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ABSTRACT

Adjustment of RapidScat Backscatter Measurements for Improved Radar Images

Garrett Scott McDonald
Department of Electrical and Computer Engineering, BYU

Master of Science

RapidScat is a spaceborne wind scatterometer mounted on the International Space Station
(ISS). The RapidScat mission lasted from September 2014 to November 2016. RapidScat enables
the measurement of diurnal patterns of σ0 measurements. This capability is possible because of the
non-sun-synchronous orbit of the ISS, in which the local time of day (LTOD) of σ0 measurements
gradually shifts over time in any given location. The ISS platform is a relatively unstable platform
for wind scatterometers. Because of the varying attitude of the ISS, RapidScat experiences a
constant variation of its pointing vector. Variations of the pointing vector cause variations in the
incidence angle of the measurement on the ground, which has a direct effect on σ0 measurements.

In order to mitigate σ0 variations caused by incidence angle and LTOD, the dependence
of σ0 on these parameters is modeled in order to enable a normalization procedure for σ0. These
models of σ0 dependence are determined in part by comparing RapidScat data with other active
Ku-band instruments. The normalization procedure is designed to adjust the mean value of σ0

to be constant across the full range of significant parameter values to match the mean of σ0 at a
particular nominal parameter value.

The normalization procedure is tested both in simulation and with real σ0 measurements.
The simulated normalization procedure is effective at modeling and removing σ0 dependence on
incidence angle and LTOD over a homogeneous region. The variance in simulated images is
reduced by the normalization procedure. The normalization procedure also reduces variance in
real backscatter images of the Amazon and an arbitrary region in East Africa.
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CHAPTER 1. INTRODUCTION

Spaceborne wind scatterometers are radars that measure the normalized radar cross-section

of the earth’s surface (represented by σ0), which is directly proportional to the measured power of

the radar backscatter from the surface. These scatterometers are specifically calibrated for estimat-

ing near-surface ocean wind vectors from σ0 measurements (as seen in Fig. 1.1).

In addition to measuring ocean wind vectors, scatterometer data is used for a variety of

land and ice applications. Some of these land and ice applications include estimating sea ice ex-

tent, measuring Greenland ice melt, and estimating volumetric soil moisture content (see Figs. 1.2

and 1.3) [2] [3] [4]. Scatterometer data is also related to general vegetation and landscape charac-

teristics of the earth. The changes in these characteristics can be observed from year to year, which

can reveal potential climate changes. Spaceborne scatterometers have global coverage in a short

period of time (within a day or two), which enables the creation of global datasets of scatterometer

measurements and related data products (see Fig. 1.4).

Many of these data products are made into images. Many such data products use the Scat-

terometer Image Reconstruction (SIR) image algorithm. SIR images are high-resolution radar

backscatter images of land features [5]. Examples of these images can be seen in Figs. 1.2 and 1.4.

The SIR algorithm increases radar image resolution by reconstruction of the σ0 measurements us-

ing the antenna spatial response function (SRF). The SIR algorithm takes an iterative approach to

a large matrix inverse. As iterations increase, resolution and noise error both increase. The SIR

algorithm provides a good trade-off of resolution and error noise [6].

RapidScat is a spaceborne scatterometer that flew its mission from 2014 to 2016. This

radar is mounted on the International Space Station (ISS) to provide additional scatterometer data

in the Ku-band frequency band (see Fig. 1.5). This mission was launched during a time when other

Ku-band scatterometers were either in development or a non-functioning state.
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Figure 1.1: Rendering of global ocean wind vector measurements, as well as land backscatter mea-
surements. This represents the primary application for spaceborne wind scatterometers. From the
Brigham Young University (BYU) Microwave Earth Remote Sensing (MERS) group’s scatterom-
eter climate pathfinder (SCP) website [1].

In this thesis, a method is developed for improved calibration of RapidScat backscatter

measurements (or σ0) for the creation of radar backscatter images. The RapidScat scatterome-

ter has already had basic validation and calibration tests done to test the consistency of its data

measurements by comparing with the QuikSCAT scatterometer [8]. This report focuses on how to

compensate for RapidScat attitude and orbital irregularities to reduce the variability of measure-

ments for improved radar images. The estimated models of these factors also suggest a method for

adjusting RapidScat measurements and other Ku-band radar measurements to a common mean,

despite differences in local time of day and incidence angle. The adjustment of mean values in this

way can improve the calibration of every dataset.

In this thesis, relevant background information is first introduced in Chapter 2. Next,

the method for model estimation (Chapter 3) and the procedure for σ0 adjustment are explained
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Figure 1.2: Masked SIR image of Antarctica using NSCAT data. This image shows land features
and sea ice surrounding the continent (other land masses have been removed). An image like this
can be used to estimate the area of sea ice and the changing extent over time. From the BYU SCP
website [1].

(Chapter 4). Finally, the results of the adjustment procedure are examined by analyzing adjusted

backscatter images (Chapter 5).
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Figure 1.3: Combined SIR image of QuikSCAT and ASCAT data over Greenland. This image
represents the results of both Ku-band and C-band measurements. Because of the unique properties
of microwave pulses, properties of the Greenland snowpack can be inferred from this image. From
the BYU SCP website [1].

Figure 1.4: A global SIR image of NSCAT backscatter data, with ocean-only measurements
masked out. Different backscatter values are correlated with various land characteristics. An
image like this can be created after a few days of collecting data. From the BYU SCP website [1].
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Figure 1.5: Artist’s rendering of the RapidScat scatterometer on the Columbus module of the
International Space Station (ISS). From JPL’s RapidScat Mission website [7].
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CHAPTER 2. BACKGROUND

Essential background information is presented in this chapter to explain the basics of mi-

crowave spaceborne scatterometry, and how those issues affect the RapidScat mission. The Rapid-

Scat mission and SIR images are introduced, and the purpose of σ0 adjustment is explained.

2.1 Scatterometry

Spaceborne scatterometers observe σ0, which is a measurement of the radar backscatter of

the earth’s surface. The σ0 measurement is related to the power received by the radar equation.

The power received is calculated as

Pr =
Ptλ

2

(4π)3L

∫
A

G2σ0

R4 dA. (2.1)

The normalized radar cross-section σ0 can then be estimated by the “X factor” method, where

σ
0 =

Pr

X
, (2.2)

and where X is the “X factor,” which is calculated as

X =
Ptλ

2

(4π)3L

∫
A

G2

R4 dA. (2.3)

In the above equations, Pr is the power received, Pt is the transmitted power, λ is the wavelength of

the radar pulses, G is the antenna gain, L is the system losses, R is the range to the earth’s surface,

and A is the area of the antenna beam footprint on the ground. Each of the values in the “X factor”

(Eq. 2.3) is known or is estimated quite precisely, which makes the calculation of σ0 by Eq. 2.2

feasible. The values of the X factor are pre-computed and stored in a lookup table. Errors caused

by this calculation are not considered in this report. However, some of the basic assumptions for
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Figure 2.1: Compilation of spaceborne scatterometer missions since Seasat. From the BYU SCP
website [1].

this X factor table calculation vary over time, due to changing altitude, attitude, and SNR states

for the RapidScat instrument. These issues have been compensated for in previous analyses [9].

Thus, σ0 is computed quite precisely. However, the observed σ0 is also a function of the incidence

angle and the surface characteristics. Additionally, some noise is present in σ0 measurements from

thermal noise of the receiver. The exact variations of σ0 are uncertain, since they are caused by

complex electromagnetic processes with many variables, including variables such as roughness of

the surface and the viewing angle. In this thesis, variations of σ0 caused by changes in incidence

angle, local time of day (LTOD), and attitude changes are the principal parameters considered.

2.2 History of Scatterometry

Several spaceborne wind scatterometers have flown missions over the past few decades.

These radars operate in either Ku-band or C-band frequencies. There are two main measurement

configurations for these scatterometers: fan beams and scanning pencil beams. A summary of these

scatterometers can be seen in Fig. 2.1 and Tables 2.1 and 2.2. See [10] for a detailed introduction

to spaceborne radars and remote sensing.

8



Table 2.1: Fan Beam Scatterometer LTOD at Equator Crossing. The terms “Asc” and “Desc” refer
to ascending and descending nodes, respectively.

Seasat NSCAT ASCAT-1/2 ERS-1/2
All 10 pm Asc

10 am Desc
9:30 pm Asc
9:30 am Desc

10/10:30pm Asc
10/10:30am Desc

Table 2.2: Pencil Beam Scatterometer LTOD at Equator Crossing. The terms “Asc” and “Desc” re-
fer to ascending and descending nodes, respectively. The term “Quik” refers to the QuikSCAT

scatterometer and satellite.
SeaWinds/Quik RapidScat Oscat-1/2 TRMM
10pm/6am Asc
10am/6pm Desc

All 12 am Asc
12 pm Desc

All

2.2.1 Fan Beam Scatterometers

Scatterometers with fan beams include the Seasat-A Satellite Scatterometer (SASS) on

the Seasat-1 satellite, the NASA Scatterometer (NSCAT) on the ADEOS satellite, the Advanced

Scatterometer (ASCAT) on the Metop-A satellite, ASCAT-2 on Metop-B, the AMI (in Wind Scat-

terometer Mode) on the ERS-1 satellite, and the AMI on ERS-2. SASS was the first spaceborne

wind scatterometer to be tested by NASA. It helped to lay the groundwork for wind scatterometry

by gathering σ0 measurements from multiple azimuth angles. These measurements were colocated

with in situ measurements made from buoys and other instruments, which enabled the creation of

a geophysical model function (GMF) to correlate σ0 measurements with wind speed and direction

on the ocean. NSCAT followed SASS, and the low-noise measurements of NSCAT enabled a more

accurate estimate of the GMF and ocean wind vectors across the globe. SASS and NSCAT are both

Ku-band instruments. ASCAT-1 and -2, and ERS-1 and -2, are C-band instruments. The C-band

scatterometers were built and designed by the European Space Agency (ESA) and were used to

develop C-band GMFs.

NSCAT data is used as a primary reference in this thesis, since it provides low-noise σ0

measurements across a large range of incidence angles. NSCAT measures the earth with six fan-

beam antennas. Each fan beam antenna on NSCAT creates a long, thin footprint on the ground,

each at a different azimuth angle (see Fig. 2.2). As the instrument orbits, the antenna beams
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Figure 2.2: Fan beam measurement geometry for NSCAT. Because of wide beamwidths, the
backscatter measurements span a large range of incidence angles, as seen in Fig. 2.4. Figure
taken from Graf, et al [11].

measure over two swaths around the orbital track of the satellite, with a null measurement space in

the nadir part of the swath. The antenna pattern is illustrated for NSCAT in Fig. 2.2.

2.2.2 Pencil Beam Scatterometers

Scatterometers with pencil beams include the SeaWinds instrument on the ADEOS-II satel-

lite (known as SeaWinds), the SeaWinds instrument on the QuikSCAT satellite (known as QuikSCAT),

the SeaWinds instrument on the International Space Station (known as RapidScat), the SCAT in-

strument on the Oceansat-2 satellite (Oscat), and Oscat-2 on the SCATSAT-1 satellite (Oscat-2).

Additionally, the Chinese launched a scatterometer called HY-2A, but its data was not accessible

for this thesis. These instruments are all Ku-band scatterometers.
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Although it is not designed to be a scatterometer, the precipitation radar (PR) on the Trop-

ical Rainfall Measuring Mission (TRMM) satellite is another Ku-band instrument that measures

σ0 with a scanning pencil beam. The TRMM PR is designed for 3-D precipitation mapping, and

its pencil beam is electronically scanned using a phased-array antenna. The PR reports a near-

surface σ0 value that is comparable to scatterometer measurements, although the incidence angle

of measurements is much lower, creating higher σ0 measurements than Ku-band scatterometers.

For simplicity, the TRMM PR dataset is referred to as TRMM for future sections of this thesis.

The data from many of these pencil beam instruments are considered in this thesis, since

they all have similar operating frequencies and antenna configurations. Each of the SeaWinds scat-

terometers (QuikSCAT, SeaWinds, and RapidScat) have very similar hardware, with only minor

modifications to RapidScat, in order for it to function on the International Space Station (ISS), at

a different altitude than the other SeaWinds scatterometers. Oscat also has a rotating beam, but it

functions at different incidence angles than the SeaWinds instruments, and it has differing signal

processing hardware. Most of these scatterometers and radars orbit in a sun-synchronous orbit.

RapidScat and TRMM do not, however. For both of these instruments, their lower-inclination

orbits are not sun-synchronous and global coverage is not possible.

Because of its long mission life and low-noise backscatter measurements, QuikSCAT’s

dataset has become the standard for pencil-beam scatterometer calibration. QuikSCAT completed

a mission of 10 years. QuikSCAT orbits close to 800 km above the geoid and measures over nearly

every geophysical location. It has a sun-synchronous orbit, so it achieves over 90 percent global

coverage each day and 97 percent coverage in 2 days, and it crosses the equator at approximately

the same local time of day (LTOD), separated by 12-hour intervals. It has a 1,800-kilometer-wide

beam swath.

2.3 Scatterometer Calibration

To improve the precision of σ0 measurements, each scatterometer is calibrated to be con-

sistent with in situ measurements and other scatterometers. Only scatterometers that emit in the

same frequency band are used for this comparison.

In order to calibrate all scatterometer measurements to have similar mean values at every

location on the earth, σ0 values must be adjusted to appear to be effectively at the same incidence
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Figure 2.3: Pencil-beam measurement geometry for RapidScat. Note that incidence angle is related
to the surface normal vector of the earth. From JPL’s RapidScat mission website, with alterations
[7].

angle and LTOD values. This adjustment of values according to incidence angle and LTOD can

only be done through modeling σ0 dependence on these parameters.

2.4 Incidence Angle Effects on σ0

One significant parameter affecting σ0 is incidence angle, which is the angle between the

radar boresight and the surface normal vector of the earth (see Fig. 2.3). Backscatter measurements

have a generally decreasing value as incidence angle increases, which can be seen in measurements

made by NSCAT in Fig. 2.4. Fig. 2.5 shows the general relationship expected for σ0 dependence

on incidence angle changes, showing how the dependence is altered for different surface charac-

teristics.

