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ABSTRACT

Scatterometer Image Reconstruction Tuning and Aperture Function Estimation

for the Advanced Microwave Scanning Radiometer

aboard the Earth Observing System

Brian A. Gunn

Department of Electrical and Computer Engineering

Master of Science

AMSR-E is a space-borne radiometer which measures Earth microwave emissions or bright-
ness temperatures (TB) over a wide swath. AMSR-E data and images are useful in mapping valu-
able Earth-surface and atmospheric phenomena. A modified version of the Scatterometer Image
Reconstruction (SIR) algorithm createsTB images from the collected data. SIR is an iterative al-
gorithm with tuning parameters to optimize the reconstruction for the instrument and channel. It
requires an approximate aperture function for each channel to be effective.

This thesis presents a simulator-based optimization of SIR iteration and aperture function
threshold parameters for each AMSR-E channel. A comparison of actualTB images generated
using the optimal and sub-optimal values is included. Tuned parameters produce images with
sharper transitions between regions of low and highTB for lower-frequency channels. For higher-
frequency channels, the severity of artifacts due to temporalTB variation of the input measurements
decreases and coverage gaps are eliminated after tuning.

A two-parameter Gaussian-like bell model is currently assumed in image reconstruction
to approximate the AMSR-E aperture function. This paper presents a method of estimating the
effective AMSR-E aperture function usingTB measurements and geographical information. The
estimate is used as an input for image reconstruction. The resultingTB images are compared with
those produced with the previous Gaussian approximation. Results support the estimates found in
this paper for channels 1h, 1v, and 2h. Images processed using the old or new aperture functions
for all channels differed by a fraction of a Kelvin over spatially smooth regions.

Keywords: AMSR-E, radiometer, image reconstruction, deconvolution, aperture function, param-
eter tuning.
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CHAPTER 1. INTRODUCTION

1.1 Motivation

All matter produces microwave radiation. The amount of energy produced at specific fre-

quencies, polarizations, and incidence angles contains information about its emitter. Measurements

of an object’s microwave radiation or brightness temperature (TB) can be processed to give esti-

mates of some the object’s properties. Radiometers are the instruments which measureTB.

Spaceborne Earth-scanning radiometers measure theTB emitted from Earth. They usually

have large spatial coverages and high temporal sampling frequencies. In only a few days, complete

global coverage can be obtained. EarthTB images are used to produce maps of phenomena such as

wind velocity at the ocean’s surface, ocean surface temperature, sea ice classification and extent,

atmospheric moisture, precipitation, vegetation, and soil moisture, to name a few. These maps

are useful in studies in various fields, including meteorology, climatology, agriculture, and ocean

shipping.

For example, consider a storm front over the ocean approaching a populated coastal region.

Scientists desire to predict the rain, wind speed, duration, and path of the storm in order to advise

those to be affected and to estimate the expected damage. Data from surface-based sensors are

limited to those collected by sensors on ships, buoys, aircraft, and land. The sparsity of these data

sources can limit the accuracy of the prediction they produce.

On the other hand, a spaceborne radiometer may take hundreds of measurements over the

storm of interest at a relatively high spatial sampling density in an interval of just a few minutes.

TheseTB measurements are used to estimate storm characteristics to obtain more accurate weather

predictions. With this and other applications for radiometry data, the drive for improved accuracy

and resolution ofTB-derived products is continual.

While TB measurements are generally taken on an irregularly-sampled spatial grid, meth-

ods exist which create regularly-spacedTB images fromTB measurements. The resolution of a
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traditional radiometer image is about the size of the aperture function—or the spatial response

function—used to collect the data, which is usually on the order of tens of kilometers. These ra-

diometer images are produced from drop-in-the-bucket or similar algorithms which ignore effects

of aperture filtering. Higher resolution images are created by estimating the brightness scene over

a finer grid from the measurements after formulating a linear inverse problem [1]. An approx-

imation of the sampling aperture is required in this formulation. Other parameters may also be

instrument-specific.

Although originally developed for use with scatterometers, the Scatterometer Image Re-

construction (SIR) algorithm has also been applied to radiometer data to produce higher-resolution

images [2]. Data from the Advanced Microwave Scanning Radiometer on the Earth Observation

System (AMSR-EOS or AMSR-E) is used in such an adapted SIR algorithm, but SIR tuning pa-

rameter values have not yet been optimized for AMSR-E processing. Also, an improved estimate

of the sampling aperture may result in improved image reconstruction.

1.2 Thesis Statement

The purpose of this thesis is to improve SIR processing of AMSR-E data to produce better

TB images. We accomplish this by tuning SIR for AMSR-E and by finding an improved estimate

of the AMSR-E sampling aperture. Local time-of-day (LTOD) processing (see Section 3.1.4) is

also developed for AMSR-E to increase temporal resolution and decrease processing artifacts.

The resultingTB images have sharper transitions between regions of contrastingTB, elimi-

nate intra-swathTB gaps, and decrease the severity of image artifacts due to temporal variation in

theTB measurements. A slight increase in edge consistency in the low-frequency channels results

from using the new aperture functions.

1.3 Contributions

This thesis’ contributions to the remote-sensing community include:

1. The application of bi-daily LTOD imaging for the AMSR-E instrument.

2. A study exploring the advantages of LTOD over daily images for the Greenland region.
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3. An optimization of SIR iteration and sampling aperture threshold parameters for both daily

and LTOD AMSR-E data sets.

4. The development of a method for estimating a satellite-based radiometer’s aperture function

mid-mission, the development of noise-reducing sampling aperture models, and the applica-

tion of the method and models to AMSR-E.

5. Modification of the SIR algorithm to use the mid-mission AMSR-E sampling aperture esti-

mate for AMSR-E image reconstruction.

These contributions improve SIR images for AMSR-E data. They also justify similar studies for

other instruments and establish some new methods for their execution.

1.4 Thesis Outline

The remaining chapters are organized as follows:

• Chapter 2 provides the background for our optimization and estimation problems. Radiome-

try in general and particulars of the AMSR-E instrument are introduced. Next is a discussion

of Scatterometry Image Reconstruction (SIR) and its application to AMSR-E.

• Chapter 3 presents the simulation-based optimization of SIR tuning parameters for daily and

LTOD images. A discussion of the simulation and simulation parameters is included.

• Chapter 4 discusses a process for estimating the AMSR-E sampling aperture. Aperture mod-

els are developed to increase signal-to-noise ratio (SNR). Estimates of the sampling aperture

for each AMSR-E channel are compared to the approximation currently used in SIR.

• Chapter 5 is a comparison of SIRTB images generated using the current SIR parameter

values and sampling aperture as opposed to those suggested in Chapters 3 and 4.

• Chapter 6 concludes and discusses possible future work.

3
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CHAPTER 2. BACKGROUND

2.1 Introduction

This chapter introduces the basic concepts of microwave remote sensing and the specifics

of the passive AMSR-E sensor which this study researches. A conceptual introduction of SIR is

given, and motivation for the research performed follows. In this chapter, some insignificant detail

or principle may seem emphasized or explored while other core topics are only briefly mentioned.

The reason is that this chapter’s purpose is to provide a background for models and assumptions

which rely heavily on those details covered in this chapter. Further explanation follows in the

subsequent chapters or appendices.

2.2 Microwave Earth Remote Sensing (MERS)

Microwave Earth Remote Sensing (MERS) includes the techniques used to measure elec-

tromagnetic (EM) scattering or emission from the Earth’s atmosphere and surface using satellite

or airborne instruments. These measurements are taken over spatially-distributed targets and can

be used to reconstruct estimate scenes of the electromagnetic scattering or emission properties.

Some of the target’s physical properties—such as composition, density, temperature, and surface

characteristics—affect the EM properties in such a way that they can be estimated using measure-

ments from one or more frequency and polarization channels. Thus, measurements or maps of EM

properties can be used to create maps of physical properties.

