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ABSTRACT

HIGH RESOLUTION WIND RETRIEVAL FOR SEAWINDS ON QUIKSCAT

Jeremy B. Luke

Department of Electrical and Computer Engineering

Master of Science

An algorithm has been developed that enables improved the resolution wind

estimates from SeaWinds data. This thesis presents the development of three key

portions of the high resolution wind retrieval algorithm: Compositing individual σ0

measurements and Kp, Retrieved wind bias correction, and ambiguity selection for

high resolution winds. The high resolution winds produced by this algorithm are

expected to become a useful resource for scientists and engineers studying the ocean

winds. The high resolution wind retrieval algorithm allows wind to be retrieved

much closer to land than is available from the low resolution winds estimated from

the same scatterometer by the Jet Propulsion Laboratory. The high resolution winds

allow features such as the eye of hurricanes to be seen with much greater detail than

was previously possible.
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Chapter 1

Introduction

1.1 Background

The study of the Earth’s climate is an important field of science. Many people’s

everyday lives around the world are influenced by the current and predicted weather.

Before the age of satellites this knowledge was limited to the current weather condi-

tions on land and at isolated weather stations. Accurately predicting the weather can

save millions of dollars by allowing people to prepare for large storms and droughts.

A large factor in the Earth’s weather and climate is the near-surface winds over the

ocean. A knowledge of how the air and sea interact and how this influences ocean

circulation is invaluable in predicting changes in the weather. Scatterometers give

scientists a method to measure this near-surface wind over the ocean. Scatterometers

are able to measure the ocean winds in all weather conditions and in both daylight

and at night. The latest scatterometer is capable of covering 90% of the Earth’s

surface in one day.

Scatterometry is the method of measuring the reflection of space-borne radar

from the earth surface. The concept of using radar to measure the winds over the

ocean came from noise known as sea clutter noticed by radar-system operators during

World War II.

The first scatterometer was part of the Skylab missions in 1973 and 1974.

Then in 1978 a scatterometer (SASS) was flown on the Seasat-A satellite. Data from

this mission proved that wind velocity measurements could accurately be made from

space. Scatterometers have also flown from 1992 to 2001 on the European Space

1



Agency’s Remote Sensing Satellites (ERS-1 and ERS-2). The NASA Scatterometer

(NSCAT) was launched in 1996 and returned an unprecedented quality of data until

a power failure in June of 1997 ended the mission. The QuikSCAT satellite carrying

the SeaWinds instrument was launched as a “quick recovery” mission on June 19,

1999 [1].

1.2 Wind Retrieval

Scatterometers transmit pulses of microwave energy to the ocean surface and

measure the power in the returned echo. From this measurement an estimate of

the normalized radar cross section (σ0) of the sea surface can be obtained. Near-

surface wind over the ocean affects the roughness of the ocean surface, which changes

the radar cross section of the ocean, which in turn affects the magnitude of the

backscattered power [2].

To estimate the wind velocity over the ocean from σ0 one must know the

relationship between σ0 and the near-surface wind velocity. Due to the inability of

scientists to derive a theory-based model function relating these two parameters an

empirical model function, known as the Geophysical Model Function (GMF), has

been developed to relate the radar cross section to the near-surface wind. The GMF

can be written as [2]

σ0 = f(|U |, χ, · · ·; θ, f, pol) (1.1)

where |U | is the wind speed, χ is the azimuth angle between the wind direction and the

incident radiation (see Fig. 2.6) ,· · · represent variables other than wind which have

an affect on σ0 such as long waves, stratification, and temperature, θ is the incident

angle of the radiation (see Fig. 2.6), f is the frequency, and pol is the polarization of

the incident radiation.

To estimate the wind speed and direction of the wind which produced a given

σ0 involves inverting the Geophysical Model Function. The process of retrieving winds

from σ0 is described in more detail in the next chapter.
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Through resolution enhancement algorithms developed for σ0 it is now possible

to increase the resolution of the wind fields estimated from scatterometer σ0. This

thesis develops several key methods used in a new high resolution wind retrieval

algorithm, from pre-processing of parameters used in the wind retrieval algorithm, to

bias adjustments done during the processing of the winds, to a final post-processing

step to select the correct ambiguity.

1.3 Summary of Contributions

This thesis makes three contributions to the process of high resolution wind

retrieval using the Seawinds instrument on the QuikSCAT satellite. These contribu-

tions are summarized in the next three paragraphs.

High resolution wind retrieval uses higher resolution radar backscatter, σ0,

measurements to retrieve the wind over the ocean. These higher resolution σ0 mea-

surements are range and Doppler resolved measurements known as “slices”. The

lower resolution σ0 measurements are known as “eggs”. The high resolution wind

retrieval algorithm averages all of the slice measurements from a given beam that

are contained in a given wind retrieval cell. This thesis analyzes methods to average

or composite the σ0 measurements. Along with this, methods for compositing the

normalized standard deviation, Kp, and its parameters are derived.

Simulations have shown that a bias is introduced into the retrieved high res-

olution winds. This bias is a function of the measurement geometry, i.e. azimuth

and incidence angles of the σ0 measurements. A 3-dimensional table is compiled con-

taining this bias. This table is used in the processing of the high resolution winds to

adjust the retrieved winds by the correct bias. This thesis illustrates the development

and the simulation results of the bias removal.

The final contribution of this thesis is the development of an ambiguity removal

algorithm for the high resolution winds. The inversion of the Geophysical Model

Function, previously discussed, produces several possible solutions. The wind retrieval

algorithm limits the number of possible solutions to the best four. It is then left

to post-processing to choose the best possible and most likely solution from these
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possible solutions. The possible solutions are known as ambiguities. Due to the

increased noise in the high resolution winds some ambiguity removal algorithms do

not work. The most efficient method to choose the best ambiguity is to choose the

one closest to the chosen ambiguity in the low resolution winds as an initialization

and then perform post processing such as median filtering to clean up bad initial

choices. Various methods for this post processing are examined in the final section of

this thesis.
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Chapter 2

Scatterometry Background

2.1 Scatterometry

The use of scatterometers to measure ocean winds has several advantages when

compared to conventional techniques. Scatterometers can achieve near global cover-

age of the Earth’s oceans every day. Conventional methods such as weather stations

on ships and buoys are sparse and often inaccurate. Wind measurements taken from

ships are often inaccurate due to badly placed anemometers, untrained observers, and

errors introduced by the motion of the ship. They are also biased because ships avoid

bad weather locations. Measurements from buoys are more accurate but are sparse

and generally close to land.

Scatterometers do not measure the wind velocity over the ocean directly.

Rather they use a highly indirect approach to estimate the wind velocity from the

amount of power that is reflected back when the ocean is illuminated with a pulse of

microwave energy. From this power measurement the normalized radar cross section

can be estimated. The normalized radar cross section is know as σ0. It is a function

of the amount of energy reflected by the scatterer and the gain of the scatterer in the

direction of the receiver. The velocity of the wind over the ocean affects the roughness

of the ocean surface. This roughness affects the σ0 of the ocean surface. To obtain

a wind velocity estimate the relationship between σ0 and the wind (GMF) must be

known.

To estimate the normalized radar cross section σ0 from the reflected power

measurement the radar equation is used [3]. The amount of backscattered power
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received at the antenna from the reflection off the surface is a function of the radar

cross section of the surface, i.e.

Ps =
PtG

2λ2Ars

(4π)3R4
σ0 (2.1)

where Pt is the transmitted power, G is the gain of the antenna, λ is the wave length

of the transmitted power, R is the slant range from the antenna to the scatterer, and

Ars is the effective area of the scatterer. The total power measured at the receive

antenna is the power from the backscattered signal Ps plus the noise power Pn. The

noise power results from instrument noise and natural emissions of power from the

atmosphere at the frequency being measured by the scatterometer. To estimate σ0

this noise power must be subtracted from the total power, Ps+n, to give Ps. The

normalized radar cross section, σ0, can then be used to estimate the wind velocity

over the corresponding section of ocean.

As mentioned in the introduction, the relationship between the near-surface

wind and the normalized radar cross section σ0 is an empirically-derived model known

as the geophysical model function (GMF). This empirical model function was devel-

oped using several million calibrated σ0 measurements from the Seasat scatterometer

along with several thousand high quality in situ measurements by Wentz and co-

workers [4],[5].

The Seawinds scatterometer has two approximately constant incidence angles

as explained in Section 2.2. One at 46◦ and one at 54◦. From Figure 2.1 it can be

seen that σ0 increases approximately linearly with the log of the wind speed for a

given azimuth angle. It is therefore straight forward to estimate the wind speed from

σ0. Wind speed can be estimated with only a single measurement of σ0.

Estimating wind direction is not as straight forward. Figures 2.2 and 2.3

show that the relationship between σ0 and the relative wind direction χ is nearly

cos(2χ) where σ0 is at a maximum when χ = 0, corresponding to upwind, and χ =

180, corresponding to downwind. The maximum at 180◦ is slightly lower than the

maximum at 0◦. This asymmetry in upwind and down wind directions is beneficial. If

not for this asymmetry it would be impossible to decipher between upwind and down
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azimuth angle used is 0◦. The model function used is the “Wentz” model function.
The 46◦ incidence angle uses horizontal polarization and the 54◦ uses vertical polar-
ization
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Figure 2.2: Geophysical model function relating relative azimuth angle to σ0. Wind
speeds of 5 m/s, 10 m/s, and 20 m/s with an incidence angle of 46◦ were used to
generate this plot from the “Wentz” model function.

wind directions giving two possible solutions that are 180◦ apart. It can also be seen

that this asymmetry in the upwind and downwind directions, as well as the amplitude

of the modulation in σ0 due to relative azimuth angle, decreases with increasing wind

speed. The upwind-downwind asymmetry is greater for horizontal polarization than

it is for vertical polarization. It also increases with increasing incidence angle.

From Figures 2.2 and 2.3 it can be seen that it is not possible to resolve

the wind direction given a single σ0 measurement. Given that the wind speed can be

found from one measurement there are two to four solutions for the wind speed. These

possible solutions are referred to as ambiguities. To limit the number of ambiguities it

is necessary to make measurements of σ0 from several different azimuth angle and/or

different polarizations. This concept is illustrated in Figure 2.4.

Figure 2.4(a) shows a plot of all possible wind speed and wind direction so-

lutions for a given σ0 measurement taken from an azimuth angle of 350◦ and an

incidence angle of 54◦ using a vertically polarized beam. This plot shows that it is
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Figure 2.3: Geophysical model function relating relative azimuth angle to σ0. Wind
speeds of 5 m/s, 10 m/s, and 20 m/s with an incidence angle of 54◦ were used to
generate this plot from the “Wentz” model function.

not possible to obtain a single wind vector solutions from one σ0 measurement. Fig-

ure 2.4(b) contains not only the plot of solutions given by σ0 from plot (a) but also

contains a plot of the solutions for a σ0 measurement taken from an azimuth of 190◦

and an incidence angle of 54◦ using a vertically polarized beam. There are four inter-

sections of the two curves. These intersections correspond to wind vector solutions

given the two σ0 measurements. As explained before these solutions are referred to

as ambiguities. In Figure 2.4(c) another curve is added to the plot. The dashed curve

is all the wind vector solutions that are possible for a given σ0 measurement taken

from an azimuth of 345◦ and an incidence angle of 46◦ using a horizontally polarized

beam. The addition of this measurement limits the number of intersections to one.

Also labeled on the plot is a point of near intersection. It is possible with only three

measurements to get more than one intersection. With the addition of another σ0

measurement, shown in Figure 2.4(d), there is only one location where all four curve

intersect yielding a unique wind vector solution.
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Figure 2.4: Geophysical model function relating values of σ0 to possible wind speed
and direction solutions.The solid line in plots (a) through (d) represents possible
solutions from one σ0 measurement taken at 350◦ azimuth and 54◦ incidence (V-pol).
The dashed line in plots (b) through (d) represents solutions from one σ0 measurement
taken at 190◦ azimuth and 54◦ incidence (V-pol). The dotted line in plots (c) and (d)
represents solutions for one σ0 measurement taken at 345◦ azimuth and 46◦ incidence
(H-pol).The dash-dot line in plot (d) represents solutions for one σ0 measurement
taken at 195◦ azimuth and 46◦ incidence (H-pol).
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In practice instrumental noise, geophysical noise and the small upwind-downwind

asymmetry of the geophysical model function cause the inversion of the model func-

tion to yield multiple solutions. These multiple solutions are a result of the near

intersections of all four curves being mistaken for one true intersection due to the

noise. There are several methods to chose a unique ambiguity. One of which is

addressed in this thesis.