An example of incidence angle variation can be seen with fan beam scatterometers, such as

NSCAT (see Fig. 2.4). Throughout its mission life, NSCAT backscatter measurements exhibited an
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Figure 2.4: Plot of σ0 versus incidence angle for NSCAT data over the Amazon, using ascending
nodes. Note that NSCAT shows a slope of -0.13 dB/deg (represented by the letter “B”) over the
same incidence angle range that RapidScat spans (indicated in grey over the range of 45–53◦). The
fit line shown is a least-squares fit to the NSCAT data in this range.

average slope of σ0 dependence on incidence angle that is close to−0.13 dB/deg over the Amazon

across the range of incidence angles measured by RapidScat.

Incidence angle effects on σ0 are not as prominent for pencil beam scatterometers as they

are for fan beam scatterometers. This is because pencil beam scatterometers have a very narrow

beamwidth, so they typically cover only a narrow incidence angle range. QuikSCAT is a pencil

beam scatterometer, with beamwidths of 1.6 and 1.4 degrees for the inner and outer beams, respec-

tively, as well as a very small change in incidence angle values over its mission life. RapidScat

exhibits a much larger incidence angle range, close to a range of 45–53◦.
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Figure 2.5: Microwave radar incidence angle dependence for different surface characteristics. This
figure shows general relationships of σ0 with incidence angle in dB space. The dependence shown
by NSCAT in Fig. 2.4 is very similar to the curve labeled “very rough surface,” since the Amazon
rainforest appears very “rough” in the Ku-band frequency range, largely due to volume scattering.
From Ulaby et al., 1982 [12].

2.5 Local Time of Day Effects on σ0

Local time of day (LTOD) can influence σ0 variations significantly, due to changes in

electromagnetic properties of vegetation throughout the day. Over the Amazon, it is postulated

that this peak at 6am is caused by dew formation on the leaves of jungle vegetation, since water

is the most significant electromagnetic scatterer in vegetation in the microwave frequencies [13].

RapidScat is the first Ku-band scatterometer to take measurements of the same location over a

range of local times. This span of LTOD in measurements is because RapidScat is in a non-sun-

synchronous orbit, unlike QuikSCAT and NSCAT. RapidScat data shows that σ0 variations from

LTOD can be significant and that they are coupled with σ0 variations from incidence angle.

Fig. 2.6 shows the average daily changes for σ0 over the Amazon. This figure is a plot

of measurements from the first five months (the Amazon wet season) of RapidScat data in 2015.
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Figure 2.6: Scatter plot of σ0 variation over 24 hours of LTOD, as observed by RapidScat. The
mean and standard deviation is shown for each hour. Includes all data from the inner beam over
the Amazon mask, day 1–151, 2015. Mean is represented by circles, and standard deviation is
represented by horizontal bars. Note the distinct increase in backscatter values between 5 and 10
am.

Only the first five months of data are used in order to avoid seasonal effects. Note that the mean

σ0 value changes cyclically over the day on average, most notably in the morning, close to 6 am.

A sinusoidal model with a period of 24 hours is necessary to model such behavior. However,

the gradual nature of the changes in the mean σ0 across the range of LTOD values (see Fig. 2.6)

suggests that σ0 measurements over a few hours (2–4 hours) of LTOD can be modeled as a first-

order polynomial or a second-order polynomial, rather than a sinusoid.

15



2.6 Compensation for σ0 Variation

In order to combine RapidScat backscatter measurements for a radar backscatter image at

a fixed incidence angle, changes to σ0 values caused by radar pointing and LTOD variation must

be compensated for. To do this compensation, RapidScat σ0 dependency on significant parameters

is modeled.

To make radar images from fan beam scatterometer data, backscatter changes caused by

incidence angle variations are compensated for. This compensation is necessary because fan beams

have a very large beamwidth, and so they measure over a large range of incidence angles (see

Fig. 2.2 and 2.4). This span of incidence angles occurs for every measurement. Incidence angle

effects on σ0 can be readily modeled and compensated for precisely with fan beam data because

every antenna measurement is taken over a large range of incidence angles.

In this thesis, σ0 dependence on incidence is plotted for RapidScat data over the Amazon,

and a similar relationship is observed. Because a similar pattern is observed (over a smaller inci-

dence angle range), a similar compensation procedure that used for fan beams can be applied to

RapidScat. For RapidScat data, however, plotting measurements of σ0 across a significant range

of incidence angles requires multiple measurements. This means that modeling σ0 dependence on

incidence angle requires many more data points to be estimated accurately. The dependence of

backscatter values on incidence angle is analyzed for several Ku-band scatterometers and Rapid-

Scat in order to create a model and then adjust the σ0 values.

2.7 SIR Images

The Scatterometer Image Reconstruction (SIR) image algorithm enables the creation of

enhanced-resolution backscatter images of the earth. The SIR algorithm assumes that measure-

ments in the same geographic location are not affected by changes in radar pointing or the local

time of day (LTOD). When these assumptions are violated, the error in the image increases. Be-

cause RapidScat data varies with radar pointing and LTOD, σ0 dependence on these parameters is

normalized to be constant across the full range of these parameter values.
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2.8 RapidScat Mission

The RapidScat mission lasted from September 2014 to August 2016. It was designed to be

a rapid replacement to the QuikSCAT scatterometer, which stopped functioning properly in 2009.

The RapidScat mission enables the continuation of the Ku-band scatterometer dataset. Develop-

ment for RapidScat began in 2012 and was completed in 2014. This rapid production timeline was

enabled by retrofitting the QuikSCAT engineering model with additional commercial parts to meet

the specific needs of the RapidScat mission.

RapidScat is installed on the Columbus module of the International Space Station (ISS),

instead of a dedicated satellite platform (see Fig. 2.7). Using the ISS platform reduces many of

the usual manufacturing and launch costs of a spaceborne scatterometer mission. Though not

an ideal platform for an active radar instrument, the RapidScat mission continues the valuable

dataset created by QuikSCAT and other Ku-band scatterometer data. Additionally, the non-sun-

synchronous orbit of the ISS enable measurements from various LTODs, which is new data that

was not previously available for Ku-band scatterometers.

2.8.1 Orbital Variations

RapidScat has an inclined equatorial non-sun-synchronous orbit, so the measurements are

taken at varying LTODs as the orbit precesses over time. The ISS orbit only passes locations be-

tween 51.6 degrees North and South, and RapidScat observes each location at a slightly different

LTOD as the orbit precesses. Full coverage of the complete orbit is accomplished within 40 hours.

A full 24 hours of LTOD measurements are measured over a time period of 2 months [7]. Using

RapidScat measurements from a range of LTODs enables diurnal cycles for scatterometer mea-

surements to be characterized. However, this also means that σ0 measurements change slightly

every day in the same location, which introduces noise into radar images.

2.8.2 Attitude Variations

The ISS is an unusual platform for a spaceborne scatterometer. Most spaceborne scat-

terometers are mounted on a satellite platform dedicated for radars and other scientific instruments.

RapidScat suffers from measurement errors because of the ISS platform. The pitch, roll, and yaw
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Figure 2.7: The RapidScat scatterometer on the Columbus module of the International Space
Station (ISS). RapidScat was launched to replace the QuikSCAT mission. Image courtesy of
NASA [7].

of the space station constantly change throughout each orbit by a few fractions of a degree, which

causes variations in the measurement incidence angle as the radar antenna rotates. RapidScat has

a much larger incidence angle variation than other pencil beam scatterometers like QuikSCAT be-

cause of the attitude variations of the ISS. The variation in incidence angle requires adjustment of

σ0 values for the creation of low-noise SIR images.

2.8.3 Analysis of Attitude Changes

To demonstrate how incidence angle values change throughout each orbit, data from four

arbitrarily-chosen and consecutive orbital revolutions of RapidScat are considered (from day 305,

2014). The data from these revolutions are typical of data throughout the mission. The data show

a distinct periodic variation in incidence angle values as the antenna rotates, as seen in Fig. 2.8.

Because the incidence angle values are so directly correlated with the rotation of the antenna, it
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Figure 2.8: Plot of incidence angle versus antenna rotation angle for RapidScat (scatter plot). Note
the spread of values as the antenna rotates. This represents all the incidence angle values within
four orbital revolutions around the earth, with no time correlation. This plot suggests a non-nadir
pointing angle for the spacecraft. RapidScat stops emitting for the gap in azimuth angle values
(called sector blanking) in order to avoid damaging an ISS solar panel.

appears that the attitude of the spacecraft is the dominant cause of the incidence angle variation.

The variation of incidence angle because of antenna rotation suggests that the ISS is maintaining

a non-nadir pointing angle. The effect of attitude changes can be seen in Fig. 2.9, which shows a

direct correlation between the reported roll values of the instrument and the range of variation in

incidence angle. Because of these results, attitude is assumed to be the principal effect on incidence

angle values in this thesis.

In the next chapter, models for normalizing σ0 variations are considered. RapidScat σ0

measurements are used to estimate models of σ0 dependence on various parameters. These models

are used in Chapter 4 to adjust simulated σ0 values and show the effect of adjusting σ0 on SIR

image quality.
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Figure 2.9: Plot of the range of incidence angle variation compared to the ISS roll angle. Note that
as the roll angle increases, the variation in incidence angle also increases. Each value (marked by
an “X”) was calculated by binning the incidence angle data into 0.05 degree roll angle bins and
then subtracting the minimum incidence angle value from the maximum incidence angle value.
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CHAPTER 3. MODEL DEVELOPMENT

The goal for adjusting RapidScat σ0 measurements is to compensate for undesired varia-

tions of σ0 caused by several parameters, such as incidence angle and spacecraft attitude. Unde-

sired variation in σ0 is compensated for by a normalization procedure, where the dependence of

σ0 on each significant parameter is adjusted to yield a single, constant mean across the full range

of the parameter values. This normalization procedure can improve SIR image quality. In order to

do this normalization procedure, RapidScat σ0 dependence on significant parameters is modeled.

In this chapter, RapidScat σ0 dependence on each significant parameter is modeled. In

order to do this, the parameters that are considered significant to σ0 variation are first determined

by considering the peculiarities of the RapidScat mission compared to previous sensors. Next,

model structure is determined by comparing RapidScat measurements with multiple Ku-band in-

struments. Finally, model coefficients are estimated by a least-squares method. Models for σ0

dependence on incidence angle and LTOD are used to normalize dependence on each parameter

in Chapters 4 and 5. In addition, models for roll angle, pitch angle, and azimuth angle are used to

measure the effectiveness of σ0 adjustments for RapidScat. Simulations are used to demonstrate

the validity of this approach in Chapter 4, and the procedure is applied to real RapidScat data to

make SIR images in Chapter 5.

3.1 Significant Parameters

As mentioned in Chapter 2, a significant issue for RapidScat is its spacecraft platform, the

International Space Station (ISS). The ISS has a variable attitude and altitude, and the orbit is not

sun-synchronous. Attitude variations cause changes in incidence angle, and orbit precession causes

changes in the local time of day (LTOD) for each σ0 measurement. For a sun-synchronous orbit,

measurements in a specific location happen only at one local time for an ascending or descending

pass, respectively. Because of the non-sun-synchronous orbit of the ISS, RapidScat measures any
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location at multiple varying local times, as the orbit precesses. RapidScat measurements span a

full 24 hours of local time over the course of 2 months in any specific location.

Historically, the platform attitude has been stable for pencil-beam scatterometers, which

means the measurements are measured at a single incidence angle per beam, with minimal varia-

tion. For RapidScat, incidence angle values span a range close to 3 degrees over a single orbital

pass for both beams.

Changes in ISS attitude and altitude can significantly affect the ability of RapidScat to make

accurate σ0 measurements, due to range gating and ambiguous Doppler slice selection. However,

these effects have been included in NASA Jet Propulsion Laboratory (JPL) processing of the L1B

files used for this thesis [9]. L1B data files contain vectors of sequential measurements from the

instrument. The JPL σ0 values in the data are considered to be accurate in this thesis, so error in

σ0 measurements is assumed to not be caused by range and pointing-vector changes. However,

LTOD and incidence angle variation are shown in this thesis to produce variability in the values of

the σ0 measurements.

When making radar images (such as SIR images), changes caused by these parameters

lead to noisy pixel values, since measurements from multiple passes are combined, which include

different LTOD and incidence angle values. SIR images are enhanced-resolution radar images

created from scatterometer L1B data [14]. In order to make these images, the σ0 measurements

are assumed to be azimuthally isotropic, and σ0 variations caused by incidence angle variations

are normalized to be at a single, nominal incidence angle. LTOD has historically been constant

for scatterometer data, because previous scatterometers were flown in sun-synchronous orbits.

However, this is not the case for RapidScat measurements. SIR images are typically made as

1-day, 2-day, 4-day, or 30-day images, and a significant amount of variation in RapidScat σ0 is

caused by LTOD changes over these day ranges.

Ideally, variations in σ0 measurements that are not caused by vegetation and other land

features are removed so that the images primarily represent land characteristics. Simple models

of backscatter versus LTOD, incidence angle, and other parameters can be employed to compute

adjustments to σ0 in order to normalize variability in σ0 caused by variations of these parameters

from their nominal value.
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Figure 3.1: Scatter plot of σ0 versus roll angle, including the mean (circles) and standard deviation
(bars) at several roll angle bins. The solid line in the middle of the data is the first-order polynomial
(linear) model of σ0 dependence on roll angle. Note the definite downward slope. This model has
a slope of -0.586 dB/deg (represented by the letter “B”). Data from days 1-151 of 2016 over the
Amazon mask.

Since incidence angle variations for RapidScat are caused by variations in the attitude of

the ISS, attitude variations are considered to be significant parameters that affect σ0. Roll and pitch

angles can both affect σ0 values. This can be seen by a direct correlation between σ0 measurements

and the roll and pitch angles, as seen in Figs. 3.1 and 3.2. Fig. 3.1 shows a slope of -0.59 dB/deg

for σ0 dependence on roll angle in dB space. Fig. 3.2 shows σ0 dependence on pitch angle in dB

space, but there is not an clear model to use for σ0 dependence on pitch angle, even though there

is a significant correlation. Since there is a significant correlation for both of these parameters, σ0

dependence on both roll and pitch angle are used as metrics for evaluating the effectiveness of σ0

adjustments. If the magnitude of the slope of σ0 dependence on roll or pitch angle is reduced, the

adjustment is considered to be effective.

Since the SIR algorithm assumes that σ0 is azimuthally isotropic, σ0 dependence on az-

imuth angle is also a significant metric to consider when adjusting σ0 measurements. RapidScat

data is already fairly isotropic in this sense, but it is not as good as QuikSCAT data (see Fig. 3.25).