Among others, the following are created using MERS data: sea ice concentration and

type, iceberg location, land usage, foliage, and soil classification, surface elevation, soil mois-

ture, snow cover, sea wind speed/velocity, rain rate, atmospheric moisture/water vapor, surface

temperature [3]. These maps have high value in meteorological and climate studies, especially

those created using measurements collected by satellite-based sensors. The advantages of using

5



Figure 2.1: Image illustrating the contribution of various sources to the total brightness temperature
TB at the antenna. Each measurement is the result of an inner product of theTB scene (TAP) and
the aperture functionh(γ,ζ ). The aperture function or an approximate must be known in order to
reconstruct the brightness scene at a higher spatial resolution than the size of its main beam.

satellite-based sensors include measurements with relatively high spatial extent and temporal fre-

quency, and a typical mission life-span of several years.

Active sensors transmit a signal towards the scene and measure the return signal. They

include radars, scatterometers, and altimeters. On the other hand, radiometers are passive sensors,

meaning they measure the signal emitted from the target. Figure 2.1 illustrates the signal model

for passive sensors.

2.3 Radiometry

Satellite Earth-scanning radiometers are passive sensors used to measure microwave energy

emitted from the Earth at different frequencies and polarizations. This energy is called brightness

temperature (TB), and it is emitted from all matter. An object’sTB increases nearly linearly with

its temperature for all microwave frequencies and is dependent on dielectric and physical prop-

erties of the emitter. An object’s emissivity,e(γ,ζ , f , p), is the incidence-angle, frequency-, and

polarization-dependent factor that relates physical temperatureT to brightness temperatureTB,

6



Figure 2.2: AMSR-ETB images for the 4v channel, showing the midnight/descending (top) and
noon/ascending (bottom) images, with half of one day’s data used for each. In order to save
processing, general-purpose data processing only uses data near continental land.

where bothT andTB are in Kelvin:

TB = e(γ,ζ , f , p) ·T,

with γ andζ , the elevation and azimuth angles from the emitter. The parametersf andp are the

electromagnetic frequency and polarization, respectively.

For example, the ocean’s emissivity is generally much higher for vertically-polarized ra-

diation than for horizontally-polarized radiation. Dry earth, on the other hand, emits similarly at

both polarizations. The ratio between the two polarizations can be used to differentiate ocean from

land. Advanced techniques are used to estimate more specific target properties [3].

A radiometer’s antenna pattern integrates over time and space to produce a single mea-

surement. Figure 2.1 shows how energy from various targets contributes to each measurement.

Cosmic radiation and atmospheric emissions produce downwelling energy, or energy traveling

7



Figure 2.3: Maps of ocean surface winds, temperature, atmospheric water vapor, and land soil
moisture estimated using data from the AMSR-E radiometer. These estimates are made by com-
bining measurements from channels of different frequency and polarization through geophysical
models or channel comparison algorithms. From [4].

downward toward Earth’s surface. Depending on the surface properties, some down-welling en-

ergy is scattered upwards while the rest is absorbed, increasing the surface’s temperature. The

energy scattered and emitted from the surface experiences atmospheric attenuation as it travels up-

ward. The atmosphere also emits upwelling energy. The measuredTB at the antenna results from

these sources combined in an inner product with the aperture function (or antenna pattern for a

stationary antenna) and are sometimes referred to as “aperture-filtered samples.”

The effects of physical phenomena onTB are a function of electromagnetic frequency and

polarization, with higher frequencies generally being more sensitive to atmospheric effects and

surface roughness. Maps of phenomenal properties and extent are created by comparing measure-
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Figure 2.4: The AMSR-E Instrument. The AMSR-E antenna assembly rotates about its azimuth
(vertical) axis with a period of 1.5 sec., scanning the Earth’s surface with its pencil-beam aperture
function. The illumination of the antenna reflector corresponds to the spectrum of the antenna
pattern and is tapered to reduce side lobes in the far-field. The reference loads are measured
each rotation for sensor calibration. From [5]. The instrument nadir is towards the bottom of the
instrument in its displayed orientation (see Fig. 2.5).

ments at different frequencies and polarizations. Radiometer data has been used to produce maps

of snow coverage and depth, sea-ice concentration, precipitation, ocean wind speed, and atmo-

spheric water vapor, to name a few. In Fig. 2.2, the 36 GHzTB image reveals atmospheric, land,

ocean, and ice properties. Figure 2.3 shows ocean surface winds, temperature, atmospheric water

vapor, and land soil moisture estimated using data from the AMSR-E radiometer (from [4]).

2.4 AMSR-E

AMSR-E is an Earth-scanning radiometer (see Fig. 2.4). Its satellite platform (Fig. 2.5)

travels in a near-polar sun-synchronous orbit at an altitude of 705 km. The AMSR-E antenna as-

sembly includes a 1.6 m diameter reflector dish mounted above a horn assembly, with horns and

filters to select frequency and polarization for each channel. Channel specifications are shown in

Table 2.1. The antenna footprint refers to the region enclosed by the 3dB contour of the antenna

9



Figure 2.5: The Aqua satellite, with AMSR-E labeled in the upper left, with the flight direction
toward +x. From [5].

pattern’s projection onto the Earth’s surface. Lower-frequency channels generally have larger an-

tenna footprints.

To increase spatial coverage, the antenna assembly rotates every 1.5 seconds, making forward-

looking measurements with a nominal incidence angle of 55◦ (see Fig. 2.6). Each scan across the

1445 km swath collects over 100 samples per channel. The orbit and scan geometry determine the

irregular shifts and rotations of the aperture function.

Antenna footprint motion during the sampling integration causes a blur in the aperture

function. The satellite nadir point moves at about 7 km/sec, which causes an along-track blur of

about 20 m in 2.6 ms—negligible when compared to the kilometer-scale footprint. The instrument

10



Table 2.1: AMSR-E Channels and their parameters. (Data from [6].)

Channel Pol. Fc BW tint ∆T Sampling Interval 3dB Footprint (km)
(GHz) (MHz) (ms) (K) (km), Specs Cross scan Along scan

1v, 1h V/H 6.925 350 2.6 0.3 10 74 43
2v, 2h V/H 10.65 100 2.6 0.6 10 51 30
3v, 3h V/H 18.7 200 2.6 0.6 10 27 16
4v, 4h V/H 23.8 400 2.6 0.6 10 31 18
5v, 5h V/H 36.5 1000 2.6 0.6 10 14 8
6v, 6h V/H 89.0 3000 1.3 1.1 5 6 4

Figure 2.6: AMSR-E scan and orbit geometry, near the start of a descending (southward) orbit.
The half-cone beam angle is 47.4◦ from the rotation axis, which results in the nominal beam inci-
dence angle of 55◦ with the Earth’s surface normal. The dotted- and solid-line beams and antenna
footprints represent those at the beginning and end of the measurement sampling integration inter-
val, respectively. The movement during the integration interval causes an along-scan blur in the
aperture function. The two lines parallel to the ground trace delimit the pass swath where the scan
is active.
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rotation, however, results in along-scan speeds upwards of 2000 km/sec, resulting in along scan

blurs on the order of kilometers. We assume the shape of the antenna footprint is constant, or

that only its orientation and position change. This information provides a basis for our aperture

function estimation model.

TB images using estimates ofTB over regular grids are preferred over the raw irregularly

sampled measurements collected by the sensor both for analysis and display purposes. Various

techniques are used to createTB images from AMSR-E data. The drop-in-bucket method produces

gridded (GRD) images of coarse resolution—on the order of the aperture function footprint—

and obtains pixel values by averaging all measurements whose center lies within it [7]. Other

methods (such as Scatterometer Image Reconstruction (SIR), discussed in Section 2.6) use an

approximation of the aperture function and attempt to invert the effect of aperture-filtering in the

measurements. Pixel resolution of these images can be much higher than that of GRD images.

When creating an image over a particular region, it is common to increase the spatial cover-

age or sample density by combining swaths. While images traditionally are produced by grouping

data in daily sets, data processed using local time-of-day (LTOD) are separated into bi-daily morn-

ing and evening images with complete spatial coverage in the polar regions beyond about±60◦

latitude. The data used for these images have increased temporal resolution and decreased spatial

sampling density—characteristics which influence the image characteristics [8]. Figure 2.7 shows

sample density images over the Greenland region for both LTOD and daily images. Consecutive

swaths are separated by approximately 100 minutes. LTOD is further discussed in Section 3.1.4.