2.2 Seawinds Scatterometer

The Seawinds Scatterometer instrument flown on the QuikSCAT satellite was

launched on June 19, 1999 into a sun-synchronous, circular orbit at an altitude of 803

kilometers. The Seawinds instrument departs from the fan beam-type antennas used

on previous scatterometer missions. Seawinds uses a rotating one meter parabolic

antenna with two spot beams that sweep in a circular pattern. The antenna rotates at

a rate of 18 RPM. The two spot beams are offset providing two pencil-beam footprints

at incidence angles of 46◦ and 54◦ for H-pol and V-pol respectively. The frequency of

the microwave energy radiated from the antenna is 13.4 GHz. The pulse repetition

frequency is nominally 187.5 Hz. The antenna rotation rate, the pulse repetition

frequency and the velocity of the spacecraft are exploited in the high resolution wind

retrieval. These factors allow for oversampling of the Earth’s surface.

The antenna footprint on the ground is an ellipse with principal axes of 37 kilo-

meters corresponding to the look direction and 25 kilometers corresponding to the

azimuth direction. To provide higher range resolution the transmit pulse is modulated

using a linear FM chirp. Signal processing then provides a sub-footprint range res-

olution of nominally 6 kilometers. These sub-footprint range resolved measurements

are referred to as “slices”. The entire footprint is referred to as an “egg”.

The σ0 measurement responses are shown in Fig. 2.5. The area of the “egg”

footprint on the ground corresponds to the area contained within the second contour

of Figure 2.5(a). This contour is the 6 dB contour. The individual “slice” footprints

are shown in Figure 2.5(b). The area of each slice is the area within the 6 dB contour

of each slice.

11



(a) (b)

Figure 2.5: Contour plot of the σ0 measurement response for (a) eggs and (b) slices.
The contour interval is 3dB. Shown in (b) are twelve slices however data received
from JPL contains information on the inner eight slices. Image courtesy of Dr. David
Long
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Figure 2.6: QuikSCAT satellite

Seawinds has a swath that is 1,800 kilometers wide for the outer beam and

1,400 kilometer wide for the inner beam, allowing it to cover 90% of the Earth’s

surface everyday.

The geometry of the SeaWinds scatterometer is highly effective for wind re-

trieval. As explained in the previous section several measurements from unique look

angles and/or polarizations are needed to uniquely solve the inverse geophysical model

function. For most of the swath SeaWinds is able to make four unique measurements:

one forward looking, horizontally polarized, one forward looking, vertically polarized,

one aft looking, horizontally polarized, and one aft looking vertically polarized. There

are parts of the swath were this geometry breaks down. For example, in the far swath

there are only outer beam (V-pol) measurements at fairly close azimuth angles, and

at the center swath only two unique azimuth angles are available. The poor sam-

pling geometry at these location is evident in images of the wind fields. Figure 5.3(b)
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Figure 2.7: The average number of σ0 measurements in each wind vector cell. (a)
Forward looking outer beam, (b) forward looking inner beam, (c) aft looking inner
beam, and (d) aft looking outer beam.

illustrates a high resolution wind field. In the nadir section of the swath the wind

direction measurements are noisy. This is also the case for the low resolution wind

field at this location in the swath.

The wind resolution cell using the egg measurements is a 25 km by 25 km

square. This allows the swath of one revolution to be divided up into 76 cells, referred

to as wind vector cells (WVC), in the cross track direction and 1,624 wind vector

cells in the along track direction. The σ0 measurements from the footprints that have

centers which fall in the WVC are then used in the wind retrieval process.

Generally several footprint centers fall into one WVC. This number is depen-

dent on cross track position of the WVC. Figure 2.7 shows the average number of σ0

measurements in each cell for each beam. The beams are numbered as follows: beam

(1) is the outer beam looking in the forward direction, beam (2) is the inner beam

looking forward, beam (3) is the inner beam looking in the aft direction, and beam

(4) is the outer beam looking in the aft direction. The total number of measurements
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used to retrieve the wind in each wind vector cell is the sum of the number of each

beam.

Recall that the size of the footprint is approximately 25 kilometers by 37

kilometers. In the range dimension the footprint size is larger than the WVC. It

should be noted that, even though the center location of the footprint falls in the

WVC, the radar cross-section σ0 is estimated from power reflected by area outside

and inside the WVC. Thus the effective resolution is actually coarser than the WVC

size. When any WVC has a σ0 measurement from a footprint that includes land or

ice the WVC is not used to retrieve winds.

Due to the size of the footprint, the rotation rate and the pulse repetition fre-

quency there is overlap in consecutive measurements. This fact makes the SeaWinds

instrument a prime candidate for resolution enhancement algorithms.

2.2.1 SeaWinds Data Files

Three processing levels of the SeaWinds data are used in this thesis. The first

two, L1B and L2A, contain the σ0 measurement data while the third, L2B, contains

the wind vector measurements estimated from the σ0 measurements.

The L1B product contains the σ0 values for both the slice and egg measure-

ments. These measurements are time ordered, i.e. are listed in the order the mea-

surements were made. They are arranged in telemetry frames of 100 pulses. The

L1B product also contains information about the location of the measurement (lat-

itude and longitude coordinates), geometry from which the measurement was taken

(incidence and azimuth angles), measurement quality information, and uncertainty

parameters.

The L2A product contains information about the egg measurements only. This

level groups the σ0 measurement into rows and columns of wind vector cells (WVC).

As mentioned, each WVC is a 25 kilometer square. The entire revolution can be

divided up into 1624 WVC in the along track direction and 76 WVC in the cross

track direction. The L2A file also includes 39 WVC rows from the previous rev at the

beginning of the file and 39 rows from the following rev at the end of the file. The
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total number of WVC rows contained in the L2A product is thus 1702. In the cross

track direction the swath width is 1,800 km. Therefore 36 wind vector cell on each

side of the for a total of 72 WVCs should be enough to include all σ0 measurements.

However variations in the attitude of the QuikSCAT satellite and the shape of the

Earth, some σ0 measurement fall outside of the boundary. Two extra WVCs on each

side of the swath are included to accommodate these occasional outliers.

The L2B product is spatially ordered the same way as is the L2A product.

This product, however, contains only wind vectors for each WVC. The number of

wind vectors ranges from 1 to 4, corresponding to the number of ambiguities. The

JPL selected ambiguity is also contained in this product for each WVC.

2.3 High Resolution Wind Retrieval

The JPL SeaWinds L2B wind product contains wind vectors for wind vector

cells with resolution of 25 km. These wind vector estimates were retrieved using the

“egg” measurement. Increased resolution in the wind vector cells can be done by

exploiting the measurement geometry of the SeaWinds instrument.

As explained in the previous section, the antenna beam-limited footprint can

be resolved into smaller elements by using range and Doppler filtering. The SeaWinds

instrument is capable of resolving the footprint into twelve individual elements called

“slices”. The best 8 of these “slices” are reported in the L1B data product. The slices

are approximately 6 by 25 km.

The antenna rotation rate, pulse repetition frequency, and spacecraft velocity

coupled together provide dense overlap in the spatial sampling of the surface by

the slices. Using reconstruction and resolution enhancement algorithms, this over

sampling is exploited to produce higher resolution images of σ0. The resolution

enhancement algorithm used to produce the higher resolution σ0 fields is the AVE

algorithm [6], [7].

The AVE algorithm, developed by Long et al. [8], overlays a higher resolution

grid on the σ0 field. The width of each pixel in this higher resolution grid is 2.5

km. This pixel width correspond to the width of the high resolution wind vector
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Figure 2.8: Illustration showing overlap in slice measurements due to the pulse repe-
tition frequency of the SeaWinds instrument and size slice footprint. Image courtesy
of Dr. David Long

Figure 2.9: Illustration showing overlap in slice measurements due to the pulse repe-
tition frequency and antenna spin rate. Image courtesy of Dr. David Long
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cell. As mentioned previously, the geometry of the SeaWinds instrument allows most

of the swath to be viewed 4 times: once by both the outer and inner beam looking

forward as the satellite approaches and then again by the each beam looking in the

aft direction as the satellite is leaving. The four different viewing geometries are used

separately to construct four σ0 fields. The dense oversampling of the Earth’s surface

by the slices is then exploited to compute the weighted average value of σ0 for each

pixel. The AVE algorithms requires the spatial response function of each individual

slice to compute the value of each pixel.

The four high resolution σ0 fields are then passed to the wind retrieval al-

gorithm. Each low resolution WVC (width 25km) is now subdivided into 100 high

resolution WVCs. This increased resolution substantially increases the processing

time. A product that looks at a small region of the Seawinds swath to produce high

resolution wind data is now under development.

The σ0 measurements for the higher resolution grid are noisier than are the

σ0 measurements for the lower resolution “egg” grid. This is due to the fact that the

egg σ0 measurements are formed from the sum of the reflected power in each of the

slices in the antenna beam footprint. This summation averages out some of the noise.

As mentioned previously, other parameters are also required to retrieve the

wind over the ocean. Therefore it is necessary to find these parameters for the higher

resolution σ0 measurements. These parameters include the azimuth angle and inci-

dence angle of each σ0 measurement. Also important are the variables reported in

the L1B data product known as the Kp coefficients. These variables are used in the

wind retrieval process. In this thesis methods for compositing σ0 and these other

parameters are derived.

As with the low resolution wind retrieval one to four wind vector solutions

or ambiguities are produced for each high resolution wind cell or pixel. The first

ambiguity selection method used is to chose the ambiguity whose direction is closest

to the nearest L2B selected ambiguity. In pixels where less than the maximum of four

σ0 measurements are available the wind speed can be estimated (see Fig. 2.1) but the

wind direction estimate accuracy is poor. More accurate ambiguity techniques are
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thus required to increase the accuracy of the high resolution wind fields. The median

filter approach to ambiguity selection is thus examined in this thesis.
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Chapter 3

Compositing Slice Kp Coefficients

3.1 Introduction

The Seawinds instrument is capable of making two types of measurements.

The first type, refered to as an egg, is made from the total power returned from

the area of the footprint. The second type, refered to as a slice, is formed by using

range and Doppler discrimination to get the power returned from a smaller section or

slice of the footprint. These slices are used in the process of retrieving wind at high

resolution.

The Seawinds data reports the predicted variances of both the egg measure-

ment and the slice measurements. For composite wind retrieval, slices are averaged

together to form a composite measurement which is then used in the wind retrieval

process. The variance of these composite measurements is needed to accurately re-

trieve the wind estimate. It is therefore of interest to derive a method to calculate

the variance of the composite measurements from the slice measurement variance. To

do this we derive a method to compute the egg measurement variance from the slice

measurement variances.

3.2 Kp

The accuracy of wind measurement made using a scatterometer depends greatly

on the accuracy of the σ0 measurements taken by the scatterometer. A commonly

used metric for measuring the accuracy of the σ0 measurement is Kp, sometimes re-

ferred to as Kpc. Kp is defined to be the normalized standard deviation of the σ0
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measurement given by

Kp =

√
V AR[σ0]

E[σ0]
, (3.1)

where V AR[σ0] is the variance of the σ0 measurements and E[σ0] is the mean of the

σ0 measurements. For the Seawinds instrument aboard the QuikSCAT satellite, Kp

for egg measurements is given by

K2
p = Ae +

Be

SNR
+

Ce

SNR2
(3.2)

where SNR is the signal to noise ratio (P e
s /Pn), Ae, Be, and Ce are given (approxi-

mately) by

Ae =
1

B3dBTp

(3.3)

Be =
2

BeggTg

(3.4)

Ce =
1

BeggTg

(
1 +

Begg

Bn

)
, (3.5)

Begg is the total egg bandwidth, Tp is the pulse length, Tg is the range gate length,

B3dB is the 3dB bandwidth of the total dechirped echo return, and Bn is the noise

channel bandwidth.

3.3 Kp for Slices

Kp reported for slices in the QSCAT L1B data product has the same form as

the egg Kp (Eq. 3.2). For slices As, Bs, and Cs are given by,

As
i =

1

BsTp

(3.6)

Bs
i =

2

BsTg

(3.7)

Cs
i =

1

BsTg

(
1 +

Bs

Bn

)
(3.8)

where, as with the egg Kp coefficients, Tp is the pulse length, Tg is the range gate

length, Bn is the noise bandwidth and Bs is the slice bandwidth. However, the

approximation represented by these equations is not as good as for the egg.
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Comparison of the egg and slice Kp coefficients reveals that they are essentially

equal with the exception of the bandwidth of the measurement. In the egg Kp case

Begg and B3dB are used. In [9] the total egg bandwidth, Begg, is defined to be the sum

of the bandwidths of the slices which are contained in the egg. B3dB is a function of

scan azimuth angle and orbit position. Therefore Ae becomes a function of azimuth

angle and orbit position while As is treated as a constant for each pulse. A precise

formulation is beyond the scope of this thesis, but we will seek a good approximation.

