
Software Defined Radio Short Range Radar

Nicholas Everett Kohls

A thesis submitted to the faculty of
Brigham Young University

in partial fulfillment of the requirements for the degree of

Master of Science

David G. Long, Chair
Cammy K. Peterson

Brian D. Jeffs

Department of Electrical and Computer Engineering

Brigham Young University

Copyright c© 2021 Nicholas Everett Kohls

All Rights Reserved

ABSTRACT

Software Defined Radio Short Range Radar

Nicholas Everett Kohls
Department of Electrical and Computer Engineering, BYU

Master of Science

High cost is a current problem with modern radar systems. Software-defined radios (SDRs)
offer a possible solution for low-cost customizable radar systems. An SDR is a radio communi-
cation system where, instead of the traditional radio components implemented in hardware, many
of the components are implemented in software on a computer or embedded system. Although
SDRs were originally designed for wireless communication systems, the firmware of an SDR can
be configured into a radar system. With new companies entering the market, various types of low-
cost SDRs have emerged. This thesis explores the use of a LimeSDR-Mini in a short-range radar
through open software tools and custom code.

The LimeSDR-Mini is successfully shown to detect targets at a short range. However, due
to the instability of the LimeSDR-Mini, the consistent detection of a target is not possible. This
thesis shows how the LimeSDR is characterized and how timing synchronization and instability
issues are mitigated. The LimeSDR-Mini falls short of operating reliable in a radar system and
other SDR boards need to be explored as viable options.

Test setups using coaxial cables and test setups using antennas in an outdoor environment
show the instability of the LimeSDR-Mini. The transmitter and the receiver are asynchronous.
The timing difference varies slightly from run to run, which results in issues that are exacerbated
in a short-range radar. The bleed-through signal is the signal leakage from the transmitter to the
receiver. The bleed-through signal prevents the detection of targets at a short-range. Feed-through
nulling is a signal processing technique used to eliminate the bleed-through signal so that short-
range targets can be detected. The instability of the LimeSDR-Mini reduces the effectiveness of
feed-through nulling techniques.

Keywords: software defined radio (SDR), radar, linear frequency modulated continuous wave
(LFMCW), ground penetrating radar (GPR), LimeSDR Mini

ACKNOWLEDGMENTS

I am grateful for all the support I have received. First and foremost, my wife, Tessa. She is

the reason I will always cherish my time I spent pursuing my graduate degree. Additionally, I am

also grateful for my parents; John and Carla. Their example and confidence in me perpetuated my

education. I am also grateful for the hospitality of Marian and George. Lastly, I am grateful for

Dr. Long. His faith in me often exceeded my own.

TABLE OF CONTENTS

Title Page . i

Abstract . ii

Acknowledgements . iii

Table of Contents . iv

List of Tables . vi

List of Figures . vii

Chapter 1 Introduction and Background . 1
1.1 Introduction . 1
1.2 Background . 2
1.3 Thesis Statement and Results Summary . 4
1.4 Roadmap . 5

Chapter 2 Hardware and Configuration Software . 6
2.1 Hardware . 6
2.2 Configuration and Software . 8

Chapter 3 Ground-Penetrating Radar . 10
3.1 Ground-Penetrating Radar . 10

Chapter 4 Linear Frequency Modulated Continuous Wave Radar 12
4.1 LFMCW Radar Theory . 12
4.2 LimeSDR-Mini Configuration . 19
4.3 Synchronization of the Transmitter and Receiver 21
4.4 Coaxial Cable Test Results . 23
4.5 LFMCW Radar Antenna . 27
4.6 Bleed-through Signal . 32
4.7 Feed-through Nulling . 37

Chapter 5 Results . 49
5.1 LFMCW Radar Target Range Results . 49

Chapter 6 Conclusion . 52
6.1 Conclusion . 52
6.2 Future Work . 53

References . 54

iv

Appendix A Software Libraries . 56
A.1 Lime Suite Overview . 56
A.2 Configurable LimeSDR Parameters . 56
A.3 Data Types and Stream Protocol . 57
A.4 Sampling Rate and Timestamps . 60
A.5 Buffers . 60
A.6 Fast Fourier Transform . 61
A.7 Plotting . 61
A.8 Processing Via MATLAB . 61

Appendix B How to compile and run the Software . 63
B.1 Hardware . 63
B.2 Raspberry Pi Control . 64
B.3 Radar Setup . 64
B.4 Installing The Software . 65
B.5 Downloading and Running the Code . 65

v

LIST OF TABLES

2.1 Comparisons in features between the LimeSDR-Mini and LimeSDR-USB. 7
2.2 Links to LimeSDR configuration software. 9

4.1 Measuring 150-meter coaxial cable with different chirp bandwidths. 26
4.2 Measuring 150-meter coaxial cable with different sampling frequencies. 26
4.3 Characteristics of the custom full loop antennas. 34
4.4 Parameters used for the coaxial cable feed-through nulling test. 38

A.1 Stream protocol payload format for 12-bit compressed samples 58
A.2 stream protocol payload format for 16-bit compressed samples 59
A.3 Links to various resources and tools used in the LFMCW radar. 62

B.1 Links to software tools used to configure the LimeSDR 65

vi

LIST OF FIGURES

1.1 The Lime Microsystem LimeSDR-Mini. 2
1.2 Raspberry Pi 4 Model B single-board computer. 3

2.1 Simplified architecture block diagram of an ideal SDR (A) and an typical SDR (B). . . 6
2.2 Diagram of how all the components are interconnected. 8

4.1 The major components of an LFMCW radar. 13
4.2 The top axes show the LFMCW transmit chirp (red) and receive chirp (green). The

mixer produces the fIF signal as shown in the bottom axes. 17
4.3 Shorting the transmitter and receiver together to find τFPGA and fFPGA. 24
4.4 150-meter coaxial cable connected to the transmitter and receiver. 24
4.5 Distribution of measured τFPGA running a single executable multiple times. 25
4.6 DFT of the mixed signal with the 150-meter coaxial cable. The peak to the left can be

ignored since it is an artifact of when the transmit chirp starts, but the previous chirp
is still being received. The peak near 0 Hz is of primarily interest. 27

4.7 DFT of the mixed signal with the 150-meter coaxial cable, zoomed in. 28
4.8 Different shaped antennas have different impedances, where L1 = 2.028×L2. 30
4.9 Radiation pattern of a resonant loop antenna. The loop is the white shape, with the

feed at the pink point at the bottom. Peak gain is toward front or back of the loop . . . 31
4.10 Diagram of a single loop antenna made from a 6-gauge cooper wire and coaxial cable. 32
4.11 Antenna A: VSWR vs frequency from 500MHz to 1000MHz. 33
4.12 Antenna B: VSWR vs frequency from 500MHz to 1000MHz. 33
4.13 Diagram illustrating the difference between the bleed-through signal and the return

signal. The receive signal is the summation of these two signals. 34
4.14 Antenna placement configurations: this figure shows the antennas when looking at the

antennas from the target. The strength of the bleed-through signal is inversely related
to the distance between the transmit and receive antennas. 36

4.15 Setup of the feed-through nulling test with coaxial cables 37
4.16 The resulting mixed signal is from mixing the RX signal with the TX signal. The

x-axis is range instead of frequency. The fFPGA corresponds to the zero point on the
range scale. The 150-meter peak is obscured by the bleed-through signal. 38

4.17 Zoomed in section of the real part of the mixed signal with the real synthesized fFPGA(t)
function using the estimate fFPGA. Compare with Figure 4.18. 40

4.18 Zoomed in section of the real part of the mixed signal with the synthesized xB(t) func-
tion using the estimates fFPGA and φ0. Compare with Figure 4.17 41

4.19 The real part of the mixed signal with the synthesized xB(t) function using the esti-
mates fFPGA and φ0. The amplitude of the mixed signal varies over time. 41

4.20 The moving average filtered ratio of the mixed signal and xB(t) function using the
estimates fFPGA and φ0. 42

4.21 The real part of the mixed signal with the synthesized xB(t) function using the esti-
mates fFPGA, φ0, and A0(t). 43

4.22 The real part of the mixed signal with feed-through nulling applied. 43

vii

4.23 The real part of the mixed signal with feed-through nulling, zeroed data points, and the
Hamming window applied. 44

4.24 Feed-through nulling method 1: The DFT of the mixed signal with feed-through
nulling and other signal processing applied. 45

4.25 Feed-through nulling method 2: The DFT of the mixed signal with feed-through
nulling and other signal processing applied. 46

4.26 Feed-through nulling method 3: The DFT of the mixed signal with feed-through
nulling and other signal processing applied. 47

5.1 LFMCW Radar Range Testing. The distance between the radar and the target is 17m-
34m. 50

5.2 The LFMCW radar range test results at 17 meters. 50
5.3 The LFMCW radar range test results at 20 meters. 51
5.4 The LFMCW radar range test results at 34 meters. 51

viii

CHAPTER 1. INTRODUCTION AND BACKGROUND

1.1 Introduction

Radar is an electronic system that uses radio waves to detect and find the range, size, angle,

and velocity of a target. Radio waves are electromagnetic radiation that have frequencies as low as

30 Hz to as high as 300 GHz. A radar transmits a modulated signal and the echoed signal from the

target is received by the radar system. Signal processing techniques are used to infer information

about the target. The system requirements for a radar depend heavily on the application of the

radar. For example, a radar to detect a car stopped at an intersection is different than an airport

radar to detect multiple airplanes.

Developing a custom radar system can be costly in both hardware and designer time. Tra-

ditionally, Radio Frequency (RF) systems are implemented using discrete hardware components

(e.g., amplifiers, filters, mixers, modulators, demodulators, etc.). In accordance with Moore’s law,

faster digital processing hardware now exists. Instead of signal processing being implemented only

in hardware, the RF systems and signal processing can now be implemented through software.

Software-defined radios (SDRs) are radio communications systems where radio compo-

nents are implemented by means of software on a computer or embedded system. The behavior

of SDRs can be dynamically redefined by software or firmware changes. As a result, an SDR can

easily switch from using radio waves for Bluetooth communication to using radio waves for IEEE

802.11 Wi-Fi. The research in this paper explains how an SDR can be implemented as a low-cost

radar.

The SDR used in this research is the LimeSDR-Mini (see Figure 1.1). It is an inexpensive

(US$175) hardware platform for developing and prototyping digital and RF designs using Altera’s

Cyclone IV FPGA and Lime Microsystems transceiver. It has a single transmitting channel and

a single receiving channel. In keeping with the small form factor of the LimeSDR-Mini, the

single-board computer Raspberry Pi 4 (see Figure 1.2) is used to interface with the SDR. The

1

Figure 1.1: The Lime Microsystem LimeSDR-Mini.

ultimate goal is to use the LimeSDR-Mini and a single-board computer to implement a short-range

ground-penetrating radar (GPR) to monitor the health of a glacier. To verify if a ground-penetrating

radar is possible using the LimeSDR-Mini, a similar but simpler radar system is implemented. A

linear frequency-modulated continuous-wave (LFMCW) radar system is implemented to test the

capabilities of the LimeSDR board.

1.2 Background

SDRs are extremely versatile because they are programmable and configurable. These ca-

pacities have led to research exploring different uses of SDRs. An example is the use of an SDR

in a biomedical imaging system [1]. The SDR replaces the costly and bulky vector network ana-

lyzer used in the microwave-based medical imaging system. With an SDR, the system successfully

detects small targets embedded in human tissues.

Several radar systems have been demonstrated that are based on SDR technology such as

weather surveillance radar [2], automotive radar [3], ship radar [4], ground-penetrating radar for

landmine detection [5], human movement monitoring radar [6], and multifunctional radar and data

communication system [7]. Another group has used the USRP series board attached to an aerial

drone for landmine detection [5]. This group used a ground-penetrating radar attached to an UAV

(unmanned aerial vehicle).

A majority of these studies have used a Universal Software Radio Peripheral (USRP) SDR

[8]. This is a range of commercial software-defined radios designed and sold by Ettus Research

2

Figure 1.2: Raspberry Pi 4 Model B single-board computer.

and its parent company, National Instruments. The USRP series of software-defined radios are

relatively more expensive than the Lime SDRs designed and sold by Lime Microsystems. The

cheapest USRP is the USRP B205MINI (one input, one output), which costs about US$850. Other

USRP models cost more than US$1,100. In contrast, the LimeSDR-Mini (one input, one output)

cost is US$175 while the LimeSDR-USB (two inputs, two outputs) cost is US$315. The lowest

cost USRP SDR with two inputs and two outputs is US$1,880, for these reasons, the LimeSDR-

Mini was chosen for the radar system. Since the USRP series of SDRs have more products and has

been around longer, there is more support and research done with these products. The LimeSDR-

Mini (the first batch was produced in 2018) is relatively new and low-cost, but has less capabilities

than USRP systems and lacks extensive support. The LimeSDR-Mini is physically smaller and

lighter in weight.

Environmental Science professors at Brigham Young University are interested in moni-

toring the health of a glacier in Switzerland. This can be done by observing the glacier using

a ground-penetrating radar mounted on a modern UAV (unmanned aerial vehicle) or drone. My

3

research in this thesis is centered on creating software tools and starting the designing and build-

ing of a ground-penetrating radar using a LimeSDR-Mini, custom antennas, and a Raspberry Pi 4

single-board computer. This is similar to the research done by certain students in Indonesia. Their

research looked at designing an LFMCW ground-penetrating radar for concrete inspection using

a LimeSDR-Mini [9]. Their research has very limited results. In a simple test, they were able to

differentiate a steel reinforcement bar from a concrete surface, but they were unable to produce

correct range measurements.

A linear-frequency modulated continuous-wave radar implementation on the LimeSDR is

a good test of the capabilities of the hardware and helps develop an understanding of the hardware.

Since a ground-penetrating radar also uses chirps, the development of the LFMCW radar overlaps

with the development of a GPR. A well-documented open-source complete implementation of an

LFMCW radar on the LimeSDR does not currently exist. However, developments in LFMCW

radar have been made in other SDR series (primarily USRP device developed by Ettus Research

[8] [10] [11]).

1.3 Thesis Statement and Results Summary

The ultimate goal is to design a ground-penetrating radar using the LimeSDR-Mini. Short-

range radar is successfully demonstrated using the LimeSDR-Mini. However, consistent detection

of a target is not possible due to the instability of the LimeSDR-Mini. The LimeSDR-Mini falls

short of operating reliable in a radar system and other SDR boards need to be explored as viable

options.

The LimeSDR-Mini can detect targets at a short-range. A test was performed with the

LimeSDR-Mini connected to custom antennas and a target placed at various ranges (17 to 34

meters). The LFMCW radar system can detect the target and find the correct range of the target.

Tests (using cables and antennas) show the LimeSDR-Mini is unstable and the transmitter

and receiver are not synchronized. Signal processing techniques can mitigate these issues. In addi-

tion, a prevalent issue in short-range radars is the signal leakage from the transmitter to the receiver.

The instability of the LimeSDR-Mini reduce the effectiveness of signal processing techniques used

to eliminate the leakage signal.

4

1.4 Roadmap

To understand how to implement the LimeSDR-Mini as a radar, the hardware and config-

uration software is explained in Chapter 2. A simple background of ground-penetrating radar is

explored in Chapter 3 and includes why an LFMCW radar is implemented instead of a GPR.

To test the capabilities of the LimeSDR-Mini, an LFMCW radar is implemented in Chap-

ter 4. Section 4.1 explains the theory of an LFMCW radar and is independent of the LimeSDR-

Mini. Section 4.2 describes the software tools used to configure the SDR and explains the issues

that result from the transmitter and receiver not being synchronized. To overcome the synchroniza-

tion issue Section 4.3 describes signal processing techniques used to mitigate the problem. With

these methods, Section 4.4 describes the test and results of measuring a long length of coaxial ca-

ble. This test imitates the use of antennas detecting a target. Section 4.5 describes how the antennas

were designed and built. Transmitting and receiving continuously with antennas next to each other

result in the received signal being saturated by the signal propagated from the transmitter. This

signal is known as the bleed-through signal and is a prevalent issue in short-range radars. The

bleed-through signal is considered in further detail in Section 4.6. In Section 4.7 signal processing

techniques used to eliminate the bleed-through signal in post-processing are described and tested.

Chapter 5 show the results of detecting targets using antennas. The results are not con-

sistent, but the LimeSDR-Mini was able to perform as a short-range radar. The conclusion in

Chapter 6 describes how the LimeSDR-Mini is unsuited to perform as a reliable radar system.

5

CHAPTER 2. HARDWARE AND CONFIGURATION SOFTWARE

2.1 Hardware

The concept of software-defined radios is not new. Traditionally, the majority of signal pro-

cessing was done in hardware, but now evolving capabilities of digital electronics make it possible

to implement signal processing through software which was only once theoretically possible.

An ideal software-defined radio has a general-purpose processor that handles all of the

signal processing, rather than being done in special-purpose electronic circuits (see Diagram A in

Figure 2.1). The ideal SDR has a digital-to-analog converter and an analog-to-digital converter

connected directly to the processor and the antennas. This gives the processor absolute control and

handles all of the signal processing. However, this configuration is not yet possible in practice at

high frequencies. As a result, Diagram B in Figure 2.1 is used as the architecture in most SDRs

including the LimeSDR-Mini.

The LimeSDR-Mini architecture employs the Altera’s Cyclone IV FPGA (field-program-

mable gate array) in between the processor and the analog and digital converters. This FPGA serves

as a FIFO (first in first out) buffer for the samples. In the LimeSDR-Mini, the FPGA also handles

the timestamps. The RF Module is the Lime Microsystems transceiver RFIC (radio-frequency in-

Figure 2.1: Simplified architecture block diagram of an ideal SDR (A) and an typical SDR (B).

6

Table 2.1: Comparisons in features between the LimeSDR-Mini and LimeSDR-USB.

Lime Microsystem SDR Board LimeSDR-Mini LimeSDR-USB
Dimensions 69 mm x 31.4 mm 100 mm x 60 mm
Number of RX Channels 1 2
Number of TX Channels 1 2
Available Radio Frequency Bandwidth 30.72 MHz 61.44 MHz
Minimum Operating Frequency 10 MHz 100 kHz
Maximum Operating Frequency 3.5 GHz 3.8 GHz
FPGA Size 16,000 gates 40,000 gates

tegrated circuit) that is used to transmit and receive radio signals. Anything that happens between

the FPGA and the RF Module adds group delay, such as digital up and down conversion chains and

buffering. This delay is hard-coded into the Osmocon GSM (Global System for Mobile Commu-

nications) stack and is necessary for the hardware to work reliably. This delay impacts the ability

to synchronize the timing between the transmitter and receiver. Since radar systems have strict

timing requirements this delay needs to be incorporated in signal processing for the radar to work.

An understanding of this hardware is needed to understand the capabilities of the software when

implementing a radar system.

The LimeSDR-Mini has the same LMS7002M transceiver RFIC as the LimeSDR-USB. In

the scope of this project either can be used; however, the LimeSDR-Mini is preferred because of the

small form factor. The main difference is that the LimeSDR-Mini has only two channels (a transmit

and receive) compared with four channels (two transmit and two receive) on the LimeSDR-USB.

The other differences are summarized in Table 2.1. Both boards can transmit at up to 10 dBm

(10 mW) and offer an oscillator precision of ±1ppm initially and ±4ppm stably.

The LimeSDR boards can be configured to operate at different parameters. For each chan-

nel the gain, carrier frequency, FIFO buffer size, low-pass filter, throughput latency factor, and

data type can be set (see Appendix A). In addition, the software can access the status of the FPGA

FIFO buffers. This includes the timestamps, data transfer rate, dropped packets, size, and the

amount filled.

A single-board computer Raspberry Pi 4 (4 GB RAM model) is used to interface and

provide power with the LimeSDR-Mini. They are interconnected via a USB 3.0 port and the

7

Figure 2.2: Diagram of how all the components are interconnected.

LimeSDR-Mini is connected with the antennas via SMA connectors (see Figure 2.2). The Rasp-

berry Pi is used to communicate and interface with the LimeSDR-Mini. Custom software down-

loads the RF samples into a binary file for offline processing or to do signal processing and plot

the results.

2.2 Configuration and Software

There are multiple software tools to configure the LimeSDR (see links in Table 2.2). A

common way to configure multiple varieties of SDRs is to use GNU Radio Companion. GNU

Radio Companion is an open-source, free software development toolkit that provides signal pro-

cessing blocks that can be connected together and to blocks representing hardware (such as the

LimeSDR-Mini). To support the LimeSDR, additional libraries are needed to be downloaded. This

is one of the most straightforward ways to configure SDRs. However, GNU Radio Companion is

mostly used for signal processing and wireless communication protocols.

An alternate software package to configure the LimeSDR is the Soapy Library API. Soapy-

SDR is an open-source generalized API and library for interfacing with most off-the-shelf SDRs.

The library is written in C++ and comes with python wrappers. The Soapy Library gives more

control of the LimeSDR, but requires more knowledge of SDR hardware since it is a lower level

of abstraction than GNU Radio. The Soapy Library was written as a generic tool to program many

types of SDRs.

Another alternate is also a pyLMS7002Soapy python library package. The Soapy Library

API is essentially a wrapper of the pyLMS7002Soapy library for the LimeSDR. It requires a more

extensive understanding of the LMS7002M, Lime’s second-generation field programmable RF

8

Table 2.2: Links to LimeSDR configuration software.

GNU Radio Companion:
https://www.gnuradio.org
Soapy SDR:
http://pothosware.com
pylms7002m Library:
https://myriadrf.org/projects/software/pylms7002m
Lime Suite:
hhttps://myriadrf.org/projects/software/lime-suite

transceiver integrated circuit. This library is strictly for use of the LimeSDRs. The purpose of this

library is for fast prototyping and algorithm development.

The C++ Lime Suite library package has the most control over the LimeSDR. Since the

library is specific to the LimeSDR hardware, it cannot be ported to other SDRs, unlike SoapySDR

and GNU Radio. Using The Lime Suite library requires the most understanding of the LimeSDR

hardware, but provides the most transparency to how software controls the hardware. The Lime

Suite library provides a C-style API and is well documented. This C++ library package provides

more control of the LimeSDR than the other abstracted options. The Lime Suite library is used in

this thesis since it provides the most control and transparency in how the hardware functions.

9

CHAPTER 3. GROUND-PENETRATING RADAR

3.1 Ground-Penetrating Radar

Brigham Young University geology professors are interested in monitoring the health of a

glacier in Switzerland. The small form factor of the LimeSDR-Mini and Raspberry Pi 4 allows

it to fit on an air drone quadcopter. Since SDRs are configurable the radar system can be eas-

ily changed from an LFMCW radar to a ground-penetrating radar by running different software.

The development of the LFMCW radar and GPR have a significant overlap. Both use the same

LimeSDR-Mini, single-board computer, software library packages, and antennas. Both types of

radars also use linear-frequency modulated chirps, thus the development of the LFMCW radar

makes for a simple transition to a GPR.

Ground-penetrating radar is a geophysical technique that provides a non-invasive method

to probe the ground. GPR uses electromagnetic waves to penetrate the earth’s surface to detect

buried objects or differentiate between soil layers. Since water and ice have different dielectric

properties, GPR can be used to find layers of water beneath ice. Additionally, radars have been

used to do differentiate between new and old snow [12].

The health of glaciers can be monitored by looking at the glacier mass balance, the dif-

ference between accumulation and ablation. Climate change causes fluctuations in the surface

mass balance of a glacier. Using radars to measure the health of glaciers is not a new practice

and research in the field have been ongoing for over half a century. The research field of radio-

glaciology is the study of glaciers, ice sheets, ice caps, and icy moons using ice-penetrating radar.

This employs the same geophysical method as a ground-penetration radar and typically operates

at frequencies in the MF, HF, VHF, and UHF portions of the radio spectrum [13].

The health of glaciers is effectively measured with radars, due to the characteristics of ice.

The conductivity, the imaginary part of the permittivity, and the dielectric absorption of ice are

small. This results in low loss tangent, skin depth, and attenuation values [14]. In addition, it

10

allows echoes from the base of the ice sheet to be detected through ice thicknesses greater than 4

km [15].

The carrier frequency of a ground-penetrating radar is chosen to match the application and

has trade-offs. A GPR operating at lower frequencies has a greater penetration depth, while a

GPR operating at higher frequencies provides a greater resolution to detect smaller features. The

trade-off is between resolution and penetration depth. A GPR with low frequencies can potentially

penetrate through hundreds of meters of ice.