2.5 TB Image Notation

AMSR-E images are named to specify the instrument, dataset type (LTOD/daily), fre-

quency, and polarization. An “An4v”TB image is an example. The “A” specifies it as an AMSR-E

image, the “n” refers to the LTOD noon dataset, the “4” to the fourth frequency channel, and “v” to

vertical polarization. The letter “n” is replaced by “m” when referring to a midnight LTOD image

or by an upper-case “M” for the daily image. Frequency channels run from 1 to 6, and polarization

is either “h” or “v.” We use this notation extensively in Chapters 3, 4, and 5.
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Figure 2.7: Non-enhanced (top left) and SIR (top right)TB images and daily (bottom left) and noon
LTOD (bottom right) sampling density images over the Greenland imaging region. The color bar
units for the top are Kelvin. The units of the bottom color bar are the number of measurements
contributing to each pixel value. Many measurements overlap within a single swath; the maximum
number of swaths over each pixel is 7, with increasing sampling density for each additional swath.

2.6 Scatterometry Image Reconstruction (SIR)

As the name implies, Scatterometer Image Reconstruction (SIR) was originally developed

for use with scatterometer data [8,9]. It has since been adapted for use with radiometer data [2]. De-

pending on aperture function characteristics and surface oversampling, SIR can produce enhanced-

resolution images with better resolution than the sensor aperture function footprint.

The premise of this and other image reconstruction techniques lies in eachTB measurement

being an inner product of a spatial low-pass aperture function and an all-pass scene (see Fig. 2.8).

Because the aperture function is low pass, theTB measurements are also band limited. Image
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reconstruction techniques attempt to invert the effect of the inner product of theTB scene with the

aperture function in order to obtain aTB estimate over a high-resolution regular grid.

Neglecting noise, we letg represent the Earth’sTB andh represent the aperture function. A

TB measurementyn is given by

yn =
∫

g(~v) h(θn,~xn,~v)d~v (2.1)

whereθn and~xn are the rotation and center location of the aperture function, respectively. The

vector~v describes the displacement from the center of the sampling aperture and is the variable

of integration. By applying the same simplifications used in Chapter 4 and with a slight variation

on that formulation, the above equation can be expressed discretely by the matrix multiplication

H g = y with H the aperture filtering convolution matrix,g the discrete vectorized brightness

scene over a regular grid, andy the set ofTB measurements. Because the aperture response is low

pass, the Nyquist criterion is satisfied for sufficiently dense sampling, as is the case with AMSR-E.

For additional details [8,9] or Chapter 4.

H is generally non-invertible, which is due to the null space in the high spatial frequency

band. Even within its passband, attenuation may occur at higher frequencies due to the illumination

taper of the antenna equivalence current (see Appendix A). Additional noise signal complicates

the problem. A low-pass pseudo inverse can provide an estimate ofg, the brightness scene.

SIR is an iterative adaptive algorithm which obtains an estimate ofg from TB measure-

ments [8]. Because aperture filtering throughH creates band-limited measurements, the best or

“ideal” reconstructed image is low-pass. Within the passband ofH , SIR amplifies the signal

in those bands whichH attenuates. Figures 2.8 and 2.9 illustrate aperture filtering and scene

reconstruction in one dimension, respectively. With increasing iteration, both noise and signal am-

plification occurs in those bands where the scene spectrum was attenuated, causing reconstruction

error to decrease and noise error to increase. The increase in noise error is generally less than

the decrease in reconstruction error for a low number of iterations. After many more iterations,

however, iterating may increase the total error because of noise amplification.

14



Figure 2.8: 1D representation of aperture filtering in the spatial (top) and spatial-frequency do-
main (bottom). In space, the aperture-filtered measurements can be represented by a convolution
between the sampling aperture and the scene (top). In spatial frequency, the convolution becomes
a multiplication (bottom). (Although the scene is not a delta function, its spectrum is non-zero
over the support of the aperture spectrum. We use a constant-spectrum scene here and in Fig. 2.9
to illustrate the effects of aperture filtering and subsequent reconstruction.)

Knowledge of the aperture function is required for SIR to be useful in inverting its effects.

Although a rough approximation of the aperture function can often be sufficient in SIR, more

accurate approximation of the aperture function can produce better qualityTB SIR images.

The assumed aperture function for AMSR-E is a 2 dimensional Gaussian-like bell function

with drop-off determined by the major and minor 3dB widths of the antenna pattern’s main lobe.

This approximation is expressible as

hG(γ,ζ ) = 2−[(γ/γ0)2+(ζ/ζ0)2], (2.2)

with hG(γ,ζ ), the two-dimensional aperture function approximation,γ andζ , the elevation and

azimuth angles, andγ0 andζ0, the corresponding 3dB antenna beam widths. Note that a change to
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Figure 2.9: A 1D conceptual representation of SIR reconstruction in the spatial-frequency domain.
Because the spectrum of the aperture function is tapered, the inverse filter (top left) amplifies the
noise added for each measurement (bottom left). The low-pass inverse filter (top-right) limits noise
amplification in the estimate (bottom right). Note that the ideal reconstructed scene is a low-pass
version of the original. This is due to noise and null-space characteristics of the sampling.

baseeprovides an equivalent expression in a perhaps more familiar Gaussian exponential form:

hG(γ,ζ ) = e−(ln 2) [(γ/γ0)2+(ζ/ζ0)2].

Approximations of this type are favorable because they are easily evaluated and are continuous

functions of only two parameters. The Gaussian is a good approximation over the aperture func-

tion’s main lobe. Although the actual aperture function is band limited (creating side lobes in the

aperture function), its spectrum is tapered to reduce power in the side lobes, which reduces the

error in this approximation.

The approximate aperture function used in SIR is a spatially-limited function, usually reg-

ulated by choosing a lower threshold on the aperture function approximation. Tight spatial re-

strictions on a good aperture function approximation yieldTB images with poorer quality but at
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Figure 2.10: Contours of an assumed Gaussian aperture function at levels in Table 2.2, demonstrat-
ing the increased accuracy, area, and computational cost associated with decreasing the aperture
function threshold.

less computational cost. Because almost all of the aperture function power lies well within its

main lobe, very low thresholds (meaning large spatial extent) over the aperture may require un-

reasonable computation to produce aTB image comparable to one produced using a less extreme

threshold.

Figure 2.10 illustrates. Contours of an assumed aperture function at various thresholds

are shown, with major and minor 3dB footprints of 60 and 40 km, respectively. Table 2.2 shows

threshold values, the total error, and the computation ratio compared to using the –6dB threshold.

Note that although the error in our table continues to decrease with increasing footprint size, we’ve

assumed here that the assumed aperture function is exact. Because it is a good approximation

over only the main lobe, error does not decrease beyond a certain level. Thus, while decreasing

the threshold increases computation, it does not necessarily decrease error. The assumed aper-

ture function’s –8dB threshold is currently used to impose a spatial limit on each measurement’s

contribution.

Although the basic SIR process is the same in its application to any sensor, optimal SIR

iteration number, sampling threshold, and aperture function approximation generally change be-

tween sensors. Change in noise figures, spatial sampling density, and actual aperture function are

some of the primary reasons for instrument- and channel-specific SIR optimization.
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Table 2.2: Contours of an assumed Gaussian aperture function at levels shown in Fig. 2.10. The
computational ratio is in relation to the –6dB threshold.

Threshold (dB) –3 –6 –12 –24 –48 –96
Percent Error 50.11 25.05 6.27 0.39 0.00 0.00
Computational Ratio 0.50 1.00 2.00 4.01 8.02 15.31

Suboptimal Threshold SIR, Am6v
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Figure 2.11:TB image for channel 6 showing gaps in the SIR image because the currently-used
–8dB threshold is not small enough, which reduces the effective footprint size. The image shows
the south-western shore of Greenland to the right.

2.7 SIR for AMSR-E

The previous section presented SIR and a motivation for optimizing it for a sensor in gen-

eral. Factors providing addition motivation for AMSR-E-specific optimization are discussed here.

These factors depend on background covered earlier in this chapter.

First of all, AMSR-E threshold optimization is clearly necessary. The current SIR threshold

is –8dB from the maximum for all channels, which producesTB images at 36.5 and 89.0 GHz

(AMSR-E channels 5 and 6) which have no-data pixels within the swaths of the output images (see

Fig. 2.11). This indicates that the contribution limit on each measurement is too restrictive (the
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threshold needs to be decreased). AMSR-E channels 1 and 2 have a much larger aperture function

main lobe, meaning that the approximation might be restricted more in order to decrease the heavy

computational burden without noticeable quality loss in the output images.

Currently, 20 iterations are used in producing AMSR-E SIR images. Because of noise

amplification with SIR iteration, AMSR-E channels with higher noise figures should favor lower

SIR iteration. While it is less obvious than the need for threshold optimization, iteration number

also should be optimized to account for noise figure variations between channels and other factors.

Whether or not the optimal value yields results similar to those of the current value, a validation is

in order.

The aperture function assumed for the AMSR-E SIR algorithm is a 2D Gaussian-like bell

curve with falloff dictated by the 3dB widths of each channel’s antenna response. This approxi-

mation does not account for the azimuth blur as discussed in Section 2.4, neither does it consider

possible rotations or aberrations on the aperture by unknown factors. Improvement in the aperture

function approximation can be expected to improve the image quality. Such improvements are

considered in succeeding chapters.

19



20



CHAPTER 3. SIR PARAMETER OPTIMIZATION

This chapter discusses the optimization of SIR tuning parameters, namely the SIR iteration

number and the aperture threshold, for AMSR-E processing. Both are optimized empirically by

reconstructing images from simulated data over a synthetic brightness scene. Error between the

reconstructed scene and a low-pass synthetic scene is used as a metric for optimization.

First, an introduction of the simulator is provided, along with a discussion of the injected

noise, reference scene, and sampling. Local time-of-day versus daily sets are discussed in relation

to sampling. Next, a simulator-based optimization of SIR iteration and threshold parameters is

presented. Last, a conclusion of SIR tuning and a discussion of the application of optimized values

is provided.

3.1 Simulation

This section describes how the simulated measurements are created for use in parameter

optimization. First is a discussion of the simulation process, followed by a discussion of injected

100

Figure 3.1: The synthetic brightness scene (left) used for simulated AMSR-E sampling and gridded
(center) and SIR (right) images from the resulting measurements. The scene sampling and imaging
region correspond to those over Greenland, with boundaries at approximately 60◦ and 80◦ latitude
and –10◦ and –70◦ longitude.

300

21



simulator noise. Then is a selection of an error reference scene. Finally, local time-of-day (LTOD)

sets and simulation sampling is presented.

3.1.1 Process

The simulation-based optimization method is similar to that used in [10]. A syntheticTB

scene is sampled at locations corresponding to actual bi-daily or daily AMSR-E sampling, using

the supposed Gaussian-like aperture function for each channel. This produces the simulatedTB

measurements. SIR processing is performed many times while varying SIR parameters. Values of

parameters which result in the lowest RMS error in the output images are considered optimum.

A synthetic brightness scene is created with spot targets, constant regions, sharp edges,

and gradients (Fig. 3.1). The synthetic image is sampled with the supposed Gaussian-like aperture

function as dictated by actual sampling locations and aperture rotations of the AMSR-E instrument

over the Greenland region. Both daily and LTOD sets are used to reconstruct the brightness scene

for varying SIR parameters.

In order to explore changes in reconstruction error and noise error, we use measurements

with (1) no noise (signal only), (2) injected noise and no signal, and (3) signal and noise. RMS

errors in the resulting SIR images give us approximates of the reconstruction error, noise error,

and total error, respectively. The simulated measurements are taken over the syntheticTB scene,

with sampling corresponding to the Greenland region taken for actual data. Both LTOD and daily

sets are used. In addition to showing the synthetic scene, Fig. 3.1 also shows a sample low-res

“gridded” image and SIR image after the currently-used 20 iterations and –8dB threshold, both

reconstructed from synthesized measurements.

3.1.2 Simulation Noise

As mentioned in the previous section, noise-injected simulation measurements are used

for optimization to more accurately represent actual AMSR-E sampling. Analysis of actual data

is required to determine the noise levels to use in our simulator. Injected noise is of Gaussian

distribution, with variance determined through AMSR-E measurement analysis.
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Figure 3.2: TheTB (left) and correspondingV (right) SIR image product over Greenland for the 4v
channel. Pixel values of theV image are the standard deviation of “overlapping” measurements—
or measurements whose measurement footprint overlap at that pixel.

Table 3.1: Estimated∆T (measurement standard deviation) for AMSR-E Simulation. (m is the
LTOD midnight set,n is the LTOD noon set, andM is the daily set.)

Frequency Channel
1 2 3 4 5 6

Amv 0.41 0.51 0.54 0.52 0.50 0.92
Anv 0.49 0.71 0.82 0.74 0.66 1.10
AMv 0.57 0.80 1.11 1.13 1.49 1.86
Amh 0.56 0.68 0.79 0.86 0.93 0.93
Anh 0.48 0.61 0.73 0.73 0.73 1.10
AMh 0.94 1.08 1.54 1.58 1.98 2.01

LTOD average 0.52 0.64 0.76 0.79 0.83 1.01

Figure 3.2 shows aV image—another type of SIR product—which shows the standard de-

viation (∆T) of overlapping measurements from their mean. Note that theV image is brighter near

high contrast regions. This is primarily due to the calculation of the measurement standard devia-

tion from the mean of the overlapping measurements whose center location vary by up to several

kilometers. With a rapidly-changing scene, this produces expected variation in the measurements.
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The noise standard deviation can be approximated by an average ofV pixel values over a spatially

near-constantTB region. This is the method used to find the values in Table 3.1.

Another method for estimating the∆T of a channel is to assume that a SIR image evaluated

nearest each measurement center is representative of the corresponding meanTB. Then ∆T is

calculated as the standard deviation from the SIR image value at the pixel nearest the measurement

center. While this method gives similar results for lower-frequency channel, it is less consistent

than the previous method for higher frequencies, so the first method is used as our primary noise

estimate.

For reasons discussed in Section 3.2, the optimization of SIR iteration number is highly

sensitive to noise. We choose to vary∆T in the simulation for SIR optimization to explore possible

optimal iteration numbers for each channel, based on their noise. Threshold optimization proves

very insensitive to noise: the RMS errors in Fig. 3.10 are essentially changed only in a bias with

changing∆T.

Note in Table 3.1 that∆T is much higher for the daily sets than it is for the LTOD sets. This

is mostly attributed to temporal variation between passes. We use the LTOD sets’ estimated∆T in

our simulation in order to neglect these temporal changes and for a better comparison of sampling

density effects on SIR.

3.1.3 Reference Scene

As mentioned in Section 2.6, the optimal reconstructed signal is a low-pass version of the

original. Because the error between the reconstructed scene and the original contains a reconstruc-

tion error bias in the high frequency band, we use a low-pass version of the original scene as a

reference. Because the frequency support of the ideal reconstructed signal is difficult to pinpoint

and may actually vary within each image, we use no-noise simulated measurements to reconstruct

an estimate of the ideal low-pass brightness scene with 1000 SIR iterations and use it as the refer-

ence for optimization. We do this because we assume the low-pass noiseless reconstruction is very

close to the ideal low-pass scene (see [8]).

Figure 3.3 shows the spectra over part of the synthetic image shown in Fig. 3.1, the 1000-

iteration reference, and their magnitude difference, all displayed in dB-scale. In Fig. 3.4, the

synthetic sub image is displayed, along with the corresponding 1000-iteration reference and a low-
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Figure 3.3: The all-pass synthetic brightness scene spectrum (left), the low-pass simulation ref-
erence spectrum (center), and their magnitude difference (right), all in log scale. The low-pass
reference is a noiseless reconstruction of the brightness scene after 1000 iterations, which we as-
sume to be near the ideal low-pass reconstructed scene.

100

Figure 3.4: A sub image of the synthetic scene (left), the (1000-iteration) reference scene (cen-
ter), and a low-pass-filtered region with band corresponding to the spatial support of the antenna
reflector, or a 1.6 m diameter (right).

300

pass filtered synthetic image, with the frequency band hand-selected to be approximately the band

of the 1000-iteration reference. Notice the reconstructed image (right) is similar to the low-pass

scene (center).

3.1.4 Local Time of Day (LTOD) vs Daily Images

Images are often created using daily or bi-daily sets. In addition to having reduced spa-

tial coverage at moderate latitudes, bi-daily or local time-of-day (LTOD) images have increased

temporal resolution and decreased spatial sampling density—characteristics which impact the ef-

fectiveness of SIR.
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While SIR requires spatially dense measurements, the effect of varying sampling density

is nonintuitive. Assuming the scene is unchanging in time, the expected effect of combining mea-

surements is reduced noise in the output image [11]. Also, the high sampling density with varied

orientations of the aperture function—characteristics of daily sets—increases the effectiveness of

image reconstruction [8]. The effect of sampling density on signal convergence for SIR is dis-

cussed after optimization of SIR parameters for both LTOD and daily images.

Because SIR assumes a temporally constant scene, temporal variation in overlapping mea-

surements acts as injected noise, producing undesirable artifacts in the output image. Daily images

combine measurements which are temporally separated by nearly 24 hours, over which timeTB

can change drastically. These effects are reduced in LTOD images, where the maximum temporal

gap between combined measurements is only about 7 hours, and the average temporal gap is much

less [12]. The relative accuracy of LTOD versus daily images in representing transient effects

such as ice edges, ice bergs, and clouds are considered in [13], which shows the benefits of using

LTOD. Although in our simulation of SIR we assume a temporally-constant brightness scene, the

application of SIR to actual data demonstrates this effect.

3.2 SIR Iteration

As SIR iterates, the signal over the range space of the aperture function approaches its true

low-pass value. However, noise is also amplified with iteration. After many iterations, the increase

in noise error may exceed the decrease in reconstruction error.

Figure 3.5 shows absolute difference images between reconstructed scenes of varying itera-

tion number and the all-pass synthetic scene. When few iterations are used, convergence to the true

scene is poor. As the number of iterations increases, the low-pass component converges quickly.

After many iterations, high-frequency edges improve slightly, and noise is amplified through the

high-pass nature of SIR. This behavior agrees with the discussed SIR characteristics. We use the

minimum RMS error to identify the optimal number of iterations for each channel.

Figure 3.6 shows a set of images like those of Fig. 3.5, but which represent the error from

the 1000-iteration low-pass reference scene. Figure 3.7 shows RMS error versus iteration using

both the all-pass and low-pass (1000-iteration) reference scenes. The only noticeable difference

between the all-pass (top) and low-pass (bottom) plots of Fig. 3.7 is that the reconstruction error
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Figure 3.5: Total RMS error images for images reconstructed from simulated measurements with
injected noise for 5, 10, 20, and 100 SIR iterations. Note the decrease in reconstruction error
(though the edges remain apparent) and increase in noise error as iteration increases. Saturation
near sharp transitions and for the 5-iteration image is expected; the color scale is chosen to high-
light increasing noise amplification with iteration.
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Noisy Simulation Reconstruction Error, 
AMSRE m4h, 5 iteration(s)
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Figure 3.6: RMS error images as in Fig. 3.5, using a low-passTB reference scene. The reduction
in error near sharp transitions (from Fig. 3.5) shows the convergence of the reconstruction to a
low-pass version of the sampled brightness scene.
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Figure 3.7: (Left) Noise, reconstruction, and total RMS error versus SIR iteration using the all-pass
(top) and low-pass (bottom) reference scenes (note the log scale in the iteration axis). Reconstruc-
tion error versus noise error (right) using the all-pass (top) and low-pass (bottom) reference scenes.
Note the bias in the reconstruction and total error when using the all-pass reference as opposed to
the low-pass reference. The error bias represents the high-pass portion of the synthetic scene which
lies in the null space of the sampling system.
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Figure 3.8: Daily and LTOD errors for each channel, using the average of LTOD simulator noise
levels from Table 3.1. The vertical line is at 20 iterations, the currently-used iteration number. The
LTOD error is only slightly higher than the daily error.
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with respect to the all-pass reference is higher by a constant. The bias results from using an all-pass

reference with a low-pass estimate. For the rest of our analysis, we use the low-pass scene as the

reference.

As far as the difference between daily and LTOD reconstruction, Fig. 3.8 shows that the

RMS errors are nearly identical. Only with many iterations does the LTOD error rise above

the daily error. This result indicates that increasing sampling density from LTOD to daily only

marginally improves error with iteration. We note that the simulation did not account for temporal

variation inTB which increases the noise in the daily image.

Figure 3.9 shows each channels’ total RMS errors for various simulation noise levels. The

dotted line and square marks indicate the minimum error for each noise level. Using the noise

levels from Table 3.1, these results suggests that for most channels, images continue to improve

after more than 20 iterations. In order to design for worst case, we use the optimal iteration

corresponding to a curve of higher noise than estimated in Section 3.1.2. The used∆T and resulting

iteration numbers are found in Table 3.2.

3.3 Aperture Function Threshold

SIR threshold optimization is performed with respect to two metrics: (1) empty pixel error,

or pixels within the sensor swath that are not covered by any measurement’s thresholded foot-

print, and (2) RMS error of non-empty pixels. Computation time is also considered. We note

that aperture function threshold optimization is nearly insensitive to noise, so varying the noise is

unnecessary in this section.

Figure 3.10 shows plots of the two error types and processing times with decreasing thresh-

old for each channel. The increase of computation time is nearly linear with decreasing (log-scale)

threshold, so the maximum threshold which gives acceptable results is chosen. We require that the

selected thresholds have no “empty-pixel” error and that the RMS error is within a few percent

of their minimum. The resulting threshold values are listed in Table 3.2. Errors for daily sets are

included in Fig. 3.11. Because the entire study region is covered by at least two scans (Section 2.6),

the empty-pixel error is decreased dramatically.

There are a couple reasons for using the LTOD-optimized values for the daily set. First,

there is not bi-daily coverage for regions nearer the equator. This means that LTOD-optimized
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Figure 3.9: RMS error versus SIR iteration for varying noise levels for all channels. In each plot,
the graph shows the RMS error with noise standard deviation∆T ranging from 0.3 to 1.4, with
lower noise levels corresponding to lower RMS errors. The dotted line is a fit to the minimum
errors for each∆T, whose actual values are marked with squares.
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Figure 3.10: Plots of the two error types and computation times with decreasing threshold for
each channel. In general, channels with larger antenna footprints (frequencies 1 and 2) or more
measurements (frequency 6) take longer to process.

thresholds are required over these regions to eliminate empty-pixel error. Second, while sam-

pling over the near-polar regions eliminates empty-pixel error for the complete image, individual

swaths have decreased sampling density and resulting gaps in coverage. The contrasting values

of the individual swaths are not averaged where one has empty pixels, so the effects of temporal

change between swaths are accentuated for thresholds which are too high. For these reasons we

recommend LTOD-optimized thresholds for daily processing.
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Figure 3.11: Plots of the empty-pixel error (left) and RMS error (right) for daily sampling versus
threshold.

Table 3.2: Tuned SIR iteration numbers and thresholds for each channel.

Frequency Channel
1 2 3 4 5 6

Assumed∆T 0.7 0.8 0.9 1.0 1.0 1.2
SIR Iteration 47 37 23 28 18 17

SIR Threshold –6 –7 –8 –8 –10 –13

3.4 Conclusion

The values in Table 3.2 represent the parameters’ tuned values based on our criteria. From

Fig. 3.9, it is apparent that for most channels, small variation from the optimal iteration number re-

sults in a very small increase in error. This is true for the lower frequencies in particular. However,

the currently used 20-iteration value is outside this insensitive region for at least channels 1 and 2.

For the threshold parameter, acceptable values are more restrictive, at least if errors asso-

ciated with empty pixels and the aperture function spatial-limit are to be avoided. Problems with

quantization and the spatial limit could be reduced if SIR were changed to have a larger or finer

aperture function grid, although this would increase computation. Chapter 5 presents actualTB

images with the tuned SIR parameters.
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CHAPTER 4. AMSR-E APERTURE FUNCTION ESTIMATION

This chapter presents a method which estimates the aperture function of an operational

satellite-based radiometer usingTB measurements from the instrument over a region of known

geographic composition. First, the mathematical formulation of the method is presented, including

discussion of the selected geographic region. A aperture function model is also suggested for noise

reduction. Second, the method is applied to simulated measurements. Third, actual data is used.

Last, we use the aperture function estimate in SIR processing and compare resultingTB images to

those which used the previous Gaussian approximation.

4.1 Formulation

This section presents a mathematical formulation which approximates AMSR-E sampling

and a method for obtaining an estimate of the aperture function. It also discusses the choice of

geographical region over which to perform the estimate and some additional considerations on the

choice of models for the spatial aperture response function.

4.1.1 Mathematical Formulation

EachTB measurement can be represented as an inner product of the aperture function and

the Earth’sTB distribution. Because the aperture function is low pass, theTB measurements are

also low-pass. As discussed in the Section 2.6, image reconstruction techniques attempt to invert

the effect of the inner product of theTB scene with the aperture function in order to obtain aTB

estimate. On the other hand, our aperture function estimation procudure is to invert the effect of

the inner product of the aperture with the Earth’sTB to recover an estimate of the aperture function.

This is complicated by noise and temporal variability of theTB of the Earth’s surface.
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Figure 4.1: Diagram showing the location and rotation of five 6 GHz sample footprints at a ten-
sample interval. The gray areas indicates roughly the –30dB-thresholded aperture functions while
the black spot indicates Niue island.

Neglecting noise, we letg represent the Earth’sTB andh represent the aperture function. A

TB measurementyn is given by

yn =
∫

g(~v) h(θn,~xn,~v)d~v (4.1)

whereθn and~xn are the rotation and center location of the aperture function, respectively. The

vector~v describes the displacement from the center of the aperture function. We assume that

rotations ofh only effect its orientation, not its shape, and that measurement location has no effect

on the shape or orientation ofh. With a change of variables, Eq. 4.1 may be represented as the

convolution of the EarthTB scene and the aperture function. However, the inner product form is

more convenient, especially if we perform shifts and rotations ong instead ofh to compensate for

the movement of the aperture function:

∫
g(θn,~xn,~v) h(~v)d~v = yn. (4.2)
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Although infinite in spatial extent, the aperture functionh contains nearly all its power in

its spatially-limited main lobe. The infinite integral can then be reasonably approximated by an

integral over some spatially-limited regionC containingh’s main lobe,

∫
~v∈C

g(θn,~xn,~v) h(~v)d~v = yn. (4.3)

Althoughh is low-pass,g is in general all-pass. A low-pass version ofg may be used in

a discrete representation of the above equation. The low-pass restriction is necessary to satisfy

the Nyquist criterion forg, but with a grid much finer than the aperture function main lobe, the

frequency band containingh is unaffected. Thus, the integral can be approximated by a sum over

a P-sample grid with sufficiently small spacing in relation to the main lobe ofh,

P

∑
p=1

g(θn,~xn,~vp) h(~vp) ∆v, (4.4)

with~vp describing the P sampling locations over the aperture. The constant∆v is the area of each

rectangular grid element for the discretization.

The sum in Eq. 4.4 can be represented as a discrete inner product of two vectors,gn andh,

gT
n h ≈ yn,

gn = [g(θn,~xn,~v1) g(θn,~xn,~v2) . . . g(θn,~xn,~vP)]T ,

h = [h(~v1) h(~v2) h(~v3) . . . h(~vP)]T .

An N-length sequence ofTB measurements at slightly different locations can be represented as a

vectory, wherey is given by, 
gT

1

gT
2
...

gT
N

h = Gh≈


y1

y2
...

yN

 = y. (4.5)
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Figure 4.2: A 1D representation of the islandTB (top left) and the aperture function (top right)
and the spectrum of each (middle left and right, respectively). The frequency response of the full
inverse filter (bottom left), and a low-pass equivalent over the sampling aperture support (bottom
right).

The aperture function estimation problem can thus be reduced to a matrix inversion. The matrix G

can be thought of as a convolution matrix for the irregular-sampled aperture-filtered problem.

The geographic region can be chosen such that the frequency support ofh is excluded from

the null space of G. We impose this condition so thath is attainable by applying a pseudo-inverse

of G to Eq. 4.5. The next section discusses the selection of the region under this condition, in

addition to signal-to-noise ratio (SNR) considerations.

4.1.2 Geographic Region and Implications

While the functiong is not known exactly, it can be approximated over a region of known

geographical composition. An island is an excellent target for various reasons. First, the island

scene can be modeled by an oval island of constantTB in an ocean background. Second, the

high contrast inTB between the island and ocean improves SNR. Third, if the island dimensions

are much smaller than the aperture function main lobe, the frequency-band requirement for G is

satisfied. However, the smaller the island, the lower the effective SNR of the aperture function

estimate.

38



The dominant noise affecting our estimation problem is caused by the temporal changes

in the brightness scene which are unaccounted for in the supposed sampling model and brightness

scene. Even at lower frequencies where the atmospheric contamination is small, weather phenom-

ena are often responsible forTB changes associated with ocean surface roughening. Noise effects

are reduced by using a large data set—available over the several-year AMSR-E mission—and by

hand-selecting days over whichTB measurements indicate favorable weather conditions.

The expected quality of aperture function estimate changes for each channel. In general,

lower frequencies are less sensitive to atmospheric effects. Lower frequencies also have larger

antenna patterns. This is useful in our problem, yielding more samples over the aperture function

main lobe and the ability to use a larger island (see Eq. 4.9), which improves SNR. H-pol channels

have better land/ocean contrast, which also improves SNR. Because of these factors, we expect the

best estimates to be for lower-frequency and h-pol channels.

In order to simplify the estimation problem, the matrix G can be decomposed as

Gh = (Gi +Go)h = yi +yo = y (4.6)

where Gi and Go are the brightness temperatures over the island and over the ocean, respectively.

Because we are sinc-sampling the island, small-scale variations inTB are filtered out; there-

fore, if the island is nearly uniform in terrain and vegetation or if the variation is small-scale, we

can assume the islandTB is constant with space. Although not constant from swath to swath, any

change in mean islandTB would only affect the magnitude scale of the estimate, not the shape of

the aperture. In our estimation, we normalize the power in each pass over the island in order to

mitigate this possible scaling.

The oceanTB is not nearly as constant in time nor space. For simplicity, measurements that

are not within about the 6dB aperture function footprint are assumed to be purely ocean, and the

ocean signal near the island is estimated using a least-squares spatially-varying quadratic fit over

purely-ocean measurements. The second-order term and often the first-order term in this fit are

quite small, but we include them both to match banded changes in oceanTB attributed to surface

temperature or roughness variations.
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Figure 4.3: (Top) Actual measurements over Niue island. (Bottom) An approximation ofyL, or
land-only measurements. A quadratic fit over the ocean-only measurements is used to determine
the ocean contribution to the island-effected measurements.

Because Go changes with time, we estimate it for each swath and modify the problem to be

Gih = y− ŷo = yi . (4.7)

A pseudo inversion of this linear system gives an estimate of the aperture function:

ĥ = G†
i yi . (4.8)
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A near-elliptical island with an assumed-constantTB has a 2-dimensional sinc-like spec-

trum. For a very small island, the first nulls in the spectrum are not contained in the band con-

taining the aperture function’s spectrum, therefore no part of any possible aperture function is in

its null space. Smaller islands also have less signal power. While giving higher signal power, a

very large island may have spectral nulls over the aperture function’s spectral support, making its

recovery impossible.

As discussed in Appendix A, the aperture function spectrum can be expressed in the spatial

domain, its support limited to an area approximately the size of the antenna reflector. The island

can be thought of as an antenna with a far field power distribution in the same plane as the aperture

function equivalence current. For our problem, we require that the 5dB far-field beam width of the

island at the equivalence current plane be about the size of the the AMSR-E antenna reflector.

A uniformly-illuminated circular antenna produces an Airy pattern power density distribu-

tion, which has a half-power beam widthβ of approximately 0.5λ/a, with a the diameter of the

circular antenna andλ the channel wavelength. In the reflector plane, the half-power beam width

is aboutR0β , with R0, the target range. The diameterd of the half-power beam width at the Earth’s

surface is then related to the reflector diametera by

a≈ βR0 ≈
0.5λ

d
R0 (4.9)

or

d≈ 0.5λ

a
R0. (4.10)

With the reflector diametera = 1.6 m,d is about 17 km for the 6.8 GHz channel. The values ofd

for other channels are located in Table 4.1.

Although we have made the simplification in our calculations, note that the antenna re-

flector is not in the broadside of the island. The non-broadside main beam is wider than that of

broadside, so if we select the island size according to our simplified calculations, our criterion is

still satisfied. For higher frequency channels, smaller islands are needed.
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Table 4.1: Islands selected for each channel.

Ch. Fc (GHz) λ (m) d (km) Island Island Size Island Location
(Eq. 4.9) (km) Lat. Lon.

1 6.925 4.3×10−2 17 Niue 22 x 14 19◦3′S 169◦51′W
2 10.65 2.8×10−2 11 Rarotonga 8 x 12 21◦14′S 159◦46′W
3 18.7 1.6×10−2 6.2 Mauke 6 x 4.5 20◦10′S 157◦21′W
4 23.8 1.3×10−2 4.8 Mauke 6 x 4.5 20◦10′S 157◦21′W
5 36.5 8.2×10−3 3.2 Mauke 6 x 4.5 20◦10′S 157◦21′W
6 89.0 3.4×10−3 1.3 Takutea 1 x 2.2 19◦48′S 158◦19′W

The islands we selected for each channel are shown in Table 4.1. They were chosen for

being relatively uniform in terrain and vegetation, and having sizes which correspond to an atten-

uation of less than about 5dB maximum over our estimation spectrum. The results in Section 4.2

show that this limit is acceptable. Estimation for channel 6 is omitted because the signal of Takutea

and other islands of similar size is too small for our estimation. Channel 4 is highly sensitive to

atmospheric water vapor, making the estimation impractical for it as well.

4.1.3 Models

The solution of the convolution matrix equation (Eq. 4.8) yields a least-squares error (LSE)

estimate for our aperture function,ĥLS. The smaller singular values of Gi correspond to higher

frequencies which are attenuated by its sinc-like spectrum as described in Fig. 4.2. The noise in

the measurements is amplified when Gi is inverted, particularly in the higher frequencies. Our

desired signal, the aperture function, is low-pass. As a result we can use low-pass filtering to

increase the SNR by reducing the noise in the high-frequency band without adversely affecting the

signal. Although singular value normalization accomplishes a similar improvement, we choose a

low-pass filter as more appropriate because of the bandwidth corresponding to the spatial support

of the AMSR-E reflector equivalence current.

We recognize that the representation in Fig. 4.2 is not entirely applicable to our problem;

because the AMSR-E samples are irregularly spaced and its aperture function rotates, its sam-

pling operation cannot be precisely represented by multiplication of spectra. A similar but more

complicated analysis is required unless it is assumed that the regularly-sampled spectrum analy-
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sis is sufficient. We assume the simpler spectra-multiplication model holds, validating the results

through the simulation in Section 4.2.

While low-pass filtering can reduce the noise in the estimate, using a closed-form model

may further reduce the noise. A model can be chosen to also be easily evaluatable on a continuous

domain. As discussed in Chapter 2, the designed taper on the reflector dish illumination is cosn,

a power-cosine. The power-cosine model assumes an equivalence currentJ(y,z) near the antenna

reflector of the form

J(y,z) = cosn(
√

(a2
1z2 +a2

2y2)+bzy+c1z+c2y), (4.11)

with parametersa1, a2, b, c1, andc2 to be found for each channel. This model assumes the aperture

function is the phase-scaled Fourier transform ofJ(y,z) (see Appendix A). Although the azimuth

blur caused by the movement of the antenna is unaccounted for in this model, the flexible model is

shown to effectively compensate for it in the estimated parameter values.

In order to simplify the aperture function estimate for use in SIR, we also consider a Gaus-

sian model similar to Eq. 2.2, but with an additional cross-termξ and spatial shift termsγ1 andζ1:

h′G(γ,ζ ) = 2
−[( γ−γ1

γ0
)2+( ζ−ζ1

ζ0
)2+ξ (γ−γ1)(ζ−ζ1)]. (4.12)

The addition of the cross-termξ is equivalent to allowing a rotation of the aperture footprint

as shown in Appendix B. The difference between this Gaussian and the power-cosine model is

shown in Section 4.2 to be a fraction of a percent at most. We conclude that the modified Gaussian

model in Eq. 4.12 is a sufficiently accurate substitution for the power-cosine model for use in SIR.

Appendix B also shows that this model is represented in Earth-surface coordinates. Finding the

power-cosine and Gaussian model parameters from the LSE is a non-linear estimation problem,

solved by a Levinson-Durbin recursion.

4.2 Simulation

Before applying the proposed method to actual data, we simulate AMSR-E sampling using

a presumed power-cosine aperture function and a syntheticTB scene. Measurements are taken at

44



−150
−100

−50
0

50
100

150 −150

−100

−50

0

50

100

150

0

0.2

0.4

0.6

0.8

1

km N of island

km E of island

Noiseless Simulation Measurements

Figure 4.5: Plot of noiseless simulated land-only measurements over a Niue island, limited to one
swath. Each line represents one AMSR-E scan, with each circle representing a measurement. Both
the island power and the aperture function are normalized.

locations and with rotations on the aperture function based on real AMSR-E sampling, as shown

in Fig. 4.1. Using the simulated measurements with added noise, we estimate the aperture function

and compare it with the original. The syntheticTB is an oval-shaped island in a low-level ocean

background, with dimensions similar to those in Table 4.1 for each channel.

To create simulated AMSR-E measurements, we create a fine grid over a spatially limited

approximation of the aperture function. The spatial-limit approximation excludes values below

about –30dB. The shifts and rotations dictated by AMSR-E data causes varying numbers of grid

points to be either island or ocean grid points (see Fig. 4.1). The island signal is spread equally

across all island grid points by normalizing the grid point weights by the number of island points

in the inner product approximation. Resulting measurements, limited to one swath, are shown in

Fig. 4.5.

After obtaining the synthetic measurements, the estimation process is implemented as pro-

posed in the previous section, with parameters such as grid spacing and size independent of those

used during synthesis. The results for the no-noise simulation of channel 1 are shown in Figs. 4.6

and 4.7. Notice that for the cosn and Gaussian models, the estimates are displayed on a finer grid.

This is because after the parameters of these models are computed on the coarse grid, the estimates

can be easily plotted on an arbitrarily fine grid. The LS spectrum and LPF solution are on a finer

grid due to pre-FFT padding.

45



z (m)

y 
(m

)

LS Estimate Spectrum (dB)
AMSRE: 1h, Niue−−−Noiseless Simulation

 

 

−20.384 −13.589  −6.795   0.000   6.795  13.589  20.384

−20.384

−13.589

 −6.795

  0.000

  6.795

 13.589

 20.384

−50

−45

−40

−35

−30

−25

−20

−15

−10

−5

0

z (m)

y 
(m

)

LPF Estimate Spectrum (dB)
AMSRE: 1h, Niue−−−Noiseless Simulation

 

 

−20.384 −13.589  −6.795   0.000   6.795  13.589  20.384

−20.384

−13.589

 −6.795

  0.000

  6.795

 13.589

 20.384

−50

−45

−40

−35

−30

−25

−20

−15

−10

−5

0

Azimuth Angle (ζ, in Radians)

El
ev

at
io

n 
An

gl
e 

(γ,
 in

 R
ad

ia
ns

)

LS Estimate
AMSRE: 1h, Niue−−−Noiseless Simulation

 

 

−0.053 −0.035 −0.018  0.000  0.018  0.035  0.053

−0.053

−0.035

−0.018

 0.000

 0.018

 0.035

 0.053

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Azimuth Angle (ζ, in Radians)

El
ev

at
io

n 
An

gl
e 

(γ,
 in

 R
ad

ia
ns

)

LPF Estimate
AMSRE: 1h, Niue−−−Noiseless Simulation

 

 

−0.053 −0.035 −0.018  0.000  0.018  0.035  0.053

−0.053

−0.035

−0.018

 0.000

 0.018

 0.035

 0.053

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Azimuth Angle (ζ, in Radians)

El
ev

at
io

n 
An

gl
e 

(γ,
 in

 R
ad

ia
ns

)

LS Estimate Error
AMSRE: 1h, Niue−−−Noiseless Simulation

 

 

−0.053 −0.035 −0.018  0.000  0.018  0.035  0.053

−0.053

−0.035

−0.018

 0.000

 0.018

 0.035

 0.053

−0.1

−0.08

−0.06

−0.04

−0.02

0

0.02

0.04

0.06

0.08

Azimuth Angle (ζ, in Radians)

El
ev

at
io

n 
An

gl
e 

(γ,
 in

 R
ad

ia
ns

)

LPF Estimate Error
AMSRE: 1h, Niue−−−Noiseless Simulation

 

 

−0.053 −0.035 −0.018  0.000  0.018  0.035  0.053

−0.053

−0.035

−0.018

 0.000

 0.018

 0.035

 0.053
−0.01

−0.005

0

0.005

0.01

Figure 4.6: LS (left) and LPF (right) aperture function estimates for noiseless simulated measure-
ments.
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Figure 4.7: Power-cosine and Gaussian model solutions for the noiseless simulation.
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Figure 4.8: Channel 1 LS and low-pass model solutions for noisy simulation.
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Figure 4.9: Channel 1 Power-cosine and Gaussian model solutions for noisy simulation.
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Figure 4.10: Channel 2 LS and low-pass model solutions for noisy simulation.
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Figure 4.11: Channel 2 Power-cosine and Gaussian model solutions for noisy simulation.
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Figure 4.12: Channel 3 LS and low-pass model solutions for noisy simulation.
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Figure 4.13: Channel 3 Power-cosine and Gaussian model solutions for noisy simulation.
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Figure 4.14: Channel 4 LS and low-pass model solutions for noisy simulation.
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Figure 4.15: Channel 4 Power-cosine and Gaussian model solutions for noisy simulation.
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Figure 4.16: Channel 5 LS and low-pass model solutions for noisy simulation.
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Figure 4.17: Channel 5 Power-cosine and Gaussian model solutions for noisy simulation.
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The spectra are displayed in the equivalence current plane. The applied low-pass filter

retains only those values that are within the reflector’s spatial support. Note in the LS estimate

spectrum that noise amplification occurs for higher frequencies. This noise is reduced when the

low-pass and Gaussian model are applied.

Figures 4.8 to 4.17 show noisy simulation results for channels 1–5. The error between the

simulation aperture function and the estimated aperture function is only a few percent for channels

1–3 and less than 10% for channel 5. These results validate the estimation method developed in

Section 4.1. The estimate error increases with channel frequency, as expected.

The figures also show that the Gaussian model differ by only by a fraction of a percent

from the power-cosine model for most channels. This justifies the use of the Gaussian model in

SIR with its simplicity and decreased computation. Estimation for actual data is performed in the

next section.

4.3 AMSR-E Aperture Function Estimates

Figures 4.18 through 4.21 show the aperture function estimates for channels 1, 2, 3, and 5

and the “error” or difference between the currently-used Gaussian functions and the new estimates.

While the Gaussian approximation is not the true aperture function, it is a good reference for

comparison. Parameters for the Gaussian model are in Table 4.2. Chapter 5 analyzesTB images

created using these estimates.

Differences between these estimates and the Gaussian approximations previously used in

SIR are only a few percent for channels 1–3. For channel 5, the difference is much greater. Because

of the higher errors in the simulated aperture functions for channel 5 (Section 4.2), the correspond-

ing new estimates are lower-confidence. For the lower-frequency channels, however, the aperture

function estimation is validated by the simulation, showing that an aperture function can be esti-

mated from raw data if certain criteria are met. These criteria include restrictions on the selected

target scene to be used, limits on the amount of atmospheric effects for theTB electromagnetic

frequency and polarization, and the number of available meausrements.
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Figure 4.18: Channel 1 (v/h pol) solutions and “errors”—or the difference between each and the
previously supposed aperture functions—for the Gaussian model.
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Figure 4.19: Aperture function estimates for channels 2 h/v pol. (See caption for Fig. 4.18.)
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Figure 4.20: Aperture function estimates for channels 3 h/v pol. (See caption for Fig. 4.18.)
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Figure 4.21: Aperture function estimates for channels 5 h/v pol. (See caption for Fig. 4.18.)
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Table 4.2: Gaussian model parameters for aperture function estimates. Channels with asterisks
are those whose estimated aperture functions are significant improvements as shown in the

results of Chapter 5. Parametersy0 andz0 are the 3dB half widths of the Gaussian
antenna footprint in the near cross- and along-scan directions, respectively. The

rotationt is performed on the footprint after the spatial shifts∆y and∆z
from the traditional center. Parametersy′0 andz′0 are values from

AMSR-E specs (Table 2.1) used in the traditional aperture
function approximation with no spatial shift nor

rotation on the aperture.

Channel y0 (km) z0 (km) t ∆y (km) ∆z (km) y′0 (km) z′0 (km)

1h* 39.0 21.2 4.6◦ 2.08 -0.81 37.5 21.5
1v* 38.5 22.3 5.4◦ 1.19 -1.00 37.5 21.5
2h* 24.1 13.9 -4.9◦ 1.33 -0.55 25.5 15.0
2v 24.1 14.3 -7.4◦ 0.73 -0.41 25.5 15.0
3h 12.3 7.2 -2.4◦ 0.61 -0.42 13.5 8.0
3v 11.2 7.2 -2.9◦ -0.06 -0.17 13.5 8.0
5h 8.1 5.0 -0.1◦ -1.48 0.82 7.0 4.0
5v 6.1 3.5 -0.6◦ -0.78 0.46 7.0 4.0

4.4 Conclusion

The aperture function estimation problem developed in this chapter proved successful for

all but AMSR-E channels 4 and 6. The small difference between the aperture function estimates

and the traditional approximations validates using the traditional Gaussian for SIR. SIRTB images

generated using both are compared in the next chapter. Values of Gaussian-model aperture function

estimates are found in Table 4.2.

Poor SNR and matrix singularities affect channels 4 and 6. Channel 4 is the most affected

by poor SNR because it lies within the water frequency band, which increases noise due to atmo-

spheric effects. Because of its narrow aperture function, the estimation for channel 6 requires a

small island, decreasing the signal. The small island limits the number and location of samples

over the island, which can cause singularities in the sampling matrix. These limitations prevent the

estimation of aperture functions for channels 4 and 6.
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CHAPTER 5. COMPARISONS

Adjustments of SIR parameters are performed in Chapter 3 by minimizing the RMS error

in images reconstructed from simulated measurements over a synthetic brightness scene. In Chap-

ter 4, a method for estimating the aperture function of a spaceborne radiometer from raw data is

developed and applied to AMSR-E. In this chapter, we compare AMSR-ETB images created from

actual data using previous parameter values and aperture functions with those developed in the

previous chapters.

First, a discussion and comparison of changing SIR iteration and threshold parameters is

provided. Second, images created by using traditional and alternative Gaussian models for the

supposed aperture in the SIR algorithm are compared. Last, a conclusion is given.

5.1 Tuning

Chapter 3 presents a simulator-based method to optimize SIR iteration and aperture func-

tion threshold parameters for AMSR-E. Most of the suggested optimum values for these parameters

differ from those used currently for AMSR-E processing. This section compares images recon-

structed using optimal (as described in Chapter 3) and the currently-used iteration and threshold

parameter values in the SIR algorithm. