directly from one antenna to the other, due to the isotropic nature
of the antennas, has significantly higher strength than the signal that reflects off the target.

There are a few ways to resolve this issue such as the use of a cooperative radar. Coop-
erative radars have transceivers on both the main body as well as the target body, as shown in
Fig. 2.14. In this way, one transceiver can transmit one frequency and detect another while the
target body receives the one and transmits the second. This work explores only non-cooperative

radar as it reduces the amount of hardware needed and also allows the radar to detect any object.

25



—_
o
T

L

—_
(&)
T
|

[\
(&)
T
T

Normalized Signal Power (dB)
& \ [N : '
o o

¢
o
T
1

_40 1 1 1 1 1 1 1 1 1
-5 -4 -3 -2 -1 0 1 2 3 4 5

Frequency (Hz) x10°

Figure 2.13: Example PSD of a given signal generated from the complex product between transmit
and receive signals with uniform white channel noise at fifty times the transmit amplitude.

This flexibility is desirable for a CubeSAT as it can be deployed from any satellite without the
satellite needing any modifications.

The other way to remove the effects of crosstalk is through high pass filtering. This is
because crosstalk manifests in the DSP as a DC signal. This is apparent in Fig. 2.15 as a DC offset
and in Fig. 2.16 as a delta at zero hertz. By understanding the general distance of object and having

a high-order high pass filter (HPF), these effects can be removed.

2.6 Simulation Contribution

The LFMCW simulation detailed in this chapter, despite being idealized in many regards,
provides this work many important insights including, but not limited to, the effects of RF band-
width, chirp duration, and noise on the operation of an LFMCW radar. By consulting this simu-
lation and playing with its parameters, a more intelligent configuration of the LimeSDR-Mini is

achievable.
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Figure 2.14: Comparison of non-cooperative (left) and cooperative (right) radar topologies. The
color of the arrow indicates the carrier frequency, while the color of the box around TX or RX
indicates the frequency the radio is tuned to transmit/receive.
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Figure 2.15: Example conjugate product with antenna crosstalk at a 4:1 crosstalk to signal ratio.
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Figure 2.16: Example PSD of the same data from Fig. 2.15.
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CHAPTER 3. GNU RADIO AND GR-RADAR

With the understanding of how the LFMCW radar works, thanks to the theory and simula-
tion detailed in the previous chapter, the SDR is now considered. To program the SDR to function
as the front end for a radar, it needs to to transmit and receive simultaneously at a given carrier
frequency. As such, the SDR programming method needs to be capable of configuring the SDR,
controlling both the transmit and receive data streams simultaneously, and provide a way to exe-
cute the DSP. Within the HAM radio and amateur scene, the most common way to program and
control SDRs is through GNU Radio Companion.

GNU Radio, formally known as GNU Radio Companion, is an open-source framework that
allows users to program a wide variety of SDRs. This is accomplished through highly abstracted,
interconnecting blocks that piece together to make a program. These blocks enable SDR program-
ming without the need to know the underlying code. This way, the programmer can focus on the
overall data flow without the need to worry about code level issues.

Within the GNU Radio community, many different toolboxes have been implemented over
the years to fill various needs. Toolboxes, as discussed in more detail, contain many blocks for
the user to use. The LimeSDR and gr-radar toolboxes are among these and provide the neces-
sary building blocks to actualize the LFMCW radar as discussed in the previous chapter on the
LimeSDR-Mini. Step-by-step instructions on how to install GNU Radio and the necessary tool-

boxes are detailed in Appendix C.

3.1 GNU Radio Companion

Since GNU Radio is designed to support a wide variety of SDRs, the flow is quite general-
ized, only varying in the complexity of the individual blocks that are used. A program within GNU
Radio is called a flow graph. The flow graph is situated within the canvas which is represented

by a large white rectangle in the main viewing window as shown in Fig. 3.1. Above the canvas
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is a toolbar containing useful buttons and to the right are the currently installed toolboxes with
their corresponding blocks. Below the canvas is either a variable viewing window for convenience
(default) or the GNU Radio output terminal. If GNU Radio was launched using the pybombs run

gnuradio-companion command, the launching terminal mirrors the GNU Radio output terminal.
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Figure 3.1: Full window view of GNU Radio Companion with simple flow graph example. Key
areas of the GUI are outlined and labeled.

3.1.1 Toolboxes and Blocks

All of the blocks for creating a flow graph are located within various toolboxes. The de-
fault toolbox, otherwise known as the core toolbox, houses the majority of the blocks used in any
flow graph. These blocks range from data converters and decimators to GUI based data viewers.

Additional toolboxes can be installed and used within GNU Radio to hone and specialize a flow
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graph’s capabilities through specialized blocks such as the one shown in Fig. 3.2. The LimeSuite

and gr-radar toolboxes are additional toolboxes added to supplement this work.

LimeSuite Sink (TX)
Device serial:
File:
RF frequency: 100M
Sample rate: ZM
Oversample: Default
I Length tag name:
CH_A:NCO frequency: 0
CH_A:Calibration bandw.: 5M
CH_A:PA path: Auto(Default)
CH_A:Analog filter bandw.: 5M
CH_A:Digital filter bandw.: 0
CH A:Gain,dB: 30

Figure 3.2: Visualization of the transmit block from the LimeSuite toolbox. Here it is depicted
without any connections and none of the parameters, save the default ones, are provided. As such,
the block is throwing an error, which is visible from the red title.

When placed on the canvas, a block by default has its inputs on the left and outputs on the
right. Additionally, the color of the input or output node communicates the data type the block is
expecting. The colors and corresponding data types are shown in Fig. 3.3. Note that the complex
data types are interleaved real and complex values. For example, a complex 32 bit float has the first
real sample (32 bits), followed by the first imaginary sample (32 bits), and so on. Some blocks,
where flexibility is necessary, the inputs and outputs can support multiple data types. To do this,
the block’s properties need to be changed accordingly.

The properties of any block can be accessed by double clicking said block or right clicking
it and then selecting properties at the bottom of the action menu. Within the properties dialog,
there are multiple tabs with at least one tab for options and another for documentation as shown
in Fig. 3.4. Unfortunately, often times the documentation tab is not helpful and shows relatively

cryptic pseudo-code of what the function does.

LimeSuite

The LimeSuite toolbox is provided by MyriadRF to enable users to interact with their
SDRs (LimeSDR-Mini and LimeSDR-USB) through GNU Radio. The toolbox consists of only

two blocks which are the receive and transmit functions. These allow the user to either push data
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Figure 3.3: The data types and their corresponding colors used within GNU Radio.

into, or read data from, the SDR. Since all MyriadRF SDRs are full-duplexed, both blocks can be
used simultaneously in a single flow graph.

Which SDR is being used is important as there are some key differences between the
LimeSDR-Mini and LimeSDR-USB. One notable difference is that the LimeSDR-Mini does not
support multiple in multiple out (MIMO) operation so only channel A is usable. With the LimeSDR-
USB, however, either channel A or B can be used for single in single out (SISO) operation, or both
can be used for MIMO applications. Further explanation of the differences between the LimeSDR-
Mini and -USB are not discussed here as this work utilizes the LimeSDR-Mini. For the details

concerning why the LimeSDR-Mini is used over the LimeSDR-USB, refer to Appendix A.

gr-radar

The gr-radar toolbox was developed by Stefan Wunsch at the Karlsruhe Institute of Tech-
nology over six years ago. The age of this toolbox and the fact that it does not seem to be in active
support anymore (last push to the git repository was March 8, 2018) is the reason that Ubuntu
16.04 LTS is needed to successfully install this toolbox, as stated in Appendix C. Despite its age,
this toolbox affords a number of useful radar related blocks for GNU Radio applications. Within

the toolbox, there are five subsections.

1. Estimators - Estimators are blocks that handle the majority of the DSP necessary to calculate

the velocity and/or distance of an object based on the transmitted and received signals of the
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General | CH A | CH_B | Advanced | Documentation | Generated Code

1D limesdr_sink_0
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File
Channel A v
RF frequency 100e6
Sample rate samp_rate
Oversample Default v

Lengi tag nome (N

Sink - in(0):
Port is not connected.

oK Cancel Apply

Figure 3.4: Properties dialog for the LimeSuite transmit block. The options tabs include general,
CH_A, CH_B, and advanced. The documentation tabs include documentation and generated code.

flow graph. There are different estimators for different radar techniques, such as CW and

FMCW.

2. Generators - It can be difficult to generate the necessary signals for radar transmission using
the default blocks afforded by GNU Radio. As such, the gr-radar toolbox provides blocks to
generate the exact signals needed for a few typical radars. One such generator is the FMCW,

or as we have been calling it in this work, the LFMCW explored in this thesis.

3. GUI - This toolbox provides a few data visualization blocks. I found them less than useful

as the built in GNU Radio GUI data sinks were more than adequate.

4. RADAR - Surveillance radars require more sophisticated DSP methods such as the ordered-

statistic constant false-alarm rate (OS-CFAR) detector. The blocks in this subsection of
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the toolbox were not explored as they pertain primarily to radars more complex than the

LFMCW radar.

5. Tools - Various other tools are provided such as frequency-shift key (FSK) signal splitting
and maximum peak search. In general the blocks provided here are not used since they are

often implemented in the higher level blocks such as the estimators.

By utilizing the blocks provided by the core, LimeSuite, and gr-radar toolboxes, a full
radar flow graph can be implemented. This has been demonstrated by Luigi Freitas who built a
CW/Doppler radar (the least complicated radar architecture) using the LimeSDR-Mini and GNU
Radio [12].

3.1.2 Toolbar Functions

The toolbar at the top of the GNU Radio window affords a number of useful functions,
aside from the typical buttons such as new file and save. The buttons are discussed from left to

right, according to Fig. 3.5.

e b ¢ ) < H

Figure 3.5: View of special GNU Radio toolbar functions found at the top of the main program
window.

1. View errors - Blocks that currently have errors are indicated with the name of the block in
red text. Often this is not very helpful as it does not inform the user what the error is. This
button on the toolbar compiles the errors on the whole flow graph and reports details about
the corresponding errors. Warnings, such as sample rate discrepancies, are not included in

this function.

2. Generate code - Theoretically when a flow graph has proven that it performs all of the
necessary tasks, the flow graph is converted into code that can be refined and set to run

outside of GNU Radio. The generate code button does just that. When pressed, a Python
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script is compiled from the existing flow graph. The export location for the file is the same
location of the flow graph file. If the location is unknown, the console printout from this

operation details the file location.

. Execute - The execute button allows the user to run the flow graph, performing all of the
functions detailed by the blocks. This includes GUI data viewers as well as transmitting

and/or receiving through physical or simulated transceivers.

. Kill - Since flow graphs are differ from typical code and scripts in that they do not have a
concluding statement, the kill button is used to cease execution. This also works when the
flow graph has logical errors and the execution locks up. It does not work, however, when

GNU Radio itself becomes unresponsive.

. Rotate (CCW/CW) - Often times when laying out blocks for a flow graph the sequence of
blocks can be quite long, necessitating a wrap around. This is due to the fact that the canvas
for a flow graph does not extend infinitely in the horizontal or vertical axes. In order to have

a cleaner flow graph, visually, rotating the blocks is sometimes desirable.

. Enable/disable block - Akin to commenting out blocks of code in C++ or other languages,
blocks can be disabled. When a block becomes disabled, it retains its connections to other
blocks, but turns gray indicating that it is no longer part of the signal pipeline. This can cause
blocks downstream to throw errors as there is now a portion of the flow missing. Enabling a

block causes it to return to the active use within the flow graph.

. Bypass block - Similarly to enabling or disabling a block within the flow graph, a block can
be bypassed. A bypassed block is shown as yellow. This is similar to disabling the block,
but instead of simply deactivating it, it connects its input to its output, effectively sending the
data around the block. Either enabling or disabling the block changes the block’s working

state.

. Toggle visibility - When many blocks are disabled, it can often be beneficial to hide them to
see more clearly which blocks are currently functioning as part of the flow graph. This button

allows the user to toggle the visibility of these blocks. Bypassed blocks are not hidden.
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3.2 Flow Graph Topology

After creating a new flow graph in GNU Radio, the user is presented with a pristine canvas
with two blocks. The first is titled “Options’” and the second “Variable.” The options block contains
the parameters for the flow graph options and meta data and is the only block that cannot be deleted.
Here the title and author of the flow graph can be recorded as well as changing the size of the
canvas. In addition to these, the rendering engine is selected here. In general, QT is used for Linux
systems and WX is used for Windows. The different renderers determine which GUI sink must be
used (e.g., QT or WX variant).

The second block present on the new flow graph is a variable block. Since GNU Radio uses
blocks instead of code, variables are represented as blocks. This, just like in typical programming
languages, allows the user to use a value in multiple places by using the variable instead of a
number. When the number of variables grows, it can be difficult to find a singular variable block
to change its value. For this reason, the variable viewer at the bottom of the GNU Radio window
is useful. In the viewer, it is possible to change values and even add new variable blocks.

To add more blocks to a custom flow graph, blocks can be dragged from or double clicked
in the right-hand window. Since there are so many blocks, it can be difficult to find a specific one.
To remedy this, hitting CTRL+F opens a search bar that searches all of the installed toolboxes.
After a few blocks are added to the canvas, they can be connected by clicking the output of one
block and then the input of the next. This creates a connection denoted by an arrow. Note that
GNU Radio allows connections between ports of non-matching data types though this does not
work. In this case a red arrow indicates the error.

Fig. 3.6 shows an example flow graph that works as a frequency shift keying (FSK) radar.
The FSK radar is more complicated than the CW and LFMCW radars but is explored to detail
the theoretical complexity GNU Radio can provide. The blocks are arranged to cleanly show the
data flow from signal generator to estimator. In the figure, below the options block, the signal
is generated and then moves into a throttle block. Following the arrows, the general flow of a
radar is apparent. The signal passes into the channel, which is the LimeSuite transmit followed
by receive blocks, as well as passing straight to the conjugate multiplication block. The conjugate
multiplication block receives both the signal from the generator as well as the signal from the

channel. The remainder of the blocks and data path is for GNU Radio sample rate regulation as
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well as other DSP techniques specific to FSK. In addition to these blocks, there are a number of

gray blocks which are disabled.

3.3 Pros and Cons

GNU Radio as a platform for programming the LimeSDR-Mini provides a number of key
benefits but has some significant limitations.

The pros are:

* Flow graphs - The block structured nature of GNU Radio creates an environment that en-
ables quick development and testing. This is done through removing much of the guesswork
and minor logical/syntactic errors that often accompanies programming. These two factors
alone often bloat code-based development time. In addition to this, it is easy to see the data
path in a given flow graph since the arrows move through the canvas in the same direction as

the data.

* Community open-source - Since GNU Radio is a community, it is constantly being updated
and help is often readily available on the forums when needed. Older blocks and toolboxes
may lack support. It is also possible to open the source code for any given block and modify
it if necessary. The underlying blocks are all coded in C++, despite the flow graphs exporting

in Python.

* Deployment - When all design and programming is done, it is very simple to export the flow
graph as a standalone Python script. That script can then be deployed to any device that has
the necessary libraries. This means that it can be set to run automatically on the CubeSAT

without human intervention.

Unfortunately, GNU Radio has quite a few shortcomings as well.

* Flow graphs - Since GNU Radio attempts to generalize all SDR operation into blocks that
can be picked and matched to fit any need, there are quite a few blocks. Of course this
can be remedied with time, but becoming familiar with even a number of useful blocks

can become quite cumbersome since the documentation tab within most blocks are poorly
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maintained/written. Instead, to learn what a block does, it is often necessary to find the block
on the GNU Radio or corresponding toolbox website and read the full documentation, which

is often inadequate.

Community open-source - Within the GNU Radio core toolbox, multiple coding standards
are present as well as varying levels of documentation. This makes it quite difficult to learn
how the different blocks can fit together. Then from there, adding toolboxes from other
sources, such as gr-radar, introduce the problem of upkeep and compatibility. Since the gr-
radar toolbox has not been updated since 2018, it is easy to say that the future of any project
that builds on it is similarly unable to be updated beyond a certain point. In the case of this

work, being limited to Ubuntu 16.04 LTS is a large problem for future expandability.

Deployment - As stated above, deployment is simple as long as the target platform has
the necessary libraries. Unfortunately, many of the libraries that are needed to run a script
generated by GNU Radio are only available through the installation of GNU Radio. This
places higher processor and memory requirements on the target platform, often increasing

price and power consumption.

Timing control - The block structure obfuscates much of the underlying operation of the
program. Often when programs are built to be generalized, the code tends to bloat with
if/else and try/catch statements. These additional lines of code can increase the data path
time to and from the channel. In typical SDR applications this is not an issue; if the data is
transmit a microsecond later, the receiver on the other end knows no differently. In radars,
however, one microsecond translates to approximately 150 meters difference, according to

_a
d=4.

Block modification/addition - The block methodology of GNU Radio heavily implements
class inheritance and hierarchies. In the case that a block needs to be modified/created, said
inheritances and hierarchies need to be understood to write the new block such that it fulfills
the requirements of a child class as well as not duplicating any existing functions. Doing so

can cause the flow graph to not function correctly or crash GNU Radio altogether.
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3.4 GNU Radio Contribution

GNU Radio provides a useful starting platform to understand the software needs of this
work. Even though it has many drawbacks, it provides a means to test the LimeSDR-Mini in many
capacities, most notably its full-duplex operation. Based on the needs of this work, GNU Radio is
not recommended as a topic of further research due to its many drawbacks. The fact that this work
found the benefits to prove detrimental when inspected more closely, GNU Radio is found to be
inadequate for this work.

The majority of this information was gleaned from trial and error over a long period of time
through many different flow graphs. Appendix D documents a number of the more successful and

insightful flow graphs.
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CHAPTER 4. LIMESUITE GUI AND PYTHON3 API

In this chapter, another approach to programming the LimeSDR-Mini is explored since
GNU Radio Companion was found inadequate for this work. MyriadRF, as part of their open-
source framework, provide an application programming interface (API) alongside their hardware.
An APl is a core component of many systems as it allows the code to access hardware level features
with little overhead compared to other generalized solutions. As stated in the previous chapter, the
data path within a GNU Radio flow graph can introduce significant latency due to the generalized
and abstracted nature of the software. An API has the distinct advantage in this regard as it is
closely designed to the hardware for which it is intended. This allows the code to run quickly and

efficiently by excluding unnecessary checks often found in generalized solutions.

4.1 LimeSDR-Mini Hardware

When GNU Radio is used in a system, a deeper understanding of the underlying hardware
and components is often unneeded as the software, with its prebuilt blocks, abstracts much of the
details. An API, on the other hand, requires the user to understand the hardware to achieve the
desired outcomes, but provides better flexibility in dealing with the hardware. The understanding
of the LimeSDR-Mini begins with the board level design. This design is represented by a high
level block diagram in Fig. 4.1.

Among the blocks in Fig. 4.1, the one of most interest to this work is the LMS7002M
(RF transceiver). This is because the LMS7002M is responsible for controlling radio transmit
and receive aspects of the SDR. This operation is quite similar to microcontroller functionality.
In microcontrollers, code is loaded into memory within the chip and when the code is executed, it
modifies different register blocks. The registers are buffered to different GPIO which control what-
ever external circuitry designed by the engineer. In the LMS7002M, these registers are connected

to RF circuitry also contained within the chip which modify the different aspects of the transmit
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Figure 4.1: High level block diagram of the LimeSDR-Mini hardware. The notable components
are the FPGA (Intel MAX 10) and RF transceiver (LMS7002M).

or receive behavior. Even though many of the other blocks in Fig. 4.1 are configurable, they are
not explored in this work as they have little effect on the SDR’s tranceiver operation and are not
supported directly by the API.

By looking at the block diagram of the inner workings of the LMS7002M, shown in
Fig. 4.2, we glean a better understanding of what aspects of the chip are programmable. Every
box and symbol in the block diagram is configurable. Upon inspection it is clear that the diagram
is split into a receive chain (top) and transmit chain (bottom). These are split into separate figures,
Fig. 4.3 and Fig. 4.4 respectively. Within the receive and transmit sections, it is clear that the same
blocks/hardware are duplicated. This is to enable multi-channel or MIMO operation. In addition
to these sections, there are three large rectangles on the right-hand side of the diagram labelled
transceiver signal processor and LimeLight digital IQ interface ports 1 and 2. The transceiver sig-
nal processor (TSP) is responsible for conditioning the data according to user requirements. These

options include sample interpolation/decimation, digital filtering, phase and gain correction, and
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stage bypassing. The LimeLight digital IQ interface is a data streaming interface between the user
and the LMS7002M which complies with JEDEC industry standards. The JEDEC standards used
here are not explored.

Within a single data receive path, as shown in Fig. 4.3, many of the same aspects described
in the simulation chapter can be observed. Each of the components in Fig. 2.3 can also be found in
Fig. 4.3. These include the local oscillator/synthesizer, IQ mixer, filtering, and data output/ADC.
The LMS7002M diagram differs in its addition the low noise amplifier (LNA), trans-impedance
amplifier (TTIA), and programmable gain amplifier (PGA). These three amplifiers are included to
resolve signal degradation issues, such as noise and attenuation, that accompany real systems. The
“RF RSSI” block is the receive signal strength indicator (RSSI) and is used for automatic gain
control to maximize the receive signal’s signal to noise ratio (SNR).

The transmit data path, depicted in Fig. 4.4, can similarly be compared to Fig. 2.2 in chapter
2. Again, each of the components in Fig. 4.4 are visible in Fig. 2.2 with the addition of a low pass
filter (LPF) and power amplifier driver (PAD). The LPF is to remove undesirable harmonics and
aliasing that may arise from the TSP and sampling. The PAD is included to amplify the signal
power preparatory to driving an external antenna. In an ideal system, such as the one explored in
chapter 2, these components are not required.

Throughout the block diagram there are various arrows that come off the receive and trans-
mit data paths. They include SDR digital interface bypasses and three loopback paths. The digital
interface bypasses are located just after the DACs and before the ADCs. With proper configuration,
it is possible to transmit and receive custom analog IQ signals to and from these ports instead of
using the TSP and LimeLight interfaces. This work does not explore this option as doing so would
require more hardware and development which has already been done and placed on the board by
MyriadRF. The loopback paths allow signal verification at different stages within data path. The

different loopbacks are as follows:

1. Digital loopback (DLB) - The transmit signal is fed from the LimeLight transmit port (port
1 or 2 depending on configuration) directly to the LimeLight receive port (port 2 or 1). At

this point, the signal is a pair of digital signals (IQ).
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2. Basband loopback (BBLB) - The transmit signal after the LPF is fed back to the input of the

LPF on the receive side. The signal at this stage is a pair of analog signals (IQ) at baseband.

3. RF loopback (RFLB) - The transmit signal is fed from the output of the PAD to the input
of the receiver LNA. The signal at this point is similar to the signal in the BB loopback, but

has been mixed to the configured carrier frequency.

The microcontroller, which is found between the transmit and receive portions of the block
diagram, is responsible for controlling many of the fine tuning. Fortunately, through the LimeSuite
GUI and API, an internal working of the registers and microcontroller are not necessary as there

are higher level buttons/function calls to automatically configure these options.

4.2 Programming the LMS7002M FPRF

A basic understanding of the different components within the LMS7002M FPREF is nec-
essary as non GNU Radio programming methods require deeper familiarity with the hardware
in order to achieve desired functionality. MyriadRF supports two different methods of program-
ming the LMS7002M, and by extension the LimeSDR-Mini, besides GNU Radio. One method
is to use the LimeSuite GUI and the other is to use the pyLMS7002Soapy API. Comparing the
different configuration tabs from the LimeSuite GUI, shown in Fig. 4.5 and libraries within the
pyLMS7002Soapy API, shown in Fig. 4.6. Since the majority, if not all, of the SDR’s configura-
bility comes from setting the LMS7002M FPREF, programming/configuration methods discussed
here extend not only to the LimeSDR-Mini, but to any SDR that utilizes the LMS7002M.

By comparing the tabs from the LimeSuite GUI and libraries within the pyLMS7002Soapy
API, it is quickly apparent that the two are closely related. As such, it is assumed within this work
that the LimeSuite GUI is programmed to merely be a graphical interface for the API. In this way
the LimeSuite GUI differs from GNU Radio as GNU Radio implements more functionality and
checks in order to support a wider variety of SDRs, whereas the LimeSuite GUI is built on top of
an API targeted toward a single FPRF. This keeps the code base smaller and execution time faster.

This work explores non GNU Radio programming methods generally by experimenting
with configurations within the LimeSuite GUI and then implementing them in a Python script using

the pyLMS7002Soapy API. The LimeSuite GUI and pyLMS7002Soapy API are both running on a
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Raspberry Pi running the custom PiSDR image. Installation and verification instructions are found

in Appendix E.

4.2.1 LimeSuite GUI

After launching the LimeSuite GUI, the user is presented with a window similar to Fig. 4.7.
a number of basic functions of the LimeSuite GUI need to be understood in order to explore the
different capabilities of the LimeSDR-Mini as a radar. The basic functions include connecting
an SDR to the software, setting the RF (transmit and receive) frequencies, calibrating the receive
and transmit hardware, and handling receive and transmit streams. The LimeSuite GUI offers

significantly more options than these, but only these have been explored thus far.

Connecting a Radio

To connect the radio to the LimeSuite GUI, select “Connection Settings” from the options
drop down menu. The following dialog window displays all of the currently connected compatible
radios, as shown in Fig. 4.8. Select the desired radio and click “Connect.” Afterward, the console
at the bottom of the main window displays information about the newly connected SDR.

Once a radio is connected, it is not possible to determine which radio is connected through
the GUI, nor is it possible to see which radio (if multiple are available) is connected or discon-

nected. For this reason it is recommended to use only one radio at a time.

Setting RF Frequency

The SXR and SXT tabs in the LimeSuite GUI correspond to the receive and transmit syn-
thesizers, as outlined by Appendix F. These synthesizers are responsible for generating the fre-
quencies used for the receive and transmit IQ mixers, as shown in Figs. 4.3 and 4.4. There are two
different synthesizers to control each mixer in the case that the receive and transmit hardware are
operating at different carrier frequencies.

Within both the SXR and SXT tabs, the subsection indicated by Fig. 4.9 allows the user

to modify the receive or transmit carrier frequency. To set, type the desired carrier frequency into
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the text box and then click the calculate button. The calculate button calculates the necessary
configurations to achieve the target frequency and then sets the hardware accordingly.

Both the receive and transmit synthesizer frequencies need to be set using the described
method. In theory, there is a way to set the SDR to TDD mode so that the receive mixer uses the
carrier signal generated by the transmit synthesizer, however, as of yet it is not clear where to set

this in the GUIL

Calibrating RX and TX Hardware

To calibrate, the SDR uses calibration parameters set in the on-chip microcontroller to
remove non-idealities in the transmit and receive signals. This process fine tunes a number of
parameters throughout the SDR according newly updated settings, such as synthesizer frequencies
and configurations. Calibration is done from the calibration tab by pressing either the receive or
transmit calibration button, or both by pressing the calibrate all button to the right.

This process often fails as some little configuration goes awry. The resulting error message
indicates which part of the SDR failed allowing the user to navigate to the corresponding tab and
fix the error. Another solution is to press the “default” button at the top of the GUI and then
entering the desired configurations again. Often is the case that some parameter is automatically
configured causing the calibration error. By reverting to default configurations, such parameters
should be corrected.

More advanced calibration techniques are available through the MR3 tab (microcontroller

calibration).

RX and TX Streams

The last essential aspect to exploring the LimeSuite GUI is streaming custom data to and
from the SDR. The onboard FPGA is responsible for storing the transmit data and feeding it into
the LimeLight digital IQ interface. It is also responsible for retrieving the receive data from the
LimeLight digital IQ interface and routing it to the connected device through the USB bridge

controller.
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First, a custom waveform needs to be created to comply with the hardware and LimeLight
data requirements. A MatLab script to create a custom LFMCW signal according to the require-
ments is provided in Appendix G. To insert the waveform file into the SDR, select the “FPGA
Controls” option from the modules drop down. This opens the FPGA controls dialog shown in
Fig. 4.10. From this dialog, it is possible to source data from a stream and a waveform file.
Streaming data is currently unexplored.

From here, use the folder button to navigate to and select the custom waveform file created
by the MabLab script. Pressing the “Custom” button starts transmitting IQ samples from the
selected waveform file. During operation, the play button is not selectable and instead the stop
button is.

Currently it does not seem like it is possible to stream the received data samples out of the
LimeSuite GUI. As such, the built in FFT viewer is needed to see the data being received. To open,
select the FFT viewer from the modules drop down menu. An example of the FFT viewer running
is shown in Fig. 4.11. After starting a waveform from the FPGA controls, press the start button in
the FFT viewer to view the signal.

A spectrum analyzer is recommended for transmit signal inspection from the SDR and the
FFT viewer to analyze receive signals. This way the user can be certain that the transmit signal is

not being distorted by the receive hardware in some way.

4.2.2 LimeSDR Python3 API

While the LimeSuite GUI provides the capabilities desired for this work, it is not deploy-
able. This is because the configurations within the LimeSDR-Mini are volatile; when the SDR
power cycles, the configurations are reset. To deploy a system using the LimeSuite GUI, the
system would need to launch the software on boot and somehow program in all of the configu-
rations. As seen from the previous section, this would be quite difficult as programming takes
significant menu traversal. The pyLMS7002Soapy API provided by MyriadRF is the solution as it
is lightweight, provides full control over the SDR, and is deployable through script execution on
boot.

The first task to writing code utilizing the API is understanding how it is organized and

written. The API organization is made clear through the import tree is shown in Fig. 4.6. It also
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shows the general level of complexity. Each library within the API is written as a class and as
one library imports another, it includes the imported class. The pyLMS7002Soapy.py library is
the highest library and contains the highest level functions. Calls to functions here trickle down
through the other necessary libraries and variables. As the user access libraries deeper into the
include tree, the functions become similarly lower level. By inspecting the pyLMS7002Soapy.py
script (the library imported by a script to use the API), there are a few things to note that highlight
how the API is written.

One, the library imports a library called SoapySDR. SoapySDR is a platform independent
SDR support library intended to simplify many of the general aspects of interacting with an SDR.
This may sound very similar to GNU Radio Companion, but it differs in that when SoapySDR is
instantiated within the pyLMS7002Sopay class, an argument is passed saying that the connected
SDR is a lime device. Within the codebase of SoapySDR, this is used to sidestep many of the
generalized checks done by GNU Radio.

Second, the API is written using the @property. Due to the way Python functions, all vari-
ables in a class are public and can be called at any time. This can lead to users or other libraries/-
functions inadvertently changing a variable. In an environment as complex as the LimeSDR-Mini,
this can be catastrophic if the variable is changed without updating other related variables. In lan-
guages such as Java and C++, such variables are made private and then supplementary getter and
setter functions are implemented. In Python, the equivalent is the @property tag. The @property
tag, when placed before a function, defines the function as a getter for the variable where the func-
tion name is the variable. The setter analog to this is the @<var>.setter tag. The benefit to
using these tags is that whenever these variables are accessed, either through writing or reading,
the corresponding getter or setter is called rather than directly modifying the variable. At the script
level, to access the getter and setter functions, simply read or set them as if they are variables. An

example script is found in Appendix H.

Connecting the LimeSDR

The API needs to be imported into the script first to connect the LimeSDR-Mini or -USB.
This is done by typing from pyLMS7002Soapy import pyLMS7002Soapy as pylmss. This
tells the script that it is importing the pyLMS7002Soapy class from the pyLMS7002Soapy.py
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file and to give it the pseudonym pylmss. At this point the API is available and the SDR can be
connected by typing <desired-var-name>= pylmss.pyLMS7002Soapy(). A successful con-
nection is shown in Fig. 4.12. This line instantiates the class within the script for the first SDR
connected by serial number’s alphanumeric order. As long as the script is running, the connected

SDR remains connected and cannot be accessed by another script or application.

Accessing Specific Libraries

In the case that configurations/functions deeper within the API are needed, they can be
accessed using the dot operator. Fig. 4.13 shows an example of library traversal using the dot
operator. In the example, all of the libraries shown in the dotted box in Fig. 4.6 are visible as well

as the functions unique to the LMS7002 class.

Notable Features

As discussed in the LimeSuite GUI section, there are a few notable functions needed to ful-
fill this work’s requirements. Aside from setting the receive and transmit carrier frequencies, band-
widths, gains, etc, which are all accessible through high level calls (i.e. from the pyLMS7002Soapy
library), a few are mentioned here. In each of the of the items below, lime is the instantiated

pyLMS7002Soapy class as shown in Fig. 4.12.

* TDD Mode - TDD mode allows the receive IQ mixer to use the signal from the transmit
synthesizer, as discussed in the LimeSuite GUI section. Through the API, this is easily

changed directly from the pyLMS7002Soapy. The code to do so is:

i 1lime.tddMode = 1

* Calibration - The functions to calibrate the SDR can be called by accessing the calibration

library. This can be done with:

i 1ime .LMS7002.calibration.<function>
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* Data Streaming - Since streaming data to and from the SDR is an interfacing operation, it is
handled by the SoapySDR. The pyLMS7002Soapy script shows that the SoapySDR library

is instantiated as sdr. To setup a data stream, the code is:
| stream = lime.sdr.setupStream(pylmss.SOAPY_SDR_<RX or TX>,

pylmss.SOAPY_SDR_CF32, [0])

The first argument sets the stream as a receive or transmit stream and the second argument

defines the expected datatype. In this case, SOAPY_SDR_CF32 is a 32 bit complex float.

4.3 LimeSuite GUI and API Contribution

The LimeSuite GUI provides a useful sandbox environment where different parameters and
configurations can be explored. Once desirable a configuration is determined, it can be encoded
in a Python script using the pyLMS7002Soapy API. This affords a lightweight (time-wise and

computationally) approach to controlling the LimeSDR-Mini.
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Figure 4.5: Screenshot of the LimeSuite GUI tabs with half of the tabs wrapped around for easier

viewing. Tabs outlined with a yellow rectangle correspond directly to an API library and the orange
tabs loosely correspond to one or more API libraries.
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Figure 4.7: View of the LimeSuite GUI opened to the calibrations tab (default upon launch). The
bottom console currently displays information about the newly connected SDR.
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Figure 4.8: LimeSuite GUI radio selection dialog to connect/disconnect an SDR.
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FPGA Controls v om M

Play = Stop

Status: Stopped
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IPython: Software/pyLMS7002S0apy

(default,
~ight™, "

Figure 4.12: Example terminal for a successful SDR connection using the pyLMS7002Soapy API.
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.LMS7002.chipIDMR3 LMS7002 . readFullChip
.LMS7002 . chipInfo LMS7002 . readIniFile
LMS7002 . DCCAL LMS7002. readRegisterBank
LMS7002 . debugMCUProgran LMS7002. readRegisters
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Figure 4.13: Example of traversing the API using the ipython3 tab completion feature to show all
available functions and classes from the LMS7002 library.
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CHAPTERS. CONCLUSION

5.1 Work Summary

This work explores the feasibility of using a software defined radio (SDR) to create a small,
low-cost, ranging radar suitable for use in a small spacecraft. In order to prove the feasibility of
such a radar, a number of parameters need to be met. The selection of the LimeSDR-Mini, an
open-source, single board SDR, fulfills the size and cost constraints as outlined in Appendix A.
The LimeSDR-Mini also affords a number of key operating characteristics proven by this work
that benefit radar operation. These include full-duplex mode, receive and transmit data streams,
and calibration.

The SDR needs to have full-duplex capabilities as it allows the radar to transmit and receive
simultaneously. Otherwise, the radar would have a much greater minimum detectable distance as
the hardware would need to switch between transmit and receive modes. This switching time varies
between different SDRs with half duplex operation. This capability is proven through GNU Radio
using the flow graph shown in Fig. D.5.

The ability to stream data to and from the SDR is proven in each of the programming
methods discussed in this work. GNU Radio showed this by streaming data into a LimeSuite
transmit block and reading data from the corollary receive block, shown in Figs. D.4 and D.3. The
LimeSuite GUI, though a bit contrived, demonstrated this through sending a waveform to the SDR
using the FPGA controls and reading the data back with the FFT viewer, as shown in Chapter F.
Lastly, the pyLMS7002Soapy API has this capability through the SoapySDR library, allowing the
user to set up both a receive and transmit stream structure, also shown in Chapter F.

The pyLMS7002Soapy API lends itself to multiple calibration techniques to ensure signal
quality and detection. The way that the API is written, using @property tags, enables the SDR to
be automatically calibrated with ease. When a parameter is set, the corresponding setter function

is called which trickles the parameter down through all the necessary classes as well as modifying
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related settings. The API also provides an entire library dedicated to calibration to calculate and set
necessary parameters throughout the SDR to achieve user-programmed parameters. Lastly, when
needed, the user can tune the on-chip microcontroller to fine tune the SDR’s operation even further.

The MatLab simulation outlined in Chapter 2 can be used to iteratively test different con-
figuration options to see the effects on the radar’s performance. These tests enable the programmer

to set configurations within the API intelligently and give a expected performance baseline.

5.2 Conclusion

This work has determined that the LimeSDR-Mini can be used as a small, low-cost ranging
radar front-end. Its small size (6.9 x 3.2 cm) makes it a good candidate to fit within a CubeSAT (10
x 10 x 10 cm), its cost of $160 is cheap allowing budget to be used elsewhere, and its capabilities
explored in this work prove it to be desirable SDR for radar applications.

GNU Radio Companion, given its drawbacks, is not a satisfactory programming or de-
ploying software platform for this work. Due to its difficulty in use and implementation, the
pyLMS7002Sopay API is preferred. As currently explored by this work, the API provides all
of the necessary configurability and development/deployment options necessary for research and

maintenance.

5.3 Future Work

Many aspects of this work were not fully explored and deserve further research, aside from

working toward a first prototype.

* LimeSuite GUI - The LimeSuite GUI affords a plethora of options and configurations to
the end user. As such, nearly all of the capabilities of the LimeSDR-Mini have not been
explored. It is possible that some of these configurations will afford better radar implemen-

tation.

* Calibration - While calibration is explored in this work, the full extent of the calibration
options and capabilities should be researched in more depth, primarily using the micro-

controller. It is recommended to start with the MyriadRF documentation on LMS7002
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MR3 calibration using the microcontroller (https://wiki.myriadrf.org/LMS7002Mr3_

Calibration_Using_MCU).

* API Integration - Even though the LimeSuite GUI is organized to closely mirror the li-
braries found within the API, many functions in one are not readily found in the other. As
such, when more detailed and developed LimeSuite GUI configurations emerge, equal effort
needs to be put into discovering the corresponding capabilities within the API. Ultimately,

the code that should be deployed on the TRICS is a Python script utilizing this API.
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APPENDIX A. SDR COMPARISON AND SELECTION

This appendix outlines the hardware considerations taken toward the selection of the soft-
ware defined radio to be used in this work. Table A.1 compares six different readily accepted

transmit and receive capable SDRs (since many cheaper SDRs are receive capable only).

A.1 Considerations and Selection

Seven different comparison metrics are considered in the selection of an SDR for this work.

* RF Range - The RF range is the spread of different mixer frequencies the radio can imple-
ment. The mixer frequency is also synonymous with carrier frequency. A wider RF range

means a larger variety of bands the radio can use.

* Bandwidth - As discussed in Chapter 2, the bandwidth of the radio is related to the range
resolution. With a target range resolution finer than twenty meters, according to Equation

2.7, the SDR needs a bandwidth of at least 15 MHz.

* Sample Depth - The sample depth is the resolution of each sample coming into or out of the
radio. With higher sample depth, the radio is capable of producing and reading signals more

accurately.

* Full Duplex - The duplex nature of a transceiver indicates whether it can transmit and receive
simultaneously (full duplex) or not (half duplex). For short range ranging radars, such as the
one considered in this work, is required as the hardware switching time places additional

constraints on minimum detectable range.

* Open-Source - With open-source hardware and software, it is possible to access and analyze
schematics and code-bases. This can dramatically improve development time and future

maintenance, even if the company no longer supports the project.
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* Physical Size - The SDR must fit within the 10 x 10 x 10 cm size constraints placed by
NASA for the miniature satellite to qualify as a CubeSAT.

* Cost - When a CubeSAT has completed its inspection of the launching satellite, rather than
being retreived, it falls and burns up in the Earth’s atmosphere. As such, it is important for it

to be cheap to minimize sunken cost. The SDR should be low cost to help keep costs down.

Considering the requirements listed above and observing the comparisons of the different
SDRs in Table A.1, the LimeSDR-Mini is selected for use in this work as it is the only SDR

considered that did not exceed constraints or fail to meet requirements.

A.2 SDR Comparisons

HackRF One - https://greatscottgadgets.com/hackrf/one/

YARD Stick One - https://greatscottgadgets.com/yardstickone/

LimeSDR-USB - https://myriadrf.org/projects/component/limesdr/

LimeSDR-Mini - https://myriadrf.org/projects/component/limesdr-mini/

Ettus B210 - https://www.ettus.com/all-products/ub210-kit/

BladeRF x40 - https://www.nuand.com/product/bladerf-x40/
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APPENDIX B. LFMCW SIMULATION MATLAB SCRIPT

This appendix contains the full LFMCW simulation MatLab script described in Chapter 2.

In addition to the simulation script, a helper function utilized by the main script is also contained.

B.1 Main Code

Since the simulation is not operating in real-time, everything is calculated upfront. To sim-
ulate this, multiple periods of the LEFMCW is calculated as the transmit signal. Then the transmit
signal is copied and noise is added to simulate channel white noise. Then to simulate sampling,
a random index within the first period of the transmit signal is selected and a set number of sam-
ples are taken from that index. The receive signal is sampled similarly, but the starting index is
increased by a number of bins correlating to the simulation target distance. The rest of the simula-
tion follows the LFMCW radar theory described in Chapter 2. There are a number of parameters

that can be changed by the user to explore the effect on the radar operation. These include:

» fsamp - sample rate of the theoretical ADC and DAC

T - chirp duration

* £0 - LFMCW starting frequency

* fbw - LFMCW bandwidth (ending frequency minus starting frequency)
* flo - local oscillator/mixing frequency/carrier frequency

* Gs - signal amplitude

* Gn - noise amplitude

* channel noise - noise selection (0: none, 1: gaussian, 2: uniform)

65



1

5

3

20

* sim_distance - distance of simulated target

clear; clc; close all;

%% Paramters

% Constants and Simulation Params

c = 2.998e8; 7 speed of light

fmax = 1e9; % maximum frequency for simulation
fsamp = 1e6; % sample rate of receiver ADC

T = 100e-6; % time window

n_parts = 3; % number of simulated lfmcw signal parts

%» Signal Generation Params
fO = 1e6; 7 base frequency for signal

fow

30.62e6; % bandwidth of linear chirp

flo 245e6; Y% local oscillator for (de)modulation

Gs = 1; 7% signal amplitude

% Channel Parameters

maximum range

66

Gn = 50; 7 channel noise amplitude

channel_noise = 0; % O: no noise, 1: gaussian noise, 2: uniform
noise

sim_distance = 184.7; ’ signal round trip distance in meters

%% Radar Characteristics

delta_r = c/fbw; 7 calculate range resolution

abs_max_range = (c*T)/2; % calculate theoretical absolute
maximum range

s actual_max_range = (c*xfsamp*T)/(2xfbw); 7 calculate actual



26

28

30

40

41

46

47

fprintf (’Simulation range is %.1f meters.\n\n’, sim_distance);
% display simulation range

fprintf (’Range resolution is %.3f meters.\n’, delta_r); %
display info

fprintf (’Theoretical maximum range is J%.1f meters.\n’,
abs_max_range); % display info

fprintf (’Actual maximum range is %.1f meters.\n’,

actual_max_range); 7% display info

if sim_distance > actual_max_range J check if input valid
simulation range
%» if not valid, print warning
fprintf (’Simulated range (%.1fm) larger than maximum range
(%.1fm) .\nExiting...\n’, sim_distance, actual_max_range);

return; 7% exit program

s end

%% Signal Generation
t_full = 0:1/(2xfmax) :T*n_parts-1/(2*%fmax); % full signal time
array
t_part = t_full(l:length(t_full)/n_parts); J time array for one
signal part

part_len = length(t_part); 7% array length of each part

> alpha = fbwxpi/T; ) chirp rate for lfmcw in rad/s

;s beta = 2*pi*f0; % base frequency for lfmcw in rad/s

phi = 0; % initial phase for 1lfmcw in radians

% baseband linear frequency modulated signal part

bb_lfmcw = exp(lj*(alpha.*t_part.”2 + beta.*xt_part + phi));
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48

49

50

51

52

53

54

56

57

58

59

bb_full = zeros(l,n_parts*part_len); 7 empty array for full
signal
% populate full signal by repeating bb_lfmcw n_parts times
for i = 0:1:n_parts-1
% populate with linear modulated chirp
bb_full (i*part_len+1:(i+1)*part_len) = bb_lfmcw;

end

%% IQ Modulate

tx_inph = real(bb_full) .*cos (2*xpi*flo.*xt_full); 7 upmix inphase
portion (real part)

tx_quad = imag(bb_full) .*sin(2*pi*flo.*t_full); 9’ upmix
quadrature portion (imag part)

tx = tx_inph + tx_quad; % sum inphase and quadrature portions

for transmit

%% Send Signal Through Channel

2 if channel_noise == 0 % check if noiseless channel

63 rx = tx; 7% send data through with no noise

¢+ elseif channel_noise == 1 Y check adding gausian noise

6 rx = tx + Gn*randn(size(tx)); % channel with gaussian noise

« elseif channel_noise == 2 J check adding uniform noise

67 rx = tx + Gn*(2*xrand(size(tx))-1); % channel with uniform
noise

o end
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70
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%% IQ Demodulate
%» IQ Demodulate Received Signal

rx_inph = rx.*cos(2*pi*flo.*t_full); J downmix inphase portion
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73 rx_quad = rx.*sin(2*pi*flo.*t_full); ’ downmix quadrature
portion
74

s % Lowpass Filter Received Data Based on BW

7 bb_inph = lowpass (rx_inph, 2*fbw, fmax/T); ’ lowpass inphase
data
7 bb_quad = lowpass (rx_quad, 2*fbw, fmax/T); % lowpass quadrature
data

78

» bb_reconst = 2.*(bb_inph + 1j.*xbb_quad); 7 restore orignal
signal

80

si hte Simulate Sampling Portion of Signal

» index = ceil(rand () *(length(t_part)-1)); 7 transmit signal
starts from random index

53 sample_window = length(t_part); 7% number of samples for "
sampled" signal (rx and tx)

s+ dist_per_sample = c/fmax; % calculate distance per sample

ss ch_delay = round(2*sim_distance/dist_per_sample); % calculate
channel delay in samples

87

s tx_sampled = bb_full(index+1l:index+sample_window); 7% "sample"
tx signal

« rx_sampled = bb_reconst(index+ch_delay+1l:index+sample_window+
ch_delay); % "sample" rx signal

w % rx_sampled = 0.2*xbb_reconst(index+ch_delay+1:index+
sample_window+ch_delay) + 0.8*tx_sampled; % "sample" rx
signal with crosstalk
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96

97

99

100

101

102

103

104

105

106

107

108

109

> %% Range Detection

. range_data = tx_sampled.*conj(rx_sampled); 7% multiply two

signals together

figure () ;

s plot (t_part, real(range_data), ’LineWidth’, 2);

xlabel (’Time’) ;

ylabel (’Signal Amplitude’);

grid on;

if channel_noise == 0
ylim([-1.1, 1.11);

end

[f, fft] = plottableFFT(range_data, T, 0); % calculate fft

fft_power = abs(fft)/max(abs(fft)); % convert fft to power
spectral density

fft_power = 10xloglO(fft_power."2);

figure () ;

plot (f, fft_power, ’LineWidth’, 2); % plot the PSD

xlim([-fsamp/2, fsamp/2]); % change freq limit to match ADC
capabilities

grid on; % turn on grid

xlabel (’Frequency (Hz)’);

ylabel (’Normalized Signal Power (dB)’);

% title(’Power Spectral Density of Received Signal’);
max_power = max(fft_power); 7 find peak power

tgt_bin = find(fft_power == max_power); 7/ find index of peak

tgt_freq = f(tgt_bin); % find frequency of peak
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v range = -tgt_freq*Txdelta_r; % convert given frequency to

distance

0 fprintf (’\nDetected range is %.1f meters.\n’, range); 7 print

out detected range

B.2 Helper Function

This helper function calculates the frequency shifted and unshifted FFTs with correspond-
ing frequency spectra for the given signal over a given time period. The default time period is
one second if time period argument is given. Additionally, multiple figures are plotted for conve-
nience if the third argument to the function is 1. Figures are print by default if no third argument is
given. To use, copy the code into another MatLab script named “plottableFFT.m” within the same

working directory as the script that is using it. Then call it similarly to other functions.

%% Custom Function to Calculate FFT and Corresponding Frequency

Array

> % Returns frequency shifted and unshifted fft with

corresponding frequency spectrum

s function [fshift, yshift, f, y] = plottableFFT(signal, T, fig)

4

%% Check Arguments and Set Default Values

if nargin < 3 % if number of arguments is less than 3
fig = 1; % set fig (print figure) to true

end

if nargin < 2 7 if number of arguments is less than 2
T = 1; % assume given signal is over 1 second

end

%% Calculations
% calculate the max frequency (2*nyquist)
fmax = length(signal)/T;

% calculate non-shifted fft (has aliased negative signal)
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end

y = fft(signal);

% generate corresponding frequency spectrum (0 to 2*nyquist

f = (0:length(y)-1)*(fmax/length(y));

% shift previously calculated fft

yshift = fftshift (y);

% generate shifted frequency spectrum (-nyquist to nyquist)
fshift = (-length(signal)/2:1length(signal)/2-1)*(fmax/

length(signal));

%% Display Figure
% check if user wants figure plotted
if fig == 1
figure(); % open new figure
plot (fshift ,real(yshift)); % plot shifted fft
title (’FFT (real)’); % title figure
xlabel (’Frequency (f)’); 7% name x axis
grid on; % turn on grid
figure () ;
plot (fshift,imag(yshift)); % plot shifted fft
title (’FFT (imag)’); % title figure
xlabel (’Frequency (f)’); 7% name x axis
grid on;
figure () ;
plot (fshift ,abs(yshift)); % plot shifted fft
title (’FFT (magnitude)’); % title figure
xlabel (’Frequency (f)’); 7% name x axis
grid on;

end
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APPENDIX C. GNU RADIO AND GR-RADAR INSTALLATION

GNU Radio is an open-source, community driven SDR programming platform. This ap-
pendix provides installation instructions for GNU Radio and the requisite toolboxes used in this
work, namely gr-radar and LimeSuite, on a desktop. No other hardware is required. Due to the
shortcomings of GNU Radio, with respect to this work, it is not recommended for use. Instead,

follow the instructions in Appendix E to install the pyLMS7002Soapy API.

C.1 Preface

The installation directions online say that the GNU Radio Companion software is capable
of running on Windows; however, this work uses Ubuntu 16.04 LTS as windows does not natively
support the gr-radar toolbox. Additionally, this distro is being used (despite being four years old
and not supported) because the gr-radar toolbox for GNU Radio is not updated to run on newer
distros and breaks. The instructions below assume the user has just completed a fresh install of
Ubuntu 16.04 LTS.

This can also be successfully installed on an Ubuntu VirtualBox (virtual machine software
from Oracle). In order to configure the virtual machine to recognize a USB device, namely the
LimeSDR, there are a few extra steps that need to be done. These instructions will follow the basic

installation section.

C.2 Installation

C.2.1 Basic Installation

1. Open terminal in Ubuntu

2. Type the following commands:
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sudo apt-get install git

cd Downloads

wget https://bootstrap.pypa.io/get-pip.py
sudo python3d get-pip.py

€@ €H €H €H &H

pip --version

3. The response from this should display that pip 19.1 is currently installed.

4. Type the following commands to complete the installation:

$ cd ~

$ sudo apt-get install python-mako

$ sudo pip install pybombs

$ sudo pip install --upgrade git+https://github.com/gnuradio/pybombs.git
$ pybombs auto-config

$ pybombs recipes add-defaults

$ pybombs recipes add gr-recipes https://github.com/gnuradio/gr-recipes.git
$ sudo pip install setuptools

$ pybombs install setuptools

$ pybombs prefix init ~/prefix -a myprefix -R gnuradio-default

$ pybombs install gr-radar

$ pybombs install gr-limesdr

If at any point during the installation pybombs exits with an error, it’s due to missing
dependencies. Manually find and install the necessary repositories and run the pybombs install
command again to reattempt. Pybombs is intelligent enough to not reinstall everything that already
succeeded, so subsequent attempts are faster.

If followed correctly, GNU radio, gr-radar, and the LimeSDR components have been suc-
cessfully installed. To run the GNU Radio Companion software, type pybombs run gnuradio-companion

in a terminal window.
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C.2.2 Additional Steps for VirtualBox

To run GNU Radio and program a LimeSDR in a VirtualBox, a few extra things need to be

completed to setup the virtual machine sufficiently. These include:

* Installing guest permissions - this installs a number of quality of life drivers, but most im-

portantly allows for dynamic screen resolutions including full screen.

* Enabling USB support - this is necessary as it allows the virtual machine to see specific USB
devices which are hidden from the VM by default. Without this, it would be impossible to
see the LimeSDR from within the VM.

The following instructions assume VirtualBox basics and Ubuntu 16.04 LTS has already

installed to a virtual disk.

Installing Guest Additions

1. Boot your Ubuntu VM

2. At the top of the window, select the “Devices” drop down menu and then select “Insert Guest

Additions CD Image...”
3. Follow the prompts to install guest additions
4. Right click the CD on the desktop and eject it

5. Restart the VM

As stated earlier, the guest additions also allow you to full screen the VM to make it easier to use.

To switch back and forth between full screen and windowed modes, press RGT_CTRL+F.

Enabling USB Support

1. On the host computer, notin the VM, gotohttps://www.virtualbox.org/wiki/Downloads

and download the Oracle VM VirtualBox Extension Pack

2. Navigate to where the downloaded file was saved and double click the extensions pack

75


https://www.virtualbox.org/wiki/Downloads

10.

11.

12.

13.

14.

15

. Follow the prompts to install the extensions
. Shutdown the VM 1if it is currently running

. Select your Ubuntu VM in the left panel of the VirtualBox dialog (not in the VM) and click

“Settings”

. Select “USB” in the left panel
. Check the box to enable the virtual USB controller
. Select the radio button for the USB 3.0 controller

. Plug in the LimeSDR and wait for your main operating system to detect and register the

device

Click on the small USB icon with a green plus on the right edge of the dialog box
Within the devices menu that appears, select the connected LimeSDR

The radio should show up as an option under the USB Device Filter section
Double click on the device

Empty all the fields except for “Name” and “Serial No.”

At the bottom of the same dialog, change “Remote” to “Any”

With the LimeSDR now configured to the VM, the radio will be detected by the VM when plugged

in. Note that if the radio is plugged in before the VM is turned on, it will not be detected once the

machine is running. To successfully have the VM detect the radio, it should be plugged in after the

machine has been booted.

C.2.3 Installation Verification

At this point, the VM is configured correctly and the requisite software is installed. To

ensure that the VM can see the LimeSDR:
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1. Plug in your radio to a USB port
2. Open terminal
3. Type LimeUtil --find

The utility should find the LimeSDR and return information such as

* [LimeSDR Mini, media=USB 3.0, module=FT601, addr=24607:1027,
serial=1D497907CE3158]. Take note the serial number at the end of the return string. It can be
used in GNU Radio to identify your radio from others if there are multiple radios plugged into the
machine. If the “ID” field in LimeSuite transmit or receive block is left blank, the radio with the
alphanumerically first serial number will be chosen by default.

To verify that the software and toolboxes have been installed correctly:
1. Open GNU Radio Companion (by typing pybombs run gnuradio-companion)

2. Look at the right-most column. In this column, there should be a number of different cate-

gories such as “Audio,” “GUI Widgets,” and “Peak Detectors.”

3. Either collapse the “Core” library, in which all the aforementioned items are located, or

scroll to the very bottom.

If the gr-radar and LimeSuite toolboxes and components were installed correctly, two new tool-
boxes called “LimeSuite” and “RADAR” should be present. Expanding these displays the new
blocks afforded by these toolboxes.

C.3 Resources

Ubuntu 16.04 LTS: http://releases.ubuntu.com/16.04/

VirtualBox: https://www.virtualbox.org/

PyBOMBS github: https://github.com/gnuradio/pybombs

GNU Radio: https://www.gnuradio.org/

gr-radar: https://grradar.wordpress.com/
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gr-radar github: https://github.com/kit-cel/gr-radar

MyriadRF (makers of LimeSDR): https://myriadrf.org/

LimeSDR-USB: https://myriadrf.org/projects/component/limesdr/
LimeSDR USB github: https://github.com/myriadrf/limesdr-usb
LimeSDR-Mini: https://myriadrf.org/projects/component/limesdr-mini/

LimeSDR-Mini github: https://github.com/myriadrf/limesdr-mini
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APPENDIX D.

A few of the more complete and insightful flow graphs used to explore GNU Radio Com-
panion are given here. Fig. D.1 is used to understand the flow graph structure as well as test a
few components from the gr-radar toolbox. Fig. D.2 explores the parameters and functional op-
eration of the gr-radar FMCW signal generator block, preparatory to its use in an FMCW radar
flow graph. Figs. D.3 and D.4 are used to understand the LimeSuite toolbox’s transmit and re-
ceive blocks, again in preparation for use in an FMCW radar flow graph. Fig. D.5 demonstrates
the full-duplex nature of the LimeSDR-Mini by using both the transmit and receive blocks from

the LimeSuite toolbox simultaneously. Fig. D.6 demonstrates a full FSK radar by utilizing blocks

from the core, gr-radar, and LimeSuite toolboxes.

D.1 Flow Graphs

Options
ID: top_block
Generate Options: QT GUI

Variable

ID: samp_rate
Value: 2M

Variable
1D: range_
Value: 10

Variable

1D: velocity_
Value: 0

Signal Generator CW
Packet length: 1
Sample rate: 2M
Frequency: 200k
Amplitude: 1

Packet length key: packet len

Figure D.1: Small flow graph to explore the gr-radar toolbox’s CW signal generator and tar-

get/channel simulator.

GNU RADIO EXPLORATION THROUGH FLOW GRAPHS

Static Target Simulator
Range [m]: 10
Velocity [m/s]: 0
RCS:
Azimuth [Degrees]:
Sample rate [Hz]: Z2M
Center frequency [Hzl: 2.4G
Self coupling [dB]: 1
Random phase shift: True
Self coupling: True
Packet length key: packet len

QT GUI S5ink
FFT Size: 1.024k
H Center Frequency (Hz): 0
Bandwidth (Hz): 2M
Update Rate: 10

4.*. Center Frequency (Hz): 0

QT GUI S5ink
FFT Size: 1.024k

Bandwidth [Hz): 2M
Update Rate: 10
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Options Variable
1D: top_block I1D: samp_rate
Generate Options: OT GUI Value: 2M

Signal Generator FMCW
Sample rate: 2M

Samples CW: 10M QT GUI Sink
Samples up-chirp: 20M FFT Size: 1.024k

Samples down-chirp: &M H Center Frequency (Hz): 1M
Frequency CW: 200k Bandwidth (Hz): 2M
Sweep frequency: 500k Update Rate: 10
Amplitude: 1

Packet length key: packet len

Figure D.2: Small flow graph to explore the gr-radar toolbox’s FMCW signal generator.

Options LimeSuite Sink (TX)
1D: top_block Device serial:
Title: FM transmitter File:
Auther: Lime Microsystems RF frequency: 446.094M
Generate Options: WX GUI Sample rate: Z2M

Oversample: Default
—" Length tag name:

CH_A:NCO frequency: 0
CH_A:Calibration bandw.: 0
CH_A:PA path: Autc(Default)
CH_A:Analog filter bandw.: 5M

Audio RaIb::.F‘;\;kTrarmmlt Rational Resampler E:_::::aﬂl:lk:or bandw.: 10...0k
Wav File Source q“adratun; Rate: 480k Interpolation: 25 ) i
File: ...Say No' Bootleg).wav Tau: 75u ) Decimation: &
Repeat: Yes Max Deviation: 2k ::::i;innal BW: 0 WX GUI FFT Sink
Preemphasis High Corner Freq: -1 . Title: Transmitting data
Sample Rate: 2M

Baseband Freq: 446.094M
Y per Div: 10 dB
L—pwJJ]| ¥ Divs: 10

Ref Level (dB): 0

Ref Scale (p2p): 2

FFT Size: 1.024k

Refresh Rate: 15

Freq Set Varname: None

Figure D.3: Simple transmit flow graph using FM modulation to explore using the LimeSuite
transmit block as well as a few other blocks.
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APPENDIX E. PISDR INSTALLATION

PiSDR is a custom Raspbian image for the Raspberry Pi developed by Luigi Freitas. It is
designed to support a range of common SDRs with a variety of useful SDR software applications
out of the box. This is helpful to this work as it supports the LimeSDR-Mini and -USB as well as
having all of the necessary software, with the exception of the pyLMS7002Soapy API, installed
by default. Additionally, it runs on the Raspberry Pi rather than a computer which is more akin to

the solution that will likely be implemented on the TRICS.

E.1 Required Hardware

* Raspberry Pi 3B+ or 4 (I used a 4, 1GB variant)

» Appropriate Raspberry Pi power supply

* Micro SD card between 8 and 32GB

* Another computer, preferably Windows, to setup microSD card
* Appropriate microSD card adapter to desktop

* Monitor with appropriate video cable

* USB keyboard and mouse

E.2 PiSDR Installation

If you know how to set up a Raspberry Pi with a custom image and enable SSH, skip ahead
to the next section (pyLMS7002Soapy API Installation).

On a computer other than the Raspberry Pi:

1. Insert micro SD card
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2. Download, install, and run the SD card formatter utility

3. Format the inserted SD card

4. Download, install, and run the Raspberry Pi Imager tool

5. Download the PiSDR image

6. Click “Choose OS”

7. From the Operating System dialog, select “Raspbian (other)”

8. Browse to and select the downloaded PiSDR image

9. Click “Choose SD Card” and select the newly formatted SD card from the dialog window

10. Click “Write”

At this point, the micro SD card is ready. Insert the micro SD card into the Raspberry Pi
and hook up the monitor and USB peripherals. Connect the display before booting the Raspberry

Pi to ensure that the display is recognized and enabled. Once the Raspberry Pi has boot:

1. Open a terminal and type sudo raspi-config
2. Change the user password - this is for the user “pi”

3. Under “Network Options,” change the hostname to something easily recognizable on the

network

4. Under “Network Options,” set the WiFi credentials - if the WiFi credentials are set but upon
opening a browser no pages load, this is likely due to incorrect local time inhibiting the
browser from authenticating. To resolve this, type sudo date --set ’<year>-<month>-<day>
<hour>:<min>:<sec>’ replacing each of the < >s with the appropriate number. Being per-
fect to the millisecond is not required as WiFi authentication allows some play in time. Also,
once the Raspberry Pi has access to the internet with proper authentication, it can update the

time accordingly.
5. Under “ Interfacing Options,” enable SSH
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Now the Raspberry Pi is set up to work in headless mode. You can now reboot and remove
all of the peripherals. To access the Raspberry Pi, from another computer’s terminal type ssh

pi@<ip-address>. You will then be prompted for the user password.

E.3 pyLMS7002Soapy API Installation

1. Navigate to the desired location for the API. I chose ~/PiSDR/Software/.

2. Typegit clone https://github.com/myriadrf/pyLMS7002Soapy. This will clone the

API repository to the current directory.
3. Navigate into the pyLMS7002Soapy directory created by the git.

4. Type python3 setup.py install.

E.4 Verification

1. Plug in the LimeSDR-Mini

2. Open a terminal and type the following commands:

$ LimeUtil --find

$ SoapySDRUtil --find

$ python3

>>> from pyLMS7002Soapy import *

>>> exit ()

The outputs from these commands should look similarly to Fig. E.1. If either of the find
commands do not return the LimeSDR-Mini’s credentials, then something installed after the fresh
PiSDR install ruined either the LimeSuite or SoapySDR architectures. If the Python import throws
an error, then the API was installed incorrectly or was not completed.

Due to the ease and speed of installation of PiSDR, if you have either of these issues, a full
reinstall is recommended while installing the basics described in this appendix first. Additional

installations are recommended after verifying that all of the utilities and API work.
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pi@lfmew-radar. ~/PiSDR/Software/pyLMST002Soapy
File Edit Tabs Help

* [LimeSDR Mini, media=uUsB 2.0, module=FT601, addr= :1027, serial=1D5

til --find

media
module =

python3

'credits" or "license" for more information.

Figure E.1: Example of successful verification terminal outputs.

E.5 Recommendations

E.5.1 ipython3

ipython3 is a Python terminal similar to typing python3 into a terminal. The difference is
that ipython3 supports color coding, tab completion, and tab suggestions. Navigating the API is
significantly easier with these features and makes writing and debugging code that uses the API
significantly faster.

To install, type sudo apt install ipython3. To run, type ipython3.

E.S5.2 PuTTY

If you are working on a Windows computer, I recommend using PuTTY. To access an SSH

machine through PuTTY, select the SSH radio button and input the target device’s IP address into
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the “Host Name (or IP address)” textbox and click “Open.” You will then be prompted to input the

user (pi) and password.

E.5.3 GUI Applications through SSH

X11 Forwarding

Since this work relies on the LimeSuite GUI for API exploration, another way to access the
software is needed if headless operation is desired. This can be done through SSH with the help of
an x server. On windows machines, Xming is a good solution. To use it, launch the server (using
the Xlaunch program) and then enabling x11 forwarding in PuTTY. If PuTTY is not being used,
then an SSH connection can be made with x11 forwarding from the terminal by adding the “-X”
parameter to the SSH command. For example, ssh -X pi@<ip_address> connects to the given

IP address as the user pi with x11 forwarding.

VNC Server/Viewer

My recommendation is to use VNC as Raspberry Pis come with a free dedicated VNC
server. This allows the user to pull up the Raspberry Pi desktop on any computer and work re-
motely. To do this, enable VNC through the interfacing options within raspi-config, as ex-
plained earlier.

VNC works by piping the current display(s) over a network. Due to how the Raspberry Pi
handles displays, if no display is plugged in, then no display data is rendered. As such, no display
data is available to send over the network. HDMI spoofers exist which are HDMI dongles that plug
into the port and trick the machine into thinking that there is a display connected. These, however,
are not available in micro-HDMI format, which the Raspberry Pi 4 uses. Instead, it is possible to
modify the Raspberry Pi’s boot configuration to force HDMI output even when there is no detected
display.

To do so, open and modify the ~/boot/config.txt file and enable the HDMI hotplug

by uncommenting the line hdmi_force_hotplug = 1. Now, the Raspberry Pi will run the VNC
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server and correctly forward the display even when no monitor is connected. To access the Rasp-

berry Pi from a remote computer, download and install VNC viewer and create a new connection.

E.5.4 Raspberry Pi IP Emailer

Since IP addresses are allocated by the router and are subject to change, without setting
a static IP within the router’s settings, it can often be frustrating to find the IP address for the
Raspberry Pi running headless. To remedy this, I found and expanded a script to automatically

email the Pi’s IP address upon boot to a given email address.

E.6 Resources

» Raspberry Pi Imager - https://www.raspberrypi.org/downloads/

* SD Card Formatter - https://www.sdcard.org/downloads/formatter/

* PiSDR - https://pisdr.luigifreitas.me/

* pyLMS7002So0apy github - https://github.com/myriadrf/pyLMS7002Soapy
e Xming - https://sourceforge.net/projects/xming/

* VNC Viewer - https://www.realvnc.com/en/connect/download/viewer/

» Raspberry Pi IP Emailer - https://github.com/joebobsOn/rpi_ip_mailer
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APPENDIX F. LIMESUITE GUI AND API

Most of the acronyms used in the LimeSuite GUI and pyLMS7002Soapy API are found in
the documentation on the MyriadRF website (https://myriadrf.org/projects/component/
limesdr-mini/), but require hunting through multiple datasheets and resources as not all acronyms
are defined in each document. Since MyriadRF assumes that the user of their devices automat-
ically know their acronyms, despite often being different from the commonly accepted ones,
herein are included the unabbreviated forms of many acronyms used in the LimeSuite GUI and

pyLMS7002Soapy API.

F.1 LimeSuite GUI Tabs

* Calibrations - gain and phase calibration options for the receiver and transmitter
* RFE - receiver front end, particularly biasing and antenna data path selection

* RBB - receiver base band options

* TREF - transmit radio frequency options

* TBB - transmit base band options

* AFE - analog front end options (ADC and DAC controls)

» BIAS - bias options not covered elsewhere

* LDO - low drop out voltage regulator options

* XBUF - various buffer and reference options

* CLKGEN - clock generator parameters and options

* SXR - receiver synthesizer configuration and options
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F.2

SXT - transmitter synthesizer configuration and options

LimeLight & PAD - input and output data stream options (LimeLight) and power amplifier

driver options

TXTSP - transmitter transceiver signal processor options
RxTSP - receiver transceiver signal processor options

CDS - clock distribution service options

BIST - built in systems test options

TRX Gain - alternative transmit and receive amplifier options
MCU - direct control of on-chip microcontroller

R3 Controls - fine tuning controls including compare voltages, RSSI options, and tempera-

ture compensation

API Libraries

ADF4002.py - Analog Devices phase detector/synthesizer programming and control (chip

datasheet: https://www.analog.com/media/en/technical-documentation/data-sheets/

ADF4002. pdf

LMS7002.py - gateway to lower level API calls specific to the LMS7002M FPRF
LMS7002_AFE.py - analog front end functions (ADC and DAC control/configuration)
LMS7002_base.py - low level functions such as type conversion

LMS7002_BIAS.py - bias functions

LMS7002_calibration.py - high level calibration functions (calculates and sets parameters

to comply with higher level configurations)

LMS7002_CDS.py - clock distribution system functions
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LMS7002_CGEN.py - clock generator functions
LMS7002_CHIP.py - general functions
LMS7002_DCCAL.py - DC calibration functions

L.MS7002_EVB.py - used to control/program LMS7002 evaluation board at a high level (not
the LimeSDR-Mini)

LMS7002_GFIR.py - general finite impulse response filter functions (imported by each
GFIR# class)

LMS7002_GFIR1.py - first general finite impulse response filter class
LMS7002_GFIR2.py - second general finite impulse response filter class
LMS7002_GFIR3.py - third general finite impulse response filter class
LMS7002_10.py - input output functions (chip pads)
LMS7002_LimeLight.py - limelight functions (IQ digital interface)

L.MS7002_mSPL.py - microcontroller serial protocol interface functions (for reading/writing

internal memory registers)

LMS7002_NCO.py - numerically controlled oscillator functions
LMS7002_RBB.py - receive base band functions

LMS7002 _regDataStructs.py - register class

LMS7002_REGDESC.py - multiline comment (very long) describing each register

LMS7002_REGDESC_MR3.py - multiline comment (very long) describing each register.
seems to have more than REGDESC.

LMS7002_RFE.py - receiver front end functions

LMS7002_RxTSP.py - receive transceiver signal processor functions
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* LMS7002_SX.py - synthesizer (transmitter and receiver) functions

* LMS7002_TBB.py - transmit base band functions

* LMS7002_TREFE.py - transmit radio frequency functions

* LMS7002_TxTSP.py - transmit transceiver signal processor functions

* LMS7002_XBUEF.py - transmit and receive buffer settings (unrelated to LimeLight)
* pyLMS7002Soapy.py - high level chip functions/parameters

» Si5351.py - Silicon Labs i2c programmable any frequency clock generator programming and
control (chip datasheet: https://www.silabs.com/documents/public/data-sheets/
Si5351-B.pdf)

» weakproxy.py - roxy object to help garbage collection

F.3 Unused API Libraries

The following libraries, included with the pyLMS7002Soapy API, are not part of the im-
port tree stemming from the pyLMS7002Soapy . py library. This is due to their specialized nature
pertaining to different hardware (boards other than the LimeSDR-Mini or -USB), other chips, or

are merely register documentation. Descriptions of these libraries are found in the previous section.

ADF4002

LMS7002_EVB

LMS7002_regDataStructs

LMS7002_REGDESC

LMS7002_REGDESC_MR3

Si5351
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F.4 Other Useful Acronyms

The following are a few useful acronyms that are used heavily throughout the LimeSDR-

Mini documentation and LMS7002M datasheet, but are not immediately defined.

TIA - trans-impedance amplifier (current in, voltage out)

PAD - power amplifier driver

ZIF - zero intermediate frequency

AGC - adaptive gain control
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APPENDIX G. GENERATE LFMCW WAVEFORM MATLAB SCRIPT

This script generates a binary waveform file useable by the LimeSuite GUI. The waveform
created is an LFMCW signal, however, it can be easily modified to generate any signal. The
structure of the resultant file is interleaved real and imaginary 16 bit big endian samples. Since the
LimeSDR-Mini has 12 bit DACs and ADCs, the maximum value stored in each 16 bit sample is
212_1. At the end of the script, three figures are generated alongside the output .wfm file for signal
verification. Displayed are one period of the inphase transient signal, one period of the quadrature
transient signal, and the power spectral density of one period of the signal. To use the file, the only

parameters that should be changed are:

* samples_per_second - the current sample rate of the analog front end (ADCs and DACs

which should be matched)

f0 - the starting frequency of the LFMCW signal (at baseband/ZIF)

fbw - the chirp distance (i.e. the final frequency minus the starting frequency)

T - the chirp duration

* periods - the number of periods included in the waveform (if the chirp duration is long,

decrease this number to keep file size low)

These parameters are all found within the first thirteen lines of the script.

1 clear; clc; close all;
3 ht% Parameters of Waveform Sampling

. samples_per_second = 240000 * 128 / 2.44233; 7, sdr sample rate

from waveform file
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19

20

21

24

26

seconds_per_sample = 1 / samples_per_second; 7 time for each
sample from waveform file

bits = 12; % sample depth

%% Signal Generation Params

fO = 1e6; 7 base frequency for signal
fbw = 6e6; 7% bandwidth of linear chirp
Gs = (2°bits - 1); % signal amplitude
T = 100e-6; % chirp time

periods = 10; 7% number of periods to include in waveform

%% Signal Generation

t = 0 : seconds_per_sample : periods*T - seconds_per_sample; 7
time variable (correlates sample rate to signal time)

alpha = fbw*pi/T; % chirp rate for 1lfmcw in rad/s

beta = 2*%pi*f0; % base frequency for lfmcw in rad/s

phi = 0; % initial phase for 1lfmcw in radians

bb_lfmcw = Gs*exp(lj*(alpha.*t.”2 + beta.*t + phi)); ’ baseband

lfmcw signal

I_lfmcw = real(bb_lfmcw); % pull out real portion as inphase
data
Q_lfmcw = imag(bb_lfmcw); % pull out imaginary portion as

quadrature data

%% Waveform File Generation

5% interleve two signals (I and Q)

wfm = zeros(l, length(I_lfmcw)*2); 7 initialize waveform
variable

for i =1 : 1 : length(I_lfmcw) % work through each sample of I
and Q
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40

41

44

45

46

48

49

50

51

end

hho

s fid

wfim(i*2 - 1) = I_1lfmcw(i); % write in I

wfm(i*2) = Q_lfmcw(i); % write in Q

Write Waveform File

format

= fopen(’lfmcw.wfm’, ’w’, ’b’); J open file in big-endian

fwrite(fid, wfm, ’intl16’); % write wfm variable as 2-byte

chunks

fclose(fid); % close file

%% Display One Period of Data

figure () ;

%» open new figure

plot (t(1:floor(length(t)/periods)), I_lfmcw(l:floor (length(t)/

periods))); % plot one period of signal

grid on;

xlabel (’Sample in Time (s)’);

ylabel (’Code (binary)’);

figure () ;

s title(’Baseband LFMCW Inphase Signal’);

%» open new figure

plot (t(1:floor(length(t)/periods)), Q_lfmcw(l:floor(length(t)/

periods))); % plot one period of signal

grid on;

xlabel (’Sample in Time (s)’);

ylabel (’Code (binary)’);

title (’Baseband LFMCW Quadrature Signal’);

[f,

b

fft]
0);

h

plottableFFT (bb_lfmcw (1l:floor (length(t)/periods)), T

calculate fft for one lfmcw period
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55 fft_power = abs(fft)/max(abs(fft)); ) convert fft to power
spectral density

s« fft_power = 10*loglO(fft_power."2); 7 convert psd to log scale

ss fmhz = f / 1e6; 7, convert frequency range to mhz

sc figure(); % open new figure

57 plot (fmhz, fft_power, ’LineWidth’, 2); % plot the PSD

ss psd_max max (fft_power); 7% find maximum power

59 psd_min min(fft_power); 7% find minimum power

« psd_range = psd_max - psd_min; % find power range

¢ axis tight; % remove empty space in x and y axes

© ylim([psd_min - psd_range/25, psd_max + psd_range/25]); %
dynamically add y buffer for viewability

o grid on;

¢+ xlabel (’Frequency (MHz)’);

s ylabel (’Normalized Signal Power’);

 title (’Power Spectral Density of Generated Baseband LFMCW’);
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APPENDIX H. EXAMPLE API SCRIPT

This is a very simple example script to show a few reading and writing operations using
the pyLMS7002Soapy API. Additionally, the sdrSnapshot function can be useful when debugging

high level configuration.

from pyLMS7002Soapy import pyLMS7002Soapy as pylmss

# function to printout high level configuration of a given SDR
def sdrSnapshot (sdr):
print (£’\n**x**x**x ALL INFORMATION STORED IN CLASS 0BJECT
*xxxxx\n{sdr}’)
print (f’ Board Name:\t {sdr.boardNamel}’)
print (f’ Clock Gen Freq: {round(sdr.cgenFrequency / 1le6,
2)} MHz’)
print (£’ Channel:\t {sdr.channel} (only applicable on
LimeSDR-USB) ’)
print(f’ Freq Ref:\t {round (sdr.fRef / 1le6, 2)} MHz’)
print (f’ Previous Band: {sdr.previousBand}’)
print (£’ TDD Mode:\t {sdr.tddMode}’)
print (£’ Verbose Mode:\t {sdr.verbose}\n’)
print (£’ RX Gain:\t {sdr.rxGain}’)
rxBW = -1
unset = True
if sdr.rxBandwidth != rxBW:
unset = False

rxBW = round(sdr.rxBandwidth / 1le6, 2)
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)

print (£’ {"*" if unset == True else " "}RX Bandwidth:\t {
rxBW} MHz’)
rxNCOfreq = 0
unset = True
if sdr.rxNCOFreq is not None:
unset = False
rxNCOfreq = round(sdr.rxNCOFreq / 1le6, 2)
print (£’ {"x" if unset == True else " "}RX NCO Freq:\t {
rxNCOfreq} MHz’)
rxRFfreq = O
unset = True
if sdr.rxRfFreq is not None:
unset = False
rxRFfreq = round(sdr.rxRfFreq / 1e6, 2)
print (£’ {"*" if unset == True else " "}RX RF Freq:\t {
rxRFfreq} MHz’)
rxSampRate = 0
unset = True
if sdr.rxSampleRate is not None:
unset = False
rxSampRate = round(sdr.rxSampleRate / 1le6, 2)

print (f’ RX Sample Rate: {rxSampRate} MHz\n’)

txGain = sdr.txGain
unset = True
if sdr.txGain !'= txGain:
unset = False
txGain = sdr.txGain
print (£’ {"x" if unset == True else " "}TX Gain:\t {
txGainl}’)
txBW = -1
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45 unset = True

46 if sdr.txBandwidth != txBW:

47 unset = False

48 txBW = round(sdr.txBandwidth / 1e6, 2)

49 print (£’ {"x" if unset == True else " "}TX Bandwidth:\t {

txBW} MHz’)
50 print(f’ TX NCO Freq:\t {round (sdr.txNCOFreq / 1le6, 2)}

MHz )

51 print (£’ TX RF Freq:\t {round (sdr.txRfFreq / 1e6, 2)}
MHz )

52 print (f’ TX Sample Rate: {round(sdr.txSampleRate / 1le6,

2)} MHz\n’)

s« 1if __name__ == "__main__":

55 # select first device by serial alphanumeric order
56 mysdr = pylmss.pyLMS7002Soapy ()

57 # printout SDR (high level) configuration

58 sdrSnapshot (mysdr)

59
60 # modify the receive mixing frequency

o1 mysdr . rxRfFreq = 900e6

6 # modify the receive bandwidth (ADC sample rate)
63 mysdr . rxBandwidth = 30e6

64

65 # modify the transmit mixing frequency

66 mysdr .txRfFreq = 900e6

6 # modify the transmit bandwidth (DAC sample rate)
68 mysdr . txBandwidth = 30e6

69 # modify the transmit gain

70 mysdr . txGain = 2
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72

73

74

76

71

78

79

84

# store the LMS7002 object
LMS7002 = mysdr.LMS7002
# run transmit calibration

LMS7002.calibration.txCalibration

# printout SDR configuration to see if changes

sdrSnapshot (mysdr)

# pause script

input ()

# close out script

exit ()
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