The LimeSDR-Mini and LimeSDR-USB are able to operate from the HF band to the UHF

band. The LimeSDR-USB can go as low as the MF band. These carrier frequencies are effective

for GPR in ice. The theory and full implementation of the GPR are beyond the scope of this paper.

11

CHAPTER 4. LINEAR FREQUENCY MODULATED CONTINUOUS WAVE RADAR

4.1 LFMCW Radar Theory

A linear frequency-modulated continuous-wave (LFMCW) radar is implemented on the

LimeSDR-Mini to test its functionality. Continuous-wave implies that the radar is constantly trans-

mitting and receiving. In bistatic radar there are two antennas; a transmitter and a receiver.

The five main components and processing steps in an LFMCW Radar described below. A

flow diagram of the components is shown in Figure 4.1.

1. Synthesize an up-chirp: The first step is for the LimeSDR to synthesize an up-chirp. An

“up-chirp” is a signal that increases linearly in frequency over time (see Equation 4.3). This

is the “linear frequency-modulated” in an LFMCW radar. The parameter f0 is the starting

frequency of the chirp and the parameter f1 is the end frequency of the chirp. The parameter

B is the bandwidth of the chirp. This is the frequency range that is swept.

B = f1− f0. (4.1)

Another variable is the length of the chirp is in seconds. The time length of a single chirp

is the variable Tc. Since this is a continuous-wave radar, once a chirp is finished, another

identical chirp immediately follows. Additionally, the slope of the linear frequency increase

over time of the chirp is an important characteristic in an LFMCW radar. The equation

S =
B
Tc

(4.2)

gives frequency slope S in Hz
s of the chirp. This is used in further signal processing.

12

Figure 4.1: The major components of an LFMCW radar.

In a linear-frequency chirp the instantaneous frequency f (t) varies linearly with time, i.e

f (t) = S t + f0, (4.3)

where 0≤ t ≤ Tc and t is in seconds. This frequency waveform is repeated for each chirp.

For any oscillating signal, the integral of the frequency function is the time-domain function

for the phase. The derivative of the phase is the angular frequency; φ ′(t) = 2π f (t). For the

linear chirp, this results in:

13

φ(t) = φ0 +
∫ t

0
f (τ)dτ

= φ0 +
∫ t

0
(Sτ + f0)dτ

= φ0 +2π

(
S
2

t2 + f0 t
)
, (4.4)

where φ0 is the initial phase [16]. The corresponding time-domain function for a linear

up-chirp is the cosine of the phase in radians. This results in the function

x(t) = cos
(

2π

[
S
2

t2 + f0 t
]
+φ0

)
. (4.5)

In contrast, the function of a time-domain complex up-chirp is

x(t) = exp
(

j
[

2π

{
S
2

t2 + f0 t
}
+φ0

])
= cos

(
2π

[
S
2

t2 + f0 t
]
+φ0

)
+ j sin

(
2π

[
S
2

t2 + f0 t
]
+φ0

)
, (4.6)

where j is the imaginary number. In this paper, the complex up-chirp signal is used and the

initial phase φ0 is zero. Synthesizing the up-chirp is done in software on the single-board

computer using the above equation.

2. Transmit chirp: The second step for an LFMCW radar is to send the complex up-chirp

(Equation 4.6) to the transmit antenna. The transmit signal is amplified using the LimeSDR-

Mini hardware. The gain of the amplifier is configured in software. The up-chirp is trans-

mitted towards and reflected from the target.

3. Receive echoed signal: The third step of the LFMCW radar is to receive the signal that

echoes back from the target. This signal is similar to the transmitted signal but is delayed in

the time based on how far the target is from the radar (see Figure 4.2). The delay τ is the time

of flight it takes the electromagnetic signal to go to the target and back. If R is the distance

from the antenna to the target being detected, then the signal needs to travel there and back, a

14

total distance of 2R. Electromagnetic signals travel near the speed of light through air. Thus,

τ =
2 R
c

, (4.7)

where c is the speed of light. The receive signal is amplified by the LimeSDR-Mini hardware

with the gain configured in software.

4. Mixer: The next step is to mix the transmit and receive signals. Mixing is done by multi-

plying the signals in the time domain, which is equivalent to convolving the signals in the

frequency domain. When using two real signals with different frequencies the mixer pro-

duces a real signal with a frequency of | f1− f2| and | f1+ f2|. The new frequencies produced

are called intermediate frequencies. In an LFMCW receiver, the low pass filter removes the

sum term, leaving only the difference form.

In the case of the LFMCW radar in this thesis, a complex signal is used. Mixing complex

signals is the same as mixing real signals, except only a single frequency is produced. By

mixing the complex transmit and the complex conjugate of the receive signal, the mixer

produces the difference of their frequencies. The conjugation causes the mixer to subtract

the receive frequency from the transmit frequency, resulting in a positive fIF frequency.

The transmit signal and receive signal are similar, except the receive signal is delayed by τ .

The following equation shows how the mixed signal time-domain function fIF(t) is produced

by multiplying the transmit signal by the complex conjugate of the receive signal.

fIF(t) = exp
(

j2π

[
S
2

t2 + f0t
])

exp
(
− j2π

[
S
2
{t− τ}2 + f0 {t− τ}

])
= exp

(
j2π

[
S
2

t2 + f0t− S
2
{t− τ}2− f0 {t− τ}

])
= exp

(
j2π

[
S
2

t2 + f0t− S
2
{

t2−2τt + τ
2}− f0t + f0τ

])
= exp

(
j2π

[
Sτt− S

2
τ

2 + f0τ

])
= exp(j2πSτt)exp

(
j2π

[
f0τ− S

2
τ

2
])

= exp(j [2πSτt +φ]), (4.8)

15

where φ is the phase offset j2π
(

f0τ− S
2τ2). This equation is valid for τ ≤ t ≤ Tc, because

the useful data is produced when the transmit signal has a higher frequency than the receive

signal.

The fIF signal can be inferred from Figure 4.2. A simpler way to find the fIF frequency is to

ignore the phase. Since the chirps are linear, subtracting the two chirps result in a constant

difference frequency. The transmit instantaneous frequency is represented by Equation 4.3,

f (t). The receive instantaneous frequency is also represented by Equation 4.3, but is delayed

by τ , f (t− τ). The equation

fIF = f (t)− f (t− τ)

= S t + f0− (S(t− τ)+ f0)

= Sτ (4.9)

shows a simpler way to find the fIF frequency, but does not derive the phase offset.

The fIF signal can be related to the range of the object detected by substituting τ in Equation

4.9 with Equation 4.7 to produce Equation 4.10. Now instead of requiring the variable τ , the

fIF signal can be related to range by

R =
fIF c
2 S

=
τ c
2

. (4.10)

5. Signal Processing: The last step is to do further signal processing on the mixed signal and

find the fIF signal to calculate the range. Typically, a discrete Fourier transform (DFT) is per-

formed on the magnitude of the signal. This converts the mixed signal from the time domain

to the frequency domain. The magnitude is given by p(t) =
√

real(y(t))2 + imag(y(t))2. The

power spectrum density function is simply the DFT of p(t). The power spectrum units are

in dB of an unknown voltage-squared value. For reference, the LimeSDR-Mini is capable

transmitting up to 10 dBm.

Further signal processing techniques can also be implemented. For example, having multiple

peaks in the DFT mixed signal means having multiple targets detected. The fIF signal tones

can be related to the range of multiple objects with Equation 4.10. Doppler shifts resulting

16

Figure 4.2: The top axes show the LFMCW transmit chirp (red) and receive chirp (green). The
mixer produces the fIF signal as shown in the bottom axes.

from moving targets can also infer the velocity of the targets. Since the ultimate goal of

developing the LFMCW radar is for a GPR where the target and clutter is stationary, complex

analysis of the LFMCW radar is not pursued.

There are some important signal processing techniques to improve the accuracy and SNR

of the fIF signal. Performing a discrete Fourier transform on a signal divides the signal into small

discrete ranges of frequencies called bins. These bins are called frequency bins, and contain the

17

net power of the frequencies inside the bins. To increase the accuracy of the LFMCW radar, the

width of the frequency bins needs to be minimized. The width of the frequency bin ∆ f is found

with the equation

∆ f =
fs

N
, (4.11)

where fs is the sampling frequency and the number of samples in the DFT is N. To minimize the

frequency bin width, fs needs to be minimized and N needs to be maximized. ∆ f can only be

minimized to a certain point by minimizing fs because of the Nyquist–Shannon sampling theorem.

Thus using more samples by increasing the acquisition time to perform a DFT is more practical.

To convert the frequency bins into range bins ∆R, Equation 4.10 is applied by replacing fIF

with ∆ f . This produces the equation

∆R =
∆ f c
2 S

. (4.12)

This is used to plot the magnitude versus range of the mixed signal. With range as the independent

variable, it is easier to interpret the data if targets are detected.

To accurately measure the range of a target, the range bins defined in Equation 4.12 need

to have a high enough resolution to be practical. Combining Equation 4.11 with 4.12 and letting

the number of samples N = fs Tc k results in the equation

∆R =
∆ f c
2 S

=

fs
fs Tc k c

2 B
Tc

=
c

2 k B
, (4.13)

where k is a ratio of how many samples are in the DFT and the number of samples in a single chirp.

Note that N needs to be a positive integer. ∆R is also commonly referred to as the range resolution.

This equation shows that to improve the range resolution ∆R, the chirp bandwidth B is

maximized, and the number of samples in the DFT is increased. The bandwidth B is limited by

the sampling frequency fs, which is limited by the hardware. To minimize ∆R, the number of

samples the DFT is increased by selecting a single receive chirp interval and zero-padding the end.

The addition of zeros to the end of the time-domain waveform does not improve the underlying

frequency resolution but leads to an interpolated DFT result, which can produce a higher display

resolution. Since zero-padding essentially introduces a rectangle function to the end of the time-

domain waveform, the DFT produces sinc-like functions.

18

To detect a return signal with low power, the signal power needs to be strong enough to

discriminate against the noise. Noise is a general term for unwanted (and, in general, unknown)

modifications that a signal may suffer during capture, storage, transmission, processing, or conver-

sion [17]. In order to increase the SNR (signal-to-noise) ratio of the fIF, multiple receive signals

are averaged together and then mixed with the transmit chirp. This technique lowers the noise

floor. In a test of averaging 100 chirps together, the noise floor dropped by 6 dB. The combination

of zero-padding and averaging the receive chirps together results in further resolution and SNR of

the fIF signal. This makes the radar more accurate and dependable.

The maximum range Rmax is constrained from both the signal attenuation and signal pro-

cessing capabilities. The further the target is from the radar the less power is returned from the

echo. The power return of a signal drops quadratically according to R−4 in the radar range equa-

tion [18]. If the target is too far then the return signal can not be discriminated from the noise. The

maximum range is also limited by the ADC sampling frequency fs. This results in

Rmax =
fs c
2 S

. (4.14)

This equation is directly related to Equation 4.10. Since the radar developed is a short-range radar,

Rmax is not overly important.

4.2 LimeSDR-Mini Configuration

The LFMCW radar implementation was first tested using a 150-meter length of coaxial

cable that is connected from the transmitter to the receiver. This mimics the behavior of a radar

transmitting a signal: having the signal echo from a target, and then receiving the echo. This

simplifies the testing by eliminating multi-path and interference. The signal is clean, making it

easier to debug. It is important to note that in this set up, the scalar 2 is no longer in Equation 4.7

and in Equation 4.10. This is because the signal is going through the coaxial cable directly from

the transmitter to the receiver (distance R) and is not echoing off a target (distance 2R). Also, the

speed of signal propagation is slower since electromagnetic waves propagate slower through a wire

medium (roughly 2
3c) than in free space or air.

19

The first method tested for implementing an LFMCW radar was using GNU Radio Com-

panion (GRC). GNU Radio Companion is a free software development toolkit that provides signal

processing blocks to implement software-defined radios and signal-processing systems. Simulat-

ing an LFMCW radar in GRC was implemented and worked as expected. However, when the

LimeSDR-Mini is used instead of a simulation, the intermediate frequency fIF is erroneously high

and varies over time. For initial testing, a 10 cm meter cable was used to connect the transmitter

and receiver together. With the transmitter and receiver shorted together, the transmit signal and

receive signal occur at nearly the same time. This resulted in a low fIF signal frequency. However,

the results showed the fIF signal erroneously high and variable. The fIF signal varied greatly as

the system ran, proving unusable data. To mitigate this problem, the software was moved from

a virtual machine to the Raspberry Pi single-board computer. This improved the accuracy and

jitter of the fIF signal, but the data was still far from usable. Since GNU radio was created to be

a generic tool for signal processing, it is difficult to use it to debug the specific problems within

the LimeSDR hardware. In summary GNU radio companion works well when there are not strict

timing requirements for transmitting and receiving, but since radar requires precise timing, greater

control of the LimeSDR is needed.

Because there is a lack of transparency in GNU Radio software, the decision was made

to move to another method of programming the LimeSDR. The pothosware SoapySDR Library

was found to be a high enough level abstraction that in depth knowledge of the hardware is not

needed to be known, but low enough that there was more control of the hardware. The SopaySDR

is able to provide timestamps for when to transmit a signal and receive a signal. This method gave

better control to critical timing restraints of a radar system. However, the results still produced an

erroneous fIF signal. However, unlike the results from GNU Radio, the fIF signal is consistently the

same. This means that the delay should be taken into account in signal processing. SoapySDR is

an open-source generalized API and library for interfacing with most off-the-shelf SDRs. It is not

specific to the LimeSDR hardware, making it hard to understand how the software interfaces with

the LimeSDR. This is because some functions calls do not work specifically with the LimeSDR, but

works with other types of SDRs. Although the SoapySDR library works sufficiently for producing

LFMCW radar results, other ways of configuring the LimeSDR were examined to determine if the

transmitter and receiver could be better synchronized.

20

The option of using the Myriad-RF pyLMS7002Soapy library was also explored. The

purpose of this library is for fast prototyping and algorithm development. This library is more

specific to the LimeSDR, but ultimately was not used since there is little documentation on how

to use the library. Since the SoapySDR library is essentially a wrapper of the pyLMS7002Soapy

library, the SoapySDR is better suited for quick development.

I found the best option for configuring the LimeSDR is the Lime Suite Library. It was

created specifically for the LimeSDR. This means the code written with the Lime Suite library is

not portable to other types of SDRs, unlike the code made from GNU Radio or SoapySDR. The

Lime Suite API is well documented and some example code of simple transmits and receives is

found in the Lime Suite repositories. Using this library requires an understanding of the LimeSDR

architecture. The API includes functions that give more control over the LimeSDR hardware.

In addition, the API gives greater control of timestamps and provides the status of the FPGA

FIFO buffers used to transmit and receive. Explanation and references to the API and further

documentation of the nuances of programming the LimeSDR can be found in Appendix A.

4.3 Synchronization of the Transmitter and Receiver

A key issue to overcome is the synchronization of the transmitter and the receiver. Unfor-

tunately, configuring the LimeSDR-Mini with the Lime Suite library using software synchronized

timestamps does not synchronize the transmitter and receiver in hardware. Ultimately, the hard-

ware does not support perfect synchronization of the transmitter and receiver. The FPGA in the

LimeSDR Mini handles the timestamps. Anything that happens between the RF module and the

FPGA adds group delay, such as digital up and down conversion chains, and buffering. This delay

is hard coded for each type of SDR hardware in the Osmocon GSM (Global System for Mobile

Communications) stack and is required for the hardware to work reliably, making the delay neces-

sary. This delay is referred to as τFPGA (in seconds). τFPGA in this paper is defined as the difference

between the literal transmit and receive time when the timestamps are equivalent in software. If the

transmit timestamp in software is x, the hardware transmits the data at time x. However, if in the

software the receiver is also synced to transmit at time x, then the hardware receives data at time

x + τFPGA. Fortunately, the delay τFPGA is consistent once the software is running. τFPGA depends

on the parameters set in the LimeSDR; filter configuration, sampling frequency, gain, bandwidth,

21

etc. It is thus possible to measure this delay and incorporate it into signal processing, effectively

eliminating it. The delay τFPGA measured in the LimeSDR-Mini is anywhere between 2µs and

80µs

To make the LimeSDR a reliable radar, the delay τFPGA needs to be known. Once it is

known, it can be incorporated into signal processing. The delay τFPGA can be measured by shorting

the receiver and transmitter together with a short coaxial cable. The receive signal (up-chirp) is

delayed in time by τFPGA. Mixing the delayed receive signal with the transmit signal produces

the constant intermediate frequency fFPGA. The time delay τFPGA and the intermediate frequency

fFPGA are directly related by Equation 4.9. This same method of finding τFPGA is applied to the

radar when using antennas. In normal operations, the antennas are next to each other so that the

signal propagates directly from the transmitter to the receiver without echoing from any targets

(called bleed-through signal) and this signal is mixed with the transmit signal is used to produce

fFPGA.

The time it takes for the signal to propagate from the transmit antenna and echo back from

the target is represented as τtarget. There is also the inherent delay τFPGA in the LimeSDR-Mini.

Thus the total time from the transmit timestamp to when the chirp is recorded by the LimeSDR-

Mini is the sum of these delays. The total time delay is

τIF = τtarget + τFPGA. (4.15)

The intermediate frequency fIF results from mixing the receive signal (delayed by τIF) with the

transmit signal. Modifying Equation 4.9 results in

fIF = S τIF

= S (τtarget + τFPGA)

= ftarget + fFPGA, (4.16)

where ftarget is the intermediate frequency that would be produced from mixing if the LimeSDR

had no synchronization issues. Equation 4.16 shows the intermediate frequency fIF is the sum of

the intermediate frequencies ftarget and fFPGA. Thus Equation 4.10 is modified by Equation 4.16 to

22

be

Rtarget =
ftarget c

2 S

=
(fIF − fFPGA) c

2 S
, (4.17)

where Rtarget is the range of the target.

4.4 Coaxial Cable Test Results

When measuring the length of the 150-meter coaxial cable the fIF measured is a result of

the time it takes the signal to propagate through the cable τcable and the FPGA time delay τFPGA.

Note that an electromagnetic wave propagates roughly 2
3 the speed of light through a cable and that

the distance the signal propagates is the length of the cable, unlike a radar where it goes to a target

and back. Equation 4.17 is modified to be

Rcable =
(fIF − fFPGA)

2
3c

S
, (4.18)

where Rcable is the length of the coaxial cable.

The LFMCW Radar software developed using the Lime Suite library successfully mea-

sured the length of the 150-meter coaxial cable. The first step was to measure fFPGA which is

the intermediate frequency signal when the transmitter and receiver are shorted together (see Fig-

ure 4.3). Then the fIF signal is found when the 150-meter coaxial cable is interconnected to the

transmitter and receiver (see Figure 4.4). Using Equation 4.18, the length of the 150-meter coaxial

cable is measured and compared with the known length. Table 4.1 and Table 4.2 shows the results

with different parameters are used in the LFMCW radar. The tables also show how the FPGA time

delay τFPGA varies. While it is true that τFPGA varies based on the parameters set in the LimeSDR-

Mini, it is also true that τFPGA varies by running the same executable multiple times. This makes

it difficult to know the precise τFPGA. Essentially, it is fixed during each program run, but varies

between runs.

The FPGA time delay τFPGA varies from run to run with the same executable. Running

many instances, Figure 4.5 shows a uniform distribution of four discrete times. The distribution

23

Figure 4.3: Shorting the transmitter and receiver together to find τFPGA and fFPGA.

Figure 4.4: 150-meter coaxial cable connected to the transmitter and receiver.

24

Figure 4.5: Distribution of measured τFPGA running a single executable multiple times.

of the time delay τFPGA was found using the sampling frequency fs of 36 MHz, bandwidth B of

16 MHz, and a chirp length Tc of 100 µs. The maximum difference betweeb the variations of

τFPGA in this example is 18.7 ns, which corresponds to 233.59 mm in distance. These variations of

running the same executable are negligible in this test to measure the length of the coaxial cable.

Table 4.1 shows results of changing the bandwidth B of the chirp while other LFMCW

variables remain constant. N is defined at the number of samples used in the DFT, where N = fs Tc k

and k is a positive number. The DFT is taken of the average receive signal and is zero-padded. The

results show that the length of the 150-meter cable is measured accurately enough to conclude

that the radar is working. There is some variation of the range result due to the range resolution.

There appears to be no clear correlation of how τFPGA varies with the changing bandwidth. Table

25

Table 4.1: Measuring 150-meter coaxial cable with different chirp bandwidths.

Fs B Tc k ∆R fFPGA τFPGA fIF R
36MHz 2MHz 100µs 20 5m 50kHz 2.50µs 65 kHz 149.90m
36MHz 4MHz 100µs 20 2.5m 94kHz 2.35µs 125kHz 154.89m
36MHz 8MHz 100µs 20 1.25m 108.5kHz 2.56µs 241kHz 151.15m
36MHz 16MHz 100µs 20 0.625m 351kHz 2.19µs 471.5kHz 150.52m

Table 4.2: Measuring 150-meter coaxial cable with different sampling frequencies.

Fs B Tc k ∆R fFPGA τFPGA fIF R
24MHz 8MHz 100µs 20 1.25m 262.5kHz 3.28µs 324kHz 153.64m
30MHz 8MHz 100µs 20 1.25m 235kHz 2.94µs 295.5kHz 151.15m
36MHz 8MHz 100µs 20 1.25m 180.5kHz 2.26µs 242kHz 153.64m

4.2 shows how τFPGA changes with different sampling frequencies. The sampling frequency and

τFPGA appear to be inversely proportional.

Figure 4.6 shows the DFT of the mixed signal produced with the 150-meter coaxial cable.

The parameters used are found in the last row in Table 4.1. Figure 4.6 shows the largest peak at fIF.

The second lower peak on the left side of the figure is a result of the mixer when the transmitting

chirp has begun a chirp, but an echo of a previous chirp is still being received. Looking at Figure

4.2, this happens when the green receive chirp is above the red transmit chirp. This happens at the

beginning of the transmit chirp where 0 ≤ t ≤ τ . The mixer subtracts the lower frequency by the

higher frequency, resulting in a negative frequency. This peak can be ignored and even zeroed out.

Figure 4.7 shows the same signal as Figure 4.6, but displays the main peak zoomed in

and the x-axis is changed to display the range. This is done by using Equation 4.18, where 0

meters corresponds with the same data point as the measured fFPGA. The sinc behavior is due

to zero-padding. Figure 4.7 shows that the length of the coaxial cable is about 150-meters. The

results show fairly high precision. The accuracy may be off, by the assumption of the speed of

an electromagnetic wave traveling through a wire medium. Note that the LFMCW Radar software

accurately measures the length of the 150-meter coaxial cable.

26

Figure 4.6: DFT of the mixed signal with the 150-meter coaxial cable. The peak to the left can be
ignored since it is an artifact of when the transmit chirp starts, but the previous chirp is still being
received. The peak near 0 Hz is of primarily interest.

4.5 LFMCW Radar Antenna

To measure the range of targets using the LFMCW radar, custom antennas were built for

the receiver and transmitter. The antennas are designed to be compact enough to mount on an air

drone and to be efficient over a wide bandwidth.

The antenna efficiency (radiation efficiency) ξ measures how effective an antenna is at

transmitting the power delivered to it. The antenna efficiency is

ξ =
Prad

Pt
, (4.19)

27

Figure 4.7: DFT of the mixed signal with the 150-meter coaxial cable, zoomed in.

where Pt is the total power supplied to the antenna and Prad is the power that is radiated out into

space. The remainder is dissipated as heat in the antenna [12].

Antenna efficiency is largely dependent on the impedance matching of the antenna to the

source (the SDR in this case). Impedance matching is achieved when the source impedance is the

complex conjugate of the load impedance. The easiest way to do this it to make the impedance

completely resistive. However, this is impractical since it raises the radar noise figure, and so

complex impedance circuits are used. If there is a mismatch between the load impedance (antenna)

and the transmission line (SDR), part of the forward wave sent to the load is reflected along the

28

transmission line towards the source. This defines the reflection coefficient Γ

Γ =
Vr

Vf
, (4.20)

where Vf is the complex amplitude of the forwarded wave and Vr is the complex amplitude of the

reflected wave.

The mismatch of impedances results in standing waves along the transmission line which

magnify transmission losses. The Voltage Standing Wave Ratio (VSWR) is a measurement of the

depth of the standing waves, and therefore, a measurement of the impedance matching. VSWR

is a function of the reflection coefficient Γ, which describes the power reflected from the antenna.