Adjustments to σ0 are considered to be effective if the amount of variation in σ0 across the full

range of azimuth angles is reduced.
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Figure 3.2: Scatter plot of σ0 versus pitch angle, including the mean (circles) and standard de-
viation (bars) at several roll angle bins. Note that the mean values of each bin do not follow a
consistent pattern that reflects a clear model for σ0 dependence on pitch angle. However, σ0 is
dependent on pitch angle to some degree. Data from days 1-151 of 2016 over the Amazon mask.

In total, five parameters are chosen for modeling σ0 dependence because of their signifi-

cant effect on σ0 values. These parameters are roll angle, pitch angle, azimuth angle, LTOD, and

incidence angle. By modeling σ0 dependence on each parameter, it is possible to normalize σ0 de-

pendence, as well as measure the effectiveness of σ0 adjustments. For simplicity, the dependence

of σ0 is modeled for each parameter each time that σ0 is adjusted. In other words, the modeling

and normalization is done sequentially. Since the models of σ0 dependence are not independent,

the coefficients of each model may change as σ0 values are altered. The models of σ0 depen-

dence are explained in this chapter, and the models are used in the next chapter for removing this

dependence.

3.2 Data Masking

To estimate the coefficients of a σ0 dependence model, the data are restricted to measure-

ments taken within a homogeneous data target, meaning there is a nearly uniform response across

all azimuth angles. This homogeneity enables identification of σ0 dependence on the significant

parameters, such as incidence angle or LTOD.
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To restrict data to be within a homogeneous region, a mask is created over the Amazon

rainforest. The Amazon is chosen for its homogeneity of vegetation and landscape over a large

region and minimal changes from day to day. The mask is chosen from locations that histori-

cally (over several years) have an average backscatter value within ±0.5 dB of the mean value of

Amazon measurements. This mask is made using an average of 4-day QuikSCAT images from 10

consecutive years, using data only from the last three months of the year (October–December) to

remove seasonal variations in σ0. QuikSCAT images are used to determine homogeneous locations

because of the long mission life and low measurement noise of the QuikSCAT mission.

The Amazon mask is chosen by using an iterative algorithm [8]. First, an average image

is formed from QuikSCAT data. In this case, 4-day SIR images from the last three months of

the years 1999-2008 are averaged together. A pixel value that is representative of the Amazon is

chosen as the initial mean value of the mask. Then all pixel values in the image are compared

to this initial mean value. All the pixels in the image that are within ±0.5 dB of the mean value

are included in the mask. The algorithm iterates by calculating a new mean value from the pixels

contained in the current mask. The pixels in the image are then compared with this new mean

value. Pixel values that fall within ±0.5 dB of the new mean value are included in the new current

mask. This algorithm repeats until the mask is no longer altered significantly between iterations.

To achieve this final mask, the algorithm is iterated 100 times. Then regions that are not part of

the Amazon rainforest are removed, since heavily forested regions in other parts of South America

tend to be included by this algorithm. The mask used in this chapter can be seen in Fig. 3.3.

In this chapter, the mask over the Amazon is used to limit which RapidScat σ0 measure-

ments are included for estimating models of σ0 dependence over the Amazon. Only measurements

that are centered within the mask locations are included. Restricting data to be in these locations

helps to ensure that any variations that occur to σ0 across the range of a parameter value are caused

by that parameter, instead of spatial variation in the landscape.

3.3 Estimating Models

Other Ku-band scatterometers and radars can be employed to characterize a model for

RapidScat data. To estimate a model for RapidScat σ0 dependence, the σ0 dependence on a
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Figure 3.3: Image of the mask locations over the Amazon rainforest, superimposed over a SIR
radar image of South America. The dark pixels over the Amazon rainforest designate the mask.
This mask represents the pixels that are within ±0.5 dB of the mean value of all the pixels in the
mask. This mask was created by using pixel values in a 10-year average QuikSCAT SIR image.

parameter is first plotted for several Ku-band instruments. Then the RapidScat model is designed

by comparing its measurements to these other Ku-band scatterometer measurements.

Backscatter measurements from masked locations are plotted versus a parameter, and a

least squares fit is used to estimate a model for the dependence of σ0 on this parameter. A uni-

form sampling distribution of parameter data helps to ensure that this least squares method works

effectively. However, using masked data creates non-uniform sampling distributions for most pa-

rameters. The sampling distribution for each σ0 dependence model is analyzed in subsequent

sections to determine how accurate the models are, even without a completely uniform sampling

distribution for each parameter.

The σ0 measurements are modeled for each significant parameter as a mean σ0 functionva-

lue, plus some variation caused by changes in the surface, noise in the receiver, and other parameter

variations. The mean σ0, f (x), is a function of the significant parameter and reflects any significant

σ0 dependence. The variation from the mean is represented by ν and is modeled as white noise.

26



The modeled σ0

σ
0 = f (x)+ν dB, (3.1)

where σ0 is a vector of σ0 measurements, f (x) is an affine model of the mean σ0, x is a vec-

tor of the significant parameter values, and ν ∼ N[0,σ2
ν I] is a vector of independent, identically-

distributed (iid) normal random variables. The affine model, f (x), is defined by an observation

matrix, H, multiplied by a coefficient vector, c,

f (x) = Hc, (3.2)

where the coefficients are estimated according to a least-squares psuedo-inverse,

ĉ = (H>H)−1H>σ
0, (3.3)

and H is a known matrix of predetermined basis vectors. Because the coefficients are estimated by

a least-squares psuedo-inverse, the affine model f (x) can be estimated by a projection of σ0 onto

the space of the observation matrix, H, where the estimate

f̂ (x) = Hĉ

= H(H>H)−1H>σ
0

= PHσ
0.

(3.4)

Only the affine model f (x) is estimated for each parameter. The unknown variance caused by

unmodeled parameters and receiver noise is ignored.

This least-squares method is used in this chapter to estimate f (x) for each significant pa-

rameter that affects σ0. Each model for σ0 dependence is either used to normalize the σ0 depen-

dence or to create a metric to test the effectiveness of adjusting σ0.

3.3.1 Model Assumptions

The variation in the model (ν) is assumed to be normally distributed. Since receiver noise

is actually additive Gaussian white noise, in dB space it is log normal. Two histograms of some
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RapidScat σ0 values in the Amazon mask for a range of six days are shown in Fig. 3.4. This figure

shows that the distributions both look nearly normal, though the long tails on the left suggest

they may be log normal. Since several thousand measurements are combined, for simplicity, the

distributions are assumed to be normal. Future analysis can include the potential mean bias caused

by using least squares with a log normal distribution.

3.4 Incidence Angle Model

In order to estimate the model for σ0 dependence on incidence angle for RapidScat, Ku-

band σ0 measurements from various instruments are compared. For this analysis, NSCAT, Oscat,

TRMM, QuikSCAT, and RapidScat data are compared. For each dataset, σ0 measurements are

plotted as a function of their respective incidence angle measurements. These plots are combined

together into a single plot to show the general shape of Ku-band σ0 response to incidence angle

over the Amazon (see Figs. 3.5 and 3.7).

The σ0 dependence on incidence angle for RapidScat in general is represented as a straight

line in dB space (see Fig. 3.6). The model function

f (θ) = Kθ 1+Bθ

= [ 1 | θ ][ Kθ B ]>

= Hθ cθ ,

(3.5)

where B≈−0.1 dB/deg over the Amazon for the wet season (days 1–151), 1 represents a column

vector of ones, θ represents a column vector of measured incidence angle values, and Kθ and B are

the coefficients of the affine model. The coefficient values vary for different regions and different

day ranges. This model is estimated by a least-squares fit of RapidScat data. This first-order

polynomial is similar to the shape of NSCAT measurements over the same incidence angle range

(see Fig. 3.6). The measurements of Oscat and QuikSCAT largely seem to agree with the NSCAT

measurements as well. RapidScat measurements have a similar shape, but on average its σ0 values

are lower than NSCAT values.

Over the range of angles measured by RapidScat, the shape of the σ0 dependence on in-

cidence angle is best modeled as a line with a gently decreasing slope (see Fig. 3.6). RapidScat
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Figure 3.4: Histograms of σ0 within the Amazon mask for 6 days of data. Top: histogram of all
σ0 values. Bottom: histogram of σ0 within a bin of 0.5 hours of LTOD. Note in both cases that
the distribution looks nearly normal, but both are more similar to a log normal distribution, with
slightly more values present at the lower end of the distribution.
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Figure 3.5: Mean and standard deviation of σ0 dependence on incidence angle for multiple Ku-
band scatterometers: TRMM, NSCAT, RapidScat, Oscat, and QuikSCAT. These measurements
match a general shape of the incidence angle dependence, as seen in Fig. 3.7.

σ0, however, has a subtle but distinct parabolic shape over its range, compared to NSCAT (see

Fig. 3.6). Since this is an anomaly compared to other scatterometers, a linear fit is used (instead of

a parabola) to describe the model for this parameter, to match other scatterometers. The parabolic

shape does not appear to be caused by incidence angle variations alone.

Additionally, RapidScat models are made for different day ranges. For SIR image process-

ing, data from a variable length of day ranges are used. The range of days used is typically 1, 2, 4,

or 30 days. The same first-order polynomial fit is used to model incidence angle dependence for

any day range.

Since these models of σ0 dependence on incidence angle are estimated by a least-squares

method, the sampling distribution of incidence angle values is considered. As the number of
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Figure 3.6: Zoomed-in version of Fig. 3.5 in the range of RapidScat incidence angles. Because
RapidScat only measures over a small range of incidence angles compared to NSCAT, the variation
for RapidScat is modeled as a straight line (shown as a dotted green line across the full range of
RapidScat incidence angles). The parabolic shape is ignored because it is not consistent with the
dependence on incidence angle demonstrated by other scatterometers.

samples in an incidence angle range increases, the least squares estimate tends to be more accurate

over that range.

3.4.1 Sampling Distribution of Incidence Angle

The mask of the Amazon rainforest (see Fig. 3.3) is used to ensure that σ0 measurements

considered are spatially homogeneous, which enables a clear identification of σ0 dependence on

incidence angle. In this section, the sampling distribution of the incidence angle values within the

mask is considered in order to determine the accuracy of a least-squares model.
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Figure 3.7: Conceptual curves of microwave radar backscatter dependence on incidence angle.
Note the similarity with the TRMM and NSCAT curves in Fig. 3.5. From Ulaby et al., 1982 [12].

Figure 3.8: Histogram of sampled incidence angle values of the inner beam of RapidScat for a
six-day range in the Amazon mask (days 100–105, 2015). Note the presence of two modes, one
on the low end and one at the high end of the incidence angle range.
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Figure 3.9: Unmasked measurement locations for orbit revolution 3090 (rev 3090) over South
America. The dark band across the image marks the measurement locations. The dark pixels over
the Amazon designate the mask. This measurement swath is a descending pass from rev 3090, day
100, 2015.

The sampling distribution is determined by creating a histogram of incidence angle values

used for a model of σ0 dependence. An example of this can be seen for an arbitrary six-day range

(days 100-105, 2015) in Fig. 3.8. Significant non-uniform modes can be seen in the distribution of

incidence angle in this case. The presence of such modes are analyzed in data from two sequential

passes of the radar. Only the inner beam is analyzed, because a similar distribution of samples is

seen in the outer beam data. First, the pass over the Amazon from orbit revolution 3090 (rev 3090),

from day 100, 2015, of RapidScat (Fig. 3.9) is analyzed, and then orbit revolution 3089 (rev 3089),

from day 100, 2015, of RapidScat is analyzed (Fig. 3.10).

In rev 3090, incidence angle variation across the swath can be observed, as seen in Fig. 3.11,

perpendicular to the direction of travel for the spacecraft. This pattern of incidence angle variation

appears to occur in general, suggesting that roll angle is a principle factor affecting incidence

angle variation. Because of where the mask intersects the measured locations of the swath, the

mask removes more measurement locations on one part of the swath than the other (see Fig. 3.12).

Removing these locations causes certain incidence angle values to be reduced in the sampling

distribution of incidence angle, with a greater number of higher incidence angles being present in
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Figure 3.10: Unmasked measurement locations for orbit revolution 3089 (rev 3089) over South
America. The dark band across the image marks the measurement locations. The dark pixels over
the Amazon designate the mask. This measurement swath is a descending pass from rev 3089, day
100, 2015.

the data, because the northeast side of the swath intersects a larger area of the mask than the other

side (see Fig. 3.13).

In rev 3089, a similar effect is caused by the intersection of the swath with the mask. The

swath of this rev crosses the Amazon on the opposite side of the Amazon mask (see Fig. 3.10).

For this rev, only the southwest part of the swath has significant area intersecting with the mask

(Fig. 3.14). Because of how the incidence angle values vary across the swath (similar to rev 3090,

as in Fig. 3.11), a greater number of lower incidence angle values is selected by the mask (see

Fig. 3.15).

When data from both passes are combined, a bimodal pattern appears, as seen in Fig. 3.8.

Though the incidence angle values are not strictly uniform, the values do not necessarily suggest a

bias in the sampling distribution of RapidScat. Fortunately, this sampling distribution is relatively

uniform and has a sufficient number of points, which enables a good least squares estimate.

Fig. 3.16 shows the distribution of incidence angle values measured for RapidScat model

over the first five months of the year in 2016. This shows the range of incidence angles possible for

RapidScat over several months. The shape of the distribution is determined by locations removed
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Figure 3.11: Incidence angle values across the masked swath measurements from rev 3090
(Fig. 3.12). Note that the northeast half of the swath correlates to higher incidence angle val-
ues and that the southwest half correlates to lower values. In addition to explaining a non-uniform
sampling distribution, this figure suggests that there is a consistent non-zero roll angle for all the
measurements in the swath, because the incidence angle variations are orthogonal to the direction
of the orbit. Note that the northeast half of the masked swath has a greater total area than the
southwest half.

by the mask, as well as variation in the range of incidence angle values that is caused by a changing

roll angle. Though the distribution is not uniform, there are a significant number of values in the

center section of the range.

The coefficients of this first-order polynomial model for σ0 dependence on incidence angle

may change, depending on the number of days used to estimate them and the location of the

measurements. However, the sample distributions analyzed in this section for short day ranges (see

Fig. 3.8) and much longer day ranges (see Fig. 3.16) have a sufficient number of measurements in

the center range to create an accurate least-squares model.