3.4 Compositing Slice Kp

To derive a method to composite Kp, an understanding of the normalized

radar cross-section σ0 is given. σ, the unnormalized radar cross-section is a function

of the effective area of the scatterer, the amount of energy absorbed by the scatterer

and the gain of the scatterer in the direction of the receiver. This is given by [3]

σ = Ars(1− fa)Gts. (3.9)

Here fa is the fraction of power absorbed by the scatter, Ars is effective area of the

scatter, Gts is the gain of the scatterer in the direction of the receiver. The normalized

radar scattering cross-section is given by

σ0 =
σ

Ars

. (3.10)

The total power measured at the receive antenna is then given by

Pr =
PtG

2λ2σ0Ars

(4π)3R4
(3.11)

where Pt is the transmitted power, G is the gain of the antenna, λ is the wave length

of the transmitted power, and R is the slant range from the antenna to the scatterer.

This equation is known as the radar equation [3]. It can be written simply as

Pr = Xσ0 (3.12)

where X is the lumped elements of the radar equation. X is known as the Xfactor in

the L1B data.
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3.4.1 Compositing σ0

One of the first considerations before deriving a method for compositing Kp,

is to derive the compositing method for σ0. The total power measured at the antenna

is the sum of the power from each slice, i.e.

Pe =
∑

i

Ps,i. (3.13)

The total power is the power in the egg measurement (Pe). Substitution of Eq. 3.12

into Eq. 3.13 gives

σ0
eXe =

∑

i

σ0
s,iXs,i. (3.14)

The Xfactor for the egg, Xe, is also the sum of each slice Xfactor for a given pulse,

Xe =
∑

i

Xs,i. (3.15)

Therefore σ0
e can be expressed as the weighted average of σ0

s,i for each slice i in the

given composite,

σ0
e =

n∑
i=1

σ0
s,iXs,i

n∑
i=1

Xs,i

. (3.16)

An analysis of compositing Kp using this method compared to a linear average com-

posite σ0 is presented in Appendix B.

3.4.2 Compositing Kp

To composite the slice Kp recall that Kp is defined to be the normalized stan-

dard deviation of the σ0 measurement,

Kp =

√
V ar[σ0]

E[σ0]
. (3.17)

To derive a compositing method for Kp the variance and mean of σ0 must be exam-

ined. The variance of σ0
e is given by

V ar[σ0
e ] = E[(σ0

e)
2]− E[σ0

e ]
2
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]
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∑
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∑
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∑
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2

. (3.18)

A simple noise model is [10]

σ0
s,i = σ0

s(1 + νiKp,i) (3.19)

where νi is a unit variance, zero mean random variable which is uncorrelated from

slice to slice. σ0
s is assumed to be a constant. Substituting Eq. 3.12 into Eq. 3.19

yields

Ps,i

Xs,i

= σ0
s(1 + νiKp,i)

Ps,i = σ0
sXs,i(1 + νiKp,i). (3.20)

With this noise model the cross correlation of the power in each slice is given by

E [Ps,iPs,j] = E[(σ0
s)

2Xs,iXs,j(1 + νiKp,i)(1 + νjKp,j)

= (σ0
s)

2Xs,iXs,j(1 + Kp,iKp,jδi,j). (3.21)

The expected value of the power in the ith slice can be written as

E[Ps,i] = σ0
sXs,i(1 + Kp,iE[νi])

= σ0
sXs,i. (3.22)

The variance and mean can now be written as

V ar[σ0
e ] =

∑
i

∑
j
(σ0

s)
2Xs,iXs,j(1 + Kp,iKp,jδi,j)

(∑
i

Xs,i

)2 −



∑
i

σ0
sXs,i

∑
i

Xs,i




2

= (σ0
s)

2

∑
i

∑
j

Xs,iXs,j

(∑
i

Xs,i

)2 + (σ0
s)

2

∑
i

∑
j

Xs,iXs,jKp,iKp,jδi,j

(∑
i

Xs,i

)2 − (σ0
s)

2

∑
i

∑
j

Xs,iXs,j

(∑
i

Xs,i

)2
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= (σ0
s)

2

∑
i

X2
s,iK

2
p,i

(∑
i

Xs,i

)2 (3.23)

E[σ0
e ] =

∑
i

σ0
sXs,i

∑
i

Xs,i

= σ0
s . (3.24)

With the variance and the mean we obtain a compositing equation for the slice Kp,

K2
p =

V ar[σ0
e ]

(E[σ0
e ])

2
=

(σ0
s)

2

∑
i

X2
s,iK

2
p,i

(∑
i

Xs,i

)2

(σ0
s)

2
=

∑
i

X2
s,iK

2
p,i

(∑
i

Xs,i

)2 . (3.25)

3.4.3 Compositing Kp equation coefficients

Definitions of the Kp equation coefficients A, B, and C are given in Sections

3.2 and 3.3 for egg and slice measurements respectively. Here, methods to equate the

slice Kp equation coefficients are derived.

A coefficient

The A coefficient for the slice measurement differs from the egg A coefficient

by the bandwidth used (see Eqs. 3.3 and 3.6). For the egg A coefficient the bandwidth

used is the 3dB egg bandwidth. This bandwidth is dependent on which beam, inner

or outer, and azimuth angle. The slice A coefficient uses the bandwidth of a slice.

This value is constant and therefore so is the A coefficient.

Using the compositing method derived for Kp the Ae coefficients can be ap-

proximately found from the As coefficients,

Ae =

∑
i

X2
s,iA

s
i

(∑
i

Xs,i

)2 . (3.26)

From Figure 3.1 it can be seen that the composited As (all slices approximately

equals egg) correctly follows the shape of the Ae coefficient with a small bias. The

mean value of this bias is 0.0015.
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Figure 3.1: Egg A coefficient and composited slice A coefficient.

B and C coefficients

The B and C coefficients for the egg and the slice differ by only a constant.

This is due to the fact that, for the egg, the bandwidth used to compute these

coefficients is Be, and for the slice the bandwidth used is Bs. Be is the sum of the

bandwidths of the slices used in the egg measurement, i.e.

Begg = N ·Bs. (3.27)

Nominally the center 10 slices are used in the egg calculation, N=10. Using Eqs. 3.4,

3.5, 3.7, and 3.8 we now have a compositing method for the B and C coefficients.

Be =
2

BeggTg

=
2

N ·BsTg

=
1

N
Bs (3.28)

Ce =
1

BeggTg

(
1 +

Begg

Bn

)
=

1

N ·BsTg

(
1 +

N ·Bs

Bn

)

≈ 1

N
Cs (3.29)

where N is the number of slices summed.
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Compositing slice SNR

The method for compositing the SNR is the same as the method use to com-

posite the slice σ0,

SNRe =

∑
i

SNRs
iXs,i

∑
i

Xs,i

. (3.30)

This method introduces a small bias between the egg SNR and the composite slice

SNR.

3.5 Comparison With Empirically Calculated Kp

To verify the methods derived in the previous sections we look at the ob-

served normalized standard deviation of σ0. This is done by finding regions of semi-

homogeneous backscatter, then calculating the standard deviation of the σ0 measure-

ments and normalizing by the mean (see Eq. 3.1).

The regions chosen here are shown in Fig. 3.2. Region 1 is over the Amazon

rain forest. This region has a high value of σ0. Region 2, was chosen for its lower value

of σ0. Note that due to spatial variation in the region the empirical Kp is expected

to be larger than the predicted Kp

From Figure 3.3 it can be seen that Region 1 has a lower empirical Kp than

does Region 2. Examination of Fig. 3.2(b) shows that Region 1 is more homogeneous

than is Region 2, therefore explaining the difference in the empirical Kp. The mean

value of predicted Kp reported for the eggs in both regions is approximately the same.

This is due to the fact that the SNR is relatively high in both regions and therefore

the value of the predicted Kp is mainly dependent on the A coefficient. The difference

in the empirical Kp and the predicted Kp comes from the surface inhomogeneity. The

empirical Kp is not only a function of the communication Kp but also a function of

the surface Kp.

In Figure 3.3 the results of the two compositing methods outlined in this report

are also shown. Method 1 refers to first calculating the Kp value for every slice using

the method outlined in section 3.3, then compositing each of the Kp values for the
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Figure 3.2: (a) Regions of homogeneous backscatter used in study. (b) SIR images showing
backscatter. (quev-a-Ama01-257-260.sir)

slice in a given pulse using Eq. 3.25. This method shows very good results when

compared to the predicted egg Kp.

Method 2 uses the method outlined in Section 3.4.3. Here each of the coeffi-

cients are composited separately. This method is comparable to method 1, with only

slightly better results for the added computation.

3.6 Conclusion

A method for computing Kp for composited slices from the Kp coefficients in

QuikSCAT data is derived and tested. The method to accurately composite σ0 is

also derived and tested. These two methods are very important steps to increasing

the accuracy of the high resolution winds. The compositing methods derived in this

section were developed for compositing slices from the same pulse. These methods

can be applied to the high resolution σ0 fields discussed in Chapter 2 to accurately

average slice measurements from different pulses along with the parameters associated

with the σ0 measurements which are used in the wind retrieval processing.
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Figure 3.3: Kp values for both regions in Figure 3.2. The empirical Kp is found using Eq. 3.1.
The Mean Egg Kp value is the mean value of the egg measurement predicted Kp calculated using
the method outlined in section 3.2. Method 1 refers to the mean value of Kp calculated from the
slice Kp using Eq. 3.25. Method 2 refers to the mean value of Kp calculated from the slice Kp using
method outline in section 3.4.3. The number of measurements for each region and beam are: Region
1 inner beam 25,024, outer beam 23,166, Region 2 inner beam 12,320, and outer beam 12,765
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Compositing method for σ0

σ0
e =

n∑
i=1

σ0
s,iXs,i

n∑
i=1

Xs,i

Method 1 for compositing Kp

K2
p =

∑
i

X2
s,iK

2
p,i

(∑
i

Xs,i

)2

Method 2 for compositing Kp

K2
p = Acomp +

Bcomp

SNRcomp

+
Ccomp

SNR2
comp

Where

Acomp =

∑
i

X2
s,iA

s
i

(∑
i

Xs,i

)2

Bcomp =
Bs

N

Ccomp =
Cs

N

SNRcomp =

∑
i

SNRs
iXs,i

∑
i

Xs,i

Figure 3.4: Summary of Kp compositing methods
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Chapter 4

Increased Accuracy in Retrieved High Resolution Winds Through

Bias Correction

4.1 Introduction

The process of accurately estimating the near surface wind speed and direction

over the ocean from the measured radar cross section requires the knowledge of several

factors. As mentioned in section 2.1, these factors range from how the wind interacts

with the ocean surface to how microwave energy reflects from roughened sea surfaces.

While several of these factors are known, some are not. It is for this reason that

an empirically-derived model function is used to relate the near surface winds to the

radar cross section of the ocean surface.

Simulations, testing the accuracy of wind retrieval, have revealed a small bias

in both wind speed and direction which increases with increasing wind speed. The

bias as a function of wind direction has approximately two to four peaks across the

range of possible wind directions. The location of these peaks is dependent on the

location across the swath. This dependence is related to the measurement sampling

geometry of the SeaWinds instrument.

To increase the accuracy of the retrieved wind vectors the retrieved wind vector

is adjusted by this bias. A 3-dimensional table is compiled containing the predicted

bias for a given wind vector cell, wind speed and wind direction. This table is then

included in the wind retrieval processing in a post-estimation step.

The methods used to compute the bias and the results of the bias corrections

for simulated data are examined in this chapter. The bias is examined first for the
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low resolution wind. The high resolution wind bias is then examined and compared

to the low resolution bias.

4.2 Low Resolution Bias

The Geophysical Model Function relates the radar cross section σ0 to the near

surface wind over the ocean. As previously explained, the geophysical model function

can be written as

σ0 = f (|U |, χ, θ, f, pol) (4.1)

where |U | is the wind speed, χ is the azimuth angle between the wind vector and

the incident radiation (see Fig. 2.6), θ is the incidence angle (see Fig. 2.6), f is

the frequency of the incident radiation, and pol is the polarization of the incident

radiation.

Estimation of the wind vector involves inverting the model function i.e., given

a measured radar cross section σ0, measured at a given frequency, polarization, inci-

dence angle, and relative azimuth angle, what is the wind speed and direction? The

accuracy of the inversion can truly be found only if the true wind speed and direc-

tion are known. An approximation of the accuracy can be found through simulations.

These simulations involve acquiring simulated σ0 values from the forward model func-

tion given a wind speed, wind direction, incidence angle, azimuth angle, frequency

and polarization. The known sampling geometry of the SeaWinds instrument can be

used to acquire sufficient simulated σ0 measurements to then use the inverted model

function to get a simulated retrieved wind vector. The error between the simulated

true wind vector and the simulated retrieved wind can then be calculated for both

wind speed and direction.

The SeaWinds sampling geometry is dependent on the location across the

swath i.e., the distribution of azimuth and incidence angles is dependent on the wind

vector cell. To aid in the illustration of this concept a brief description of the low res-

olution wind data product follows. The JPL produced SeaWinds L2B data product
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contains wind vectors solutions obtained using the “egg” measurements. The reso-

lution of the wind vectors reported is a 25 km x 25 km cell known as a wind vector

cell (WVC). The SeaWinds instrument has a swath width of 1800 km. The swath is

divided into 72 wind vector cells. Two extra wind vector cells are included on each

side of the swath for occasional outliers. Thus the swath is 76 wind vector cells wide.

In this study only the inner 72 wind vector cells are considered. It is assumed that

the sampling geometry is independent of the along track row.

To test the effectiveness of the simulation method for estimating the accuracy

of the wind retrieval a range of true wind speeds and directions is used. The simulated

true wind speed is chosen to range from 3 to 30 m/s while the wind direction is chosen

to range from 0◦ to 359◦. As mentioned previously, other parameters are also needed

to obtain a simulated σ0 measurement from the model function. These include the

incidence angle, relative azimuth angle, frequency and polarization of the incident

radiation. These parameters are extracted from the SeaWinds data for WVC 20.

Simulated σ0 are then obtained for the parameters in WVC 20. These simulated

σ0 measurements are noise free. To estimate the bias as accurately as possible two

sources of noise must be accounted for. The first type of noise is communication

noise. This noise is caused by the effects of fading and thermal noise. We model this

noise as white Gaussian noise and modify the noise free σ0 measurement using,

zi = σ0
i (1 + Kp · νi) (4.2)

where σ0
i is the ith measurement of the given WVC in linear space, νi is a white

Gaussian random variable, Kp is the normalized standard deviation of σ0,

Kp =

√
variance

(σ0)2
(4.3)

where

variance =
((

α
(
1 + K2

pm

)
− 1

)
σ0 + β

)
σ0 + γ (4.4)

with α, β, and γ known as the variables of the variance equation. For this study these

variables are extracted from the SeaWinds data file for row 456 WVC 20 of rev 12950.
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These parameters, unlike the measurement geometry parameters are, independent of

location in the swath. They are functions of the signal to noise ratio, the bandwidth

of the received power measurement and the range gate length.

The second type of noise is caused by uncertainties in the model function.

This noise is also modeled as white Gaussian noise with variance K2
pm. The value of

Kpm is tabulated with the model function. The simulated noisy σ0 measurement is

then given by,

σ0
η,i = σ0

i (1 + Kp · νi) (1 + Kpm · ν ′i) . (4.5)

For each true wind speed and direction pair 100 realizations of the random variable

σ0
η,i are obtained for each σ0 in the WVC. This provides 100 samples of the simulated

retrieved wind for each true wind speed and direction pair. The error in the simulated

retrieved wind is found by subtracting the simulated retrieved wind from the true

wind. This is a straight forward process for the wind speed but finding the error in

the wind direction requires extra measures to take into account the circular nature of

the directions.

Two methods for binning the errors are tested in this study. The first is to

bin the error by the true wind speed and direction. This method is not possible in

practice since the true wind is not known. It is included in this study for verification

only. The second method is to bin the data by the retrieved wind speed and direction.

These two methods are examined in Sections 4.2.1 and 4.2.2.

4.2.1 Wind bias binned by true wind speed and direction

The speed and direction errors between each simulated retrieved wind vector

and the corresponding true wind vector are binned into a two dimensional histogram.

The two dimensions in this case correspond to the true wind speed and the true wind

direction. The errors in each bin are statistically evaluated to find the mean and

RMS of the errors. These quantities are given by

Ēs(i,j) =
1

N

N∑

n=1

(
Ut(i,j)n − Um(i,j)n

)
(4.6)
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Figure 4.1: Mean wind speed error binned by true wind speed and direction, Figures
(a) and (b) are plots of the mean speed error in each bin. Figures (c) and (d) are
plots of the mean speed error after bias correction.
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Figure 4.2: RMS wind speed error binned by true wind speed and direction. Figures
(a) and (b) are plots of the RMS speed error in each bin. Figures (c) and (d) are
plots of the RMS speed error after bias correction.
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Figure 4.3: Mean wind direction error binned by true wind speed and direction.
Figures (a) and (b) are plots of the mean wind direction error in each bin. Figures
(c) and (d) are plots of the mean wind direction error in each bin after bias correction.
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Figure 4.4: RMS wind direction error binned by true wind speed and direction.
Figures (a) and (b) are plots of the RMS wind direction error in each bin. Figures (c)
and (d) are plots of the RMS wind direction error in each bin after bias correction.
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RMSs(i,j) =

√√√√ 1

N

N∑

n=1

(Ut(i,j)n − Um(i,j)n)2 (4.7)

where Ēs(i,j) is the mean wind speed error of the i, jth bin, RMSs(i,j) is the RMS wind

speed error of the i, jth bin, Ut(i,j) is the true wind speed and Um(i,j) is the simulated

or measured wind speed. A similar method is used to find the statistics of the wind

direction error taking into account the wrap around in degrees.

This produces two 2-dimensional look-up tables for the bias, one for the wind

speed and one for the wind direction. The RMS error tables are also included for

visualization of the error. To test the bias removal method the simulation is run

again, this time updating the retrieved wind with the previously computed bias from

the look up tables. The results of this process are illustrated in Figures 4.1 through

4.4. Figure 4.1 shows substantial improvement in the wind speed error when the

bias is subtracted from each retrieved wind speed measurement. As expected, the

mean speed error is close to zero. The RMS speed error, however, only shows a

small improvement, see Fig. 4.2. The mean error in the wind direction also shows

substantial improvement when the retrieved wind direction is adjusted by subtracting

the corresponding bias, see Fig. 4.3. Again the RMS direction error only shows a

slight improvement using the bias correction, Fig 4.4.

4.2.2 Wind bias binned by retrieved wind speed and direction

A substantial improvement is seen in the mean speed and direction error in

each bin when a bias correction based on the true wind is applied to the retrieved

wind. The method used however is not practical to implement because the true wind

is not known for real measurements. The second method, binning the errors by the

retrieved wind speed and direction, is a more practical method but is less accurate.

This method is analyzed in this section.

As in the previous section the errors in speed and direction are found for a

range of true wind speed and directions. This time, however, the errors are binned by

the simulated retrieved wind speeds and directions. The ambiguity selected for the

binning is the ambiguity closest to the true wind. Again two, 2-dimensional tables
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Figure 4.5: Mean wind speed error binned by simulated wind speed and direction,
Figures (a) and (b) are plots of the mean speed error in each bin. Figures (c) and (d)
are plots of the mean speed error after bias correction.
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Figure 4.6: RMS wind speed error binned by simulated wind speed and direction.
Figures (a) and (b) are plots of the RMS speed error in each bin. Figures (c) and (d)
are plots of the RMS speed error after bias correction.
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Figure 4.7: Mean wind direction error binned by simulated wind speed and direction.
Figures (a) and (b) are plots of the mean wind direction error in each bin. Figures (c)
and (d) are plots of the mean wind direction error in each bin after bias correction.
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Figure 4.8: RMS wind direction error binned by simulated wind speed and direction.
Figures (a) and (b) are plots of the RMS wind direction error in each bin. Figures (c)
and (d) are plots of the RMS wind direction error in each bin after bias correction.
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are produced containing the errors in speed and the errors in direction at each wind

speed and direction combination. The method of bias removal is again tested by

repeating the test and adjusting the retrieved wind speeds and directions with the

corresponding bias. The results of this method are illustrated in Fig 4.5 through 4.8.

In Fig. 4.5 the mean speed error in each bin is shown along with the bias corrected

mean speed error. Again a substantial improvement is seen in the mean speed error.

The RMS speed error, shown in Fig 4.6 for both the unadjusted and bias adjusted

cases. The RMS speed error, showing only a small improvement at low wind speeds,

is better at high wind speeds when the retrieved wind speed is adjusted by the bias.

The mean direction error also shows improvement. The bias is removed in most cases,

but at low wind speeds the lack of sufficient samples to compute the bias accurately

doesn’t allow the bias to be removed successfully. The RMS direction error shows

only a small improvement, see Figs. 4.7 and 4.8.

4.3 High Resolution Bias

High resolution bias refers to the bias in wind direction and speed when the

modified sampling geometry of the high resolution wind retrieval algorithm is used.

As explained in the previous section, the low resolution wind retrieval algorithm uses

the “egg” σ0 measurements with the sampling geometry parameters, such as azimuth

angle and incidence angle that correspond to each σ0 measurement in the wind vector

cell. In the high resolution case the “slice” measurements are used. These slice

measurements are not used directly to retrieve the wind. As mentioned in Chapter

2 an averaging algorithm is used. The low resolution wind retrieval algorithm uses a

WVC grid of 25 km x 25 km cell. All of the “egg” measurements whose centers fall in

a given WVC are used to estimate a wind vector for that WVC. In the high resolution

case a more dense grid is laid on top of the low resolution grid. This higher density

grid has wind vector cells that are 2.5 km x 2.5 km. The slices that cover each high

resolution cell from a particular beam (inner, outer, forward-looking, and aft-looking)

are averaged together as are their corresponding sampling geometry parameters. This

provides between 2 and 4 σ0 measurements per high resolution WVC.
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Figure 4.9: Mean and RMS errors in wind speed and direction verses high resolution
wind vector cell. Data was obtained using true wind speeds shown and true wind
direction of 273◦.

The slice measurements are inherently more noisy than are the corresponding

egg measurements. This increased noise also increases the bias seen in the retrieved

winds. In the simulations this noise is quantified in the α, β, and γ coefficients

explained in section 4.2.

Figure 4.9 shows the mean and RMS errors between the simulated true wind

and the retrieved wind vectors for true wind speeds of 3, 7, 12, and 21 m/s and true

wind direction of 273◦. The errors are plotted verses the cross track wind vector cell.
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The largest error in wind speed occurs at the swath edges and at the center track

location. The largest error in the wind direction occurs at the center track location.

This large error at the center track location is due to symmetry of the model function.

With azimuth angles that are approximately 180◦ apart it is possible to retrieve a

wind direction that is 180◦ off of the true wind direction. In the far swath regions

error is caused by poor sampling geometry. Here only the outer beam is able to make

measurements. This geometry only provides at most two measurement to use in the

wind retrieval process.

To test the bias removal method, simulations are performed for a range of

wind speeds and directions. The errors in the wind speeds and direction are binned

by the retrieved wind speed and direction. The mean of the error in each bin is

computed and tabulated. The wind speed error table is shown in Fig. 4.10(a). The

wind direction error table is shown in Fig. 4.10(c). The sample mean is used for the

estimate of the mean wind errors. A measurement of how good this estimate is can

be found by measuring the standard error of the mean. The standard error of the

mean is the standard deviation of the sampling distribution of the mean. It is given

by

σM =
σ√
N

(4.8)

where σ is the standard deviation of the original distribution and N is the number

of samples used in the computation of the mean. The standard error of the mean

was computed for each bin. Figure 4.11 shows the value of the standard error of the

mean for wind vector cell 200. Figure 4.11(a) illustrates that the sample mean is a

good estimate for the mean when computing the wind speed bias. In Figure 4.11(b)

it can be seen that at low wind speed the standard error of the mean is quite large,

however for most of the wind speed and direction range the sample mean is a good

estimate for the mean wind direction error.

The wind retrieval simulation is repeated again this time adjusting each mea-

surement by the corresponding bias in wind speed and direction. The measurements

are then binned by the retrieved wind speed and direction. The mean of the error in
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Figure 4.10: (a) Mean wind speed error binned by wind speed and wind direction.
(b) Mean wind speed error after bias adjustment binned by wind speed and direction.
(c) Mean wind direction error binned by wind speed and direction. (d) Mean wind
direction error after bias adjustment binned by wind speed and direction. Wind speed
bins are 0.5 m/s wide. Wind direction bins are 2◦ wide.
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Figure 4.11: (a) Standard error of the mean for each bin in the wind speed bias table
(WVC 200). (b) Standard error of the mean for each bin in the wind direction bias
table (WVC 200).

each bin is computed and tabulated. The results are shown in Fig. 4.10(b) and (d)

for wind speed and wind direction respectively. Examination of these figures reveals

substantial improvement in the error.

4.4 Wind Bias Table

Application of this bias adjustment method is most efficiently done concur-

rently with the wind retrieval processing. This requires that the bias corrections be

tabulated into a 3 dimensional table. The three dimensions are cross track location

known as wind vector cell (WVC), retrieved wind speed, and retrieved wind direc-

tion. The spacing in the WVC dimension is one element for each high resolution

wind vector cell (1-760). The spacing in the retrieved wind speed dimension is 0.5

m/s ranging from 3 to 30 m/s, requiring 55 elements. The spacing in the retrieved

wind direction dimension is 2◦ ranging from 0◦ to 359◦, requiring 180 elements. Thus

the size of the table is 760x55x180.

To construct this table, two dimensional tables such as those shown in Fig.

4.10 (a) and (c) are made for every 50th wind vector cell. This spacing is subjectively
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chosen to give sufficient sampling. Interpolation must be performed for each element

in the 2-D wind speed and direction tables to estimate the bias for a particular

wind vector cell. The choices for this interpolation include a linear interpolator, a

cubic spline interpolator and a polynomial interpolator. The method chosen for this

interpolation is the cubic spline interpolator due to its good fit to the data.

A cubic spline is a 3rd order piecewise polynomial which has end points that

are equal to the data points it is interpolating. The function and its first and second

derivatives are also equal, at the data point, to the next piecewise function at the

corresponding data point.

To use cubic spline interpolation we assume that the speed error and direction

error can be defined by a discrete function of the wind vector cell number, f(wvc).

We want an estimate of the function on the interval [a, b], f̂(wvc). Assuming that

sampling the error at every 50th WVC is sufficient to accurately estimate f(wvc) then

we know the values of f(wvc) at wvc = 50, 100, 150, ...750. Thus the subintervals are

given by

a = wvc0 < wvc1 < wvc2 < · · · < wvcm−1 < wvcm = b. (4.9)

Cubic spline interpolation makes the assumption that f̂(n) is represented by third-

order polynomial on the interval between known data points i.e.

fi(n) = ai + bix + cix
2 + dix

3 1 ≤ i ≤ m. (4.10)

Given m subintervals, m + 1 data points, there are 4m unknowns. The 4m unknown

coefficients are found by applying the definition of the cubic spline. Since f(wvc)

must be equal to fi(wvc) at the end points of the interval we have

f̂(a) = f1(a) = f(a) (4.11)

f̂(b) = f1(b) = f(b) (4.12)

yielding two conditions. Because f̂(wvc) is continuous at each data point in the

interval [a, b], we have

f̂(wvci) = fi(wvci) = fi+1(wvci) = f(wvci) (4.13)
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Figure 4.12: Sampled data fitted with cubic spline.

yielding 2m− 2 conditions. The next 2m− 2 conditions are due to the fact that the

first and second derivatives of f̂(wvc) must exist at each data point on the interior

of the interval [a, b], i.e.

f ′i(wvci) = f ′i+1(wvci) 1 ≤ i ≤ m (4.14)

f ′′i (wvci) = f ′′i+1(wvci) 1 ≤ i ≤ m. (4.15)

Yielding 4m− 2 conditions. The final 2 conditions needed to solve for the coefficients

can be found by setting the second derivative of f̂(wvc) at end points a and b equal

to zero. Cubic spline interpolation is illustrated in Fig 4.12.

4.5 Conclusion

It has been shown in simulations that the bias adjustment method developed in

this chapter significantly improves high resolution wind retrieval. In the low resolution

wind simulations the method of bias removal was tested by binning the errors in

the retrieved wind by the true wind and then again by binning the errors in the
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retrieved wind by the retrieved wind vectors. Both methods removed the mean error

successfully; however, in practice only the second method of binning the errors by the

retrieved wind vector is realizable.

The high resolution winds were then simulated and the method of bias removal

was repeated, binning the errors by the retrieved wind vector. This method success-

fully minimized the bias seen in the simulated wind retrieval. In Figure 4.10 it is clear

that the mean error is not exactly zero after bias removal has been performed. This

residual bias is a factor of at least two things. The first is computational limitation.

Only one hundred realizations of each true wind speed and direction are used. This

limits how good the sample mean is at estimating the bias. The second cause of this

residual error is the fact that the errors are binned by retrieved wind speed rather

than true wind speed. A three dimensional table containing this bias is now being

used in the high resolution wind retrieval algorithm to correct the bias.
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Chapter 5

High Resolution Ambiguity Removal

5.1 Introduction

One of the problems inherent in wind retrieval using scatterometers is multiple

possible solutions, known as ambiguities, are produced for each wind vector cell. This

requires a post-estimation step known as ambiguity selection or removal, wherein a

single ambiguity is selected at each point. The wind retrieval program used for the

research done in this thesis produces at most four ambiguities. Each of the ambiguities

are a possible wind vector solution given the σ0 measurements. It is therefore desirable

to develop an efficient method to select the correct ambiguity. Several method have

been developed for the low resolution wind retrieval. Among these is a median filter-

based technique. Due to its effectiveness and ease of implementation it is considered

in this thesis.

5.2 Initialization of the Ambiguity Selection Algorithm

Median filter based ambiguity selection algorithms require that the wind field

be initialized prior to applying the algorithm. Initialization refers to picking one of

the ambiguities at each wind vector cell. The method of initialization is critical. If the

initial guess is incorrect then no self-contained ambiguity removal algorithm is able

to correctly choose the ambiguity closest to the true wind. The high resolution winds

have the disadvantage of being much noisier than the corresponding low resolution

winds. Therefore methods used to initialize the low resolution wind fields are not

useful in the high resolution wind field initialization. Instead initialization of the
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high resolution wind field is done using the low resolution wind field. For this reason

a description of this method is contained in the next section.

When initializing high resolution ambiguity selection each pixel or wind vector

cell in the low resolution wind field maps to 100 pixels or wind vector cells in the high

resolution wind field. For each of these 100 wind vector cells in the high resolution

wind field the ambiguity closest to the low resolution wind vector is chosen as the

initial guess. The method is generally effective since the low resolution wind fields

have already had ambiguity selection algorithms applied to them. One problem with

this method is that the one pixel or wind vector cell in the low resolution wind covers

a area of 25x25 km, if there is a wind front or substantial change in the wind over

this area, then many of the high resolution pixels will be initialized with the incorrect

ambiguity. Another problem is that when the low resolution wind vector is wrong, it

results in 100 wrong wind vectors in the high resolution winds. These problems can

be ameliorated to some degree by using a median filter based technique to correct the

initial field. The size of the window used in the median filter is important. Larger

sizes will clean up errors, such as those caused by the low resolution wind pixel being

incorrect, better but the amount of computation time make their use undesirable. The

following sections analyze which type of median filter is best for the high resolution

winds.

5.3 Ambiguity Selection Method Used in Low Resolution Winds

The low resolution winds reported in the L2B file use a modified median filter

technique to select from among the ambiguities in each wind vector cell. The median

filter-based technique is described in more detail in later sections. As mentioned

previously the wind field must be initialized, i.e. a single initial wind vector chosen at

each wind vector cell, in order for the median filter operation to be performed. This

initialization process is performed by using the likelihood value reported with each

ambiguity from the wind retrieval algorithm. How this likelihood value is computed is

explained later. The wind vector ambiguity with the highest likelihood value is chosen

as the initialization for each wind vector cell. For instruments with good instrument
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skill this initialization is usually the correct choice. The Seawinds instrument has

good instrument skill in most sections of the swath. Seawinds instrument skill results

in about 60% of the most likely ambiguities being closest to the true wind and around

30% of the second most likely ambiguities being the closest to the true wind. This

method of initialization and median filtering in the low resolution winds results in

the chosen ambiguity being closest to the true wind 96% of the time [11].

The likelihood estimate of the ambiguity comes from the objective function.

The objective function is found from the probability density function of the measured

σ0. To analyze this value, recall that σ0 is related to the near surface winds through

the geophysical model function,

σ0 = M(U, χ, θ, f, pol), (5.1)

where U is the wind speed, χ is the relative wind direction, θ is the incidence angle

of the radiation, f and pol are the frequency and polarization of the radiation respec-

tively. Estimating the wind from σ0 involves inverting the model function M. One

problem with this estimation is that noise is introduced in two places. The first type

of noise is modeling noise. This noise results from the geophysical model function not

being a perfect model for the relationship between the near surface winds and the

normalized radar cross section of the ocean, σ0. There are several factors that are not

accounted for in the model function. These include such things as rain contamination

and salinity of the ocean water. These unmodeled factors cause the observed σ0 to

vary from what the model function predicts for given a wind vector. The observed

σ0 can be modeled as

σ0 = (1 + Kpmν)M(w) (5.2)

where K2
pm is the variance due to modeling error, ν is a zero mean, unit variance

Gaussian random variable, and M(w) is the geophysical model function evaluated at

wind vector w.

The second type of noise is introduced by the scatterometer instrument when

it makes the measurement of σ0. This process can be modeled as [12]

z = (1 + Kpcν
′)σ0 (5.3)
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where again ν ′ is a zero mean unit variance Gaussian random variable, Kpc is the

normalized standard deviation of the measured σ0 as discussed Chapter 3,

Kpc =

√
α +

β

σ0
+

γ

(σ0)2
(5.4)

where α, β, and γ are functions of the A, B, and C coefficients discussed in Chapter

3 given by

α = (1 + A)(1 + K2
pr) (5.5)

β = B(1 + K2
pr)

σ0

SNR
(5.6)

γ = C(1 + K2
pr)

(
σ0

SNR

)2

. (5.7)

In these equation Kpr is not well understood and is often set to zero. The random

variable z can now be written, combining both types of noise, as

z = (1 + Kpcν)(1 + Kpmν ′)M(w). (5.8)

Kpm is not well understood and in most studies is set to zero. However in the wind

retrieval algorithm an estimated value is tabulated with the geophysical model func-

tion.

The measured σ0 is modeled as this random variable z. With this noise model

the probability density function of z given the wind vector w can be written as

p(z|w) =
1√
2πζ

exp

(
−(z −M(w))2

2ζ

)
(5.9)

where ζ is the variance and is given by

ζ = α(σ0)2 + βσ0 + γ. (5.10)

The variance, ζ, is related to Kpc by

K2
pc =

ζ

(σ0)2
. (5.11)

Estimating the wind vector from the σ0 of the ocean requires that σ0 be

observed from more than one direction. Generally several σ0 measurements are used
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in the wind estimation process to get a single wind vector. We can determine the joint

distribution of these measurements, assuming each measurement is independent, by

p(z|w) =
K∏

k=1

1√
2πζk

exp

(
−(zk −Mk(w))2

2ζk

)
. (5.12)

The maximum likelihood estimate of the wind vector is computed by finding the

maximum of the conditional probability density function (pdf), i.e.

ŵ = arg max
w

p(z|w). (5.13)

From estimation theory we know that this argmax operation is that same as mini-

mizing the negative log-likelihood function given by

ŵ = arg min
w

(−ln(p(z|w)))

= arg min
w

K∑

k=1

(
1

2
ln(2πζk) +

(zk −Mk(w))2

2ζk

)
. (5.14)

This equation is known as the objective function. The local minima of the objective

function correspond to possible solutions to the inverse model function. The likelihood

value associate with each ambiguity is calculated from this objective function.

5.4 Median filter ambiguity selection for high resolution winds

5.4.1 Median Filter

A median filter performs a spatial operation on a signal. Median filters are

used in image processing to clean up binary noise. They have several benefits over

other spatial averaging operations. Among these are edge preservation and resolution

preservation [13]. A median filter replaces the input pixel with the median of the

pixels surrounding it. The pixels surrounding the input pixel used are determined by

the size of the window used to perform the median filter. There are several possibilities

for not only the size but also the shape of the window. The simplest of these is a

square whose center pixel is the input pixel. In this case the median of all pixels in

the window is used as the new value of the center pixel. Figure 5.1 shows several

possible sizes of median filters. In the high resolution wind ambiguity removal study,

median filters of sizes 3x3, 5x5, 7x7, and 11x11 are analyzed.
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Figure 5.1: Illustration showing the sizes of windows used in testing median filter for
use in ambiguity selection

5.4.2 Application of median filter to ambiguity selection

The median filter, as used in image processing, cannot be applied directly

to the wind field ambiguity removal since winds are vector quantities. Unlike the

image processing median filter, the input pixel is not replaced by the median of the

surrounding pixels. Rather, the ambiguity closest to the median is used. Recall that

for the high resolution winds there are at most 4 possible choices for the wind vector

at each pixel. The median filter is thus used to choose the best of these four possible

choices. This is done by calculating the error between each of these ambiguities

and the median of the surrounding wind vectors, then setting the input pixel to the

ambiguity with the smallest error. Finding the error is not a simple scalar operation.

There are two choices for this error metric. The first is to find the wind vector whose

direction is closest to that of the median direction. In this case special consideration

must be taken to account for the circular nature of the direction. The second choice

is to find the wind vector ambiguity that minimizes the norm of the vector difference

between the ambiguity and the median of the surrounding wind vectors, i.e.

ŵi,j = arg min
k
‖wk

i,j − vi,j‖ (5.15)

where wk
i,j is the kth wind vector ambiguity at wind vector cell (i, j) and vi,j is the

median of the surrounding wind vectors at wind vector cell (i, j). Another approach
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is to chose the ambiguity that minimizes the error with the surrounding wind field.

In this case the ambiguity selected at cell (i, j) is given by

ŵi,j = arg min
k

i+L∑

m=i−L

j+L∑

n=j−L

‖wk
i,j − vm,n‖ (5.16)

where again wk
i,j is the kth wind vector ambiguity at wind vector cell (i, j) and vm,n

is the wind vector at cell (m,n), and L specifies the size of the filter. This filter is

analyzed in the following sections.

5.5 Results of median filter

The results of the various median filter sizes used in the high resolution am-

biguity selection algorithm are illustrated in Figs. 5.5-5.9. In Fig. 5.5 a 3x3 median

filter is used. Several small spots where the L2B initialization selected an ambiguity

not spatially consistent are still present. The wind front on the center left side of the

image (seen best in the wind direction image) still has the stair step feature caused

by the initialization with the low resolution wind. This can be seen by relating Fig.

5.5(b) with Fig. 5.2(b). Thus the 3x3 median filter is too small to correct for the

problems caused by the initialization. As previously mentioned one low resolution

wind vector cell or pixel in the image maps to one hundred high resolution pixels i.e.

a 10x10 high high resolution wind vector cell equals a low resolution cell. With the

3x3 size median filter the edge preserving characteristic of the median filter limits its

effectiveness in cleaning up the images. The processing time for the 3x3 median filter

is very small compared to the larger size median filter.

In the 5x5 median filter improvements are seen on the wind front. However,

the wind directions along the edge of the wind front are still grainy. As in the case of

the 3x3 median filter, the 5x5 median filter is not large enough to correct the problems

with the initialization.

Increasing the median filter to a 7x7 size window improves the results substan-

tially from the 3x3 median filter. The stair step feature mentioned in the previous

paragraph is smoothed and looks much more reasonable. The processing time is in-

creased a small bit from the 3x3 case. The results of the 7x7 median filter are shown
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in Fig. 5.6. It should be noted that the median filter size chosen for the low resolution

winds processing is a 7x7 median filter [11].

The 11x11 size median filter (results shown in Fig. 5.7) gives the best results;

however, they are not substantially better than the 7x7 median filter for the added

computation time. It is therefore recommended that the 7x7 size median filter be

used as the method for ambiguity removal in the high resolution winds. This choice

of median filter size is a subjective choice based on computation time and analysis of

the resulting wind field.

In order to take a closer look at what is happening as the size of the median

filter is changed, a small region with relatively high wind speed is selected. The region

selected for this investigation is shown in Fig. 5.8(a). The low and high resolution

winds are shown in Figs. 5.8 (b) and (c) respectively. Since the region selected spans

parts of three low resolution wind cells in the cross track direction the wind vectors

for each of these cells is shown. In the high resolution wind field (shown in Fig. 5.8(c))

the edges of the low resolution cells are apparent.

Application of the high resolution ambiguity selection algorithm to the region

with the four sizes of median filters is illustrated in Fig. 5.9. The 3x3 and 5x5 median

filters fix some of the wind vectors but in both wind fields there is an obvious line of

wind divergence. Increasing the median filter to a 7x7 median filter removes the area

in the middle of the region that is apparently incorrect. There is no apparent change

in the wind field when the median filter is increased to an 11x11 size median filter.

Therefore due to this and the added computation time there is no advantage to using

the 11x11 median filter.

After median filtering there still exists some features that may not represent

the true wind flow. Figure 5.10 highlights one such feature. All of the ambiguities in

this region are examined. In Fig. 5.11 the wind vectors are overlaid on a background

whose color represents the wind speed (a) and wind direction (b). We can see that

the wind field in the region around this area has an easterly flow, which flows against

the selected ambiguities in this small area. To examine if this is a problem with the

ambiguity selection algorithm or if this is indeed the best choice given the ambiguities
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Figure 5.2: Low resolution (a) wind speed and (b) direction in study area.(c) Down-
sampled low resolution wind field to show wind flow with arrows, background color
represents the wind speed.
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Figure 5.3: High resolution (a) wind speed and (b) wind direction in study area.
Wind ambiguity selection is performed by choosing the ambiguity closest to the low
resolution wind vector in Figure 5.2
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Figure 5.4: High resolution (a) wind speed and (b) wind direction after ambiguity
selection with 3x3 median filter is performed
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Figure 5.5: High resolution (a) wind speed and (b) wind direction after ambiguity
selection with 5x5 median filter is performed
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Figure 5.6: High resolution (a) wind speed and (b) wind direction after ambiguity
selection with 7x7 median filter is performed
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Figure 5.7: High resolution (a) wind speed and (b) wind direction after ambiguity
selection with 11x11 median filter is performed.

at each pixel we look at each of the four ambiguities for this small region. These

ambiguities are illustrated in Fig. 5.12. Examination of Fig. 5.12(a) shows that on

the left edge of this area there exists cells with only one ambiguity. This causes

ambiguity selection errors seen in the area since the ambiguity at these cells has an

inconsistent direction, thus causing inconsistent wind directions in the surrounding

cells. It should be noted that this feature occurs in the nadir part of the swath. Wind

estimates in this region of the swath are noisier than are wind estimates at other

locations across the swath.

5.6 Comparison of Low Resolution and High Resolution Wind Distribu-

tion

To examine the overall accuracy of the high resolution winds, the distribution

of the wind vectors contained in the high resolution wind field is compared to the

distribution of wind vectors contained in the low resolution wind field. To do this the

low resolution winds are upsampled to yield the same sampling as the corresponding

high resolution winds. This comparison is illustrated in Fig. 5.13.
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Figure 5.8: (a) Illustration of small region selected to show results of median filter. (b)
Low resolution winds in selected region. The region selected includes half of the left
low resolution wind cell and half of the right low resolution wind cell, both wind cells
are therefore included in the plot. (c) High resolution wind before median filtering is
done. The ambiguities selected here are the closest in direction to the low resolution
wind vectors shown in (b).
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Figure 5.9: Results of 4 sizes of median filter in high resolution ambiguity removal
algorithm. (a) 3x3 (b) 5x5 (c) 7x7 (d) 11x11
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Figure 5.11: Illustration showing high resolution selected ambiguity in region. (a)
Selected ambiguities shown with background color representing the wind speed. (b)
Selected ambiguities shown with background color representing wind direction.
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Figure 5.12: Illustration of the four ambiguities at each pixel in the selected region.
The background color in each image corresponds to the wind direction. (a) The first
ambiguities for each pixel. (b) The second ambiguities for each pixel. (c) The third
ambiguities for each pixel. (d) The fourth ambiguities for each pixel.
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Figure 5.13: Distribution of (a) wind speeds and (b) wind directions in region illus-
trated in Fig. 5.6.
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Figure 5.14: Low resolution wind vs high resolution wind in wind field.
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The distribution of the high resolution wind speed follows that of the low

resolution wind speed nicely for most of the range of wind speeds. The distribution

of the wind direction shows that in both the high resolution and low resolution cases

there exist peaks in the distribution: one centered at about 90◦ and one centered

at about 270◦. The high resolution winds are noisier than the corresponding low

resolution winds. This is especially evident in the nadir track (center of the swath)

where the four measurements (two forward and two aft) are taken at azimuth angles

180 degrees apart.

Scatter plots of the high resolution wind speed and direction vs the low resolu-

tion wind speed and direction are also provided to illustrate the relationship between

the two, see Fig. 5.14. For every low resolution wind vector cell there are one hun-

dred high resolution wind vector cells. In Figure 5.14(a) the wind speed relationship

between the low and high resolution winds is shown. The low resolution wind cell is in

effect an average of the high resolution winds in that 25x25 km cell. The scatter-plot

shown in Figure 5.14 are generated without performing bias correction on the wind

data.

5.7 Conclusion

Although other ambiguity removal algorithms may be more accurate, the lim-

iting factor in high resolution wind ambiguity removal is the amount of data contained

in each revolution of the QuikSCAT satellite. In the low resolution case an entire rev-

olution worth of wind data can be stored in memory at one time. The high resolution

wind algorithm increases that data by a factor of 100. It is therefore imperative

that an efficient algorithm be used. Choosing the best ambiguity selection method

is subjective since we do not know what the true wind speed and direction are at

each WVC, which would allow us to calculate the error and chose the method that

minimizes the error. We therefore must base our choice of ambiguity selection on

a subjective analysis of the resulting wind field. The wind field analyzed in this

chapter had the best results, excluding the nadir region of the swath, with the 7x7

median filter. For this size the graininess of the initialization was removed with out
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substantially increasing the processing time. Based on this subjective analysis the

recommended size of the median filter for the ambiguity selection algorithm is the

7x7 square filter.
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Chapter 6

Conclusion

The high resolution wind retrieval algorithm presented in this thesis has the

potential of becoming a widely used tool in the scientific community. Several applica-

tions for the high resolution wind fields have been suggested. One such application is

hurricane monitoring [14],[7]. The high resolution winds allow significant small-scale

wind features to be resolved therefore making it a useful tool. The methods presented

in this thesis increase the usefulness of the high resolution wind fields by improving

the accuracy of the estimated winds.

6.1 Summary of Contributions

This thesis presents the development and results of three portions of a high

resolution wind retrieval algorithm. The high resolution wind retrieval algorithm will

increase the usefulness of the SeaWinds data being produced by JPL. The algorithms

and methods developed in this thesis are being applied to data from the SeaWinds in-

strument on the QuikSCAT satellite but may also be used on data from the SeaWinds

instrument recently placed in orbit aboard the ADEOSII satellite.

The contributions of this thesis span each area of the wind retrieval processing.

The first contribution deals with the pre-processing of data used in the wind retrieval

algorithm. The second contribution is applied during the processing of the wind

data. The third contribution addresses the issue of ambiguity removal done in post-

processing. Each of these contributions is summarized in greater detail in the following

sections.
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6.1.1 Kp Compositing Methods

One of the key factors in increasing the resolution of the wind fields produced

using SeaWinds data is accurately compositing the parameters used in the wind

retrieval algorithm. The parameters addressed in this thesis are σ0 and Kp. Two

methods for compositing slice Kp values are derived. The first method uses the

actual value of Kp for slices to compute the composite Kp. The second method does

the compositing first on the variables used to compute Kp then uses these values

to compute the composite Kp. A summary of these methods is given at the end of

Chapter 3.

One step in the derivation of the method for compositing Kp required that

a method for compositing σ0 be used. The method used to composite σ0 in the Kp

compositing is shown in Chapter 3. One other method for the σ0 compositing and a

comparison of the two σ0 compositing methods is discussed in Appendix B. These

compositing methods are used in a pre-processing step prior to the processing the

high resolution wind fields.

6.1.2 Bias Removal Tables

The second contribution of this thesis is the development and compilation of

the wind bias tables. These tables are three dimensional tables where the dimensions

of the tables correspond to retrieved wind speed, retrieved wind direction, and across

track location (WVC). Two tables are created, one for wind speed bias and one

for wind direction bias, to be used in the high resolution wind processing. The bias

adjustments are made after estimating the wind and applied at the time of processing

to each wind vector. The bias removal method was tested in simulations and showed

substantial improvements in the errors observed.

6.1.3 Ambiguity Selection

The third contribution made by this thesis is the application of a median filter

based ambiguity selection algorithm to the high resolution wind fields. The σ0 data

used to process the high resolution wind fields is substantially more noisy than is
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the σ0 data used in the low resolution wind processing. The high resolution wind

fields are therefore more noisy than the corresponding low resolution wind fields. The

median filter based ambiguity selection algorithm was found to work reasonable well

for the high resolution wind field. Several sizes of this median filter based technique

are examined. The 7x7 median filter proved to give the best results with minimum

processing time.

6.1.4 Future Research

Ambiguity removal for scatterometer data has been the topic of several studies.

The huge amount of data produced by the high resolution wind retrieval algorithm

complicates ambiguity removal. Other factors introduced by the high resolution wind

fields that limit the ambiguity selection algorithms which can be used are first the

increased noise and second the loss of instrument skill. Developing improved am-

biguity removal algorithms that ameliorate these limitations would be a substantial

contribution to the high resolution wind retrieval algorithm.

Another key contribution would be the development of a ambiguity selection

algorithm that did not require the use of the low resolution wind file (L2B) to initialize

the wind field. This could possibly be done by applying a field-wise wind retrieval

algorithm to the high resolution winds.
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Appendix A

Code Performance Comparisons

A.1 Introduction

While investigating the results of retrieving wind from SeaWinds egg measur-

ments and composite slice measurements we found we could not obtain the same wind

measurements reported in the L2B data product, even using the JPL code. Several

attempts were made using σ0 and other relevant data from both the L1B data product

and the L2A data product. These attempts included using both the MGDR wind

retrieval program and the Science wind retrieval program. The data in the L1B and

L2A data products are organized differently, therefore cross referencing files known

as “Key files” are used to extract the same pulses from both files which fall into the

wind vector cell of interest.

A wind vector cell (WVC) is a 25 kilometer square. The SeaWinds data is

organized into a grid of WVCs. SeaWinds has a swath width of about 1,800 kilometers

and therefore has 72 WVC per row. There are two extra WVC on each end of the

swath to account for occasional outliers. The σ0 values which are located in this WVC

are used in the wind retrieval program. The process of retrieving wind is outlined

in the following sections. For each case mentioned above the wind estimates are

calculated and then compared to what is reported by JPL in the L2B data product.

A.2 L1B Data Product

The L1B data product contains data for one revolution of the satellite. The

data is time ordered i.e. sequentially listed for each scatterometer pulse, alternating
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between inner and outer beam. Each frame contains 100 pulses. For each pulse of

data contained in the wind vector cell (WVC) of interest, i.e. for each WVC in the

L2B data product, several variables are extracted. These include σ0, the incidence

angle, and the azimuth angle of each measurement. To retreive the wind the variance

coefficients must also be calculated. These coefficients are α, β, and γ. They are not

explicitly listed in the L1B data product but they are functions of the Kpc coefficients

which are listed. These coefficients are Kpc a, Kpc b, and Kpc c or A, B, and C

respectively. They are used in the following equations to calculate α, β, and γ,

α = (1 + A) ·
(
1 + K2

pr

)
·
(
1 + K2

pm

)
− 1, (A.1)

β = B ·
(
1 + K2

pr

)
· σ0

SNR
, (A.2)

γ = C ·
(
1 + K2

pr

)
·
(

σ0

SNR

)2

, (A.3)

where Kpm is the variance of the σ0 due to the model function uncertainties. REF

[15] reports that these values are assumed to vary from measurement to measurement.

Kpr is the standard deviation of σ0 due to calibration uncertainty. Kpr is read from

a table. Its value depends on the azimuth angle and the beam number1 of the pulse.

The SNR is also extracted from the L1B file.

Part of the reason for using the L1B data in this study is to determine if the

problem is round off error introduced when the data is written to the L2A file. By

computing α, β, and γ from the Kp coefficients it is hoped that this round off error,

if it exists, is eliminated.

A.3 L2A Data Product

The L2A data product is spatially ordered. The scatterometer pulses are

grouped into rows and columns of Wind Vector Cells (WVC). This organization is

the same as in the L2B where, for each WVC, the wind estimates are listed. For this

reason, when comparing the wind estimates reported in the L2B file with those we

1The Beam number is assigned to each pulse at the time the data is extracted from the L1B or
L2A data files. Beam 1 is assumed to be forward looking inner beam. Beam 2 is forward looking
outer beam. Beam 3 is aft looking inner beam. Beam 4 is aft looking outer beam.
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get from using the data from the L2A and L1B files, we must first look at the L2A

file to determine which scatterometer measurements are found in the WVC.

It should be noted that the L2A file contains 39 rows at the begining and

ending of the rev from the previous and next revs, respectively. This offsets it’s rows

from the L2B file. By using the variable wvc row problems with this offset can be

avoided.

We can use the pulses directly if we are using the L2A data or we use the KEYS

cross-referencing file to find each pulse in the L1B file. The KEYS cross-referencing

file contains which frame and pulse number in the L1B file that the pulse from a given

row and column of the L2A file is located. To retrieve the wind using the L2A file we

need the σ0 value, and the incidence and azimuth angles of each pulse. The L2A file

also has listed for each pulse modified variance coefficients α′, β′, and γ′ which are,

α′ =
1 + α

1 + K2
pm

= (1 + A) ·
(
1 + K2

pr

)
, (A.4)

β′ = β, (A.5)

γ′ = γ. (A.6)

It is unknown whether these coefficients are used modified or unmodified (α′ or α) in

the L2B processing. Both cases are tested in this study.

A.4 Wind Retrieval Program

The official JPL wind retrieval program requires several input parameters

which are used in the evaluation of the inverse geophysical model function, to es-

timate the wind vectors. Two version of this program are compared in this report:

MGDR and Science processing. Both programs use the same input parameters with

the execption of an array containing the number each type of beam contained in the

WVC which is used by the MGDR program. The following is a list of the input

parameters used.

wr_count number of measurements to be used

wr_cell_incidence array of incidence angles for each measurement
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wr_cell_azimuth array of azimuth angles for each measurement

wr_sigma0 array of sigma0 measurements in linear space

wr_kp_alpha array of alpha coeff.

wr_kp_beta array of beta coeff.

wr_kp_gamma array of gamma coeff.

The output variables returned from the wind retrieval code are:

wr_num_ambigs number of wind vector abiguities

wr_mle array of mle values

wr_wind_speed array of wind speeds

wr_wind_dir array of wind directions

wr_wind_speed_err

wr_wind_dir_err

Each of the arrays of output variables are of length wr num ambigs. The output of

the two wind retrieval programs differ by 180◦. This can be accounted for by using,

Directionnew = mod(Directionold + 180.0, 360.0). (A.7)

A.5 Results

For every wind vector cell there are one to six wind estimate abiguities returned

from the wind retrieval program. There are at most 4 reported in the L2B data

product. Each ambiguity has with associated it a MLE value computed using the

σ0, incidence angle, azimuth angle, polariztion and model function. The ambiguities

are listed in descending likelihood order. Two methods are used to compare the

wind estimates we computed with those reported in the L2B data product. First, we

compare all the ambiguities and average the error over all cases. This introduces a

few problems because of the ordering of the ambiguities. Often ambiguities that are

obviously the closest to each other are compared with others because the MLE values

which we computed are not in the same order as those that the L2B data product

had listed. Therefore extra error is introduced into the average. The second method
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used is to take the ambiguity which is closest to the selected ambiguity in the L2B

file. This method eliminates the need to check for ambiguity reordering do to the

MLE value.

A.5.1 L1B data

Modified Variance Coefficients
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Figure A.1: Wind estimates calcu-
lated using L1B data to calculate α′,
β′, and γ′ in the Science wind retrieval
code, for rev 12950 row 314 wvc 18. See
Table A.1
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Figure A.2: Wind estimates reported
in the L2B data file for rev 12950 row
314 WVC 18. See Table A.1

Table A.1: Wind Speed, Direction and MLE for rev 12950 row 314 wvc 18. L1B wind estimates
calculated using α′, β′, and γ′ unmodified.

L1B L2B

Speed Direction MLE Speed Direction MLE

7.04 305.39 -1.380971 7.23 306.04 -0.1160
7.27 286.25 -3.081374 7.48 285.71 -0.2840
6.25 156.48 -9.316661 6.39 156.45 -0.7680
6.29 100.05 -14.93509 6.45 99.65 -1.4200
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By “modified variance coefficents” we are refering to α′, β′, and γ′ which are

found in the L2A file. In this case we are using data from the L1B file and applying

equations (4), (5), and (6) with the exception that Kpr is set to zero. This test was

inspired by the fact that only in this case were we able to match α′, β′, and γ′ found

in the L2A file with the data in the L1B file using these equations.
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Figure A.3: Wind estimate error averaged over row 311 through 321 of rev 12950 for all wind
vector cells. The wind estimates were calculated using α′, β′, and γ′ from L1B data.

Table A.2 compares the α′, β′, and γ′ coeficients. The data in the table

coresponding to the L2A file was extracted and listed directly. The data in the table

coresponding to the L1B data, α′, β′, and γ′, were computed from the L1B data as

mentioned above. With the exception of some rounding differences for a few pulses

the data matches exactly. The L2A data appears to have been rounded to three

signigicant figures for α′, two significant figures for β′, and four significant figures for

γ′. It is hoped that by using the L1B data to retrieve the winds, instead of L2A data,

that we can more closely match the L2B data.
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Table A.2: The L2A α′, β′, and γ′ are extracted directly from the L2A data file. The L1B α′,
β′, and γ′ are calculted using data from the L1B file and equations (4), (5), and (6). The data is
extracted from rev 12950 row 314 WVC 18. χ is the azimuth angle of the pulse. θ is the incidence
angle of the pulse.

χ θ α′ β′ γ′ σ0

L1B L2A L1B L2A L1B L2A L1B L2A

54.1 315.48 1.0106 1.011 1.8715e-05 1.87e-05 1.0994e-08 1.0997e-08 -19.39 -19.39

46.3 304.62 1.0110 1.011 2.5774e-05 2.58e-05 2.0852e-08 2.0858e-08 -24.06 -24.06

54.1 314.30 1.0106 1.011 1.8888e-05 1.89e-05 1.1198e-08 1.1201e-08 -20.17 -20.17

54.1 202.76 1.0117 1.012 1.7708e-05 1.77e-05 9.8435e-09 9.8462e-09 -24.76 -24.76

46.3 214.69 1.0133 1.014 2.3291e-05 2.33e-05 1.7027e-08 1.7032e-08 -26.25 -26.25

46.3 302.23 1.0110 1.011 2.7238e-05 2.72e-05 2.3289e-08 2.3295e-08 -24.18 -24.18

46.3 304.55 1.0110 1.011 2.5774e-05 2.58e-05 2.0852e-08 2.0858e-08 -23.86 -23.86

46.3 215.96 1.0132 1.013 2.3237e-05 2.32e-05 1.6949e-08 1.6954e-08 -26.67 -26.67

46.3 303.42 1.0110 1.011 2.5479e-05 2.55e-05 2.0377e-08 2.0383e-08 -23.34 -23.34

46.3 213.49 1.0134 1.014 2.3237e-05 2.32e-05 1.6949e-08 1.6954e-08 -26.27 -26.27

54.1 203.97 1.0117 1.012 1.6565e-05 1.66e-05 8.6129e-09 8.6153e-09 -24.26 -24.26

46.3 302.29 1.0110 1.011 2.542e-05 2.54e-05 2.0284e-08 2.0289e-08 -23.81 -23.81

Unmodified Variance Coefficients

It is not clear if α′, β′, and γ′ (Equations (4), (5), and (6)) were used for the

L2B product or if α, β, and γ (Equations (1), (2), and (3)) were used. To use α, β,

and γ, Kpm must be included. It is assumed that the value of Kpm is 0.7 dB. Kpm

is converted to linear space before it is applied in equation (1). For this test Kpr is

set to zero.

Comparing Tables [A.3] and [A.1] reveals a substantial improvement in the

MLE value, but not much improvement in the direction and even less in the speed.
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Table A.3: Wind Speed, Direction and MLE for rev 12950 row 314 wvc 18. L1B wind estimates
calculated using α, β, and γ.

L1B L2B

Speed Direction MLE Speed Direction MLE

7.05 305.28 -0.1316985 7.23 306.04 -0.1160
7.26 286.39 -0.3029400 7.48 285.71 -0.2840
6.28 158.08 -0.9124814 6.39 156.45 -0.7680
6.28 99.81 -1.407623 6.45 99.65 -1.4200
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Figure A.4: Wind estimate error averaged over row 311 through 321 for all wind vector cells. The
wind estimates were calculated using α, β, and γ from L1B data.

Modified Variance Coefficients With Kpr

Kpr is the standard deviation of σ0 due to calibration uncertainty. It is not

stored in either the L1B or L2A data products. The value of Kpr is extracted from

th table QS KPRP0001. The value of Kpr depends the azimuth angle and the beam

number of the pulse. For this test Kpr was included when α′, β′, and γ′ were com-

puted. This test shows very minimal improvement in the MLE value and almost no

improvement in the direction and speed when compared to the test with Kpr set to

zero.
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Table A.4: Wind Speed, Direction and MLE for rev 12950 row 314 wvc 18. Wind estimates
calculated using L1B data to calculate α′, β′, and γ′. Kpr is read in from a table.

L1B L2B

Speed Direction MLE Speed Direction MLE

7.04 305.38 -1.232904 7.23 306.04 -0.1160
7.27 286.26 -2.760932 7.48 285.71 -0.2840
6.26 156.67 -8.359354 6.39 156.45 -0.7680
6.29 100.02 -13.32042 6.45 99.65 -1.4200
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Figure A.5: Wind estimate error averaged over row 311 through 321 for all wind vector cells. The
wind estimates were calculated using α′, β′, and γ′ from L1B data with Kpr read in from table.

Unmodified Variance Coefficients With Kpr

Here α, β, and γ are used exactly as they are defined in equations (1), (2),

and (3). Again Kpr is read in from table. Kpm is assumed to be 0.7 dB.
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Table A.5: Wind Speed, Direction and MLE for rev 12950 row 314 wvc 18. Wind estimates
calculated using L1B data to calculate α, β, and γ. Kpr is read in from a table.

L1B L2B

Speed Direction MLE Speed Direction MLE

7.05 305.28 -0.1282366 7.23 306.04 -0.1160
7.26 286.39 -0.2950071 7.48 285.71 -0.2840
6.30 158.09 -0.8885471 6.39 156.45 -0.7680
6.31 99.81 -1.370577 6.45 99.65 -1.4200
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Figure A.6: Wind estimate error averaged over row 311 through 321 for all wind vector cells. The
wind estimates were calculated using α, β, and γ from L1B data with Kpr read in from table.

A.5.2 L2A data

Modified Variance Coefficients

This is essentially the same test done with the L1B data. This time we use the

data exactly as it is found in the L2A product. It is believed that this is the method

used by the L2B processor at JPL. Comparison of this test with the coresponding

test done with L1B data reveals a small change in the wind estimate ambiguities that

is due to rounding. This small error due to rounding is not large enough to conclude

that it is round off error that is not allowing us to achieve JPL L2B winds exactly.
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Table A.6: Wind Speed, Direction and MLE for rev 12950 row 314 wvc 18. Wind estimates
calculated using α′, β′, and γ′ directly, extracted from the L2A file

L2A L2B

Speed Direction MLE Speed Direction MLE

7.04 305.38 -1.374448 7.23 306.04 -0.1160
7.27 286.25 -3.067383 7.48 285.71 -0.2840
6.25 156.51 -9.251821 6.39 156.45 -0.7680
6.29 100.03 -14.85453 6.45 99.65 -1.4200
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Figure A.7: Wind estimate error averaged over row 311 through 321 for all wind vector cells. The
wind estimates were calclutatd using α′, β′, and γ′ from the L2A file

Unmodified Variance Coefficients

The Variance Coefficients α′, β′, and γ′, which are extracted from the L2A

file, are modified by applying,

α = α′ ·
(
1 + K2

pm

)
− 1 (A.8)

where again Kpm is assumed to be 0.7 dB, to get α. β, and γ are unchanged from β′

and γ′ (see equations (5) and (6)).
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Table A.7: Wind Speed, Direction and MLE for rev 12950 row 314 wvc 18. Wind estimates
calculated using α, β, and γ

L2A L2B

Speed Direction MLE Speed Direction MLE

7.05 305.28 -0.1315774 7.23 306.04 -0.1160
7.26 286.39 -0.3026453 7.48 285.71 -0.2840
6.28 158.09 -0.9109951 6.39 156.45 -0.7680
6.28 99.80 -1.405940 6.45 99.65 -1.4200
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Figure A.8: Wind estimate error averaged over row 311 through 321 for all wind vector cells. The
wind estimates were calclutatd using α, β, and γ calculated using equations (4), (5), and (6) with
data from the L2A file

Modified Variance Coefficients With Kpr

α′, β′, and γ′ are already computed in the L2A file but due to the fact that we

were only able to acurately calculate these variables using equations (4), (5), and (6)

when we set Kpr to zero raises some suspicion of whether or not JPL included Kpr in

their calculation of α′, β′, and γ′. To test this Kpr was included by using,

α′new = α′L2A ·
(
1 + K2

pr

)
(A.9)

β′new = β′L2A ·
(
1 + K2

pr

)
(A.10)

γ′new = γ′L2A ·
(
1 + K2

pr

)
(A.11)
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Table A.8: Wind Speed, Direction and MLE for rev 12950 row 314 wvc 18. Wind estimates
calculated using α′, β′, and γ′ as in equations (9), (10), and (11). Kpr is read in from a table.

L2A L2B

Speed Direction MLE Speed Direction MLE

7.04 305.37 -1.227789 7.23 306.04 -0.1160
7.27 286.26 -2.749819 7.48 285.71 -0.2840
6.26 156.69 -8.306751 6.39 156.45 -0.7680
6.28 100.0 -13.25653 6.45 99.65 -1.4200
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Figure A.9: Wind estimate error averaged over row 311 through 321 for all wind vector cells. The
wind estimates were calclutatd using α′, β′, and γ′ from the L2A file. Kpr is read in from table and
included as in equations (9), (10), and (11).
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Unmodified Variance Coefficients With Kpr

Again for this test Kpr is included in the variance coefficients using equations

(9), (10), and (11). Again we see that the inclusion of Kpr has a very minimal effect

on the wind retrieval.

Table A.9: Wind Speed, Direction and MLE for rev 12950 row 314 wvc 18. Wind estimates
calculated using α, β, and γ which were calculated by first applying equations (9), (10), and (11)
and then equations (8), (5), and (6). Kpr is read in from a table.

L2A L2B

Speed Direction MLE Speed Direction MLE

7.05 305.28 -0.1281212 7.23 306.04 -0.1160
7.26 286.39 -0.2947268 7.48 285.71 -0.2840
6.28 158.09 -0.8871416 6.39 156.45 -0.7680
6.28 99.8 -1.368972 6.45 99.65 -1.4200
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Figure A.10: Wind estimate error averaged over row 311 through 321 for all wind vector cells.
The wind estimates were calclutatd using α, β, and γ calculated using equations (4), (5), and (6)
with data from the L2A file. Kpr is read in from table and included as in equations (9), (10), and
(11).

A.6 Conclusion

Table A.10 has listed the mean error using each method described above. The

mean error was calculated from 10 rows of 72 WVCs worth of data. For each WVC

the ambiguity that was closest to the chosen ambiguity in the L2B file was selected

and the error in the speed and direction was taken. These errors were averaged over

all WVCs and reported in Table A.10.

Table A.10: Mean error
L1B L2A

Method Speed Error Direction Error MLE Error Speed Error Direction Error MLE Error

1 -0.1869 -0.4374 -4.3394 -0.1861 -0.4683 -4.3157
2 -0.1823 -0.5510 0.0442 -0.1826 -0.5564 0.0423
3 -0.1857 -0.4710 -3.8352 -0.1854 -0.4820 -3.8160
4 -0.1823 -0.5513 0.0544 -0.1826 -0.5567 0.0549
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Appendix B

σ0 Over Land

B.1 Introduction

There has been some concern about potential differences between QSCAT eggs

and slices. Most studies have looked at this difference over the ocean. In this study

the difference is examined over land, namely Northern Africa. Several homogeneous

areas with a variety of mean σ0 values have been chosen. These areas range form

sections of the tropical rain forests of the Congo basin, where the backscatter is high,

to the Sahara Desert, where the measured backscatter is low. Eight regions have been

selected for this study as shown in Fig. B.1. The regions are numbered based on the

level of the mean σ0 value of the area. The numbers are assigned in descending order

of mean σ0. The data for this study is obtained from the QSCAT L1B data product

for revs 2927-2978 (days 011-014 of 2000).

B.2 Combining Slices, (Compositing)

The L1B data product contains data for each pulse of the Seawinds instrument.

For every pulse the data for the “egg” and best 8 of 12 “slice” measurements listed.

The slice measurements are produced by signal processing techniques which increase

the range resolution of the pulse. To make a comparison between each egg and

the corresponding slices for each pulse, we average or composite the slices together.

Because we only have access to the best 8 of 12 slices it is not possible to obtain the

exact egg σ0 through compositing. However, we are interested in comparing eggs and

composite slice values. Two method have been considered. First, a linear average.
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Figure B.1: Study region locations mapped over QSCAT image qusv-a-NAf00-037-
040.sir. Each region is defined by latitude and longitude coordinates.

Second, a weighted average using the X factor as the weight. To compute both of

these averages the σ0 value reported in the L1B file must be converted to linear space

using

Pi = 10(σ0i
10 ). (B.1)

The linear average composite slice is then computed using the sample mean

P =
1

N

N∑

n=1

Pi (B.2)

where Pi is the σ0 (linear space) and N = 8. For the weighted average the Xfactor

variables, which is extracted from the L1B data product, are converted to linear space.

The weighted average for each pulse is then computed using,

P =

∑N
n=1 Pi ·Xi∑N

n=1 Xi

(B.3)

where Pi is σ0 in linear space and N = 8. In Table B.1 these methods of compositing

are illustrated using one pulse of the Seawinds instrument. The value of the Xfactor

listed in the table is in dB. When the Xfactor is used in the weighted average it is

converted to linear space.
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σ0 measurement σ0 (dB) linear space predicted Kp Xfactor

Egg -9.55 0.1109 0.104
slice 1 -10.14 0.0968 0.316 57.24
slice 2 -9.90 0.1023 0.314 58.66
slice 3 -9.76 0.1057 0.313 59.71
slice 4 -10.59 0.0873 0.313 60.40
slice 5 -9.06 0.1242 0.312 60.71
slice 6 -9.14 0.1219 0.312 60.64
slice 7 -9.08 0.1236 0.313 60.17
slice 8 -9.37 0.1156 0.313 59.24
Linear Ave. -9.598 0.1097 0.3133
Weighted Ave. -9.5468 0.1110 0.3130

Table B.1: Particular measured values for one random pulse

B.3 Regional Statistics

The regions in Fig. B.1 are defined by their lower left and upper right longitude

and latitude coordinates. The size of each regions was chosen to get as closes to a

homogeneous σ0 value as possible. Several different regions were selected to give a

variety of mean σ0 values. As should be expected the larger regions contain more

pulses of data, see Fig. B.2. The difference in the number of inner beam and outer

beam pulses that fall in each regions is not surprising. This is caused by the geometry

of QSCAT’s swath. When the foot print of the far swath passes through a region only

one or the other beam may fall in the region.

The regions are arranged in descending mean σ0 values, see Fig. B.3. For

example regions 1 and 2 is located near the tropical forests of the Congo River basin

where the backscatter is high. Regions 7 and 8 are located in the desert regions where

the backscatter is relatively low.

B.4 Comparing Eggs and Slices

Two methods are used to compare the egg σ0 value and composite slice σ0

value. The first method is to look at the difference in the mean σ0 value for eggs com-

pared to both the mean value of the weighted average composite and linear average
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Figure B.2: Number of pulses that hit each region. Left bar is inner beam, right bar is outer beam

composite computed in linear space. The second is to look at the difference in dB.

The first method simply computes the difference,

Error = σ0egg − σ0slice (B.4)

where σ0 is in linear space for both egg and slice. The second method is similar to

the first method except σ0 is converted to dB. This can also be done by,

Errordb = 10 · log10

(
σ0egg

σ0slice

)
(B.5)

where σ0 is in linear space for both egg and slice.

Fig. B.4 illustrates these two methods.

B.5 Kp Prediction

Kp is defined as the normalized standard deviation of the echo return energy

given by,

Kp =

√
V ariance[Ps]

Mean[Ps]
(B.6)
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Figure B.3: Mean σ0 value in each region

where Ps is the echo return energy. The predicted value of this parameter can be cal-

culated using data contained in the L1B file, namely the instrument signal processing

parameters: kpcA, kpcB, and kpcC and the signal to noise ratio.

Kp2 = kpcA +
kpcB

SNR
+

kpcC

SNR2
(B.7)

These instrument signal processing parameters are also know as the Kpc coefficients.

B.6 Empirical Kp calculation

The empirical Kp is calculated for each region after the mean and standard

deviation of σ0 in each region is found using

Kpegg =
(σegg)

µegg

(B.8)

Kpslice =
(σslice)

µslice

(B.9)

where σegg is the standard deviation and µegg is the mean of the measured egg σ0 for

each region. In the above equations we use σ0 in place of the returned echo power Pr.
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Top graph is difference in linear space. Bottom is difference in dB

This is legitimate because σ0 is related to the echo power through the radar equation

which can be simplified to

σ0 =
Pr

X
(B.10)

where X includes the wave length, gains, etc in the radar equation. If X is assumed

to be constant then it can be factored out of the numerator and denominator of the

empirical Kp equations and canceled out. Fig B.6 compares predicted to empirical

Kp values.

B.7 Conclusion

The method of compositing σ0 can affect the accuracy of the compositing. Fig

B.4 shows that for the inner beam the linear average gives better results but for the

outer beam the weighted average performs better. Comparing the empirical Kp to

the predicted Kp reveals that for eggs Kp is over-predicted while for composite slices

this value is under-predicted.
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Figure B.5: Mean Kp value for eggs
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Figure B.6: Mean Kp for slices
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