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ABSTRACT

Calibration of RapidScat Instrument Drift

F. Dayton Minor

Department of Electrical and Computer Engineering

Master of Science

RapidScat is a Ku-band radar that measures the normalized backscatter coefficient
σo of the Earth’s surface. Launched in 2015, it currently operates on the International Space
Station. Nearly one year into its mission, RapidScat measurements began exhibiting strange
behavior that is believed to be caused by a change in receiver gain. Changes in gain are
compensated for during post-processing, but the measurements have a lower signal-to-noise
ratio (SNR). Calibration and validation of σo measurements from this low SNR state are
performed using extended land targets with various signal strengths. Study areas include the
Amazon rainforest, Congo rainforest, Argentina pampas, two regions in the Sahara desert,
and a desert region in Australia. The effects of seasonal, azimuthal, incidence angle and local-
time-of-day variations on σo are studied using data from two Ku-band sensors, QuikSCAT
and RapidScat, for each study area. Calibration is preformed comparing RapidScat data
from all SNR states to QuikSCAT data as well as comparing RapidScat low SNR state data
to the nominal (high SNR) state data. Results from both calibrations are consistent with
each other. Results suggest that σo is unbiased by noise for the ranges of σo covered in this
study (-7 dB to -27 dB). However, the second low SNR state vertically polarized σ0 appears
to be biased lower than would be expected from year-to-year seasonal variation. The third
low SNR state σo appears unbiased compared to the nominal RapidScat SNR σo.
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Chapter 1

Introduction

Wind scatterometers, which are microwave radars designed to measure the normal-

ized backscatter coefficient (σo), see extensive use in weather modeling and prediction, and

numerous other applications. When operating on a spaceborne platform, these sensors have

the ability to make global observations with short revisits. Wind data gathered by these

scatterometers over the ocean are used as inputs to the weather model to track and pre-

dict weather phenomenon from rain to hurricanes and even see use in monitoring shipping

lanes. While the primary function of wind scatterometers is to gather wind data from over

the ocean, data over land and ice also has many applications: Deforestation in the Amazon

over time is measured using data from multiple scatterometers gathered over the years. Soil

moisture over land is estimated. Ice bergs are tracked as they leave Antarctica, and the

data is used to create safe shipping lanes. The ice melt cycle for large glaciers is observed,

including annual changes in the cycle. The spatial coverage of ice in the Arctic region is

measured and multiyear ice is distinguished from first year ice. In short, numerous fields

depend on scatterometer data.

RapidScat is the fourth Ku-band wind scatterometer launched by NASA since 1996.

It was preceded by NSCAT in 1996 and SeaWinds in 1999 and 2002. Another Ku-band

scatterometer, OSCAT was launched by India in 2009. Since August 2014, the sensor has

operated on the International Space Station (ISS). It is nearly identical to the hardware of

SeaWinds on QuikSCAT (1999), except for modifications necessary to operate on the ISS

instead of a weather satellite. RapidScat is unique among wind scatterometers; because of

the orbit of the ISS, RapidScat can observe the diurnal cycle of σo over land. Like other

wind scatterometers, the primary mission of RapidScat is to measure wind over the ocean

and performed that function since its launch.
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In August 2015, RapidScat began to exhibit strange behavior in its measurements

that is believed to be caused by a change in receiver gain. Because of the this change in

receiver gain, the measurements have a lower signal-to-noise ratio (SNR). For this reason,

the new state is called a “Low SNR” state; in contrast, the nominal state is called “High

SNR.” This change is compensated for by adjusting the gain during post processing so that

measurements are similar to what they were like before. By March 2016, three distinct low

SNR states have been observed whose measurements require different adjustments in gain

to be comparable to the measurements from the High SNR state.

The numerous applications of RapidScat data depend on the consistency of the mea-

surements, so calibration and validation of the low SNR states is desirable. Adjusting the

gain during post processing is a linear operation on the data, but it is unknown if the change

in the RapidScat system is linear. There is a possibility that for low-valued σo measurements

the gain adjustment is inappropriate. Furthermore, calibration and validation of the gain

adjustment can establish that the RapidScat dataset is self consistent.

1.1 Approach

In this thesis, the range of RapidScat σo values is sampled by using land calibration

targets that have different responses so that the linearity of the system may be observed.

If the low signal study areas have similar behavior to the high signal study areas then the

system is linear. The study areas are chosen to be homogeneous in measurement value and

are analyzed for year-to-year seasonal variation, and measurement variation with respect to

azimuth angle, incidence angle and the diurnal cycle. These study areas are used as land

calibration targets for calibration throughout this thesis.

Two methods of calibration are used in this thesis. The first, and most established, is

to calibrate RapidScat data from each RapidScat SNR state against QuikSCAT data. Obser-

vations are made about the differences between all of the RapidScat SNR states. Instrument

drift over time is observed. Second, RapidScat Low SNR states (2 and 3 only, for reasons

explained later) are calibrated against the High SNR state. This allows for more detailed

observations of the differences between the RapidScat SNR states. Hypothesis testing is used
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to detect if the SNR states are biased. Between the two calibration methods, a thorough

analysis of the gain adjustment or calibration of each RapidScat SNR state is possible.

1.2 Results Summary

In this thesis, five land targets are developed for use in calibration. It is shown

that from -7 dB to -27 dB, RapidScat Low SNR state measurements are unbiased by noise.

Instrument drift over time is correlated with the Low SNR states. The adjustment gain for

the RapidScat Low SNR 2 state could use some fine tuning. The RapidScat Low SNR 1 and

3 states are appear consistent with the RapidScat High SNR state. The system is linear and

simple gain adjustments are appropriate to make Low SNR state measurements consistent

with RapidScat High SNR state measurements.

1.3 Outline

The thesis proceeds as follows: Chapter 2 introduces topics of scatterometry, radar

calibration, RapidScat, the RapidScat SNR states and datasets used in this thesis. Chap-

ter 3 outlines a method for choosing and analysing land calibration targets by going into

detail of the creation and analysis of the Amazon rainforest study area and summarizes the

important details about the additional study areas used for calibration in this thesis. In

Chapter 4, calibration of RapidScat against QuikSCAT is performed to observe differences

in calibration between RapidScat SNR states and observe RapidScat instrument drift over

time. In Chapter 5, RapidScat low SNR states 2 and 3 are calibrated against the nominal

RapidScat high SNR state and hypothesis testing is used to detect if the SNR states are

biased. A conclusion is given in Chapter 6. Appendix A uses the method from Chapter 3

and provides analysis of the additional calibration targets.
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Chapter 2

Background

This section includes background material helpful to understanding the rest of the

thesis. An introduction to spaceborne scatterometry and the many applications of scat-

terometer data is made. Elements of radar operation and calibration that relate to the

accuracy of scatterometer measurements are discussed. The RapidScat scatterometer and

its predecessor QuikSCAT are introduced and differences between the two sensors are high-

lighted. An explanation of the RapidScat SNR states is given. Datasets used in this study

are introduced.

2.1 An Introduction to Spaceborne Scatterometry

A scatterometer is a microwave radar designed to measure the normalized radar-cross

section, or backscatter coefficient (σo). In 1974, experiments were performed using the S-193

scatterometer aboard the Skylab space station and it was discovered that scatterometers are

well suited for observation of ocean winds on a global scale. The continuous and global wind

observations by these sensors provide valuable inputs to the global weather model. Since

1978, many wind scatterometer missions have followed, including these Ku-band sensors:

SASS (1978), NSCAT (1996-1997), SeaWinds (1999-2009 and 2002), OSCAT (2009-2014)

and RapidScat (2014-Present) [1, 2, 3].

When there are steady winds over the ocean, friction between the wind and the ocean

surface causes waves to form. These waves result in a surface roughness that, when observed

by microwave radar, results in backscatter that is related to the wind speed and direction

relative to the radar look direction. Generally, increased wind speed means increased surface

roughness and thus increased backscatter. When is backscatter measured at multiple look

directions, both wind speed and direction can be estimated. The model for estimating
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Figure 2.1: Possible OVW solutions corresponding to each observation flavor of a vector of
noise-free QuikSCAT observations for a true wind speed of 15 m/s and direction of 250◦.

wind speed and directions from scatterometer measurements is called the Geophysical Model

Function (GMF). The GMF of σo does not provide one unique solution (see Figure 2.1). Wind

retrieval requires three or more σo measurements to estimate Ocean Vector Winds (OVWs)

and the retrieval is sensitive to noise in the σo measurements [1].