3.4.2 Incidence Angle Model Summary

In summary, RapidScat σ0 dependence on incidence angle is modeled in dB space as a

first-order polynomial. RapidScat samples of incidence angle are not fully uniform within the

Amazon mask due to the intersection of the mask and the swath. However, a significant number of
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Figure 3.12: Masked measurement locations for orbit rev 3090 over South America. The darkest
pixels over the Amazon rainforest mark the measurement locations for rev 3090 within the Amazon
mask. The dark pixels over the Amazon designate the whole mask. Compare with Fig. 3.9. Note
that the swath has greater area in the northeast half of the swath than the southwest half. Because
of where the Amazon mask and the measurement swath intersect, there are more measurements
removed from one side of the swath than the other. This measurement swath is a descending pass
from rev 3090, day 100, 2015.

Figure 3.13: Histogram of incidence angle values present from rev 3090 across the Amazon mask.
There are more incidence angle values on the high end of the range, rather than the low end. This
is caused by locations being masked out in this pass (see Figs. 3.12 and 3.11).
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Figure 3.14: Masked measurement locations for rev 3089 over South America. The darkest pixels
over the Amazon rainforest mark the measurement locations within the Amazon mask. The dark
pixels over the Amazon designate the whole mask. Compare with Fig. 3.10. Note that the swath
has greater area in the southwest half of the swath than the northeast half. Because of where the
Amazon mask and the measurement swath intersect, there are more measurements removed from
one side of the swath than the other. This measurement swath is a descending pass from rev 3089,
day 100, 2015.

Figure 3.15: Histogram of incidence angle values present from the rev 3089 across the Amazon
mask. There are more incidence angle values on the low end of the range, rather than the high end.
This caused by locations being masked out in this pass (see Fig. 3.14).
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Figure 3.16: Histogram of sampled incidence angle values for the inner (top) and outer (bottom)
beams of RapidScat for the first five months of 2016 over the Amazon mask. Note the presence of
one significant mode on the low end of the incidence angle range. This histogram provides a good
representation of how wide the range can be over the course of five months.

values are present for the majority of the range of incidence angles for the day ranges used for SIR

images.

3.5 LTOD Model

In order to estimate the model for σ0 dependence on LTOD for RapidScat, Ku-band σ0

measurements from various instruments are again compared. For this analysis, TRMM, NSCAT,

QuikSCAT, and RapidScat data are compared. For each dataset, σ0 measurements are plotted as

a function of their respective LTOD measurements. These plots are combined into a single plot to

show a general Ku-band σ0 dependence on LTOD over the Amazon (see Fig. 3.17).

In Fig. 3.17, NSCAT and QuikSCAT data are restricted to a few small time ranges because

of their sun-synchronous orbits. However, the σ0 measurements over those small ranges show

changes that are similar to the changes of σ0 dependence on LTOD for TRMM and RapidScat.

The TRMM data are included because the TRMM satellite is in a non-sun-synchronous orbit like

RapidScat, so the TRMM data also span a full 24 hour period. Though the coefficients of RapidScat

and TRMM σ0 dependence on LTOD are somewhat different, the models for each radar follow a
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Figure 3.17: Mean and standard deviation for dependence of σ0 on LTOD for RapidScat, TRMM,
QuikSCAT, and NSCAT. Both TRMM and RapidScat measure σ0 over a full range of LTOD
because of non-sun-synchronous orbits. Both TRMM and RapidScat models show a periodic vari-
ation, with a peak close to 6 am. The average of σ0 measurements is significantly higher for
TRMM, due to a lower incidence angle range. Only TRMM measurements with incidence angle
values greater than 10 degrees are used in order to remove the larger bias of the nadir measure-
ments.

similar pattern over the full range of 24 hours. RapidScat is the only Ku-band wind scatterometer

to measure a full 24 hours of LTOD. TRMM also measures σ0 in the Ku-band over a full 24

hours of LTOD, but it is not designed to be a wind scatterometer, and so measures at much lower

incidence angle values than RapidScat does. TRMM measurements are at a higher average σ0

value because they are measured at a much lower incidence angle range (see Fig. 3.5). However,

only measurements measured at incidence angle values greater than 10◦ are used for estimating σ0

dependence on LTOD for TRMM. Restricting TRMM data to this incidence angle range makes the

data more comparable with RapidScat data.

The dependence of σ0 on LTOD for RapidScat over a full 24 hours of LTOD is represented

as a fourth-order Fourier series model. This model is effective at representing a periodic variation

with a significant peak in σ0 at 6 am (as seen in Fig. 3.17). This model nearly matches the mean

at each LTOD bin value. Higher order periodic models can be used to model this behavior, but

39



higher models may introduce noise into adjusted σ0 values when they are used for a normalization

procedure. Additionally, a fourth-order Fourier model is shown to be effective at removing azimuth

angle biases present in Oscat data [15]. The model function

f (τ) = Kτ +
4

∑
i=1

Ai cos(iτω)+Bi sin(iτω)

=


1 cos(1τ1ω) sin(1τ1ω) . . . cos(4τ1ω) sin(4τ1ω)

1 cos(1τ2ω) sin(1τ2ω) . . . cos(4τ2ω) sin(4τ2ω)
...

...
...

...
...

1 cos(1τNω) sin(1τNω) . . . cos(4τNω) sin(4τNω)





Kτ

A1

B1
...

A4

B4


= Hτcτ ,

(3.6)

where ω = 2π

24 to create a model with a period of 24 hours; τ is a vector of RapidScat LTOD values;

τi is a specific LTOD value from this vector of values; N is the number of values in this vector;

and where Kτ , Ai, and Bi are the estimated coefficients of the model. A least-squares fit of the data

is calculated to estimate the coefficients of this model. A large number of measurements is used

(from five months) over the Amazon to reduce undesired biases from RapidScat in the data when

estimating this least squares model.

3.5.1 Shorter Day Ranges

However, SIR images are made typically using only 1, 2, 4, or 30 days of data. Additionally,

SIR images may only use ascending and descending passes over a range of days, or they may use

both passes. For example, Fig. 3.18 shows how σ0 dependence on LTOD might be modeled for

a range of six days. In this figure, a fourth-order Fourier series is used (as above), as well as two

first-order polynomial models for the separate ranges. When the range of LTOD values is less

than four hours in a disjoint range, the Fourier model has significantly different coefficients than

a model estimated from a model estimated from a full 24 hours (see Fig. 3.17). Fig. 3.19 shows

an example of using only ascending passes over a range of six days. Figs. 3.20 and 3.21 show
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Figure 3.18: Scatter plot of σ0 versus LTOD for Days 100–105, 2015, for RapidScat. Note that the
LTOD ranges are disjoint and are separated by a range close to 12 hours. Each disjoint set spans a
range less than 4 hours of LTOD.

an even more significant deviation from the expected Fourier model shape seen in Fig. 3.17. For

these cases where the disjoint ranges of LTOD are both less than four hours, a linear fit is more

consistent with the model seen in Fig. 3.17.

Therefore, a linear model is more appropriate for disjoint ranges that are smaller than 4

hours. In this case, the model function

f (τ) = Kτ +Bτ

= [ 1 | τ ][ Kτ B ]>

= Hτcτ ,

(3.7)

where τ is a column vector of LTOD values from a single disjoint range, 1 is a column vector

of ones, Kτ and B are the coefficients of the model, Hτ is the observation matrix for LTOD, and

cτ is the vector of coefficients. For the case of using both ascending and descending passes, two

separate models are estimated.
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Figure 3.19: Scatter plot of σ0 versus LTOD for Days 100–105, 2015, ascending nodes only, for
RapidScat. Note that LTOD values span a range smaller than 4 hours. Both a fourth-order Fourier
model and first-order polynomial model are shown. Figs. 3.20 and 3.21 show the details of the
Fourier model in the center and outer ranges.

3.5.2 LTOD Metric

Additionally, a different model of LTOD is used as a metric for how effective normalization

of σ0 dependence on incidence angle and LTOD is. The model

f (τ) = Kτ +A1 cos(τω)+A2 sin(τω)

= [ 1 | cos(τω) | sin(τω) ][ Kτ A1 A2 ]>

= Hτcτ ,

(3.8)

where ω = 2π

24 to ensure a period of 24 hours; τ is a column vector of LTOD values from RapidScat;

1 is a column vector of ones; Kτ , A1, and A2 are the coefficients of the model; Hτ is the observation

matrix for LTOD; and cτ is the vector of coefficients. This lower-order periodic model of σ0

dependence on LTOD is used as a metric because it is simple to calculate and can reveal variability

remaining in the dependence model after adjustments are made. Additionally, this lower-order
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Figure 3.20: Zoomed-in version of central range of Fig. 3.19.

Figure 3.21: Zoomed-out version of Fig. 3.19. Note that the range of σ0 values covered by the
model is far larger than any possible value of σ from RapidScat.
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model is effective at modeling narrow ranges of LTOD, when a full 24 hours is not available.

Coefficients from least-square models are used as metrics in this thesis because they measure

how much the models change from adjustments made to σ0. The desired end result is to have

models with minimal variability caused by certain parameters in order to enable accurate SIR

image reconstruction.

The coefficients A1 and A2 are used to create a metric for the effectiveness of normalization

of σ0 dependence on incidence angle and LTOD. The metric

A = max{|A1|, |A2|}. (3.9)

This metric A is a rough estimate of maximum deviation away from the mean of the model estimate.

The closer A is to zero, the more the σ0 dependence on LTOD is normalized.

3.5.3 Sampling Distribution of LTOD

The sampling distribution of LTOD values is now considered. A near-uniform distribution

of LTOD values helps to ensure an accurate least squares model estimate.

Fig. 3.22 shows the range of LTOD values over the first five months of the year in 2016.

This figure shows a fairly uniform distribution of LTOD values for the creation of the model in

Fig. 3.17. Since LTOD is periodic over 24 hours, it takes a full range of 24 hours to estimate an

accurate model of LTOD. RapidScat requires around two months to measure values over a full 24

hours of LTOD. For day ranges less than two months, smaller ranges of LTOD are measured.

Fig. 3.23 shows the range of LTOD values in the ascending passes for six consecutive days

over the Amazon mask. Over six days, the data is measured at a total range of LTOD close to

3.5 hours. Two standard deviations of this data covers a range close to 1.5 hours. SIR images

are typically made with only 4 days of data or less, and an even smaller range of LTOD values is

observed over that time. The range of LTOD values in this day range is a small enough to make

LTOD effects relatively small, since it is less than 4 hours. As seen in Fig. 3.20, the change over 4

hours or less can be modeled by a first-order polynomial model.

Fig 3.24 shows the sampling distribution for a six day range, including both ascending and

descending passes. This figure demonstrates two disjoint sets of LTOD measurements. As seen in
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Figure 3.22: Histogram of LTOD over the first 5 months of 2016, the data used to create Fig. 3.17.
The distribution of LTOD values is nearly uniform, with every LTOD value having a significant
number of measurements to ensure an accurate least squares model.

Figure 3.23: Histogram of LTOD in a range of 6 days, for ascending passes only. In this histogram,
two standard deviations is a range of 1.5 hours and the full range is close to 3.5 hours. From days
100–105, 2015.
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Figure 3.24: Histogram of LTOD in a range of 6 days, for both ascending and descending passes.
Note the presence of two disjoint ranges of LTOD values that are nearly 12 hours apart. Both
ranges of values have a similar sampling distribution (as in Fig. 3.23). From days 100–105, 2015.

Fig. 3.18, there is a need for a piecewise linear fit with a different model for each disjoint set in

this case.

3.5.4 LTOD Model Summary

In summary, σ0 dependence on LTOD is modeled as a fourth-order Fourier series, except

when any disjoint range of LTOD values is shorter than four hours. LTOD samples are uniform

over two months or more, but they are not for shorter day ranges. A first-order polynomial is used

to model dependence for these shorter day ranges. Though the sampling distribution is not uniform

for shorter day ranges, there are a sufficient number of values in the central part of these ranges to

enable an accurate linear fit. Also, a sinusoidal model of a single frequency is used to estimate a

metric for σ0 dependence on LTOD.

3.6 Azimuth Angle Model

For azimuth angle modeling, QuikSCAT, RapidScat, and Oscat are used to compare depen-

dence of σ0 on azimuth angle for different Ku-band pencil beam scatterometers (see Fig. 3.25).
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QuikSCAT data has a relatively flat dependence, compared to the other scatterometers, while

RapidScat shows minor aberrations. Oscat has significant deviations from a flat response (for

unknown reasons). Because of its similarity to QuikSCAT, RapidScat is expected to have a flat

response, with minor aberrations. Since the RapidScat data exhibits relatively flat behavior (com-

pared to Oscat), no normalization procedure is necessary for RapidScat dependence on azimuth

angle. Although RapidScat σ0 dependence on azimuth angle is not perfectly flat, the variations

from the mean are much smaller than 0.1 dB, so they are considered insignificant.

However, a decrease in this variability in azimuth angle is an improvement. To verify that

RapidScat variability in azimuth angle is reduced or maintained, it is used as a metric during other

normalization procedures. A sinusoidal fit is used to test how much the RapidScat data deviates

from a normalized (i.e., flat) dependence. The metric model

f (φ) = Kφ +A1 cos(φω)+A2 sin(φω)

= [ 1 | cos(φω) | sin(φω) ][ Kφ A1 A2 ]>

= Hφ cφ ,

(3.10)

where ω = 2π

360 to ensure a period of 360 degrees; φ is a column vector of azimuth angle values

from RapidScat; 1 is a column vector of ones; Kφ , A1, and A2 are the coefficients of the model; Hφ

is the observation matrix for azimuth angle; and cφ is the vector of coefficients.

The coefficients A1 and A2 are used to create a metric for the effectiveness of normalization

of σ0 dependence on incidence angle and LTOD. The metric

A = max{|A1|, |A2|}. (3.11)

This metric A is a rough estimate of maximum deviation away from the mean of the model estimate.

The closer A is to zero, the more σ0 dependence on azimuth angle is normalized.