The power reflected from the antenna represents the inefficiency of the antenna since the power

is not being emitted. The VSWR is a metric that numerically describes how well the antenna’s

impedance matched to the radio or transmission line it is connected to. Thus, to increase the

antenna efficiency, VSWR is minimized by matching the impedance of the antenna to the SDR.

VSWR is given by

VSWR =
Vmax

Vmin
=

1+ |Γ|
1−|Γ|

, (4.21)

where Vmax and Vmin are the resulting voltage maximum and minimum amplitude of the forward

and reflective wave superimposed on each other.

To maximize the efficiency of the antenna, the Voltage Standing Wave Ratio (VSWR) is

minimized by impedance matching the antenna with the SDR. The LimeSDR has an impedance of

50 ohms, which is the standard for transmitting radio equipment. To maximize the power delivered

to the antenna and minimize the impedance mismatch between the antenna and free space of 377

ohms the antenna requires an impedance match of 50 ohms.

There are different methods for designing antennas to have a certain impedance. One tech-

nique is to use inductors or capacitors to change the impedance. This is sometimes done by in-

troducing coils into a dipole antenna to increase the inductance. For a loop antenna, the shape

of the antenna determines its impedance but also affects the directivity of the antenna (see Figure

4.8). The directivity of a full wave loop antenna is maximized when the loop antenna is a circle,

however this shape results in an impedance of 133 ohms. A loop antenna shaped in a rectangle at

29

Figure 4.8: Different shaped antennas have different impedances, where L1 = 2.028×L2.

a length to width ratio of 2.028 has an impedance of 50 ohms. This matches with the impedance

of the LimeSDR and minimizes the VSWR.

Resonant loop antennas (full loop antennas) are used for both the transmitter and the re-

ceiver in the LFMCW Radar and GPR design. The circumference of the full loop antenna is

approximately one wavelength of the carrier frequency. This makes the antenna self-resonant at

that frequency. The full wave loop can be thought of as two dipoles with the ends connected to-

gether. The exact length for resonance depends on the diameter of the conductor and the shape of

the loop. For a ground-penetrating radar, the frequency usually is lower which results in a larger

loop antenna. A longer wavelength can penetrate further through the ground. The transmit and re-

ceive loop antennas were made to be nearly identical and their resonant frequencies were measured

using a spectrum analyzer. The SDR can then be configured to operate at the resonant frequency

of the antennas.

Resonant loop antennas have a two-lobe radiation pattern and are most sensitive to radio

waves broadside to the wires, with the nulls off the side (see Figure 4.9). The polarization of the

signal is dependent on the position of the feedpoint on the loop. Feeding the signal through the

bottom or the top of the loop antennas gives a horizontal polarization.

The resonant loop antennas are used since they are simple in design, provide a decently

wide bandwidth, and are fairly efficient. This type of antennas isdi built using 6-gauge bare solid

copper wire, with a coaxial cable. A coaxial cable is an electrical cable consisting of an inner

30

Figure 4.9: Radiation pattern of a resonant loop antenna. The loop is the white shape, with the
feed at the pink point at the bottom. Peak gain is toward front or back of the loop

conductor surrounded by a concentric shield (braid). The word “coaxia” refers to the outer shield

and the inner conductor sharing a geometric axis. The two conductors are separated by a dielectric

(insulating material). There is also a protective outer sheath. To build the loop antenna, one end

of the coaxial cable is an SMA connector that is used to connect to the LimeSDR-Mini. The other

end is frayed and the shield is soldered to one endpoint of the loop antenna. The middle conductor

is soldered to the other endpoint of the loop antenna (see Figure 4.10).

Both of the resonant loop antenna characteristics were tested using a spectrum analyzer (see

Figure 4.11 and Figure 4.12). Antenna A has an approximate bandwidth of 40MHz. Antenna B has

an approximate bandwidth of 42MHz. The efficient bandwidths of the antennas are the frequencies

with a VSWR ratio less than 1.5. This is equivalent to the range of frequencies that results in less

than four percent reflection power (see Table 4.3). Antenna A operates most efficiently at 700 MHz

and Antenna B operates most efficiently at 704 MHz. Transmitting or receiving a chirp should be

31

Figure 4.10: Diagram of a single loop antenna made from a 6-gauge cooper wire and coaxial cable.

at these frequencies. For example, a chirp with a bandwidth of 16MHz that begins at 694MHz and

ends at 710MHz stays below a VSWR ratio of 1.5 on both antennas.

It is important to note that the resonant antenna frequency is dependent on the shape of the

antenna. Antenna B when originally measured had a resonant frequency of 677MHz. Bending the

loop antenna so that the endpoints are slightly closer changed the resonant frequency to 704MHz.

Note that the antennas are sensitive to perturbations of their shape and need to be handled carefully.

4.6 Bleed-through Signal

Bleed-through signal (sometimes called the feed-through leakage) is a challenge in creating

a working short-range radar. The bleed-through signal is the signal that leaks from the transmit-

32

Figure 4.11: Antenna A: VSWR vs frequency from 500MHz to 1000MHz.

Figure 4.12: Antenna B: VSWR vs frequency from 500MHz to 1000MHz.

33

Table 4.3: Characteristics of the custom full loop antennas.

Antenna Frequency (MHz) VSWR (unitless) Return Loss (dB) Return Loss (%)
A 679.919 1.52 13.7 4.26
A 700.313 1.03 36.6 0.02
A 719.656 1.50 14.0 3.99
B 688.285 1.49 14.1 3.88
B 704.063 1.02 40.1 0.001
B 720.353 1.51 13.8 4.13

Figure 4.13: Diagram illustrating the difference between the bleed-through signal and the return
signal. The receive signal is the summation of these two signals.

ter into the receiver (see Figure 4.13). The LFMCW radar system is constantly sending out and

receiving electromagnetic waves. Some of the transmit signal leaks directly to the receiver either

through the circuitry or through the antennas. Electronic circuits on the LimeSDR Mini have a

limited dynamic range, and this leakage reduces the receiver sensitivity. The bleed-through sig-

nal impacts the ability to detect short-range targets. The received signal is the composition of the

bleed-through signal and the return signal. The return signal from the target is buried under the

bleed-through signal, resulting in targets not being detected. A simple test was conducted using

antennas.

Since the bleed-through is the signal that leaks directly from the transmitter to the receiver,

the bleed-through can be exploited to measure the FPGA time delay τFPGA and the resulting inter-

34

mediate frequency fFPGA. Once fFPGA is known, the bleed-through is no longer needed and should

be removed from the receive signal so the return signal can be more accurately measured.

There are a couple of techniques used to address the bleed-through problem. Physically

moving the antennas, changing the radar parameters, and signal processing on the data all impact

the severity of the bleed-through signal.

One technique to minimize bleed-through is to move the antennas further apart. If the

transmitter and receive are right next to each other, then they are essentially behaving as a 1:1

transformer. The physical size of the radar system limits how far the antennas can move apart.

Since the GPR system will be mounted on an aerial quad-copter drone, the antennas cannot be

placed very far apart.

When using aperture antennas, the transmitter can be placed offset from the receiver in

range, so that the transmitter is in front of the receiver. This limits the amount of signal that bleeds

through to the receiver. Unfortunately, full-wave loop antennas are bidirectional to the broadside

of the loop wires (see Figure 4.9), so that offsetting the transmitter in front of the receiver has

only a very limited effect on the bleed-through signal. However, this principle of minimizing the

bleed-through signal by rearranging the antennas is still beneficial. By moving the receive antenna

to be diagonally offset from the transmit antenna, the bleed-through signal is reduced.

I conducted a series of experiments using the different configurations show in Figure 4.14.

The test was performed by only changing the antenna placement and all other variables were kept

constant. The DFT of the mixed signal produces a peak at the frequency fFPGA, which comes from

the bleed-through signal. Going from configuration A to B (separating the antennas by 25 cm)

resulted in the peak dropping 8.3 dB drop while going from configuration A to C resulted in a

10 dB drop.

Another technique to help prevent the target signal from being overpowered by the bleed-

through signal is to taper the fFPGA signal in short-range. This narrows the range of the 3 dB

bandwidth of the signal peak at fFPGA, allowing the fIF signal of the target to appear with less

power return. This is done by maximizing bandwidth as shown in Equation 4.13.

A high-pass filter can also be used to taper fFPGA to reduce the bleed-through signal. A

simple digital high pass filter in the time-domain can be expressed as y[n] = x[n]− x[n− 1] or as

35

Figure 4.14: Antenna placement configurations: this figure shows the antennas when looking at
the antennas from the target. The strength of the bleed-through signal is inversely related to the
distance between the transmit and receive antennas.

36

Figure 4.15: Setup of the feed-through nulling test with coaxial cables

(1−z−1)X(z) in the Z-domain. This method attenuates the power bleed-through fFPGA signal more

than the target fIF signal.

Although using these techniques lower the power return of the bleed-through signal, they

do not adequately eliminate the bleed-through signal to reveal the return signal for very short-

range. Digital signal processing techniques with more success are further explored in the next

section.

4.7 Feed-through Nulling

Feed-through nulling is a signal processing technique used to eliminate the bleed-through

signal from the receive signal. The received signal in the LFMCW radar is a combination of the

bleed-through signal, the return echo from the target, and clutter return. The signal of interest is

the return signal. Feed-through nulling is the process of subtracting the bleed-through signal so

that the return echo can be discriminated.

To test the efficacy of feed-through nulling without complication of clutter, the coaxial

cable setup shown in Figure 4.15 is used. The setup includes two lengths of coaxial cable that

are attached to a power divider at the transmitter and a power combiner at the receiver. The short

coaxial mimics the bleed-through signal and the 150-meter coaxial cable mimics the return signal.

The long length of coaxial cable attenuates the signal significantly more than the short coaxial

cable with a 30 dB attenuator, as it would be for when two antennas are used. This results in

the receive signal being dominated by the signal passing through the short coaxial cable. All of

the data produced in these tests were produced by using the parameters in Table 4.4. Figure 4.16

37

Table 4.4: Parameters used for the coaxial cable feed-through nulling test.

Fcarrier Fs B Tc
250MHz 36MHz 16MHz 100µs

Figure 4.16: The resulting mixed signal is from mixing the RX signal with the TX signal. The
x-axis is range instead of frequency. The fFPGA corresponds to the zero point on the range scale.
The 150-meter peak is obscured by the bleed-through signal.

shows the DFT of the mixed signal and shows the area of interest with the x-axis as the range. The

intermediate frequency of fFPGA is at 350 kHz. The figure shows the peak bleed-through at 35 dB

with no evidence of a second peak corresponding to the target.

Three methods of feed-through nulling are identified and explored in the following.

1. Synthesize and subtract out the frequency fFPGA from the mixed signal.

The first feed-through nulling technique begins with the mixed signal, which is the receive

signal that has been mixed with the transmit signal. The mixed signal produces two dis-

tinct frequencies: the intermediate frequency fFPGA resulting from the bleed-through signal

and the intermediate frequency fIF resulting from the echo return from the target. These

38

frequencies are represented in the time-domain as xB(t) and xT(t) respectively, i.e.,

xB(t) = A0e j(2π fFPGA+φ0) (4.22)

xT(t) = A1e j(2π fIF+φ1). (4.23)

The mixed signal xM(t) is represented as

xM(t) = xB(t)+ xT(t) (4.24)

xM(t) = A0e j(2π fFPGA+φ0)+A1e j(2π fIF+φ1), (4.25)

where A0 and A1 are the amplitudes of the frequency components.

This technique of feed-through nulling is to subtract out the bleed-through from the mixed

signal so that the intermediate frequency fIF dominates. To do this xB(t) needs to be es-

timated. Three variables are estimated xB(t): the fIF frequency, phase offset φ0 and the

amplitude A0.

The DFT of the mixed signal produces a peak at fIF since the bleed-through signal is sig-

nificantly stronger than the echo return signal. This gives the frequency fIF. The xB(t) is

defined in Equation 4.22 with A0 = 1 and φ0 = 0. The mixed signal and xB(t) are shown in

Figure 4.17.

To synthesize xB(t) more accurately, the phase offset φ0 is also calculated. The phase offset

is needed because the LimeSDR-Mini is not coherent. The phase offset from mixing the

transmit and receive chirp with the carrier frequency varies from run to run. Thus, the phase

offset needs to be calculated for every time data is collected by running the software. The

phase offset is found using the assumption that the bleed-through signal greatly overpowers

the target signal (A0� A1). The mixed signal xM(t) is thus primarily made up of the bleed-

through signal:

xM(t) ≈ xB(t)

xM(t) ≈ A0 cos(2π fFPGAt +φ0)+ jA0 sin(2π fFPGAt +φ0). (4.26)

39

Figure 4.17: Zoomed in section of the real part of the mixed signal with the real synthesized
fFPGA(t) function using the estimate fFPGA. Compare with Figure 4.18.

From the assumption in Equation 4.26 the phase is isolated using the steps below,

imag(xM(t))
real(xM(t))

=
A0 sin(2π fFPGAt +φ0)

A0 cos(2π fFPGAt +φ0)

imag(xM(t))
real(xM(t))

= tan(2π fFPGAt +φ0)

tan−1
(

imag(xM(t))
real(xM(t))

)
= 2π fFPGAt +φ0

φ0 = tan−1
(

imag(xM(t))
real(xM(t))

)
−2π fFPGAt. (4.27)

This provides the phase difference for every data sample. The mean of the phase differences

is used for φ0. The xB(t) can now be defined in Equation 4.22 with A0 = 1. The mixed signal

and xB(t) with the updated phase shift is shown in Figure 4.18

The amplitude of the signal varies because of the VSWR characteristics of the antennas,

which vary based on the frequency. This results in varying amplitude of the chirps and

results in a mixed signal with varying amplitudes of the intermediate frequencies (see Figure

4.19). The amplitude is thus a function of time so that Equation 4.22 is more accurately

40

Figure 4.18: Zoomed in section of the real part of the mixed signal with the synthesized xB(t)
function using the estimates fFPGA and φ0. Compare with Figure 4.17

Figure 4.19: The real part of the mixed signal with the synthesized xB(t) function using the esti-
mates fFPGA and φ0. The amplitude of the mixed signal varies over time.

41

Figure 4.20: The moving average filtered ratio of the mixed signal and xB(t) function using the
estimates fFPGA and φ0.

represented as

xB(t) = A0(t)exp j(2π fFPGA +φ0), (4.28)

where A0(t) is the signal amplitude function. A0(t) is estimated using a simple moving

average (boxcar) filter of the ratio of the mixed signal and the fFPGA(t) function with an

amplitude of one, and a window sample size of 100 samples

A0(t)≈MovingAverageFilter
(

xM(t)
exp j(2π fFPGA +φ0)

)
. (4.29)

The moving average filter output is plotted in Figure 4.20.

The time-domain function fFPGA(t) is recreated with the frequency found from the peak in

the DFT of the mixed signal, the phase found in Equation 4.27, and the amplitude found in

Equation 4.29.

The estimated xB(t) is subtracted from the mixed signal xM(t) to produce a new mixed signal

with a lower bleed-through signal power (see Figure 4.22). This reveals the xT(t) signal

from the 150-meter length of the coaxial cable. The mixed signal with feed-through nulling

42

Figure 4.21: The real part of the mixed signal with the synthesized xB(t) function using the esti-
mates fFPGA, φ0, and A0(t).

Figure 4.22: The real part of the mixed signal with feed-through nulling applied.

43

Figure 4.23: The real part of the mixed signal with feed-through nulling, zeroed data points, and
the Hamming window applied.

applied has seemingly random peaks. To improve upon the signal, the data with abnormal

peaks are zeroed out. This eliminates spectral leakage and makes for a cleaner signal. In

addition, a Hamming window is applied to the signal to smooth it out. This results in Figure

4.23. The DFT of the mixed signal with feed-through nulling applied (Figure 4.24) reveals

the length of the 150-meter coaxial cable. The intermediate signal fFPGA corresponds with 0

meters. This feed-through nulling technique results in the peak of the mixed bleed-through

signal dropping by 23.5 dB and revealing the range of the coaxial cable at 17.9 dB.

2. Synthesize and subtract out the bleed-through signal chirp from the receive signal. The

second technique of feed-through nulling is to synthesize and subtract out the bleed-through

signal from the receive signal (before mixing). This computation is similar to the previous

technique. The bleed-through signal is synthesized by recreating the transmit chirp and then

using transforms so that it matches the bleed-through signal. The first step is to circularly

shift the samples of the chirp to match the τFPGA time delay. This is done by taking the

DFT of the mixed signal and converting the DFT peak fFPGA to τFPGA with Equation 4.9:

44

Figure 4.24: Feed-through nulling method 1: The DFT of the mixed signal with feed-through
nulling and other signal processing applied.

τFPGA = fFPGA
S . The number of samples n to circularly shift is the same number of samples

that occur in the time delay τFPGA: n = Floor(τFPGA Fs).

Since samples are taken at discrete time steps, samples can only be shifted in integers. This

means the synthesized bleed-through signal phase still needs to be corrected. The phase shift

φ0 is found by taking the receive signal and dividing it by the current synthesized bleed-

through signal. This gives a phase difference at all samples, so the mean of the differences

is taken.

The amplitude of the synthesized bleed-through signal is adjusted by using an equation sim-

ilar in principle to Equation 4.29. However, the receive signal is used instead of the mixed

signal. If the receive signal is represented as xR(t), the amplitude is

A0(t)≈MovingAverageFilter

(
xR(t)

exp
(

j
[
2π
{S

2 t2 + f0 t
}
+φ0

])) . (4.30)

45

Figure 4.25: Feed-through nulling method 2: The DFT of the mixed signal with feed-through
nulling and other signal processing applied.

The synthesized bleed-through signal is

xB(t) = A0(t)exp
(

j
[

2π

{
S
2

t2 + f0 t
}
+φ0

])
. (4.31)

Subtracting the synthesized bleed-through signal from the receive signal results in a signal

that is dominated by the signal coming from the 150-meter coaxial cable. Further signal

processing is applied to the signal, identical to the feed-through nulling technique with the

mixed signal. Then, random signal spikes zeroed out to eliminate spectral leakage and a

Hamming filter is applied to smooth out the signal. The results are shown in Figure 4.25.

The peak of the DFT mixed bleed-through signal drops 25.6 dB and the signal from the

150-meter results in a peak of 18.1 dB. This is a slight improvement from the previous feed-

through nulling method.

3. Measure and subtract out the bleed-through signal chirp from the receive signal. The

last feed-through nulling technique is to measure the bleed-through signal and subtract the

bleed-through signal from the received signal with the target. A simple way to do this is

46

Figure 4.26: Feed-through nulling method 3: The DFT of the mixed signal with feed-through
nulling and other signal processing applied.

to capture a signal with no target present, and then capture a signal with the target present.

Subtracting one signal from the other theoretically should result in a signal with the target

signal without a bleed-through signal. This technique has the greatest potential to reveal the

target signal. It not only eliminates the bleed-through signal but also the clutter (objects that

are not the target). However, this method does not work perfectly in practice because the

LimeSDR-Mini carrier frequency is not coherent, so the signal varies slightly from run to

run. In addition, the environment slightly changes from run to run. Thus, this method is

only useful in testing. In the coaxial cable test set up, this method is done by capturing the

signal only using the short connected coaxial cable, and then subtracting that signal from the

receive signal when both cables are connected as shown in Figure 4.15. The results of this

feed-through technique are shown in Figure 4.26. The power of the bleed-through signal

decreased by 24.7 dB and the signal from the 150-meter cable results in a peak of 17.7 dB.

Since the LimeSDR-mini varies from run to run, this technique has limited effectiveness.

Multiple instances of the bleed-through signal are captured (with the one short coaxial ca-

ble) and multiple instances of the receive signal (with both the short and long coaxial cable)

47

are captured. If both signals captured perform similarly, then this feed-through nulling works

well and does the best job at eliminating the bleed-through signal. It also has the advantage

of eliminating signal returns from clutter, while the other feed-through techniques only elim-

inate the bleed-through signal.

In my tests, the feed-through nulling techniques reduce the bleed-through signal enough to

reveal the signal coming from the 150-meter coaxial cable. These techniques can be applied when

detecting a target with antennas.

48

CHAPTER 5. RESULTS

5.1 LFMCW Radar Target Range Results

With the LimeSDR Mini radar system verified and able to accurately measure the length of

the 150-meter coaxial cable, the radar system is outfitted with loop antennas to measure the range

of a target (see Figure 5.1). A custom corner reflector is used as a target to maximize the power

of the return signal. A corner reflector consists of three perpendicular sides. The three sides have

a square shape and are covered with a layer of aluminum foil to reflect better. Due to the shape

and material of the corner reflector, electromagnetic waves are reflected directly back towards the

source. In addition to the corner reflector, a 15-passenger van was also parked directly behind the

corner reflector to provide a larger radar cross-section further away.

A selected set of data results show success in detecting the target. The feed-through tech-

nique that worked the best was when the receive signal is captured without the target and then with

the target. The feed-through nulling technique subtracts out the receive signal without the target

from the receive signal with the target. This not only reduces the bleed-through signal but also helps

eliminate clutter. The radar was tested at multiple ranges and correctly detected the target (See Fig-

ure 5.2, 5.3, and 5.4). The largest peak of the DFT of the mixed signal corresponds to the target.

The data was collected with the radar parameters: Fs = 36 MHz, B = 16 MHz, and Tc = 100 µs.

49

Figure 5.1: LFMCW Radar Range Testing. The distance between the radar and the target is 17m-
34m.

Figure 5.2: The LFMCW radar range test results at 17 meters.

50

Figure 5.3: The LFMCW radar range test results at 20 meters.

Figure 5.4: The LFMCW radar range test results at 34 meters.

51

CHAPTER 6. CONCLUSION

6.1 Conclusion

Short-range targets were successfully detected by the prototype LFMCW radar. The radar

was implemented using the LimeSDR-Mini, the single-board Raspberry Pi 4 computer, and custom

loop antennas. The goal of this paper was to see if the LimeSDR board could adequately be used

for a ground penetrating radar system. Although there were instances where the LFMCW radar

worked well, it did not work reliably since the signal varies significantly from run to run. The

LimeSDR board works well for digital communication, but the hardware is limited enough to rule

out its use as a reliable working short-range radar. The key problem with the LimeSDR is its

instability. This results in synchronization issues of the transmitter and receiver, differences in

signals from run to run, and bad data being randomly generated.

The problem with the lack of timing synchronization of the transmitter and receiver in the

hardware can be mitigated in signal processing to some degree, as long as the delay is known. Once

the executable on the software is running, the delay is consistent. This delay can be measured

in real-time and used to overcome the lack of synchronization. However, the instability of the

LimeSDR occasionally results in a time delay so large that the data is unusable.

The LimeSDR transmits and receives slightly different signals every time the same ex-

ecutable runs. About 25% of the time the data is corrupted. In addition, the LimeSDR is not

coherent so the phase of the signal will be different on every run. This makes capturing the clutter

without the target also inconsistent. Due to the fact this is a short-range radar, feed-through nulling

is necessary to detect the target. However, the variability of the LimeSDR makes feed-through

nulling unreliable. Data sets generated between different runs of software cannot be compared, as

the signals used are not identical.

52

To develop a working LFMCW radar, the chirp bandwidth needs to be large enough to have

a fairly accurate range bin. A large bandwidth requires a large sampling rate and the LimeSDR

performs more inconsistently as the sampling rate increases.

All of these issues are exacerbated in a short-range radar. When a target is far enough from

the LFMCW radar, the intermediate frequency produced clears any interference from the bleed-

through signal. However, for a short-range radar, the target echo is buried in the bleed-through

signal. Additionally, slight variances in the FPGA time delay in a long-range radar have less of an

impact on the results.

These issues, while some can be mitigated, may prevent the LimeSDR boards from being

the basis of a reliable radar. However, as a proof of concept, the potential of using a low-cost SDR

for a radar system was a success.

6.2 Future Work

The requirements of the antennas are to be compact, operate at a low frequency, and operate

at a large bandwidth. The loop antennas are able to meet these criteria, but the bleed-through signal

became a significant issue. Further research and development in other types of antennas could

reduce the severity of the bleed-through signal.

While the LimeSDR board series does not have sufficient capabilities to be used to support

a reliable radar, other brands of SDR can be explored. The USRP SDR should be used since it is

greater in capabilities. The USRP devices have been around for longer and there is significantly

more research on radar systems built using USRP SDRs.

The Raspberry Pi image used to configure the LimeSDR also has support for USRP devices.

Since the LimeSDR-Mini was configured using the LimeSuite Library, the radar code cannot be

compiled to be used on the USRP SDR. However, the USRP has the UHD C++ library which

is very similar to the LimeSuite Library. The majority of the code can be refactored. Further

development on the USRP B10 SDR board is needed to show that an SDR is capable of performing

as a reliable radar.

53

REFERENCES

[1] J. Marimuthu, K. S. Bialkowski, and A. M. Abbosh, “Software-Defined Radar for Medical
Imaging,” IEEE Transactions on Microwave Theory and Techniques, vol. 64, no. 2, pp. 643–
652, Feb. 2016. 2

[2] J. Meier, R. Kelley, B. M. Isom, M. Yeary, and R. D. Palmer, “Leveraging Software-Defined
Radio Techniques in Multichannel Digital Weather Radar Receiver Design,” IEEE Transac-
tions on Instrumentation and Measurement, vol. 61, no. 6, pp. 1571–1582, Jun. 2012. 2

[3] H. Zhang, L. Li, and K. Wu, “24GHz Software-Defined Radar System for Automotive Ap-
plications,” in 2007 European Conference on Wireless Technologies, Oct. 2007, pp. 138–141.
2

[4] A. Lestari, D. D. Patriadi, I. H. Putri, B. Harnawan, O. D. Winarko, W. Sediono, and M. A. K.
Titasari, “FPGA-based SDR implementation for FMCW maritime surveillance radar,” in
2017 International Conference on Radar, Antenna, Microwave, Electronics, and Telecom-
munications (ICRAMET), Oct. 2017, pp. 15–20. 2

[5] M. Pérez Cerquera, J. Colorado, and I. Mondragón, “UAV for Landmine Detection Using
SDR-Based GPR Technology,” in Robots Operating in Hazardous Environments. Inte-
chOpen, 2017. 2

[6] J. Park, J. T. Johnson, N. Majurec, M. Frankford, E. Culpepper, J. Reynolds, J. Tenbarge, and
L. Westbrook, “Software defined radar studies of human motion signatures,” in 2012 IEEE
Radar Conference, May 2012, pp. 0596–0601, iSSN: 2375-5318. 2

[7] C. W. Rossler, E. Ertin, and R. L. Moses, “A software defined radar system for joint commu-
nication and sensing,” in 2011 IEEE RadarCon (RADAR), May 2011, pp. 1050–1055, iSSN:
2375-5318. 2

[8] K. Stasiak and P. Samczynski, “FMCW radar implemented in SDR architecture using a USRP
device,” in 2017 Signal Processing Symposium (SPSympo), Sep. 2017, pp. 1–5. 2, 4

[9] T. P. Wibowo and F. Y. Zulkifli, “Design of FMCW Ground Penetrating Radar For Concrete
Inspection At ISM Band 2.4–2.5 GHz,” in 2019 IEEE Asia-Pacific Microwave Conference
(APMC), Dec. 2019, pp. 1232–1234. 4

[10] S. Costanzo, F. Spadafora, A. Borgia, H. O. Moreno, A. Costanzo, and G. Di Massa,
“High Resolution Software Defined Radar System for Target Detection,” Oct. 2013, iSSN:
2090-0147 Pages: e573217 Publisher: Hindawi Volume: 2013. [Online]. Available:
https://www.hindawi.com/journals/jece/2013/573217/ 4

54

https://www.hindawi.com/journals/jece/2013/573217/

[11] H. Zhang, L. Li, and K. Wu, “Software-Defined Six-Port Radar Technique for Precision
Range Measurements,” IEEE Sensors Journal, vol. 8, no. 10, pp. 1745–1751, Oct. 2008. 4

[12] F. Ulaby and D. Long, Microwave Radar and Radiometric Remote Sensing. The University
of Michigan Press, 2014. 10, 28

[13] D. M. Schroeder, R. G. Bingham, D. D. Blankenship, K. Christianson, O. Eisen,
G. E. Flowers, N. B. Karlsson, M. R. Koutnik, J. D. Paden, and M. J. Siegert,
“Five decades of radioglaciology,” Annals of Glaciology, vol. 61, no. 81, pp.
1–13, 2020, edition: 2020/03/09 Publisher: Cambridge University Press. [On-
line]. Available: https://www.cambridge.org/core/article/five-decades-of-radioglaciology/
BB862CCC314A993C14B3C6F62BD4F0B6 10

[14] J. A. Dowdeswell and S. Evans, “Investigations of the form and flow of ice sheets
and glaciers using radio-echo sounding,” Reports on Progress in Physics, vol. 67,
no. 10, pp. 1821–1861, Aug. 2004, publisher: IOP Publishing. [Online]. Available:
https://doi.org/10.1088/0034-4885/67/10/r03 10

[15] J. L. Bamber, J. A. Griggs, R. T. W. L. Hurkmans, J. A. Dowdeswell, S. P. Gogineni,
I. Howat, J. Mouginot, J. Paden, S. Palmer, E. Rignot, and D. Steinhage, “A new bed
elevation dataset for Greenland,” The Cryosphere, vol. 7, no. 2, pp. 499–510, 2013. [Online].
Available: https://tc.copernicus.org/articles/7/499/2013/ 11

[16] R. Easton, Fourier Methods in Imaging, ser. The Wiley-IS&T Series in Imaging Science
and Technology. Wiley, 2010. [Online]. Available: https://books.google.com/books?id=
QuIHjnXQqM8C 14

[17] V. Tuzlukov, Signal Processing Noise, ser. Electrical Engineering & Applied Signal Process-
ing Series. CRC Press, 2018. 19

[18] M. Richards, J. Scheer, and W. Holm, Principles of modern radar: Basic principles. SciTech
Publishing, 2010. 19

55

https://www.cambridge.org/core/article/five-decades-of-radioglaciology/BB862CCC314A993C14B3C6F62BD4F0B6
https://www.cambridge.org/core/article/five-decades-of-radioglaciology/BB862CCC314A993C14B3C6F62BD4F0B6
https://doi.org/10.1088/0034-4885/67/10/r03
https://tc.copernicus.org/articles/7/499/2013/
https://books.google.com/books?id=QuIHjnXQqM8C
https://books.google.com/books?id=QuIHjnXQqM8C

APPENDIX A. SOFTWARE LIBRARIES

A.1 Lime Suite Overview

This appendix gives more resources and explains in more detail how the code interacts with

the hardware. All resources mentioned in this appendix can be found in Table A.3.

The software used to configure the LimeSDR is the Lime Suite library. Lime Suite is a

collection of software supporting several hardware platforms including the LimeSDR, drivers for

the LMS7002M transceiver RFIC, and other tools for developing with LMS7-based hardware.

Lime Suite has a C++ library (in addition to a GUI) to configure the hardware and has a well-

documented API (Application Programming Interface).

A good start to understanding the Lime Suite (LMS) API is to read through the quick start

guide. This guide does an excellent job at explaining how to set up the device and to do simple

transmits and receives. Example code is also provided in the Lime Suite GitHub repository.

A.2 Configurable LimeSDR Parameters

• Sampling frequency: fs:

• Oversample Scaler: The hardware samples at OVERSAMPLE SCALER · fs and then deci-

mates the samples back to fs,

• Reference clock

• throughputVsLatency: bias towards low latency or high throughput

• Individual Channel Parameters

– RX Antenna: can be manually set or automatically set.

∗ LNAH: 2 GHz ≤ f ≤ 3.5 GHz

56

∗ LNAW: 10 MHz ≤ f ≤ 2 GHz

‘

– TX Antenna: can be manually set or automatically set.

∗ Band1 2 GHz ≤ f ≤ 3.5 GHz

∗ Band2 10 MHz ≤ f ≤ 2 GHz

– Gain: set with normalized gain [0,1] or dB gain [0,73]

– FIFO buffer size

– Read N Samples from Receive FIFO (removes samples from FIFO)

– Write N Samples to Transmit FIFO

– Set timestamp in Transmit FIFO (removes samples from FIFO when timestamp occurs)

A.3 Data Types and Stream Protocol

A sample is a real value and a complex value (sample = I + Q). The I and Q samples are

represented in a buffer interleaved: IQIQIQ.... Depending on the the data type a sample can be 24

bit, 32 bits, or 64 bits.

The digital-to-analog converter (DAC) and analog-to-digital converter (ADC) have 12-bit

resolution. This means that there are only 4096 values that can be represented. Data types represent

these values differently.

There are three data types that can be used to represent the samples. The LMS FMT I12,

LMS FMT I16, and the LMS FMT F32 data type. The LMS FMT I12 is a data type that best

represents the DAC. A sample is a 12-bit real value and a 12-bit complex value that is in the range

[-2048,2047]. The hardware does not support a 12-bit data structure, so it is stored in 16-bit integer

values. The advantage of using the LMS FMT I12 data type is apparent in the USB data transfer to

and from the LimeSDR and Raspberry Pi computer. A sample (I(12-bit) + Q(12-bit)) is transferred

using three bytes. The packet layout for this type can be found in Table A.1. There is no link

throughput waste, but there is more processing involved on the processing side for I and Q samples

unscrambling. Choosing this compressed format can decrease link use at the expense of additional

processing on the Raspberry Pi.

57

Table A.1: Stream protocol payload format for 12-bit compressed samples

Byte Index Bits Description
0 7-0 ch0 I0 [7:0]
1 3-0 ch0 I0 [11:8]

7-4 ch0 Q0 [3:0]
2 7-0 ch0 Q0 [11:4]
3 7-0 ch1 I0 [7:0]
4 3-0 ch1 I0 [11:8]

7-4 ch1 Q0 [3:0]
5 7-0 ch1 Q0 [11:4]
6 7-0 ch0 I1 [7:0]
7 3-0 ch0 I1 [11:8]

7-4 ch0 Q1 [3:0]
8 7-0 ch0 Q1 [11:4]
9 7-0 ch1 I1 [7:0]
10 3-0 ch1 I1 [11:8]

7-4 ch1 Q1 [3:0]
...

The LMS FMT I16 data type is the LMS FMT I12, but is shifted over left four bits, so that

the four least significant bits are zeros. A sample in the LMS FMT I16 is a 16-bit real value and

a 16-bit complex value that is in the range [-32768,32767]. In the Stream Protocol packet for the

USB data transfer, the data is sent in a sample (I(16-bit) + Q(16-bit)) of four bytes. This is more

inefficient than the LMS FMT I12 data type since 4 bits in the real part and 4 bits in the imaginary

part of the sample are not used. The packet layout for this type can be found in Table A.2. The

advantage of using the LMS FMT I16 is that even if there is throughput waste, there is no I and Q

unscrambling on the processing side.

The LMS FMT F32 data type is the same as the LMS FMT I16 data type inside the

LimeSDR hardware and in the stream protocol. However, on the software side of the Raspberry

Pi the LMS FMT I16 is normalized to the LMS FMT F32 to float values of [-1:1]. This is done

internally by dividing by LMS FMT I16 by 0x7FFF. This data type is useful when performing

signal processing, but requires more processing and takes up more memory. When saving the data

from the LimeSDR into a file on the Raspberry Pi, the LMS FMT I12 or LMS FMT I16 data type

58

Table A.2: stream protocol payload format for 16-bit compressed samples

Byte Index Bits Description
0 7-0 ch0 I0 [7:0]
1 7-0 ch0 I0 [15:8]
2 7-0 ch0 Q0 [7:0]
3 7-0 ch0 Q0 [15:8]
4 7-0 ch1 I0 [7:0]
5 7-0 ch1 I0 [15:8]
6 7-0 ch1 Q0 [7:0]
7 7-0 ch1 Q0 [15:8]
8 7-0 ch0 I1 [7:0]
9 7-0 ch0 I1 [15:8]
10 7-0 ch0 Q1 [7:0]
11 7-0 ch0 Q1 [15:8]
12 7-0 ch1 I1 [7:0]
13 7-0 ch1 I1 [15:8]
...

is preferred since the samples can be represented into a smaller size. The data can be converted to

a complex data type later for signal processing.

Information is communicated to and from the computer and the LimeSDR through packets.

The total packet size is 4096 bytes and consists of two main parts: the header and the payload. The

header is the first 16 bytes and contains the receiver and transmitter status flags, and the packet

timestamp. The payload is the remaining 4080 bytes and contains the RF sample data. The format

of the payload depends on the number of active channels and the sample data type. An example

of the payload format is shown in table A.1 and table A.2. If there is one channel active, then the

payload format would only include the singular channel’s RF samples.

There is also the parameter ”throughputVsLatency” for controlling configuration bias to-

ward low latency (usually lower throughput) or high data throughput (usually results in higher

latency). This value affects the size of data transfers from hardware.

59

A.4 Sampling Rate and Timestamps

The timestamp is a value of the hardware counter with the tick frequency the same as the

sample rate. The receiver timestamp is when the first sample in the returned buffer was received.

The transmit timestamp is when the first sample in the submitted buffer will be sent. A sample is

a real part and a imaginary part.

The hardware counter is synced with the receiver sample rate so that the receiver stream

needs to be activated in order for the hardware counter to work. There are currently no capabilities

on the LimeSDR to set the timestamp for receiving. However, there is the capability of setting a

timestamp for the transmitter. To synchronize the timestamps of the receiver and the transmitter,

the transmitter timestamp can be offset of the receiver so that the timestamps will be aligned

eventually when continually receiving.

Ultimately, even with the timestamp synchronized the hardware does not support perfect

synchronization of the transmitter and receiver. However, the delay between the transmitter and

the receiver can be considered consistent once the hardware is running. However, there may still

be nanosecond variations, because the ADCs are not coherent with the carrier frequencies. The

delay depends on the filter calibration, sampling frequency, and other parameters. It is possible to

measure this delay and incorporate it into signal processing, effectively eliminating it.

The LimeSDR has the capability of oversampling in the hardware. If it is oversampled then

the data is downsampled back to the specified sampling frequency before sending samples to the

Raspberry Pi. A signal is said to be oversampled by a factor of N if it is sampled at N times the

Nyquist rate. The oversampling factor can be set in the Lime Suite library.

A.5 Buffers

There are two types of buffers; one is in the software on the Raspberry Pi and the other is

in the LimeSDR hardware FPGA FIFO. Each channel has its respective FIFO buffer and the FIFO

size can be set. When receiving samples the FIFO continuously fills up (enqueue). To dequeue the

receive FIFO, the software will call a chosen amount of samples to pull from the FIFO and transfer

to the Raspberry Pi software buffer. This needs to be done frequently enough so the FIFO buffers

do not overflow. Thus it is ideal to minimize processing time so that the processor can request

60

more samples from the FIFO more frequently. This can be done by using the LMS FMT I12 or

LMS FMT I16 data type. Using these data types also increases the processing time when saving

the data to a file. The receive FIFO is not capable of setting the timestamps. If the received samples

are not required, the best option is just to keep receiving samples and throwing them away.

The transmit FIFO is filled up by the processor. The hardware will pull the samples of the

FIFO and transmit them. The transmit hardware also has the capability of using timestamps so

that it does not require continuous transmission. To verify the timestamps behave correctly, the

transmit buffer needs to have samples in them before the timestamp occurs.

A.6 Fast Fourier Transform

A tool to use in signal processing is the discrete Fourier transform. One of the best options

in C++ is the Fastest Fourier Transform in the West (FFTW) library. Since the Raspberry Pi OS is

32-bits and the LMS FMT F32 uses 32-bit floats, the FFTW library should also use 32-bit floats

instead of 64-bit doubles. Certain libraries need to be linked when using the linker for this to

happen as explained in Appendix B. The FFTW library uses the fftwf complex data type. This

data type is a two-dimensional (real and imaginary) array. It’s important to note that for the same

chunk of memory in C++ the following data types are the same: fftwf complex bufferRX[N] =

float bufferRX[N][2] = float bufferRX[2N]. Essentially they are all interchangeable and the I and

Q samples are represented in memory the exact same.

A.7 Plotting

In order to plot data from the C++ code, gnuplot library is used. It is a well-documented

library. The library is useful to plot the signals to visually understand the data being received. The

gnuplot library was used extensively in debugging and is useful to see the fIF signal.

A.8 Processing Via MATLAB

Included in the Thesis Code are MATLAB scripts used for processing the data. In order

to capture more data faster without the FIFO buffer overfilling, the LMS FMT I12 data type is

used. The software is configured to write the receive signal to a binary file. No signal processing

61

Table A.3: Links to various resources and tools used in the LFMCW radar.

Thesis Code:
https://github.com/kohlsne/LimeSDR-LFMCW-Radar
Lime Suite Library:
https://wiki.myriadrf.org/Lime Suite
Lime Suite Library API
https://docs.myriadrf.org/LMS API/index.html
Lime Suite Example Code:
https://github.com/myriadrf/LimeSuite/tree/master/src/examples
Lime Suite Example Code Documentation:
https://github.com/myriadrf/LimeSuite/blob/master/docs/lms7 api quick start guide.pdf
Stream Protocol:
https://github.com/myriadrf/LimeSuite/blob/master/docs/StreamProtocol.pdf
FFTW Software:
http://fftw.org
Gnu Plot:
http://www.gnuplot.info

can be opted so that the software just transmits and writes the receive signal in a file. The receive

signal saved in a file is offloaded from the Raspberry Pi onto a more powerful computer for post-

processing. This can easily be done using the bash ”scp” command. The MATLAB script generates

an identical transmit chirp that was used by the LimeSDR-Mini and the receive binary file can be

read in and converted to a complex floating type identically to the LMS FMT F32 data type. Once

this is done the transmit and receive signals can be mixed in MATLAB. The advantage of mixing

the signal in MATLAB instead of in real-time while transmitting and receiving is the ability to

run the radar for longer. Since the software is constantly removing samples from the FIFO more

frequently without signal processing, the FIFO buffers do not overflow as fast or at all.

62

APPENDIX B. HOW TO COMPILE AND RUN THE SOFTWARE

This appendix lays out the steps required to run the code.

B.1 Hardware

The hardware used in this thesis:

• LimeSDR-USB or LimeSDR-Mini

• Transmit and receive antennas, with SMA connectors

• Raspberry Pi 4 computer

• Micro SD card (at least 32 GB)

• USB 3 female to male extension cable

• Coaxial cable to short the transmitter and receiver together (a couple centimeters long)

• Coaxial cable to measure the length

• Power Divider/ Combiner x2

• Attenuator 30 dB

• Laptop

• Power Source for Raspberry Pi

• Router

• Car inverter (or a battery with an inverter)

• Power extension cord

63

B.2 Raspberry Pi Control

The setup included the Raspberry Pi 4 connected to a router via Wi-Fi. This way from my

laptop I can ssh onto the Raspberry Pi and also create a network mount to use an IDE on my laptop

to configure files on the Raspberry Pi. In addition, VNC can also be enabled. If the Raspberry Pi

does not have access to a router, the Raspberry Pi can create a Wi-Fi hotspot (internal network)

so that a laptop can connect to it directly via Wi-Fi. The Raspberry Pi can use a script that will

automatically create a hotspot when there is no recognized Wi-Fi network to connect to. This

does not work as well as having a router to connect the host computer to the Raspberry Pi. Using

a router to communicate with the radar system is probably the best option in an area without a

network or is being flown around on a drone. The router does not need to be connected to the

internet for the host computer to communicate with the Raspberry Pi. The Raspberry Pi itself can

also be connected to a monitor, keyboard, and mouse.

B.3 Radar Setup

The best place to test the LFMCW radar is in an open area free of unwanted objects that can

be detected. A football field, a large parking lot, or a park free of trees are good candidates. Often

in these areas, it is difficult to find a power outlet to provide power to the Raspberry Pi. Using a

car inverter with an extension cord to provide distance from the radar works well. Ideally, the car

is parked far enough and in the null of the radiation pattern of the antennas, so that the car does not

interfere with the characteristics of the antennas. The radar system is sensitive to the metal around

it, so placing it on a wooden table is preferred over a metal one. Additionally, instead of a car

inverter, a separate battery-powered inverter would also work. A router to have a laptop connect

to the Raspberry Pi is the preferred method of controlling the Raspberry Pi. The loop antennas are

sensitive to perturbations and objects around them. Ideally, a spectrum analyzer would frequency

sweep the antennas and measure the VSWR. This would verify the antennas are efficient at the

same frequencies and the carrier frequency on the LimeSDR-Mini can be configured to match the

resonant frequency. However, this is impractical so the antennas should be characterized and then

carefully handled.

64

Table B.1: Links to software tools used to configure the LimeSDR

PiSDR:
https://pisdr.luigi.ltd
LimeSuite Library:
https://wiki.myriadrf.org/Lime Suite
Balena Etcher:
https://www.balena.io/etcher
Automated Hotspot Script:
https://www.raspberryconnect.com
Thesis Code:
https://github.com/kohlsne/LimeSDR LFMCW Radar

B.4 Installing The Software

Installing all of the libraries onto the Raspberry Pi computer is time-consuming. I rec-

ommend using a modified Raspbian image with the latest SDR software preinstalled. Luigi Cruz

created a Linux Distro known as PiSDR (see Table B.1 for links). Using this image provides a

hassle-free way of having all the correct library packages installed on the Raspberry Pi. If the

PiSDR image is no longer available it may be needed to download the necessary Lime Suite li-

braries on a Raspbian Image. To flash the image onto the micro SD card, I would recommend

using the software Balena Etcher. In addition, the code used for this thesis can be pulled using git

at my GitHub repository.

B.5 Downloading and Running the Code

• Find the IP address of the Raspberry Pi.

• Connect to the Raspberry Pi from a laptop and use the terminal command ”ssh pi@IP ADDRESS“

• Enter password, the default password is ”raspberry“

• Run the command “git clone https://github.com/kohlsne/LimeSDR LFMCW Radar”

• change directory to the LimeSDR LFMCW Radar directory that was downloaded from the

git repository. “cd LimeSDR LFMCW Radar”

65

• Compile the code: “g++ -o LFMCW main.cpp LFMCW.cpp -lLimeSuite -lfftw3f”

– The -lfftw3f flag tell the linker to use floats (32-bits for the real part and 32-bits for the

complex part of the sample) instead of doubles for the FFTW data type.

– The -lLimeSuite flag tells the linker to link to the Lime Suite Library.

• Run the code: ./LFMCW “RXFileName.bin”

– “RXFileName.bin” is the file that will be created that contains all of the RX samples in

binary format

• Copy data to laptop: “scp pi@IP ADDRESS:PATH TO RXFileName.bin .”

• Run the ProcessData.m MATLAB script from laptop.

– This read in the “RXFileName.bin”’ file and converts the LMS FMT I12 data to com-

plex floats.

– The script also generates the TX signal and mixes it with the RX signal read in. It ad-

ditionally performs a feed-through nulling technique and displays the resulting figures.

66

	Title Page
	Abstract
	Acknowledgements
	Table of Contents
	List of Tables
	List of Figures
	Chapter 1 Introduction and Background
	1.1 Introduction
	1.2 Background
	1.3 Thesis Statement and Results Summary
	1.4 Roadmap

	Chapter 2 Hardware and Configuration Software
	2.1 Hardware
	2.2 Configuration and Software

	Chapter 3 Ground-Penetrating Radar
	3.1 Ground-Penetrating Radar

	Chapter 4 Linear Frequency Modulated Continuous Wave Radar
	4.1 LFMCW Radar Theory
	4.2 LimeSDR-Mini Configuration
	4.3 Synchronization of the Transmitter and Receiver
	4.4 Coaxial Cable Test Results
	4.5 LFMCW Radar Antenna
	4.6 Bleed-through Signal
	4.7 Feed-through Nulling

	Chapter 5 Results
	5.1 LFMCW Radar Target Range Results

	Chapter 6 Conclusion
	6.1 Conclusion
	6.2 Future Work

	References
	Appendix A Software Libraries
	A.1 Lime Suite Overview
	A.2 Configurable LimeSDR Parameters
	A.3 Data Types and Stream Protocol
	A.4 Sampling Rate and Timestamps
	A.5 Buffers
	A.6 Fast Fourier Transform
	A.7 Plotting
	A.8 Processing Via MATLAB

	Appendix B How to compile and run the Software
	B.1 Hardware
	B.2 Raspberry Pi Control
	B.3 Radar Setup
	B.4 Installing The Software
	B.5 Downloading and Running the Code