In addition to OVW contributions, scatterometer data has been used over land and

ice to observe deforestation of the Amazon, track ice berg, ice melt, and multiyear ice, and

other applications [1, 4, 5, 6, 7, 8].

2.2 Radar calibration

Radar calibration is an important part of ensuring a sensor’s measurements are ac-

curate and consistent enough for scientific use. Three strategies are employed together to
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obtain the best σo measurements possible. First, internal calibration is done to allow us to

measure the ratio P r/P t. Second, noise subtraction is performed to help remove receiver

noise. Third, external calibration supplements the first two strategies by measuring the

backscatter of a target with a known radar cross section and comparing the error [1].

Internal calibration is performed using the ratio method described in [1]. A calibration

pulse is made by passing a transmitted signal through a known impedance and directly into

the receiver. The power received during calibration, P c
0 , is measured. P c

0 is then a function

of the transmit power, P t, and the losses associated with the known impedance (which are

modeled as a constant). The received power during target reception, P r
0 , can then be used

in conjunction with P c
0 to measure the ratio

P r

P t
= Ks

P r
0

P c
0

, (2.1)

where P r is the received power and Ks is an overall calibration constant that accounts for

the internal losses of the system as modeled. Of course, the accuracy of internal calibration

is dependent on the model for the system. The measured ratio P r/P t may then be used in

the radar equation to calculate σo [1].

Noise subtraction is a technique to mitigate the noise in a received signal. The radar

transmits a signal of known duration, and radar measurements are made while receiving the

transmitted signal. Between radar measurements the receiver noise alone is measured. The

noise-only measurement is scaled (to account for differences in bandwidth, integration time,

etc.) and subtracted from the radar measurement to obtain an estimate of the signal alone.

This greatly improves the accuracy of the radar measurements [1].

External calibration is desirable because the accuracy of internal calibration depends

our model for the system, which is not perfect. Internal calibration provides a relative

calibration, between measurements from the same sensor, while external calibration is more

absolute, making measurements comparable with other sensors. External calibration can be

preformed with a large homogeneous target with a known σo. The target’s σo should have

a smooth and slowly varying function of incidence angle (θ) and be independent of azimuth

angle (φ). The Amazon rainforest is a well known, large, and homogeneous target that
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Parameter Seawinds RapidScat
Frequency 13.6 GHz 13.6 GHz

Antenna Azimuths All All
Polarizations v-outer/h-inner v-outer/h-inner

Incidence Angles 46◦ and 54.4◦ 49◦ and 56◦ (nominal)
Daily Coverage 92% 65% between 58◦ N and 58◦ S

Mission and QuikSCAT: 6/1999-11/2009 International Space Station
Dates ADEOS II: 1/2002-1-/2002 10/2014-

Orbit Type Sun-synchronous Non sun-synchronous

Table 2.1: Seawinds and RapidScat system parameters.

can be used for external calibration. The Amazon has seen use in calibrating radiometers,

scatterometers, and has been used to calibrate RapidScat against QuikSCAT [1, 9, 10, 11,

12, 13].

2.3 RapidScat

RapidScat is a Ku-band pencil beam scatterometer that was launched in August 2014

and is currently operating on the International Space Station. RapidScat is the fifth Ku-band

wind scatterometer mission by NASA. The sensor replaces the Seawinds scatterometer on

NASA’s QuikSCAT satellite which operated from 1999 to 2009. For the rest of this thesis,

Seawinds on QuikSCAT is referred to as QuikSCAT, to distinguish it from the other Seawinds

mission. The RapidScat sensor is nearly identical to QuikSCAT, except that adjustments

have been made so that it can operate on the ISS. Selected system parameters for both

sensors are shown in Table 2.1.

2.3.1 Local time of day

While the adjustments to RapidScat make it operate similar to QuikSCAT in theory,

in practice the irregular orbit of the ISS turns RapidScat into a unique sensor. First, large

pitch has been shown to cause issues with the backscatter measurements [13]. Second, Rapid-

Scat has the ability to observe the diurnal cycle over land. Polar orbiting sun-synchronous

sensors like QuikSCAT always pass over a given location at the same local time of day

(LTOD). Because the orbit of the ISS is not sun-synchronous, the LTOD of measurements
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Figure 2.2: Local time of day of RapidScat observations over the Amazon rainforest for
ascending and descending passes. For reference, QuikSCAT ascending and descending passes
are always around 6h and 18h. Intervals denoted by the small red dotted lines represent local
times of day show when RapidScat observations are within 1 hour of QuikSCAT observations.

at a given location on the earth’s surface drift over time like is shown for observations over

the Amazon rainforest in Figure 2.2. It has been shown that there is diurnal variability of

Ku-band backscatter [13, 14].

2.3.2 SNR states

Nearly one year into the RapidScat mission, the sensor’s measurements began to

exhibit strange behavior that is believed to be caused by a change in the receiver gain. Due

to the change in gain, resulting measurements have a lower signal-to-noise ratio (SNR). For

this reason the altered state is considered low SNR. To allow continued use of the sensor, a

linear correction is applied to σo to compensate for the change. The linear correction to σo

is basically adjusting the gain after internal calibration and noise subtraction. The change

in SNR is not stable. So far there are four known SNR states: the nominal (High SNR)

state and Low SNR states 1, 2, and 3. Figure 2.3 shows how the RapidScat SNR states have
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Figure 2.3: RapidScat SNR states over time.

progressed over time. The degraded state of RapidScat data was first noticed in data from

August 2015, but some revolutions since then have the nominal (High SNR) state. Low SNR

states 1, 2 and 3 each require different corrections to be comparable to the High SNR state

and are considered separately in this thesis.

2.4 Datasets

Two QuikSCAT products are used in this study. The first is the QuikSCAT Enhanced

Resolution Slice Image Product [15] which consists of enhanced resolution over-land σo mea-

surements (for ascending/descending passes and h/v polarizations) on a 2.225 km/pixel grid

for various land targets. The product is in the Scatterometer Image Reconstruction (SIR)

file format, and the data is referred to SIR data. This product covers the entire QuikSCAT

wind mission (1999-2009). SIR data used in this study comes from the Amazon, North

Africa, South Africa, and South America regions. The second QuikSCAT dataset used in
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this study is the QuikSCAT L1B product. L1B data contains σo, θ, and φ measurements,

their time and locations (latitude and longitude information) [16].

RapidScat data used in this study, RapidScat L1B and ancillary data, is published and

publicly accessible [17]. The L1B products for RapidScat and QuikSCAT are comparable.

The ancillary data includes a “revtime.csv” file that includes the 5-digit orbital rev number,

start date/time, stop date/time and a quality indicator. The quality indicator summarizes

if the data is “GOOD”, “BAD”, or “MARGINAL”, specifies the RapidScat SNR state and

if there is large pitch. Examples of SNR states include: “High SNR”, “Low SNR 1”,“Low

SNR 2”,“Low SNR 3”, or “Mixed SNR state”. For this study, RapidScat L1B data flagged

as “GOOD”, one of the SNR states (not “Mixed”), and not “Large Pitch” is used [17].

10



Chapter 3

Calibration Targets

3.1 Introduction

In this section, the methodology for identifying land targets for external calibration is

outlined. Land calibration targets are analyzed for consistency, and so that it is understood

under what circumstances observations of the study areas are accurate. The method is shown

in detail for the Amazon rainforest study area, while details for the other study areas are

discussed in Appendix A. The results for all study areas are summarized at the end of this

section.

3.2 Methodology

Extended land targets are selected using QuikSCAT data and analyzed using both

QuikSCAT and RapidScat data. For this report, the closest thing to truth data is the

QuikSCAT data set. The sensor was in operation for ten years, allowing for sufficient aver-

aging to be very confident in its data. First, the average QuikSCAT σo for the entire mission

is used to identify the spatial extent of homogeneous land targets. Then, seasonal and az-

imuthal analysis are done. Further analysis is done using RapidScat data to measure the σo

dB/deg incidence angle relationship and examine the effects of local time of day (LTOD) on

σo. This method is explained step by step for the Amazon rainforest study area.

Enhanced resolution land σo images [15], created using Scatterometer Image Recon-

struction (SIR), are used to identify the homogeneous land target. The QuikSCAT SIR

dataset containing data over the Amazon region from 1999 to 2008 is averaged for each

flavor (where a “flavor” is a combination of ascending or descending orbit, and horizontal

or vertical polarization). The average ascending horizontal polarization QuikSCAT σo SIR

image is shown in Figure 3.1. A histogram of the pixel valuesis given in Figure 3.2, showing
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Figure 3.1: This SIR image shows the average ascending H-pol σo for the QuikSCAT SIR
dataset for the Amazon region for the years 1999 to 2008. The extent of the Amazon rainforest
is already visible to the eye.

three distinct modes which generally correspond to ocean measurements (around -25 dB),

rainforest (around -7 dB) and non-rainforest (around -10 dB) pixels. An iterative moving

average approach is used to select the largest number of pixels in a 1 dB range of σo, effec-

tively selecting the pixels to corresponding to the rainforest mode observed in Figure 3.2 (a

histogram of σo included in the final mask is shown in Figure 3.4). All locations that are

included in all four flavors are included in a mask by latitude and longitude, which is shown

in Figure 3.3 for the same area shown in the SIR image (Figure 3.1) [13].

The initial mask (Figure 3.3) has a lot of spatial outliers that the author subjectively

chooses to remove. While these outliers match the σo of our study area and may very well be

rainforest, it is desirable that the mask be robust to pointing and positioning errors that may
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Figure 3.2: A histogram of QuikSCAT ascending H-pol σo for the Amazon region, created
from the mission dataset. Three modes are evident in the histogram that generally correspond
to ocean/water (-25 dB), rainforest land (-7dB) and non-rainforest land (-10 dB).

occur. Spatial outliers are subjectively removed, especially where the mask is thin. Areas

inside the mask that are not initially included are filled in if they are smaller than a certain

size. A histogram of σo included in this edited mask is shown in Figure 3.4, and shows that

this mask generally includes pixels in a 1 dB range, as designed. This mask, created from

SIR data and then manually edited, becomes the Amazon rainforest calibration target for

this study. The mask is shown in Figure 3.5.

A study of year-to-year seasonal variation of the Amazon rainforest study area is done

using 9 years of QuikSCAT L1B data [16]. Data is extracted for the entire QuikSCAT mission

(1999-2008) using the Amazon rainforest mask (Figure 3.5). The masked data is used to
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Figure 3.3: Latitude/longitude mask showing the pixels area of the largest number of σo

values in a 1 dB range for the QuikSCAT SIR data. Notice that there are a lot of spatial
outliers and small holes in the rainforest.

create ten-day averages of σo for the calibration target from 1999 to 2008. In Figure 3.6, the

yearly averages are subtracted from the ten-day averages to obtain the deviation from mean

σo that shows the seasonal variation that the Amazon rainforest experiences. The confidence

interval with respect to year-to-year variation is the standard deviation of the deviation from

mean σo, with γ = 0.995. The difference between ascending and descending passes is best

explained by the diurnal cycle shown in (Figure 3.9) and is considered later The seasonal

variation for the Amazon rainforest (Fig. 3.6) is very small, less than 0.4 dB overall, and is

very homogeneous–ideal for a land calibration target. The most accurate calibration comes

from measurements of the same season [13].

The azimuth study is done using the masked QuikSCAT L1B data where σo measure-

ments are binned by azimuth angle (10 degree bins) for each year. The Amazon rainforest
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Figure 3.4: Histogram of ascending H-pol QuikSCAT σo within edited mask for the study
area (Figure 3.5). This shows that the edited mask generally includes pixels with σo values
within ± 0.5 dB of the mean, -7.3 dB.

(See Fig. 3.7) has very little azimuth modulation, less than 0.1 dB across all azimuth angles

[13]. Because both QuikSCAT and RapidScat measure σo at all azimuth angles, and the

distribution of azimuth angle is uniform any influence from azimuthal variation over these

targets averages out and is ignored during calibration. Even if there was irregular sampling

that resulted in a bias, the bias due to azimuth angle would be less than 0.1 dB.

RapidScat makes measurements over a range of θ, between 46◦ and 52◦ for the inner

beam (h-pol) and 52◦ and 58◦ for the outer beam (v-pol), while QuikSCAT θ is fixed, 46.25◦

for inner beam and 54◦ for the outer beam. In order to enable accurate calibration, σo

measurements are normalized in θ. To measure the σo dB/ deg relationship, RapidScat L1B

data [17] is masked with mask created from QuikSCAT data (Figure 3.5). Binned σo data

by θ (0.25◦ bins) is used to see the range of θ (Fig. 3.8). A first-order polynomial fit of the

masked σo to θ is used to measure the σo dB/deg relationship for the Amazon rainforest
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Figure 3.5: Final latitude/longitude Amazon rainforest mask mask representing the Amazon
rainforest study area. Spatial outliers have been subjectively removed and holes of a certain
pixel size or smaller have been included.

(Fig. 3.8) [13]. The σo dB/deg slope (Table 3.2) is used to normalize the σo measurements

to QuikSCAT incidence angles for calibration.

Unlike other sensors (e.g., the sun synchronous polar-orbiting QuikSCAT) whose as-

cending and descending orbits happen at approximately the same LTOD each pass, Rapid-

Scat observes the Earth’s surface in a non-sun-synchronous orbit and thus at different LTOD

as the orbits progress. A comparison of σo by LTOD (Figure 3.9) shows the general trend

of σo during the diurnal cycle. The Amazon study area experiences a sharp increase in σo

around sunrise, which is likely due to the dew cycle [13]. However, between 10 and 16h

LTOD, the trend is very consistent. In order for calibration to be independent of the effects

of LTOD on σo, measurements should come from the same LTOD or from a LTOD range
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Figure 3.6: Seasonal variation of σo for the Amazon rainforest calibration target shown as
the deviation from mean σo for each flavor of QuikSCAT (with a confidence interval that is
the standard deviation of the deviation from mean σo). See text for details of how this plot is
generated.

where there is little change in σo. For this study, measurements are considered the same

LTOD when within 45 minutes of each other. Thus, calibration measurements are most

accurate for this study area when within 45 minutes LTOD or from 10 to 16h LTOD.

Variance in the diurnal cycle of the Amazon study area as observed by RapidScat is

observed by performing the LTOD analysis for different seasons. Three seasons have been

defined for the Amazon study area. The wet seasons are: JD 335 to JD 30 and JD 31 to JD

141. The dry season is defined as JD 151 to JD 243. The dry season falls during a time when

there is not two entire months of High SNR data (See Figure 2.3) so there are some LTODs
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Figure 3.7: Azimuth modulation of the Amazon rainforest relative to the mean σo with the
confidence interval is the standard deviation of σo.
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Figure 3.8: Two dimensional PDF of the distribution of σo measured by RapidScat at each
incidence angle (0.25o bins) for the Amazon rainforest. The blue line is the first order poly-
nomial fit to the data and the slope of the line represents the σo dB/ deg incidence angle
relationship. The dashed line is the ± one standard deviation for the estimate.

that are not observed. The LTOD curves for the three seasons are shown in Figure 3.10.

There is an expected shift in mean σo, as seasonal variation is observed in Figure 3.6, and

some variation in shape. Generally, the curves are very similar to the overall LTOD curve

in Figure 3.9, which suggests that the observations calibration measurements are accurate

for this region within 45 minutes or from 10h to 16h LTOD no matter the season.

In summary, we confirm that the Amazon rainforest study area is a good calibration

target. It is large, homogeneous, azimuth variation is small enough to be ignored, and σo is

a simple function of θ. For the most accurate calibration of σo, measurements should come

from the same season and within 45 minutes LTOD or in the 10-16h LTOD range. This
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Figure 3.9: Two-dimensional PDF of RapidScat σo from the Amazon rainforest calibration
target for 90 minute LTOD bins. In blue, the mean σo (o) for each LTOD bin is show with
a confidence interval that is ± the standard deviation for that bin. Notice the large increase
around sunrise.

calibration target has the potential to measure biases between RapidScat High SNR σo and

Low SNR σo larger than the confidence intervals for the estimates.

3.3 Other targets

The focus of this study is the bias of σo measured by RapidScat in it’s “High” and

“Low” SNR states and whether or not the bias is different in lower signal targets. This

analysis requires calibration targets beyond the typically used Amazon rainforest. A 1989

study of over-land σo using Ku-band scatterometers [18] demonstrates that there are land

regions with various mean σo. Some of these land regions were used in the procurement of

extended land targets with different mean σo, and those used in report are shown Table 3.1.
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(a) Wet Subseason 1: JD 335 to JD 30

(b) Wet Subseason 2: JD 31 to JD 140

(c) Dry Season: JD 152 to JD 243

Figure 3.10: Two-dimensional PDF of RapidScat σo from the Amazon rainforest study area
for 90 minute LTOD bins for 3 different seasons. In blue, the mean σo (o) for each LTOD bin
is shown. The red line is the mean σo calculated using all of the RapidScat High SNR data.
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Study Area Size QuikSCAT Mean σo RapidScat Mean σo

(×103 px) h-pol/v-pol (-dB) h-pol/v-pol (-dB)
Amazon Rainforest 176.8 7.2/8.5 8.2/9.4
Congo Rainforest 72.6 6.9/8.2 7.9/9
Argentina Pampas 4.8 11.5/13.3 12/13.6
West Sahara 3.8 17.2/17.3 18.3/18.2
Australia Desert 12.4 16.9/18 16.9/18.3
Sahara Erg Sea 12.5 26/27 26.7/27.5

Table 3.1: Study areas for land calibration with different mean σo. The size of the study
area is measured in pixels included in the mask for the region shown in Figure 3.11. Each

pixel is 1/24 deg latitude × 1/24 deg longitude. The mean σo for QuikScat and the nominal
RapidScat state (High SNR) are calculated using masked L1B data.

Non-rainforest calibration targets have greater variation of σo, the backscatter is a

different function of θ which may or may not be as smooth and may not be as independent

of azimuth; that is, they may not be as accurate (or deterministic) as the standard rainforest

calibration targets. Despite the imperfections non-rainforest calibration targets exhibit, they

can provide valuable information rainforest calibration targets cannot and as long as the

conditions are right the information can be accurate.

The same method used to identify and analyze the Amazon study area is applied

to each study area used in this thesis. Appendix A goes detail about the additional land

calibration targets used as study areas in this thesis.

22



(a) Amazon Rainforest (b) Congo Rainforest

(c) Argentina Pampas (d) West Sahara

(e) Austrialian Desert (f) Sahara Desert

Figure 3.11: Spatial masks for the 6 calibration targets
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Study Area σo dB/deg θ LTOD
H-pol V-pol Threshold Range

Amazon -0.098 -0.120 45 min 10-16h
Congo -0.096 -0.106 45 min 10-16h
Pampas -0.094 -0.187 45 min N/A
W. Sahara -0.246 -0.181 45 min 6-12h
Aus. Desert -0.077 -0.029 45 min N/A
Sahara Erg Sea -0.015 -0.025 45 min N/A

Table 3.2: Incidence Angle Dependence (dB/deg) as measured by RapidScat over different
land targets.

3.4 Results

Six different study areas are used as calibration targets in this thesis. They were

chosen to span a large range in σo. The size and mean σo as measured by QuikSCAT

and RapidScat are shown in Table 3.1. The incidence angle adjustments used to normalize

RapidScat σo to QuikSCAT incidence angles through out the rest of this thesis are shown

in Table 3.2. The LTOD criteria for direct comparisons between RapidScat High SNR and

Low SNR σo is also shown in Table 3.2.

The largest and most homogeneous are the Amazon and Congo rainforests, which

are well suited to measure the small differences between RapidScat High SNR σo and Low

SNR σo during calibration. They both cover a similar range of σo, and so comparing the

calibrations of the two study areas to each other may decrease the influence of year-to-year

seasonal variation on the observations.

The lower signal study areas enable us to validate the linearity and calibration of

RapidScat Low SNR σo for lower values of σo and make observations about whether or not

the Low SNR σo is biased.
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Chapter 4

Calibration using QuikSCAT

4.1 Introduction

This chapter seeks to cross-calibrate RapidScat σo to QuikSCAT σo. The success of

calibration using extended land targets depends on the how stable and consistent the target

σo is. While it is impossible to know the true σo of an extended land target, ten years of

QuikSCAT σo allow an estimate of σo of the land target with a narrow confidence interval.

Different methods have been suggested for calibrating RapidScat against QuikSCAT

in [13]. Because of the short duration of some of the RapidScat SNR states, in this thesis the

RapidScat data is split by time of year and then compared those averages with QuikSCAT

data taken from the same time of year. The QuikSCAT dataset is well suited for this

calibration method because data has been collected for all of the study areas discussed in

Chapter 3 for all times of the year. This method of comparison also allows for observations

of the instrument drift that are not with RapidScat data alone.

This chapter explains the methodology for comparing RapidScat data to QuikSCAT

data. Instrument drift over time is analyzed using the comparison of RapidScat data to

QuikSCAT data. Overall mean bias estimates of the bias between RapidScat and QuikSCAT

σo for all of the RapidScat SNR states is reported and discussed.

4.2 Method

Data from the QuikSCAT L1B dataset is extracted for the entire QuikSCAT mission

(1999-2008) using the Amazon rainforest mask (Fig. 3.5). Ten-day, yearly, and mission

averages of σo are calculated using the masked data. Seasonal variation is then measured as

deviation from mean σo, as shown in Figure 4.1. This is calculated by subtracting the year

mean from each ten-day average and then finding the mean and the standard deviation, s4, of
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the difference. The mission mean σo plus the seasonal variation is the QuikSCAT estimate

that is compared with the RapidScat data. The confidence interval for this QuikSCAT

estimate is

σo ±
(
zu

s�√
M

+ tu(10)
s4√
N

)
, (4.1)

where zu is the standard normal density function, tu(n) is the student distribution function,

u is the percentile, s� is the standard deviation of M(> 150,000) measurements and s4 is

the standard deviation of the “deviation from mean σo” over N(= 10) years. This confidence

interval is dominated by the year-to-year variation measured by s4 because M is so large;

since t0.995(10) ≈
√

10, the standard deviation of the “deviation from mean σo” as shown in

Figure 4.1 (for the Amazon rainforest calibration target) is representative of the confidence

interval of the QuikSCAT estimate.

RapidScat data is masked using the spatial mask created from the QuikSCAT data

(Figure 3.11). The masked data whose LTOD is within 1 hour of QuikSCAT ascend-

ing/descending times is averaged into the same ten-(Julian)-day bins as the QuikSCAT

data. The confidence estimate for the RapidScat estimate is larger than for QuikSCAT

because there are fewer years of data (for most cases, only one “year” is available for com-

parison purposes in each ten-day bin because of the change in SNR state). In the following

comparisons, a 80% confidence interval is used, calculated using N = 1 and u = 0.9 in (4.1).

Where RapidScat ten-day σo estimates exist for a particular SNR state, they are

compared to the corresponding ten-day QuikSCAT σo estimate as shown in Figure 4.2 for

the Amazon rainforest calibration target. Outliers in these figures are generally due to fewer

RapidScat measurements falling into the respective ten-day bin; this shows up clearly in

the larger than average RapidScat σo confidence intervals in Figure 4.2. The bias, shown in

Figure 4.3 appears to be generally consistent, with notable outliers near the time when the

low SNR state was first diagnosed (JD 213-242). Possible explanations for the outliers include

noisier estimates due to fewer measurements, mistaken RapidScat SNR state diagnosis (the

wrong σo correction used), or that the actual σo is outside the 80% confidence interval.
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Figure 4.1: Seasonal variation of σo for the Amazon rainforest calibration target shown as
the deviation from mean σo for each flavor of QuikSCAT (the confidence interval shown is the
standard deviation of the deviation from mean σo).
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Figure 4.2: RapidScat High and Low SNR 1/2/3 σo is compared to QuikSCAT σ for the
Amazon study area. Measurements are within 1 hour of QuikSCAT LTOD. QuikSCAT σo

confidence intervals are small because there are 10 years of data. Larger than average RapidScat
σo confidence intervals generally correspond to a small number of measurements. RapidScat
σo is biased low compared to QuikSCAT σo. For this study area, the comparisons are grouped
by QuikSCAT flavor (Morning or Evening and H-pol or V-pol).
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4.3 Instrument Drift Over Time

Analysis of the time series of comparisons between RapidScat σo and QuikSCAT σo

for the Amazon and Congo study areas allows us to make observations about the instrument

drift over time. The Amazon and Congo study areas are used because they have bias

estimates with the smallest confidence intervals among the study areas. The Low SNR

states can be considered a known factor in the instrument drift over time, but may not be

the only explanation. Figure 4.3 shows that ten-day bias estimates are much noisier, even

for High SNR data, after JD 7/2015 (for reference, the RapidScat was diagnosed with the

Low SNR problem August 2015). The High SNR ten-day bias estimates after 6/2015 have

larger-than-average confidence intervals, which are likely caused by having fewer than normal

measurements in their averages.

The monthly bias estimates have less noise in the estimates because of averaging.

Months that average fewer than a threshold of measurements do not report a monthly average

bias estimate. Figures 4.4 through 4.7 show the monthly average biases of RapidScat σo

compared to QuikSCAT σo first with all comparisons on the same plot and then separated

by QuikSCAT flavor. The trends are similar across polarizations for mornings and evenings.

The mornings have greater variation, which is because measurements in the morning have

more variation (look at the peak of the LTOD curve around 6h in Figure 3.9). The Amazon

and Congo have the similar patterns for Morning Low SNR 2 H and V-pol. Even though

morning estimates are noisier (see the LTOD curve in Figure 3.9), the High SNR appears self

consistent prior to August 2015 for the mornings. The morning H-pol and V-pol monthly

average estimates for the Amazon September 2015 appear low, but the confidence intervals

include acceptable mean difference values so nothing conclusive can be drawn from these

estimates alone. For the Amazon study area there appears to be a step function in the

monthly mean biases when the Low SNR 2 state first appears, but Low SNR 3 mean biases

are comparable to the High SNR biases. The Congo study area does not show such a large

difference in bias, but the biases for Low SNR 2 in the mornings are noticeably lower than

the High SNR biases.
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Figure 4.3: The ten-day average bias of RapidScat σo compared to QuikSCAT by date of
RapidScat measurements for the Amazon study area. Color is used to indicate the RapidScat
SNR state and the symbols indicate the flavor of the ten-day average consistent with the legend
in Figure 4.2. There are gaps in RapidScat data because data flagged as bad, marginal or large
pitch is excluded from this analysis.
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Figure 4.4: The monthly average bias of RapidScat σo compared to QuikSCAT σo by date of
RapidScat measurements for the Amazon study area. Monthly bias estimates with a number
of measurements below a threshold are excluded from this figure. Color is used to indicate
the RapidScat SNR state and the symbols indicate the flavor of the ten-day average consistent
with the legend in Figure 4.2.
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Figure 4.5: The monthly average bias of RapidScat σo compared to QuikSCAT σo by date of
RapidScat measurements for the Amazon study area. Separated by QuikSCAT flavor. Monthly
bias estimates with a number of measurements below a threshold are excluded from this figure.
Color is used to indicate the RapidScat SNR state and the symbols indicate the flavor of the
ten-day average consistent with the legend in Figure 4.2.
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Figure 4.6: The monthly average bias of RapidScat σo compared to QuikSCAT σo by date
of RapidScat measurements for the Congo study area. Monthly bias estimates with a number
of measurements below a threshold are excluded from this figure. Color is used to indicate
the RapidScat SNR state and the symbols indicate the flavor of the ten-day average consistent
with the legend in Figure 4.2.
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Figure 4.7: The monthly average bias of RapidScat σo compared to QuikSCAT σo by date of
RapidScat measurements for the Congo study area. Separated by QuikSCAT flavor. Monthly
bias estimates with a number of measurements below a threshold are excluded from this figure.
Color is used to indicate the RapidScat SNR state and the symbols indicate the flavor of the
ten-day average consistent with the legend in Figure 4.2.
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4.4 Mean-bias estimates

Consistent with other literature [13], a mean calibration bias of RapidScat relative to

QuikSCAT is calculated. To find the mean bias, the weighted average (based on the number

of RapidScat measurements) is calculated using all of the comparisons for each RapidScat

SNR state (High or Low 1/2/3) and flavor (morning or evening and H or V-pol). The

confidence interval is the weighted average of the confidence intervals for bias estimates.

The mean bias for the Amazon is shown in Figure 4.8a. A lack of Low SNR 1 data is

evident in the larger-than-average confidence intervals for the evening comparisons, making

it difficult to draw any conclusions from the Low SNR 1 bias alone. However, based on the

confidence intervals the Low SNR 1 bias does not contradict the estimates for the High SNR

or Low SNR 2/3 biases, so it is possible that the actual Low SNR 1 bias is similar to the

other biases.

Mean bias estimates for all of the calibration targets in Table 3.1 are shown in Fig-

ure 4.8 and 4.9. The most accurate (smaller confidence intervals) mean bias estimates are

found in the Amazon and Congo rainforests, with bias estimates generally between -0.3 and

-0.7 and are reported (without confidence intervals) in Table 4.1. There is overlap between

the confidence intervals of the Low SNR mean bias estimates and the High SNR mean bias

estimates, so conclusions cannot be drawn from these comparisons alone. However, the

differences in mean-bias estimates reported in Table 4.1 are consistent with more detailed

findings in Chapter 5. Mean bias estimates for the Pampas and Sahara calibration targets

are within that range, which suggests that the bias between the RapidScat High SNR and

Low SNR states is linear. The confidence intervals for the West Sahara and Australian desert

are such that their mean bias estimates do not contradict those found using the Amazon

rainforest. Generally, differences in RapidScat σo between SNR states for the lower signal

targets (Pampas, Australia, W. Sahara and Sahara study areas) are within the bounds of

year-to-year seasonal variations in σo, suggesting that the linear corrections to σo that have

been applied previous to this analysis are appropriate.
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(a) Amazon

(b) Congo

Figure 4.8: Mean bias estimates of the bias between RapidScat σo and QuikSCAT σo by
QuikSCAT flavor and RapidScat SNR state.
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(a) Pampas (b) West Sahara

(c) Australian Desert (d) Sahara

Figure 4.9: Mean bias estimates of the bias between RapidScat σo and QuikSCAT σo by
QuikSCAT flavor and RapidScat SNR state.

Study Area
Low SNR 2 Difference

morH eveH morV eveV
Amazon -0.23 -0.33 -0.10 -0.17
Congo -0.11 -0.22 0.03 -0.05

Table 4.1: Difference between RapidScat Low SNR 2 bias compared to QuikSCAT and High
SNR bias.
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Chapter 5

RapidScat Low SNR Calibration against RapidScat High SNR

5.1 Introduction

We want to evaluate the consistency of σo measurements across all of the RapidScat

SNR states and validate the corrections to σo applied in RapidScat L1B data by comparing

data from from the RapidScat’s Low SNR states to data from RapidScat’s nominal (High

SNR) state. Calibration of the RapidScat Low SNR states against the High SNR state

allows for additional data to be used compared to the calibration in Section 4 where only

data with QuikSCAT LTOD can be used. A direct comparison between High SNR and Low

SNR states also allows for more detailed observations of the small variations between SNR

states. We seek to evaluate the consistency of σo by directly comparing RapidScat’s Low

SNR data to the High SNR data.

There are currently two published versions of RapidScat L1B data, v1.1 and v1.2.

Version v1.2 includes an updated correction to Low SNR 2 σo. All of the calculations and

analysis shown in the figures are done using the RapidScat L1B v1.2 dataset. Calculations

have also been done using RapidScat L1B v1.1, but only the mean-bias estimates for the

Amazon and Congo study areas are reported. Comparisons between the mean-bias estimates

calculated using v1.1 and v1.2 data are also considered.

In this chapter, the method for calibrating RapidScat Low SNR state data against the

nominal RapidScat state is outlined. Comparisons for Low SNR states 2 and 3 are included

(there is no overlap between the Low SNR 1 and High SNR states). Overall trends of the

comparisons are discussed to support the linearity of relationship between High and Low

SNR σo. Detailed results from the individual study areas are included. Mean-bias estimates

for each RapidScat Low SNR state are calculated for all study areas and discussed. A

comparison of the Low SNR σo from the RapidScat L1B v1.1 and v1.2 datasets is made.
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5.2 Method

In order to observe the relationship between High SNR and Low SNR data as a

function of σo, comparisons between High and Low SNR σo are made for each the study

areas from Table 3.1. Each study area has a different mean σo. Using study areas with

different mean σo is our way of sampling values of σo. Corrections by JPL are only based

on data from the Amazon rainforest. If the relationship between High and Low SNR states

is not linear as a function of σo, then corrections based on the Amazon rainforest may not

fit for values of σo. It is important to establish that calibration of RapidScat’s Low SNR

states using land targets like the Amazon Rainforest is effective at all ranges of σo because

the primary function of RapidScat, ocean vector wind (OVW) retrieval, typically is done

with low values of σo, in the range of -12 dB to -35 dB.

The method used to compare RapidScat High SNR data to Low SNR data is similar

to that in Chapter 4. RapidScat σo measurements are extracted from the L1B dataset

the same way, but is also included here. Comparison selection and mean calibration bias

estimation are similar.

5.2.1 Masking

RapidScat data is extracted from L1B data using the spatial mask created using

QuikSCAT data for each of the study areas (Figure 3.11). Using the σo dB/deg incidence

angle from Chapter 3 in Table 3.2, θ is used to adjust each σo measurement to QuikSCAT

incidence angles. Then σo is averaged into ten-day bins. The LTOD for the σo estimate is

the mean LTOD of the σo measurements. The same ten-day bins are used as in Chapter 4

so that the seasonal variation measured in QuikSCAT can be used in the confidence interval

calculation. In the following comparison, an 80% confidence interval is used, calculated using

N = 1 years and u = 0.9 in Equation (4.1), which is repeated here for convenience:

σo ±
(
zu

s�√
M

+ tu(N)
s4√
N

)
, (5.1)

where zu is the standard normal density function, tu(n) is the student t distribution function,

u is the percentile, s� is the standard deviation of M measurements made by RapidScat and
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Figure 5.1: SNR states for RapidSCat for each ten-day period of the year.

s4 is the seasonal variation as measured by QuikSCAT in Section 4. This process results in

with σo estimates and confidence intervals for each ten-day bin, SNR state, and study area

(mean σo value).

5.2.2 Comparison selection

Where measurements exist for both High SNR and a Low SNR state in the same

ten-day bin and meet LTOD criteria, a direct comparison can be made. Figure 5.1 shows

the overlap of the High SNR state with each of the SNR states for each ten-day bin; however,

there may not be qualifying measurements for every ten-day bin with overlap from every

study area. Studies of the RapidScat diurnal cycle over land in [13, 14] and Appendix A, for

land targets used in this report, show that σo is a function of LTOD. In order to limit the
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effects of LTOD on the comparison between High SNR and Low SNR σo, the LTOD criteria

in Table 3.2 is used. Comparisons can be made between between ascending and descending

passes of the same polarization as long as the LTOD criteria is met.

5.2.3 Mean calibration bias estimation

Mean calibration bias estimates for each polarization and state combination in each

study area are made by calculating the difference of the weighted averages of the High and

Low SNR ten-day σo estimates. The weights are proportional to the number of measurements

for each ten-day estimate. The confidence interval for the mean bias estimates is the weighted

average of the confidence intervals for each bias estimate. Let

E = zu
s�√
M

+ tu(N)
s4√
N
. (5.2)

The confidence interval for the Low SNR σo is σo ± ELow and for the High SNR σo is

σo ± EHigh. For each bias estimate, the confidence interval is calculated using

Ebias =
√
E2

Low + E2
High. (5.3)

The confidence intervals for each mean bias estimate shown in Figure 5.9 are the weighted

averages of Ebias associated with the bias estimates used to calculate the given mean bias

estimate. This results in mean bias estimates with confidence intervals for each polarization,

SNR state, and study area.

Confidence intervals for each comparison account for year-to-year seasonal variation

for each study area and uncertainty related to the number of measurements used in the

ten-day average, e.g., fewer measurements result in a larger confidence interval. The small

confidence intervals for the Amazon and Congo rainforests allow for precise evaluation of

the linear adjustments to σo, while the larger confidence intervals in the lower signal study

targets are mostly useful for verifying the gain adjustment, i.e., even with the large confidence

intervals, the comparisons from lower signal study areas allow for observations about the

relationship between the RapidScat High SNR state and the Low SNR states as a function
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of σo. Confidence intervals can be used in analysis so as to avoid misclassifying year-to-year

seasonal and measurement variation as variation between High SNR and Low SNR data.

5.2.4 Results and Observations

In order to observe the relationship between High SNR and Low SNR data as a

function of σo, comparisons between High and Low SNR σo from all of the study areas are

included in Figure 5.2. The comparisons for each calibration target are shown separately for

clarity in Figures 5.3 to 5.8. Overall, the trend in Figure 5.2 appears to be linear, even in

lower σo study areas, so the linear adjustments to σo are appropriate. This suggests that

the extra noise (specifically due to adjusting the gain during post processing) is zero mean

or close to it, and is not affected (biased) by the σo of the target. Closer evaluation of the

individual study areas suggests that the relationship of High SNR and Low SNR data is a

linear function of σo.

The Argentina Pampas study area comparisons for the both the Low SNR 2 and

3 states are shown in Figure 5.5. The large year-to-year seasonal variation observed by

QuikSCAT is manifest in the large confidence intervals. Most comparisons lie close to the

ideal (dotted line), and almost all of the comparisons’ confidence intervals include the ideal.

The observed mean bias estimates (shown between -10 and -15 dB σo in Figure 5.9) of the

Low SNR 2 and 3 states lie within the expected year-to-year seasonal variation, supporting

the linear model.

Results for the West Sahara study area, which contains many comparisons for both

the Low SNR 2 and 3 states, are shown in Figure 5.6. The comparisons appear noisy, in the

sense that the spread is large; however the ideal linear line generally lies in the confidence

intervals of the comparisons. The mean bias estimates are shown between -15 dB and -20

dB σo in Figure 5.9, and do include a mean bias of zero, supporting the linear model..

For the Australian desert study area the comparisons, one Low SNR 3 and several

Low SNR 2, (Figure 5.7) are very linear. A linear fit to these points is comparable to the

ideal line shown in the figure. The comparisons from this study area support the linear

model because the ideal lies well within the confidence intervals of the comparisons.
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Figure 5.2: Low SNR 1/2/3 σo compared to High SNR σo for all of the study areas. Although
there is some overlap between study areas, the comparisons generally correspond to (from
top-right to bottom-left) the Congo Rainforest, Amazon Rainforest, Argentina Pampas, West
Sahara, Australian Desert, and Sahara Desert. Comparisons are shown in greater detail by
study area in Figures 5.3 to 5.8. This figure suggests that the relationship between RapidScat’s
High SNR state and each Low SNR state is linear. See text for details about the confidence
intervals shown and for further observations.
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Figure 5.3: From the Amazon Rainforest, Low SNR 1/2/3 σo compared to High SNR σo.
Measurements are within ± 45 minutes or fall within 10-16h LTOD. There is a clear grouping
of H-pol (around -8 dB) and V-pol (around -9.5 dB) data.

The comparisons from the Sahara desert study area, Figure 5.8, generally show a

linear relationship between RapidScat High SNR σo and Low SNR σo for both the Low

SNR 2 and 3 states. The ideal lies within the confidence intervals for every comparison.

Given that this is the lowest signal study area, these results strongly suggest that the data

is unbiased by noise. Mean bias estimates from this study area lie between -25 and -30 dB

in Figure 5.9.
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Figure 5.4: From the Congo Rainforest, Low SNR 1/2/3 σo compared to High SNR σo.
Measurements are within ± 45 minutes or fall within 10-16h LTOD. There is a clear grouping
of H-pol (around -7.5 dB) and V-pol (around -9 dB) data.

Mean bias estimates in Figure 5.9 average out outliers and clarify the trends in Fig-

ure 5.2. Both the Low SNR 2 and Low SNR 3 mean biases measured in the Amazon and

Congo study areas generally lie within the confidence intervals of the mean bias estimates

from the lower σo study areas. This suggests that the relationship between Low SNR and

High SNR σo is linear. This also suggests that linear gain adjustments based on calibration

using Amazon and Congo study areas are appropriate for lower values of σo as well.
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Figure 5.5: From the Argentina Pampas study area, Low SNR 1/2/3 σo compared to High
SNR σo. Measurements are within ± 45 minutes.

The small confidence intervals of the comparisons in the Amazon Rainforest (Fig-

ure 5.3) and the Congo Rainforest (Figure 5.4) allow us to make observations about the

small variations between the High SNR and the Low SNR data. The Amazon and Congo

rainforests have similar mean σo, so they do not offer a lot of information about the linearity

of the relationship between High and Low SNR data as a function of σo. However, use of

both study areas creates more comparisons with confidence intervals such that better obser-

vations can be made about the bias between RapidScat SNR states. Calibration corrections

to Low SNR σo such that a mean bias of zero lies in the confidence intervals both of the

46



Figure 5.6: From the West Sahara studay area, Low SNR 1/2/3 σo compared to High SNR
σo. Measurements are within ± 45 minutes LTOD or fall within 6-12h LTOD.

Amazon and the Congo rainforests mean bias estimates would more likely to be independent

of year-to-year seasonal variations.

The mean bias estimates for RapidScat Low SNR 2 σo in L1B v1.1 and v1.2 data sets

are shown in Table 5.1 for the Amazon and Congo study areas. Version v1.1 Low SNR 2 σo

is biased high when compared to High SNR σo while version v1.2 Low SNR 2 σo is biased

low. While the numbers in Table 5.1 might suggest some fine tuning of the calibration could

be done, is may not be necessary. RapidScat L1B v1.2 includes calibration corrections based

on OVW calibration. That being the case, the v1.2 Low SNR 2 calibration is probably well
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Figure 5.7: From the Australian desert study area, Low SNR 1/2/3 σo compared to High
SNR σo. Measurements are within ± 45 minutes LTOD.

suited for OVW retrieval and the bias to σo measurements is not that large (the confidence

intervals of the mean bias estimates almost include a mean bias of zero).

The Low SNR 3 comparisons show a small bias in the Amazon and Congo study

areas, the corresponding confidence intervals do include a mean bias of zero: suggesting that

the bias is within the bounds of year-to-year seasonal variation. The exact measurements

for these study areas are reported in Table 5.2.

The question calibration bias may be posed as a detection problem where under

H0 : σo calibration is unbiased and under H1 : σo calibration is biased. Selection of H0 vs
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Figure 5.8: From the Sahara Desert study area, Low SNR 1/2/3 σo compared to High SNR
σo. Measurements are within ± 45 minutes LTOD.

H1 follows the rule,

φ(CN) =

1 ∼ H1 CN > 0

0 ∼ H0 CN ≤ 0,

(5.4)

where CN is computed from the mean calibration estimate Mmean bias ± Emean bias,

CN = |Mmean bias| − |Emean bias|. (5.5)
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Figure 5.9: Mean bias of Low SNR 1/2/3 σo compared to High SNR σo for all of the study
areas. See text for details.

Using the test statistic φ, we can detect if the σo calibration is biased or not. Using the values

for the Amazon and Congo rainforests in Tables 5.1 we can say with 80% confidence that the

Low SNR 2 calibration is biased for V-pol, however for H-pol the bias is only detected in the

Amazon study area. The Low SNR 2 calibration bias is also detected in the Argentina study

area. Based on Table 5.2 and Figure 5.9, no bias is detected in the Low SNR 3 calibration.

[19]

In summary, linear adjustment of σo is an appropriate way to compensate for the

lower SNR states exhibited in RapidScat data from August 2015 to March 2016. No analysis

of the Low SNR 1 σo is possible using the method this chapter. Based on the mean bias
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Study Area & Mean Bias Mean Bias
Polarization v1.1 (dB) v1.2 (dB)

Amazon H-Pol 0.29 ± 0.17 -0.16 ± 0. 13
Congo H-Pol 0.42 ± 0.17 -0.08 ± 0.23

Amazon V-Pol 0.24 ± 0.16 -0.28 ± 0.15
Congo V-Pol 0.31 ± 0.13 -0.26 ± 0.17

Table 5.1: Low SNR 2 mean bias (Low SNR 2 σo - High SNR σo) estimates for the Amazon
and Congo study areas.

Study Area & Mean Bias
Polarization v1.2 (dB)

Amazon H-Pol 0.00 ± 0.23
Congo H-Pol 0.01 ± 0.24

Amazon V-Pol -0.10 ± 0.19
Congo V-Pol -0.02 ± 0.18

Table 5.2: Low SNR 3 mean bias (Low SNR 3 σo - High SNR σo) estimates for the Amazon
and Congo study areas.

estimates from the study areas, the linear corrections used for Low SNR 2 could be adjusted

based on the values in Table 5.1 if consistent σo measurements across RapidScat SNR states

is desired. The linear corrections for Low SNR 3 appear correct.
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Chapter 6

Conclusions

Five land targets are identified and are used to study RapidScat σo measurements at

different values. Each land target is analyzed for σo dependencies with respect to year-to-

year seasonal variation, azimuth angle, incidence angle and LTOD. Criteria is developed for

how to use these study areas to cross-calibrate RapidScat to QuikSCAT and how to calibrate

the Low SNR RapidScat states to the High SNR RapidScat state.

RapidScat instrument drift is observed by cross-calibrating the sensor to QuikSCAT,

though it is correlated with the Low SNR RapidScat states. A shift in the calibration is

observed when the RapidScat Low SNR 2 state begins. There is a lot of noise observed in

the ten-day average mean bias estimates for the RapidScat Low SNR states when compared

to the High SNR state. However, the mean bias between RapidScat Low SNR 3 state σo

and QuikSCAT σo is more consistent with the High SNR RapidScat state. Overall, the only

instrument drift appears to be related to the Low SNR RapidScat states.

Mean estimates of the bias between RapidScat and QuikSCAT are calculated. Rapid-

Scat is biased low compared to QuikSCAT. The RapidScat Low SNR 1 state σo appears

consistent with the RapidScat High SNR state σo. The difference in mean bias estimates is

similar to those found when calibrating RapidScat Low SNR state σo against the High SNR

σo. However, these mean estimates have large confidence intervals and are not suitable for

precise evaluation of adjustments that should be made to make RapidScat Low SNR state

σo the same as RapidScat High SNR σo.

Mean estimates of the calibration bias between RapidScat Low SNR state σo and

RapidScat High SNR state σo are calculated by directly comparing data from the two states.

Observations from the Amazon and Congo study areas suggest that there is a bias in the

calibration and that the gain adjustment used could use some fine tuning.
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In both the cross-calibration to QuikSCAT and the calibration against the RapidScat

High SNR state, the RapidScat Low SNR state is found to be linear. While there is a

calibration bias observed in the Amazon and Congo study areas, results from the lower

signal study ares suggest that the RapidScat Low SNR state σo is unbiased by noise.

6.1 Summary

In summary:

1. The adjustment gain for the RapidScat Low SNR 2 state could use some fine tuning.

The RapidScat Low SNR 1 and 3 states are appear consistent with the RapidScat High

SNR state.

2. Instrument drift over time is correlated with the Low SNR states.

3. By sampling σo using land targets with different radar responses, it is shown that from

-7 dB to -27 dB, RapidScat Low SNR state measurements are unbiased by noise.

4. The system is linear and simple gain adjustments are appropriate to make Low SNR

state measurements consistent with RapidScat High SNR state measurements.

6.2 Recommendations for future work

Potential future research includes:

1. Future RapidScat SNR states can be calibrated using the method outlined in this work.

2. Land targets developed in this thesis could be used for calibration of other sensors.
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Appendix A

Additional Calibration Targets

A.1 Congo Rainforest

The Congo Rainforest study area has similar backscatter to the Amazon study area,
with a QuikSCAT mean σo of -7.2 dB H-pol and -8.5 dB V-pol. QuikSCAT SIR data from
the South Africa region is used to identify the homogeneous land target corresponding to
the Congo Rainforest shown in Figure A.1, following the method in Chapter 3 (including
the subjective removal of spatial outliers). The seasonal variation for the Congo rainforest
is found to be similarly homogeneous to the Amazon rainforest (Fig. A.2). The Congo
rainforest azimuth variation (Figure A.3) is also similar to the Amazon, and is small enough
to be ignored. The first order approximation of the σo dB/ deg incidence angle relationship
is shown in Figure A.4. Like the Amazon, the Congo rainforest (Fig. A.5) experiences a
sharp increase in σo around sunrise, but in the afternoon the LTOD curve for σo indicates
that measurements from 10-16h LTOD are comparable.

Largely, the Congo rainforest study area is very similar to the Amazon in radar
response and consistency as measured by the analysis outlined my the method of Chapter 3.
Calibration in this study area is expected to be similar to that of the Amazon rainforest.
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Figure A.1: Latitude/longitude mask representing the Congo rainforest calibration target
and contains σo values in a 1 dB range.
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Figure A.2: Seasonal variation of σo for the Congo rainforest calibration target shown as the
deviation from mean σo for each flavor of QuikSCAT (with a confidence interval that is the
standard deviation of the deviation from mean σo). See text for details of how this plot is
generated.
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Figure A.3: Azimuth modulation of the Congo rainforest shown with mean σo by azimuth
angle where the confidence interval is the standard deviation of σo.
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Figure A.4: Two dimensional PDF of the distribution of σo measured by RapidScat at each
incidence angle (0.25o bins) for the Congo rainforest study area. The blue line is the first order
polynomial fit to the data and the slope of the line represents the σo dB/ deg incidence angle
relationship. The dashed line is the ± one standard deviation for the estimate.
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Figure A.5: Two dimensional PDF of RapidScat σo from the Congo rainforest calibration
target for 90 minute LTOD bins. In blue, the mean σo (o) for each LTOD bin is show with
a confidence interval that is ± the standard deviation for that bin. Notice the large increase
around sunrise.
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A.2 Argentina Pampas

The Argentina Pampas study area has lower backscatter compared to the Amazon
study area, with a QuikSCAT mean σo of -11.5 dB for H-pol and -13.3 dB for V-pol.
QuikSCAT SIR data from the South America region is used to identify the homogeneous
land target corresponding to the Argentina Pampas. The method in Chapter 3 is applied
to the SIR data within a latitude/longitude box with the same dimensions as Figure A.6.
There is a lot more year-to-year seasonal variation of σo, but uncertainty because of this is
accounted for in the confidence intervals of the calibration estimates. Azimuthal variations
(Figure A.8) are larger than seen in the Amazon study area, but on a whole are expected to
average out because RapidScat measures σo at all azimuth angles and the actual variances
are still small. Based on the LTOD curve in Figure A.10, the LTOD criteria for this study
area is that σo estimates should be within 45 minutes of each other for comparison.

While not as precise as the Amazon or Congo study areas, the Argentina Pampas
study area is effectively used sample σo at a lower value than is possible with tropical
rainforests. Confidence intervals are used to display uncertainty related to the large variances
in this calibration target so that variations in the study area are not confused with variations
between RapidScat SNR states.
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Figure A.6: This latitude/longitude mask represents the Argentina Pampas calibration target
and contains σo values in a 1 dB range.
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Figure A.7: Seasonal variation of σo for the Argentina Pampas calibration target shown as
the deviation from mean σo for each flavor of QuikSCAT (with a confidence interval that is
the standard deviation of the deviation from mean σo
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Figure A.8: Azimuth modulation of the Argentina Pampas shown with mean σo by azimuth
angle where the confidence interval is the standard deviation of σo.
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Figure A.9: PDF in two dimensions showing the distribution of σo measured by RapidScat
at each incidence angle (0.25o bins) for the Argentina Pampas. The blue line is the first order
polynomial fit to the data and the slope of the line represents the σo dB/ deg incidence angle
relationship. The dashed line is the ± one standard deviation for the estimate.
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Figure A.10: Two dimensional PDF of RapidScat σo from the Argentina Pampas calibration
target for 90 minute LTOD bins. In blue, the mean σo (o) for each LTOD bin is show with
a confidence interval that is ± the standard deviation for that bin. Notice the large increase
around sunrise.
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A.3 West Sahara

The West Sahara study area has lower backscatter compared to the Amazon study
area, with a QuikSCAT mean σo of -17.2 dB for H-pol and -17.3 dB for V-pol. QuikSCAT
SIR data from the North Africa region is used to identify a homogeneous area for this land
target. The method in Chapter 3 is applied to the SIR data within a latitude/longitude box
with the same dimensions as Figure A.11. The latitude/longitude box was chosen to select an
area of the Sahara desert that was not an erg sea, which are known to have large azimuthal
dependencies. There is a lot more year-to-year seasonal variation of σo, but uncertainty
because of this is accounted for in the confidence intervals of the calibration estimates.
Azimuthal variations (Figure A.13) are larger than seen in the Amazon study area, but on a
whole are expected to average out because RapidScat measures σo at all azimuth angles and
the actual variances are still small. Based on the LTOD curve in Figure A.15, the LTOD
criteria for this study area is that σo estimates should be within 45 minutes of each other
for comparison.

While not as precise as the Amazon or Congo study areas, the West Sahara study
area is effectively used sample σo at a low value. Confidence intervals are used to display
uncertainty related to the large variances in this calibration target so that variations in the
study area are not confused with variations between RapidScat SNR states.

68



Figure A.11: This latitude/longitude mask represents the West Sahara calibration target and
contains σo values in a 2 dB range.
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Figure A.12: Seasonal variation of σo for the West Sahara calibration target shown as the
deviation from mean σo for each flavor of QuikSCAT (with a confidence interval that is the
standard deviation of the deviation from mean σo
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Figure A.13: Azimuth modulation of the West Sahara shown with mean σo by azimuth angle
where the confidence interval is the standard deviation of σo.
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Figure A.14: PDF in two dimensions showing the distribution of σo measured by RapidScat
at each incidence angle (0.25o bins) for the West Sahara calibration target. The blue line is
the first order polynomial fit to the data and the slope of that line represents the σo dB/deg
relationship. The dashed blue line is the ± one standard deviation for the estimate.
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Figure A.15: Two dimensional PDF of RapidScat σo from the West Sahara calibration target
for 90 minute LTOD bins. In blue, the mean σo (o) for each LTOD bin is show with a confidence
interval that is ± the standard deviation for that bin.
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A.4 Australian Desert

The Australian Desert study area has lower backscatter compared to the Amazon
study area, with a QuikSCAT mean σo of -16.9 dB for H-pol and -18 dB for V-pol. QuikSCAT
SIR data from the Austrailia region is used to identify a homogeneous area for this land
target. The method in Chapter 3 is applied to the SIR data, except that a mean σo was
subjectively chosen to center the mask on in Figure A.16. There is a lot more year-to-year
seasonal variation of σo, but uncertainty because of this is accounted for in the confidence
intervals of the calibration estimates. Azimuthal variations (Figure A.18) are larger than
seen in the Amazon study area, but smaller than in the Argentina Pampas study area.
Overall, the azimuth variation is expected to average out because RapidScat measures σo

at all azimuth angles and the actual variances are still small. Based on the LTOD curve in
Figure A.20, the LTOD criteria for this study area is that σo estimates should be within 45
minutes of each other for comparison.

While not as precise as the Amazon or Congo study areas, the Australia study area is
effectively used sample σo at a low value. Confidence intervals are used to display uncertainty
related to the large variances in this calibration target so that variations in the study area
are not confused with variations between RapidScat SNR states.

Figure A.16: This latitude/longitude mask represents the Australian desert calibration target
and contains σo values in a 2 dB range.
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Figure A.17: Seasonal variation of σo for the Australian desert calibration target shown as
the deviation from mean σo for each flavor of QuikSCAT (with a confidence interval that is
the standard deviation of the deviation from mean σo
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Figure A.18: Azimuth modulation of the Australian desert shown with mean σo by azimuth
angle where the confidence interval is the standard deviation of σo.
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Figure A.19: PDF in two dimensions showing the distribution of σo measured by RapidScat
at each incidence angle (0.25o bins) for the Austrialian Desert calibration target. The blue line
is the first order polynomial fit to the data and the slope of that line represents the σo dB/deg
relationship. The dashed blue line is the ± one standard deviation for the estimate.
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Figure A.20: Two dimensional PDF of RapidScat σo from the Austrialian Desert calibration
target for 90 minute LTOD bins. In blue, the mean σo (o) for each LTOD bin is show with a
confidence interval that is ± the standard deviation for that bin.
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A.5 Sahara Desert

The Sahara Desert study area has the lowest backscatter compared to the other study
areas, with a QuikSCAT mean σo of -26 dB for H-pol and -27 dB for V-pol. QuikSCAT
SIR data from the North Africa region is used to identify a homogeneous area for this land
target. The method in Chapter 3 is applied to the SIR data, except that a mean σo was
subjectively chosen to center the mask on in Figure A.21. There is a lot more year-to-year
seasonal variation of σo, but uncertainty because of this is accounted for in the confidence
intervals of the calibration estimates. Azimuthal variations (Figure A.23) are very large due
to the presence of erg seas in the study area. However, the azimuth variation is expected
to average out when there are many measurements because RapidScat measures σo at all
azimuth angles. Based on the LTOD curve in Figure A.25, the LTOD criteria for this study
area is that σo estimates should be within 45 minutes of each other or between 6h and 12h
LTOD for comparison.

While not as precise as the Amazon or Congo study areas, the Sahara Desert study
area is effectively used sample σo at a very low value. Confidence intervals are used to display
uncertainty related to the large variances in this calibration target so that variations in the
study area are not confused with variations between RapidScat SNR states.
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Figure A.21: This latitude/longitude mask represents the Sahara desert calibration target
and contains σo values in a 5 dB range.
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Figure A.22: Seasonal variation of σo for the Sahara desert calibration target shown as the
deviation from mean σo for each flavor of QuikSCAT (with a confidence interval that is the
standard deviation of the deviation from mean σo
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Figure A.23: Azimuth modulation of the Sahara desert shown with mean σo by azimuth
angle where the confidence interval is the standard deviation of σo.
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Figure A.24: PDF in two dimensions showing the distribution of σo measured by RapidScat
at each incidence angle (0.25o bins) for the Sahara desert. The blue line is the first order
polynomial fit to the data and the slope of the line represents the σo dB/ deg incidence angle
relationship. The dashed line is the ± one standard deviation for the estimate.
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Figure A.25: Two dimensional PDF of RapidScat σo from the Sahara desert calibration
target for 90 minute LTOD bins. In blue, the mean σo (o) for each LTOD bin is show with
a confidence interval that is ± the standard deviation for that bin. Notice the large increase
around sunrise.
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