3.7 Roll Angle Model

Since RapidScat σ0 errors are influenced by variations in the ISS attitude, the relationship

between the attitude and changes to σ0 values is significant. When plotting the roll angle of the ISS
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Figure 3.25: Mean and standard deviation for σ0 versus azimuth angle for RapidScat, QuikSCAT,
and Oscat. The symbols in the legend represent the mean of the data, and the dotted lines (for
RapidScat and Oscat) and bars (for QuikSCAT) represent the standard deviation. QuikSCAT has a
deviation from the mean σ0 that is relatively small (±0.02 dB), and RapidScat data has a slightly
larger deviation.

with the incidence angle of the RapidScat measurements over four revolutions around the earth, a

direct correlation between the roll angle and the range of incidence angle values is apparent (see

Fig. 3.26). Additionally, incidence angle values are found to change linearly across the physical

measurement swath on the ground during a single pass (see Fig. 3.11). Comparing incidence angle

changes with the pitch and yaw of the ISS did not yield any clear correlations. These results

suggest that the roll angle is the principle factor causing incidence angle variation. Although pitch

does not contribute directly to σ0 variation, it is a variable that demonstrates some correlation to

σ0 variation (see Fig. 3.2). Therefore, σ0 dependence on both roll and pitch angles are used as

metrics to determine how effective normalization of σ0 dependence on incidence angel and LTOD

is.

Fig. 3.1 shows the dependence of σ0 on roll angle measured by RapidScat over the Amazon

for the first five months of the year. This figure demonstrates that σ0 values are highly correlated

with changes in the roll angle, mostly likely because of the relationship between the roll and
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Figure 3.26: Plot of the maximum range of incidence angle variation as a function of roll angle
for four consecutive orbit revolutions. There is a direct correlation between the increase of the roll
angle and the increase in the maximum range of incidence angle variations.

incidence angle changes. Dependence on roll angle cannot be compared with other scatterometers,

since these attitude variations are not as prominent for them. Because of this uncertainty, only a

first-order polynomial is used to model σ0 dependence on roll angle. The model function

f (ϕ) = Kϕ1+Bϕ

= [ 1 | ϕ ][ Kϕ B ]>

= Hϕcϕ ,

(3.12)

where ϕ is a column vector of RapidScat roll angle values; 1 is a column vector of ones; Kϕ and

B are the coefficients of the model, and Hϕ is the observation matrix for roll angle; and cϕ is the

vector of coefficients. The coefficient B is used as the metric. As the magnitude of B (the slope)

gets closer to zero, the more normalized σ0 dependence on roll angle is.
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3.8 Pitch Angle Model

The metric model for σ0 dependence on pitch angle is linear, as for roll angle, since the

dependence of σ0 on pitch is uncertain. The model function

f (ψ) = Kψ1+Bψ

= [ 1 | ψ ][ Kψ B ]>

= Hψcψ ,

(3.13)

where ψ is a column vector of RapidScat pitch angle values, 1 is a column vector of ones, Kψ

and B are the coefficients of the model, Hψ is the observation matrix, and cψ is a column vector

of the coefficients. The coefficient B is used as the metric. As the magnitude of B decreases, the

dependence of σ0 on pitch angle is more normalized.

3.9 Multidimensional Model

A multidimensional model can be used for normalization. Two main options are considered

here: normalizing just incidence angle and LTOD, or normalizing all significant parameters. The

model function for coupled incidence angle and LTOD is

f (θ ,τ) = Kθτ +Bθ θ +
4

∑
i=1

Ai cos(iτω)+Bi sin(iτω)

=


1 θ1 cos(1τ1ω) sin(1τ1ω) . . . cos(4τ1ω) sin(4τ1ω)

1 θ2 cos(1τ2ω) sin(1τ2ω) . . . cos(4τ2ω) sin(4τ2ω)
...

...
...

...
...

1 θN cos(1τNω) sin(1τNω) . . . cos(4τNω) sin(4τNω)





Kτ

Bθ

A1

B1
...

A4

B4


= Hθτcθτ ,

(3.14)
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where θ is a vector of RapidScat incidence angle values; θi is a specific incidence angle value from

this vector of values; ω = 2π

24 to create a model with a period of 24 hours; τ is a vector of RapidScat

LTOD values; τi is a specific LTOD value from this vector of values; N is the number of values in

this vector; and where Kτ , Bθ , Ai, and Bi are the estimated coefficients of the model.

The coupled model for all the significant parameters considered is

f (θ ,ϕ,ψ,φ ,τ) = Kall +Bθ θ +Bϕϕ +Bψψ +Aφ cos(φωφ )+Bφ sin(φωφ )

+
4

∑
i=1

Ai cos(iτωτ)+Bi sin(iτωτ)

= Hallcall,

(3.15)

where

Hall =


1 θ1 ϕ1 ψ1 cos(φ1ωphi) sin(φ1ωφ ) cos(iτ1ωτ) sin(iτ1ωτ)

1 θ2 ϕ2 ψ2 cos(φ2ωphi) sin(φ2ωφ ) cos(iτ2ωτ) sin(iτ2ωτ)
...

...
...

...
...

...
...

1 θN ϕN ψN cos(φNωphi) sin(φNωφ ) cos(iτNωτ) sin(iτNωτ)

 (3.16)

and

call =
[
Kall Bθ Bϕ Bψ Aφ Bφ Ai Bi

]>
, (3.17)

where i = 1,2,3,4 (meaning there are eight columns for LTOD in Hall and there are eight coeffi-

cients associated with LTOD in call). In the above equations, θ is a vector of RapidScat incidence

angle values; θi is a specific incidence angle value from this vector of values; ϕ is a vector of roll

angle values; ϕi is a specific roll angle value from the vector; ψ is a vector of pitch angle values; ψi

is a specific pitch angle value from the vector; ωφ = 2π

360 to create a model with a period of 360◦; φ

is a vector of azimuth angle values; φi is a specific azimuth angle value from the vector; ωτ = 2π

24

to create a model with a period of 24 hours; τ is a vector of LTOD values; τi is a specific LTOD

value from the vector; N is the number of values in the vectors; and where Kall , Bθ , Bϕ , Bψ , Aφ ,

Bφ , Ai, and Bi are the estimated coefficients of the model.
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These two coupled models can be used to normalize σ0 on these parameters. However,

the coupled models were empirically found to not be as effective as the sequential models. Thus a

detailed analysis of the coupled models is not provided in this thesis.

3.10 Chapter Summary

Examples of the models used for RapidScat σ0 dependence normalization is shown in

Fig. 3.27. Since incidence angle and LTOD are the parameters that directly affect the value of

σ0 measurements, only these parameters are used for normalization. A linear fit is used for σ0

dependence on incidence angle, and a fourth-order Fourier series is used for σ0 dependence on

LTOD when the range of LTOD values covers a range larger than 4 hrs or more. If less than 4

hours of LTOD are covered in any disjoint range, a linear fit is used for normalization.

An example of the models used for metrics of σ0 normalization is shown in Fig. 3.28. The

σ0 dependence on all the significant parameters (roll angle, pitch angle, incidence angle, azimuth

angle, and LTOD) are modeled to create metrics for the effectiveness of σ0 adjustments. After σ0

is adjusted and its dependence on incidence angle and LTOD is normalized, metrics that are closer

to zero are better. For roll angle, pitch angle, and incidence angle, the slope of the linear fit is the

metric. For azimuth angle and LTOD (which are periodic), the max of the magnitude of the two

sinusoidal coefficients of the sinusoidal fit is used.

In addition, examples of multidimensional models are presented, as seen in Eqs. 3.14 and

3.15. Though these models are not used to test the normalization procedure in the following

chapters, a multidimensional approach can be pursued by future analysts to compare with the

analysis in this thesis.

In the next chapter, the normalization procedure for reducing σ0 dependence on undesired

parameters is presented and analyzed. Estimating the correct models for σ0 dependence on these

parameters is essential for the normalization procedure presented.
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Figure 3.27: Examples of the models used for normalizing the σ0 dependence on incidence angle
and LTOD.
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Figure 3.28: Examples of the models used as metrics for normalizing the σ0 dependence on inci-
dence angle and LTOD.
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CHAPTER 4. NORMALIZATION PROCEDURE

The models from Chapter 3 are used in this chapter to compute adjustments to σ0 values

in order to remove undesired variation in σ0. A normalization procedure is described that ad-

justs σ0 values to remove or reduce the mean dependence of σ0 on the significant parameters,

which are incidence angle, azimuth angle, LTOD, roll angle, and pitch angle. A simulation is then

demonstrated to show the functionality of this procedure for RapidScat data.

4.1 Procedure

Normalizing the undesired effect of a parameter on σ0 is done by adjusting the mean of σ0

to be constant across the parameter range. The adjusted σ0 mean is the mean σ0 value at a single

nominal parameter value. This normalization is computed by subtracting a model function from a

scalar nominal σ0 value and adding the difference to the backscatter measurements. The adjusted

σ0 values

σ
0
ad j = σ

0 +[ f (xnom)− f (x)] , (4.1)

where σ0
ad j represents a vector of the adjusted backscatter values, σ0 represents a vector of the

original backscatter measurements, f (xnom) represents the value of the σ0 model at a nominal

parameter value xnom, and f (x) is the model of mean σ0 dependence on a given parameter vector x.

Figs. 4.1, 4.2, and 4.3 show an example of how this normalization procedure is applied in the case

of σ0 dependence on incidence angle. This normalization procedure is performed for backscatter

measurements in a SIR setup file, using models estimated from these setup file measurements.

A SIR setup file contains L1B measurements that are organized according to their affected pixel

locations. The adjusted σ0 values are written to a new setup file, from which a SIR image is created.

Two RapidScat SIR images are produced for comparison in this chapter. One is made from the

original setup file, and the second one is made from the setup file with adjusted σ0 measurements.
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Figure 4.1: Example of σ0 dependence on a parameter (θ , or incidence angle, in this case). The
purpose of the normalization procedure is to remove this dependence by changing the mean de-
pendence to have a slope close to zero. Plot made from simulated data. The gap around θ = 49◦ is
inserted to emphasize the nominal parameter value.

SIR images are also made for QuikSCAT data over the same time range for additional comparison,

since QuikSCAT SIR images typically have very low noise.

Normalization of σ0 values alters the coefficients of the models of σ0 dependence on each

parameter. In order to normalize the mean σ0 values to be constant across the parameter range,

σ0 values are normalized consecutively. The coefficients for a new model of σ0 dependence are

estimated from the adjusted σ0 data before using the new model to normalize σ0 dependence on a

new parameter. To do this consecutive adjustment, the adjusted σ0

σ
0
i,ad j = σ

0
i−1,ad j +[ fi(xi,nom)− fi(xi)]

σ
0
i+1,ad j = σ

0
i,ad j +[ fi+1(xi+1,nom)− fi+1(xi+1)],

(4.2)

where fi(xi) = PHiσ
0
i−1,ad j = Hi(H>i Hi)−1H>i σ0

i−1,ad j is the model for σ0 dependence on the

current parameter, after the previous σ0 adjustment; fi(xi,nom) is the value of the model of σ0

dependence at a nominal parameter value xi,nom in the current parameter vector xi; and σ0
i,ad j
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Figure 4.2: Example of the normalization calculation in Eq. (4.1). The function f (x) represents
the mean dependence of σ0 on the parameter vector (θ , or incidence angle, in this case). The value
f (xnom) is the nominal value that σ0 is adjusted to match. The value xnom is the parameter value
where f (x) is evaluated to determine the nominal σ0 value.

represents the vector of σ0 values for the next iteration. For the first iteration, σ0
i−1,ad j is the

original σ0 vector σ0. Fig. 4.4 shows a block diagram of this consecutive normalization approach.

The criterion for how the nominal value is chosen depends on the parameter. For incidence

angle, the nominal value chosen is 49◦ for the inner beam. This value is chosen because 49◦ is

the designed incidence angle for the inner beam of RapidScat. For LTOD, any time of day can

be chosen. Most scatterometers have two particular LTODs that they measure a given location at.

Using a model for RapidScat σ0 dependence on LTOD over a full 24 hours can be used to adjust

all scatterometers to be normalized to the same effective LTOD value. A good choice for this value

is 6 am over the equator over the Amazon, since this is one of the LTODs that QuikSCAT data is

measured at.

The effectiveness of normalization procedures can be measured by estimating models of σ0

dependence on every significant parameter for each normalization iteration (see Chapter 3 for more

details). First-order polynomial models are used for incidence angle, roll angle, and pitch angle for
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Figure 4.3: Example of the resulting σad j dependence on the parameter vector after the normal-
ization procedure (see Eq. 4.1). Note that the mean model function f (x) now has a slope with a
small magnitude, and mean σ0 values match the model function at the nominal value f (xnom).

Figure 4.4: Block diagram of the consecutive normalization procedure shown in Eq. (4.2). The
dependence of σ0 is normalized for one parameter, and then the adjusted σ0 values are used to
estimate a model of the adjusted σ0 dependence on another parameter.
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Table 4.1: The mean and variance of σ0 during the consecutive steps of the normalization proce-
dure example shown in Figs. 4.5, 4.6, and 4.7.

Step Mean Variance
1) Original σ0 (Fig. 4.5) -7.995 0.610
2) After LTOD Normalization (Fig. 4.6) -8.088 0.578
3) After Incidence Normalization (Fig. 4.7) -7.999 0.561

checking the results of normalization, and the magnitude of the slope of these dependence models

is used as a metric for the effectiveness of the procedure. First-order sinusoidal models are used for

LTOD and azimuth angle for checking the results of normalization, and the maximum magnitude

of the two sinusoidal coefficients are used as a metric for the effectiveness of the procedure.

An example of a consecutive normalization procedure is shown in Figs. 4.5, 4.6, and 4.7,

where σ0 dependence on LTOD is normalized first, and then dependence on incidence angle is

normalized. Fig. 4.5 is the original data, Fig. 4.6 is the data after dependence on LTOD is normal-

ized, and Fig. 4.7 is the data after dependence on incidence angle is normalized. Note that after

the normalization procedure, the model functions in this example all have metrics that are small

or significantly less than the original (compare Fig. 4.5 and 4.7). Note that whichever dependence

model is normalized last tends to have better results. In this case, dependence on LTOD is better

in Fig. 4.6 than in Fig. 4.7, since LTOD is normalized first. Also, the dependence on incidence

angle is better in Fig. 4.7 because incidence angle is normalized last. The results of the effect of

this normalization on the variance is summarized in Table 4.1. Note that the variance decreases

with each normalization step, which suggests that the overall variability in the measurements is

reduced.

This normalization procedure is applied to RapidScat data to remove incidence angle and

LTOD variations to σ0 in a simulation in the next section. This simulation demonstrates the effec-

tiveness of this approach with the assumptions made about RapidScat σ0 variations.

4.1.1 Multidimensional Considerations

Multidimensional models can also be used for this normalization procedure. Since each

dependence model is known to be dependent on each other, using a coupled model with each

significant parameter included could potentially remove dependence better than a consecutive ap-
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Figure 4.5: Plots of the metric models for the original σ0 dependence on roll angle, pitch angle,
incidence angle, azimuth angle, and LTOD. This is the first time step of the example normalization
procedure. The A or B value for each plot is a metric for the effectiveness of the normalization pro-
cedure. From days 1-151, 2015 over the Amazon mask. The letter B is the coefficient representing
the slope of a first-order polynomial fit. The letter A is the maximum magnitude of the sinusoidal
coefficients of a first-order sinusoidal fit (see Chapter 3).

60



Figure 4.6: Plots of the metric models estimated from adjusted σ0 values after σ0 dependence on
LTOD is normalized based on a fourth-order Fourier series model. This is the second time step of
the example normalization procedure. Note that the magnitude of the metric for dependence on
LTOD is close to zero and that the slope of σ0 dependence on roll angle is significantly reduced
to -0.01 dB/deg. This suggests a significant dependence between the dependence of σ0 on roll
angle and LTOD. The metrics for σ0 dependence on other parameters are reduced to some degree,
except for incidence angle (compare with Fig. 4.5).
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Figure 4.7: Plots of the metric models estimated from adjusted σ0 values after σ0 dependence
on incidence angle is normalized. This is the final time step of the normalization procedure. The
metrics for all parameters have been reduced significantly, compared to Fig. 4.5, although the
metric for LTOD is worse than in Fig. 4.6. The metric for dependence on incidence angle is the
smallest because it is normalized last.
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Figure 4.8: The results of applying a multidimensional model (see Eq. 3.15) with a single step of
the normalization procedure. Note that the slope is minimal for every significant parameter the
affects the variability of σ0.

proach. Empirical testing suggested that this did not do as well as the consecutive approach taken

in this thesis. Since incidence angle and LTOD are the principle parameters that directly effect σ0

values in a physical sense, only these parameters are used for the normalization procedure. Future

experiments may analyze the difference between multidimensional normalization and consecutive

normalization in more detail.

The results of a multidimensional normalization is seen in Fig. 4.8. This figure shows that

a multidimensional normalization may be more effective at reducing σ0 variability. However, this

adjustment may introduce more variability into the measurements, since it is only incidence angle

and LTOD that physically affect σ0 values directly. This approach can be examined by future

analysts.
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Figure 4.9: The simulation process.

4.2 Simulation

In order to test the effectiveness of the proposed normalization algorithm for RapidScat

σ0 measurements, a simulation is created. This simulation demonstrates the effectiveness of the

algorithm, and it identifies some of the strengths and weaknesses of the algorithm.

The simulation represents the radar measurement process. This measurement process be-

gins with a synthetic radar system that measures synthetic truth data in a measurement region on

an extended surface (including receiver noise). Then these measurements are adjusted by a nor-

malization procedure, and then the normalized measurements are used to reconstruct an estimate

of the original truth data (with an algorithm such as drop-in-the-bucket or SIR) and create a corre-

sponding image of the measurements on the ground. See Fig. 4.9 for a visual representation of this

simulation process. The drop-in-the-bucket algorithm (DIB) reconstructs images by averaging to-

gether all σ0 measurements that are located within a given pixel. Within the assumptions made for

this particular simulation, SIR and DIB are equivalent algorithms. The synthetic radar system in

this simulation mimics σ0 measurement variations expected in the RapidScat system. This system

mimics changes to backscatter measurements caused by incidence angle variations and different

local times of day (LTODs) for measurements in the same location. Two different measurement

scenarios are used in this simulation to test the effectiveness of the normalization algorithm in

restoring the original data. The resulting image at the end of the simulation is used to compare the

normalized measurements with the truth data at every location in the measurement region and to

show how the normalization procedure improves a radar image.

In the simulation, the synthetic truth data represents a region with homogeneous land fea-

tures to simulate the Amazon rainforest. This region has a mean of -8 dB and a standard deviation

of 1 dB, to mimic the Amazon rainforest, with some variation in the vegetation. This truth data is
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Figure 4.10: Ideal reconstructed image of the synthetic truth values of σ0. This image synthesizes
a homogeneous land region, like the Amazon rainforest. Each pixel simulates an ideal antenna
response pattern for that location.

represented by a constant, plus a normal random variable,

σ
0
true(x,y) =−8+ν(x,y) dB, (4.3)

where ν ∼ N[0,1] dB, and (x,y) is an ordered pair designating the location in the region in terms of

antenna measurement bins. A 100-by-100 grid of these measurements is used for the simulation.

An initial image is created in the simulation to visually represent this truth data at each antenna

measurement location. In order to do this, the synthetic data is measured exactly, with no mea-

surement variation or noise added. The synthetic truth data represents the average backscatter over

a simplified rectangular antenna response pattern, and pixels in the final reconstructed image of

the simulation use pixel sizes that are the exact same dimensions as the antenna response function.

Therefore, a DIB reconstruction exactly reproduces the truth data of the measurement region when

there are no errors in the measurement or reconstruction process. This image of the truth data can

be seen in Fig. 4.10.

Two simulation scenarios are considered. The first scenario simulates a simple measure-

ment scheme, where measurement swaths are vertically oriented. The second scenario simulates
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a more involved measurement scheme, where measurement swaths are diagonally oriented and

where roll angle effects on incidence angle are included. Three images are produced for each sce-

nario: one without measurement errors or normalization, one without normalization, and one with

both included. The first image is sampled and reconstructed after the first block in Fig. 4.9, the

second image is reconstructed after the summing block, and the third image is the reconstructed

image in the final block.

4.2.1 Simple Simulation Scenario

The first scenario considered in the simulation is a simple process to verify the feasibility

of the calibration algorithm. The simulated RapidScat measurements are created where the swath

width for each pass is modeled as being 5 measurement response patterns wide. Each pass is

adjacent with no overlap. The incidence angle variation across the swath is simulated by a decrease

to σ0 as incidence angle values increase, where the incidence angle values increase from left to

right across the swath width. The incidence angle is chosen to be 47◦ at the leftmost column of

the swath and increases by one degree for each column, from left to right. This makes the center

column 49◦, which is the nominal value. The σ0 values are simulated to decrease by 1 dB for each

degree increase in incidence angle. The LTOD effect is modeled as a cosine with an amplitude of

1 dB and a period of 24 hours, centered around the mean, and the peak occurring at 12am. The

whole measurement process in this scenario is

σ
0
meas(x,y,θ , t) = σ

0
true(x,y)+(θnom−θ)+ cos

(
2π

24
t
)

+n(x,y) dB, (4.4)

where θnom = 49◦, θ is the incidence angle, t is the LTOD, (x,y) is an ordered pair designating the

pixel location of the measurement in the measurement region, and n(x,y) ∼ N[0,σ2I] represents

receiver noise for the radar measurement at each location, where σ2 = (0.1)2. Each swath varies

in LTOD so that 24 hours of LTOD are covered across the entire measurement region. To create an

image of the simulated measurements, the measurements are reconstructed into an image, without

any normalization. An example of this image is shown in Fig. 4.11. The image illustrates the kind

of errors that are caused by uncorrected RapidScat incidence angle and LTOD variations.
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Figure 4.11: Reconstructed image of the unadjusted synthetic measurements of σ0, showing vari-
ations caused by incidence angle and LTOD variations.

To normalize the σ0 measurements, all the measurement values for each parameter are

combined into separate vectors. A least-squares method is used to model the dependence of σ0 on

LTOD. This model is used to normalize the σ0 measurements to have the same mean (the mean

at a nominal LTOD value). Then a model is estimated for the dependence of σ0 dependence on

incidence angle, and the σ0 measurements are normalized to the mean at a nominal incidence angle

value. See Figs. 4.12, 4.13, 4.14, and 4.15 for a representation of these normalization steps. The

normalized measurements are used to create a reconstructed image using the DIB method, and the

resulting image can be seen in Fig. 4.16.

The results of the simulation for the first scenario can be seen in Table 4.2. The adjusted

data image has minimal effects from incidence angle and LTOD variation remaining, and most

of the residual error is from the instrument receiver noise (see Figs. 4.16, 4.17, and 4.18). Error

is defined as the difference between the normalized image and the truth image (see Fig. 4.17 and

4.18). However, for normalization procedures that are calculated with actual data, no truth image

can be generated, so the only difference image that can be generated is the difference between the

unadjusted image, and the adjusted image (see Fig. 4.19). This difference does not represent the

error of the image, but it shows a pattern of incidence angle and LTOD effects on σ0. If this pattern

appears in a difference image and the overall variance of the image decreases, it is assumed that
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Figure 4.12: Plots representing the normalization procedure for σ0 dependence on LTOD for the
first simulation scenario. A least squares method is used to model σ0 dependence on LTOD (top).
Then all values at every LTOD bin are adjusted to have the same mean value as the nominal LTOD
bin (bottom). The line in the middle of the data is the least squares fit of the data for each plot. The
“X” marks are for the mean of the data at each of six different LTOD bins.

Figure 4.13: Plots representing the normalization procedure for σ0 dependence on incidence angle
for the first simulation scenario, after σ0 dependence on LTOD is normalized, as in Fig. 4.12. A
least squares method is used to model σ0 dependence on incidence angle (top). Then all the values
at each incidence angle bin are adjusted to have the same mean values as the nominal incidence
angle bin (bottom). The line in the middle of the data is the least squares fit of the data for each
plot. The “X” marks are for the mean of the data at each of five different incidence angle bins.
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Figure 4.14: Distributions of the LTOD bins for the normalization of σ0 versus LTOD in Fig. 4.12.
Top: the original distributions for σ0 versus LTOD. Bottom: the same distributions after normal-
izing σ0 dependence on both LTOD and incidence angle. Note that the means are aligned in the
bottom figure and that the variance is visibly reduced. The means are aligned by normalizing σ0 to
a single LTOD bin, and the variance is reduced by normalizing σ0 with respect to incidence angle.
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Figure 4.15: Distributions of the incidence angle bins for the normalization of σ0 versus incidence
angle in Fig. 4.13. Top: the original distributions for σ0 versus incidence angle. Bottom: the
same distributions after normalizing σ0 dependence on both incidence angle and LTOD. Note that
the means are aligned in the bottom figure and that the variance is visibly reduced. The means
are aligned by normalizing σ0 to a single incidence angle bin, and the variance is reduced by
normalizing σ0 with respect to LTOD.
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Figure 4.16: Reconstructed image of the normalized measurements. Note that the incidence angle
and LTOD variations have been removed (compare with Fig. 4.11).

Table 4.2: Mean and variance of σ0 measurements in each of the images produced for the first sim-
ulation scenario (see Figs. 4.10, 4.11, and 4.16). Note that the RapidScat incidence angle and

LTOD variations cause significantly higher variability in the unadjusted (not normalized)
image, compared to the synthetic truth image. The normalized image has signifi-

cantly reduced variability of σ0 measurements, and the variance of this image
is close to the original variance exhibited in the synthetic truth image. The

mean is shifted significantly by the synthetic RapidScat measurement
system, and the mean is unaffected by the normalization proce-

dure. The mean is unaffected by the procedure because the
nominal value used for adjusting σ0 is the same as the

mean σ0 value.
Data Mean Variance

Synthetic Truth (Fig. 4.10) - 8.000 dB 0.992
Not Normalized (Fig. 4.11) -10.978 dB 3.539

Normalized (Fig. 4.16) -10.978 dB 0.999

these effects are removed. The same pattern might infer an increase in these variations, but this

leads to an increase in variance.
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Figure 4.17: Difference between the normalized image (Fig. 4.16) and the synthetic truth image
(Fig. 4.10). Note that there is a difference close to 3 dB between the means of the two images (see
color scale). Also note that there is a significant variance in the difference (see color scale range).
The mean difference is caused by simulated incidence angle and LTOD variability (see Table 4.2),
and the variance is mainly due to radar receiver noise (σ2 = (0.1)2).

Figure 4.18: Difference between the normalized image (Fig. 4.16) without receiver noise and
the ideal reconstructed image (Fig. 4.10). Note the difference in the mean close to 3 dB (caused
by measurement variation and the calibration procedure), as well as a variance in the difference,
which is due to residual LTOD and incidence angle variations (see color scale). These errors are
significantly less than the errors present in Fig. 4.17. The small variance in this image shows the
effectiveness of the normalization procedure.
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Figure 4.19: Difference between the normalized image (Fig. 4.16) and the original measured image
(Fig. 4.11). This is the only difference image that is possible to calculate for real data, since there
is no real truth data. The pixel values are significantly different from the true difference image, but
the pattern is similar (see Fig. 4.18). This pattern and the reduced variance in Table 4.2 suggest
that variations in the pixels are removed by the normalization procedure.

4.2.2 Augmented Simulation Scenario

For the second scenario, a more detailed measurement process is followed. Measurement

swaths are modeled as being 20 antenna response patterns wide, and the swaths are oriented as

diagonals across the measurement region. This mimics the orbital passes of the ISS more closely

than the first scenario. The measurement swaths are non-overlapping for one set of passes, but a

second set of passes is made with the same diagonal orientation, with swaths slightly overlapping

the swaths from the previous set. Two additional sets of passes are created in the same way, with

diagonals passing in the other direction across the opposite corners. Fig. 4.20 shows an example

of one set of diagonal passes, including incidence angle and LTOD variations.

Additionally, the correlations between LTOD, roll angle, and incidence angle are included.

The model for roll versus LTOD is a cosine, with a random phase shift and amplitude, with a

different realization for each pass. The roll angle model

ϕ(t) =−(1−ν1)(0.287)sin
(

2π

24
(t−1.36−ν2)

)
+0.994, (4.5)
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Figure 4.20: One set of simulated measurement passes for the second simulation scenario, includ-
ing LTOD and incidence angle variations.

where ϕ is the roll angle in degrees, and t is the LTOD in hours (see the top plot in Fig. 4.21).

The random variables have zero-mean Gaussian distributions with different variances, where ν1 ∼

N
[
0,
(1

4

)2
]

and ν2 ∼ N
[
0,
(2π

4

)2
]
. The roll angle is simulated to be constant for each pass of

the radar, since the LTOD of each pass is also constant. This model is determined by a least-

squares estimate of roll and LTOD measures from the wet season in the Amazon (see the top plot

in Figs. 4.22). The roll value for each pass is calculated from the LTOD values of each pass in the

simulation. The LTOD for each swath varies in the simulation so that a full 24 hours are covered

across the measurement region, and these LTOD values are exactly 12 hours later for the passes

crossing the other diagonal direction.

Roll angle values determine the range of incidence angle variation. The model for the range

of variation

Rθ (ϕ) = 2.1032ln(ϕ)+2.5215, (4.6)

where Rθ is the range of incidence angle values (in degrees) spanned for the pass, and ϕ is the roll

angle (in degrees) (see the bottom plot in Fig. 4.21). The coefficients of this model are determined

by a least-squares estimate of roll versus the range of incidence angle for data from four arbitrary

consecutive orbital revolutions (see the bottom plot in Fig. 4.22). This model is only accurate
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Figure 4.21: Models for orbital attitude effects in the measurements for the second simulation
scenario. Top: One thousand realizations of the model of the dependence of roll angle on LTOD.
Each unique realization of the model is used for a single pass to determine a specific roll angle
from the LTOD of the pass (the roll angle is assumed to be constant across a single pass). Bottom:
Model for the dependence of incidence angle variation on the roll angle. The roll angle determined
from the top model determines the range of incidence angles across the swath.

within the measured range of [0.6,1.6] degrees roll angle. Incidence angle values are calculated

so that the maximum and minimum values occur in the leftmost and rightmost edges of the swath,

respectively, and then the values decrease linearly from the left side of the swath to the other.
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Figure 4.22: Data used to estimate the least squares models of attitude effects on σ0 (see Fig. 4.21).
Top: Actual RapidScat data used to model roll angle dependence on LTOD. From days 1–151,
2016. The fit line in the data points shows the mean function for the random model in Fig. 4.21.
The line segments in the data are incomplete due to masking the data. Note that the individual line
segments seem to have different phases and amplitudes than the central line. Bottom: RapidScat
data used to model incidence angle variation range dependence on roll angle. From four arbitrary
consecutive revs, day 100, 2015. This model is only considered accurate within this range of roll
angles ([0.6,1.6] degrees).
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The whole measurement process in this scenario is

σ
0
meas(x,y,θ , t) = σ

0
true(x,y)+(θnom−θ)+ cos

(
2π

24
t− π

2

)
+n(x,y) dB, (4.7)

where θnom = 49◦, θ is the incidence angle calculated from the roll angle (which is calculated

from the LTOD), t is the LTOD, and (x,y) designates a pixel location in the region, and n(x,y) ∼

N[0,σ2I] represents receiver noise for each antenna measurement, where σ2 =(0.1)2 (see Fig. 4.23).

The incidence angle value is calculated as

θ(t,k) =
(

θnom +
Rθ (ϕ(t))

2

)
− Rθ (ϕ(t))

20
k, (4.8)

where t is the LTOD of the pass; ϕ(t) is the roll angle of the pass, calculated from the current

LTOD; Rθ (ϕ(t)) is the range of incidence angle values spanning the swath, calculated from the

current roll angle; and k is the index of the column of the swath (k = 1,2, . . . ,20, counting from left

to right for the first two set of diagonal passes and right to left for the second two sets of passes).

Fig. 4.24 shows the truth image, and Fig. 4.25 shows the results of Eq. 4.7 on the truth data.

The normalization procedure is performed as before, except that σ0 dependence on inci-

dence angle is normalized first, followed by the dependence on LTOD (see Figs. 4.26, 4.27, 4.28,

and 4.29). The adjusted image has minimal effects from LTOD and incidence angle remaining, and

most of the residual error is from measurement receiver noise (see Figs. 4.30, 4.31, 4.32). Error is

defined as the difference between the adjusted image and the truth image, as before (see Figs. 4.31

and 4.32). However, the difference that can be calculated for real data is the difference between

the adjusted image and the original measured image (see Fig. 4.33). Seeing a pattern of incidence

angle and LTOD effects on σ0 (as seen in Fig. 4.33) and a decrease in overall variance in this

difference image suggests that the normalization was successful at removing σ0 variation caused

by these parameters. Table 4.3 shows the mean and variance for each image of the normalization

procedure for the second simulation scenario.
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Figure 4.23: Models for incidence angle and LTOD variations in σ0 in the second measurement
scenario. Top: Model for σ0 dependence on LTOD. This model determines how much to alter σ0

from the mean for a given LTOD. Bottom: Model for σ0 dependence on incidence angle. This
model determines how much σ0 is altered from the original value, based on a given incidence
angle. LTOD values are chosen arbitrarily for each pass, which then determines the roll angle, and
then the roll angle determines what incidence angle values to use for the measurement pass (using
models in Fig. 4.21).
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Figure 4.24: Ideal reconstructed image of the synthetic truth values of σ0 for the second scenario.
This image synthesizes a homogeneous land region, like the Amazon rainforest. Each pixel simu-
lates an ideal antenna response pattern for that location. This image is equivalent to the image in
Fig. 4.10, even though there are four overlapping measurements that are averaged together in each
pixel location.

Figure 4.25: Simulated reconstructed RapidScat image of the Amazon rainforest, including errors
from incidence angle and LTOD variation. A simple “drop-in-the-bucket” (DIB) algorithm is used,
where measurements in the same pixel are averaged together.
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Table 4.3: Mean and variance of σ0 measurements in each of the images produced for the second
simulation scenario (see Figs. 4.24, 4.25, and 4.30). Note that the RapidScat measurement

variations cause a much higher variance in the data compared to the synthetic truth data.
The normalization procedure reduces the overall variance of σ0 measurements to

be close to the original variance exhibited in the synthetic truth data image.
Note that the mean is changed by the measurement process, as well as the

normalization procedure. It is not feasible to estimate the original
mean, but the normalization procedure can be designed to keep

the mean the same as before the normalization procedure,
if desired.

Data Mean Variance
Synthetic Truth (Fig. 4.24) -8.000 dB 0.992
Not Normalized (Fig. 4.25) -7.952 dB 1.322

Normalized (Fig. 4.30) -7.877 dB 0.997

Figure 4.26: Normalization procedure for σ0 dependence on incidence angle for the second simu-
lation scenario. A least squares method is used to model σ0 dependence on incidence angle (top).
Then all values at every incidence angle bin are adjusted to have the same mean as the nominal
incidence angle bin (bottom).
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Figure 4.27: Normalization procedure for σ0 dependence on LTOD for the second simulation
scenario, after σ0 dependence on incidence angle is normalized. A least squares method is used to
model σ0 dependence on LTOD (top). Then all values at every LTOD bin are adjusted to have the
same mean as the nominal LTOD bin (bottom).

4.2.3 Additional LTOD Considerations

An additional scenario to consider for simulation is using a shorter day range for the data.

When RapidScat data is normalized for a day range less than 60 days long, there is no assurance

that a full 24 hours of LTOD are available for modeling. When day ranges are only a few days

long, two disjoint ranges of LTOD values are measured if both ascending and descending passes

are included, and one single, narrow range is measured if only ascending or descending passes are

included.

Though it is possible to include a large enough day range of RapidScat data for any normal-

ization procedure, it is faster computationally to only normalize data from a few days. Fig. 4.34

shows an example of a simulated normalization procedure for two disjoint ranges of LTOD, rep-

resenting what this data might look like for two to six consecutive days of RapidScat data. When

the LTOD ranges are narrow (like Fig. 4.34), the periodic nature of σ0 dependence on LTOD is

not evident, so a linear fit for each disjoint range can be more accurate for normalization. It is rec-

ommended to consider this linear approach for LTOD ranges that are 4 hours long or less, for each

data range. For a range longer than 4 hours, the sinusoidal nature of LTOD dependence can lead
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Figure 4.28: Distributions of the incidence angle bins for the normalization of σ0 versus incidence
angle (see Fig. 4.26). Top: the original distributions for σ0 versus incidence angle. Bottom: the
same distributions after normalizing both σ0 versus incidence angle and σ0 versus LTOD. Note
that the means are aligned in the bottom figure and that the variance is visibly reduced. The means
are aligned by normalizing σ0 to a single incidence angle bin, and the variance is reduced by
normalizing σ0 with respect to LTOD.
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Figure 4.29: Distributions of the LTOD bins for the normalization of σ0 versus LTOD (see
Fig. 4.27). Top: the original distributions for σ0 versus LTOD. Bottom: the same distributions
after normalizing both σ0 versus LTOD and σ0 versus incidence angle. Note that the means are
aligned in the bottom figure and that the variance is visibly reduced. The means are aligned by
normalizing σ0 to a single LTOD bin, and the variance is reduced by normalizing σ0 with respect
to incidence angle.

83



Figure 4.30: Reconstructed image of the normalized measurements for the second simulation sce-
nario. Note that the incidence angle and LTOD variations have been removed.

Figure 4.31: Difference between the normalized image (Fig. 4.30) and the ideal image reconstruc-
tion (Fig. 4.24). Note the difference in the mean close to 1 dB (caused by measurement variation
and the calibration procedure), as well as a variance in the difference, which is mainly due to radar
receiver noise (σ2 = (0.1)2).
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Figure 4.32: Difference between the normalized image without receiver noise and the ideal re-
constructed image, shown to illustrate the effects of receiver noise. The mean difference (∼1 dB)
is caused by incidence angle and LTOD variations, as well as imperfections in the normalization
procedure. The variance in the error is mostly caused by imperfections in the normalization pro-
cedure, but these errors are significantly less than the range of the radar receiver noise present in
Fig. 4.31.

Figure 4.33: Difference between the normalized image (Fig. 4.30) and the unadjusted image
(Fig. 4.25), shown to understand the magnitude of the correction. The pixel values are signifi-
cantly different from the true difference image, but the pattern is similar (see Fig. 4.32). A pattern
like this in the difference image and a reduction in pixel variance in the normalized image suggest
that incidence angle and LTOD variations have been minimized.
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Figure 4.34: Plot of piecewise normalization procedure for LTOD. This is a representation of a
normalization of σ0 dependence for short day ranges.

to inaccurate linear fits. Fig. 4.35 shows that a piecewise linear fit and normalization still yields

effective results. The LTOD distribution in Fig. 4.35 that appears to be off-center may be less

accurate because the LTOD bin associated with it contains a very small amount of measurement

values and so estimates of mean and variance are less accurate.

4.3 Summary

In summary, a normalization procedure is demonstrated in this chapter that is effective at

estimating and removing σ0 dependence on incidence angle and LTOD. It is shown that removing

dependence on incidence angle and LTOD also reduces dependence on other significant parame-

ters. In simulation, it is shown that SIR image quality can be affected by RapidScat attitude and

orbit variations and that a normalization procedure can reduce variance in these images. In the next

chapter, a normalization procedure is applied to real RapidScat data, and the effect on RapidScat

SIR images is analyzed.
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Figure 4.35: Distribution of LTOD bins for a short day range (2–6 days), when data is only avail-
able for a few hours of LTOD (see Fig. 4.34). Note that a piecewise first-order polynomial model
is quite effective at normalizing σ0 as seen before (see Figs. 4.14 and 4.29). The incomplete dis-
tribution curve represents an LTOD bin with a smaller amount of points and so it is less accurate.
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CHAPTER 5. RESULTS

The normalization procedure discussed in the previous two chapters is applied in this chap-

ter to actual RapidScat L1B data to make normalized SIR images. Initially, several SIR setup files

are created for a region. SIR setup files contain L1B measurements that are organized into their

respective pixel locations within the image. These setup files are used to create large measurement

vectors of σ0 and other significant parameters. These vectors are used to estimate a least-squares

model of σ0 dependence on LTOD, and then this dependence is normalized. Next, a model of σ0

dependence on incidence angle is estimated from the adjusted σ0 values, and the dependence on

incidence angle is normalized. Finally, the corrected measurements are written to new SIR setup

files and used by the SIR algorithm to make radar images. This procedure is used for two separate

regions to show the effect of the procedure with actual RapidScat data.

5.1 Amazon Region

First, a normalized SIR image is created over the Amazon to compare with analysis and

simulation performed in previous chapters. The original Amazon image can be seen in Fig. 5.1,

and the adjusted image can be seen in Fig. 5.2. Fig. 5.3 shows the difference between the nor-

malized image (Fig. 5.2) and the original image (Fig. 5.1). This difference image is used as a

reference because there is no visually significant difference between the original and adjusted im-

ages. The difference image shows a pattern of incidence angle and LTOD values, as in simulation

(see Fig. 4.33). Table 5.1 shows the variance of the pixels in the original and adjusted SIR images

over the Amazon (note the reduced variance in the adjusted image). Since these images contain a

substantial number of pixels below -30 dB (in the border), a mask is used for the variance calcula-

tion (see Fig. 5.4). The normalization procedure reduces the variance beyond the 95% confidence

interval of the original estimate for pixels within the border. The fact that the total variance of the
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Figure 5.1: Original RapidScat SIR image of a region of the Amazon rainforest for days 101-105,
2016.

Table 5.1: The variance of the Amazon SIR images in Figs. 5.1 and 5.2. Because of a significant
number of σ0 values that are less than -30 dB in the borders, a mask is used for calculating

variance (Fig. 5.4). A decrease in variance after the adjustment is evidence of a reduc-
tion in pixel variation caused by incidence angle and LTOD. Note that the variance

decrease is beyond the 95% confidence interval.
Step Variance 95% Confidence
Original Image (Fig. 5.1) 0.993 0.989–0.996
After Normalization (Fig. 5.2) 0.978 0.974–0.982

image decreases in a statistically significant way demonstrates that the normalization effectively

reduces variability in σ0 caused by incidence angle and LTOD.

5.2 Arbitrary Region

For further analysis, a SIR image is created over an arbitrary region. The unadjusted SIR

image of this region can be seen in Fig. 5.5. This arbitrary region is chosen to show the application

of the normalization procedure to a different region with less homogeneous land features. All
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Figure 5.2: Adjusted SIR image of a region of the Amazon rainforest for days 101-105, 2016.
Note that there is no significant visual difference between this image and the original (Fig. 5.1).
Fig. 5.3 better exhibits the differences that are present between the two.

analysis in previous chapters is done over the Amazon mask in order to ensure homogeneity. In

this case, the arbitrary region is small enough to be able to assume some level of homogeneity,

though a large amount of variability is still present. The region chosen for this test is in Eastern

Africa, which includes parts of Uganda, Kenya, Tanzania, and all of Lake Victoria.

Having a large body of water within the region requires special consideration. Water mea-

surements have a significantly different distribution than land measurements, and the σ0 depen-

dence on parameters is considerably different over water than land. Combined, the water and land

σ0 measurements create a distribution with multiple modes (see Fig. 5.6), so a data mask is deter-

mined for σ0 adjustments that excludes water measurements (see Fig. 5.7). The mask is designed

so that only data centered around the most significant land mode are used.

The mask associated with the most significant mode is determined by an iterative search.

The search is initialized with the median of the σ0 measurements. The new mean value is computed

within one standard deviation of the starting value, and then the starting value is replaced by the

91



Figure 5.3: Difference between the adjusted (Fig. 5.1) and original (Fig. 5.2) SIR images of a
region of the Amazon rainforest. Note that a pattern is shown in this image that is similar to
difference images created in simulation (see Fig. 4.33). The spiral cross-hatch pattern is caused by
incidence angle variations, and the light and dark regions suggest LTOD variations.

new mean value. This process iterates 100 times. The final value is centered on the largest mode

in the distribution of σ0 measurements.

The mask only includes measurements within the range of one standard deviation of the

final value of the iterative search (see Fig. 5.8). The masked data is centered around the σ0 mode

associated with land rather than water. This happens because there are significantly more land

measurements than water, and water measurements tend to have much lower σ0 values than land

measurements. Measurements that fall within the mask are used to make a model for LTOD depen-

dence, and then all σ0 values (including data outside the mask) are adjusted to normalize LTOD

dependence. Next, the adjusted σ0 values that fall within the mask are used to make a model

for dependence on incidence angle, and that model is used to normalize dependence on incidence

angle for all σ0 values.

There is no truth data to verify SIR images, but QuikSCAT data has low variance compared

to other scatterometers (σ2 ≈ 0.4 in the Amazon region shown above) and a long mission life, so it
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Figure 5.4: The mask used for the variance calculation for the Amazon SIR images. Only light-
colored pixel locations from the Amazon images are used to calculate variance estimates. The
mask removes the border pixels, which contain very small values. The small border values are an
artifact of the SIR algorithm and are not significant to the image of the region.

is a baseline to compare to. Fig. 5.9 shows a QuikSCAT SIR image of the same region as Fig. 5.5.

This represents what a “good” SIR image of the region is expected to look like. Note that the noise

is much more significant in the RapidScat image. QuikSCAT images look very “smooth,” which

is a sign of low noise.

The adjusted image (Fig. 5.10) is compared with the QuikSCAT image (Fig. 5.9) by com-

puting a difference image in Fig. 5.11. Incidence angle and LTOD effects are not clearly evident in

this difference image. This image shows that there is much more noise present in RapidScat data

than just variation caused by incidence angle and LTOD. Since observing this difference image

provides limited insight, the differences between the normalized image and the original image are

analyzed instead.

The differences between the adjusted RapidScat image (Fig. 5.10) and the original one

(Fig. 5.5) are not visually evident, so a difference image is computed. This image is shown in

Fig. 5.12. The difference image shows a pattern of measurement swaths. Additionally, the vari-

93



Figure 5.5: RapidScat SIR image of an arbitrary small region of East Africa, including parts of
Uganda, Kenya, Tanzania, and all of Lake Victoria. Region covers the area between 4◦ S to 3◦ N
and 31◦ E to 38◦ E. Days 100-105, 2016.

Figure 5.6: Histogram of σ0 values contained in the East Africa region shown in Fig. 5.5 for days
61-120, 2016. Note most values are centered around the mode close to -10 dB. The values that are
lower down are mostly associated with water locations.
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Figure 5.7: Mask of pixel locations in the East Africa SIR image used to calculate normalization.
Only light-colored pixels within this region are used to calculate the models for normalization so
that it is unaffected by Lake Victoria and other bodies of water.

Figure 5.8: Histogram of σ0 values contained in the East African region shown in Fig. 5.5, includ-
ing the mean and standard deviation lines used to determine the mask for this region, as seen in
Fig. 5.7. Only values between the outer lines are used for model estimation for the normalization
procedure. These values are associated with the light-colored regions in Fig. 5.7.
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Figure 5.9: QuikSCAT SIR image of the same East African region as in Fig. 5.5. QuikSCAT
images appear blurry compared to RapidScat images, which is a mark of low noise (see Fig. 5.5).

ance of the image pixels is reduced after the normalization procedure. Note the bright spot in

the difference image over Lake Victoria. Because water and land measurements have significant

differences in σ0 dependence models, a significant error is caused in the water locations by the nor-

malization procedure. The variances of the original and adjusted SIR images are calculated within

masked locations of the region that do not include regions with large bodies of water (see Fig. 5.13

for the mask). Table 5.2 shows the variances of the two images. In the case of this 6-day image

(Fig. 5.10), the variance is decreased by the normalization procedure to be beyond the 80% con-

fidence interval of the original estimate. The decrease in variance suggests that the normalization

procedure is effective at reducing variability in the images caused by σ0 dependence on incidence

angle and LTOD, although the decrease in variance is within the 95% confidence interval of the

original estimate.
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Figure 5.10: RapidScat SIR image of adjusted σ0 measurements in the same region as Fig. 5.5.
There is no marked visual difference between this image and the previous one in Fig. 5.5. A
difference image is necessary to see significant differences (see Fig. 5.12).

Table 5.2: The variance of the 6-day East Africa SIR images in Figs. 5.5 and 5.10. Because of
low values present in water pixels, a mask is used to remove these pixels for the variance

calculation (see Fig. 5.13). Note that the variance decreases beyond the 80% confidence
interval after the normalization procedure.

Step Variance 80% Confidence
Original Image (Fig. 5.5) 3.528 3.509–3.547
After Normalization (Fig. 5.10) 3.504 3.485–3.523

5.2.1 Longer Day Ranges

To expand the analysis, SIR images from longer day ranges are averaged together to see

if a larger effect on variance is seen when receiver noise is reduced and LTOD effects are more

evident. SIR images are computed for 30 days and 60 days of data. These images are computed

by averaging together 6 or 12 five-day images of RapidScat data, respectively. Averaging images

helps to reduce measurement noise, which can potentially enable better visibility of the changes

due to normalization. These images are shown in Figs. 5.14 and 5.15, respectively.
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Figure 5.11: Difference of the adjusted SIR image (Fig. 5.10) and the QuikSCAT image (Fig. 5.9).
Note that there are still significant differences between RapidScat and QuikSCAT that cannot solely
be attributed to incidence angle variation, which makes this difference image impractical for mea-
suring the effect of σ0 normalization procedures. Also note that the values over Lake Victoria have
the largest difference, compared to QuikSCAT. The difference over Lake Victoria is exaggerated
because σ0 measurements of water are normalized with the same dependence models as the land
measurements, and the dependence models for land are significantly different than the models for
water.

The difference image in Fig. 5.16 shows the difference between the original 30-day image

(Fig. 5.14) and the adjusted image (not shown). The original image is not shown in this case

because there is no apparent visual difference between it and the adjusted image, as in previous

cases. The difference image shows some apparent incidence angle and LTOD variations, and the

variance does decrease beyond the 60% confidence interval of the original estimate (see Table 5.3).

This suggests the normalization procedure is effective to some degree over 30 days, even though the

decrease in variance is within the 95% confidence interval of the original estimate. The effect on

variance is not as large as for the 6-day image, for unknown reasons. The larger effect on reducing

variance is caused by averaging images together. Note that the variance decreases substantially

between the 6-day, 30-day, and 60-day images (see Table 5.4). Also note that the difference pattern
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Figure 5.12: Difference of the SIR images in Figs. 5.10 and 5.5. Note that the pattern shown
in this image is similar to difference images created in the simulation (see Fig. 4.33). Addition-
ally, note that this image looks like a zoomed-in portion of Fig. 5.3, since the region is smaller
than the Amazon region used above. When this pattern is shown and the variance decreases, the
normalization procedure is assumed to be effective.

Table 5.3: The variance of the 30-day East Africa SIR images. Because of lower values present in
water pixels, a mask is used to remove these pixels for the variance calculation (see Fig. 5.13).

Note that the variance decreases beyond the 60% confidence interval after normalization.
Step Variance 60% Confidence
Original Image 2.191 2.183–2.199
After Normalization 2.182 2.175–2.190

is harder to distinguish in a 30-day image. This is because of a greater number of overlapping

measurements that are averaged together.

The difference image in Fig. 5.17 shows the difference between the original 60-day image

(Fig. 5.15) and the adjusted image (not shown). Again, the original 60-day image is not shown

because there is no visible difference between it and the adjusted image. The expected difference

pattern is indiscernible in this case, due to significant swath overlap and pixel averaging. The
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Figure 5.13: Mask for East Africa SIR images used to analyze variance. Only pixels within the
light-colored regions are used in order to estimate a variance that is unaffected by Lake Victoria
and other bodies of water.

Table 5.4: Variance of the normalized SIR images for the 6-day, 30-day, and 60-day images. Note
that the variance decreases with more averaging.

Step Variance
6-day Image 3.504
30-day Image 2.182
60-day Image 1.926

random regions of light and dark pixels (except over Lake Victoria) may be due to LTOD variations,

which is more visible in a 60-day image normalization, due to a full 24 hours of LTOD range being

measured. The dark diagonal band in the lower left corner is caused by insufficient data in one of

the averaged images. The variance decreases beyond the 95% confidence interval of the original

estimate for this case, and the decrease is larger than for the 6-day image or 30-day image. The

results suggest that the normalization procedure is effective at reducing the total variance and

that other sources of noise (beyond incidence angle and LTOD effects) dominate the image. The
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Figure 5.14: RapidScat 30-day adjusted SIR image. This image is made from 6 five-day adjusted
SIR images that are averaged together. Note that the image noise is reduced because of the aver-
aging (compare with Fig. 5.10, and see Table 5.4). The original SIR image is not shown, because
the differences are not visually evident.

Table 5.5: The variance of the 60-day East Africa SIR images. Because of lower values present in
water pixels, these pixels are removed by a mask for the variance calculation (see Fig. 5.13).

Note that the variance decreases beyond the 95% confidence interval after the normal-
ization procedure.

Step Variance 95% Confidence
Original Image 1.967 1.951–1.984
After Normalization 1.926 1.910–1.942

images for 30 days and 60 days become visually more similar to QuikSCAT images, primarily due

to additional averaging.

5.3 Summary

In summary, applying the normalization procedure to real RapidScat data shows a pattern

of incidence angle and LTOD effects, and the variance of the pixels is reduced over pixels that do
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Figure 5.15: RapidScat 60-day adjusted SIR image. This image is made from 12 five-day adjusted
SIR images that are averaged together. Note that the image noise is reduced because of the aver-
aging (compare with Figs. 5.10 and 5.14, and see Table 5.4). The original SIR image is not shown,
because the differences are not visually evident.

not include bodies of water. This suggests that the normalization is effective at reducing image

noise by removing incidence angle and LTOD effects on σ0.
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Figure 5.16: Difference of the 30-day adjusted SIR image (Fig. 5.14) and the original 30-day
image (not shown). Note that a pattern is shown in this image that is similar to difference images
created in the simulation (see Fig. 4.33). The differences here are smaller than for a single 6-
day image. Cross-hatch and spiral patterns are evident to some degree, showing incidence angle
effects, and light and dark regions suggest LTOD effects.
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Figure 5.17: Difference of the 60-day adjusted SIR image (Fig. 5.15) and the original 60-day
image (not shown). The brighter sections of the image may be due to LTOD changes that are
removed. The differences here are smaller than for a single 6-day image.
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CHAPTER 6. CONCLUSIONS

In this chapter, the contributions of this work are summarized and suggestions for future

work are given. In this thesis, RapidScat σ0 and attitude measurements are analyzed and adjusted

to show that normalized radar images with reduced pixel variance can be created by removing σ0

dependence on incidence angle and LTOD. Chapter 3 shows that incidence angle variation (caused

by attitude changes) and LTOD variation (caused by orbital precession) are significant factors lead-

ing to variability in σ0 measurements. Chapter 4 shows a simulation of a normalization procedure

for removing σ0 dependence on incidence angle, LTOD, and other significant parameters. Sim-

ulation results shows that overall pixel variability caused by incidence angle and LTOD can be

reduced for radar images. Chapter 5 shows that the normalization procedure can be effectively

applied to a standard scatterometer calibration region, such as the Amazon, where land cover is

mostly homogeneous, as well as an arbitrary region that is sufficiently small to assume some level

of homogeneity. The results of normalizing real data show that the effects of adjustments are

relatively small compared to the noise.

6.1 Contributions

Two major contributions are made by this thesis. First, the dependence of σ0 on various

parameters is compared for RapidScat and other spaceborne Ku-band instruments. It is shown that

RapidScat and TRMM data have similar models for σ0 dependence on LTOD over the Amazon,

despite functioning at different incidence angle ranges and being designed for different purposes

(see Fig. 3.17). Second, a simple normalization procedure for reducing noise in SIR images is

shown to be effective (see Chapters 4 and 5). This procedure reduces variability in radar image

pixels caused by incidence angle and LTOD variation.
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6.2 Future Work

For future work on reducing undesired pixel variability in radar images, several issues can

be addressed. First, the process for RapidScat SIR creation can be automated to enable normal-

ization for SIR images in any arbitrary location, as required. Automation requires further gener-

alization of the code developed as part of this thesis, and it requires further integration into the

SIR algorithm process. Another possible future development is to use the models in this thesis

to adjust the SIR values of all Ku-band scatterometers to match a common mean, effectively nor-

malizing SIR images for every instrument to have the same incidence angle and LTOD. Having

a common mean between SIR image makes the features in the images more comparable between

datasets. Additionally, a significant project that can improve the analysis of LTOD effects and er-

rors in RapidScat’s measurement geometry is to design and launch another Ku-band pencil-beam

scatterometer in an equatorial orbit on a stable platform. Such a project can assist in discovering

other causes of image variability in SIR images. Finally, further data analysis can be performed on

current data to understand errors in RapidScat σ0 measurements, including exploring coupled mul-

tidimensional analysis of dependence between multiple parameters and σ0, and including analysis

of log-normal noise distributions, rather than assuming normality.
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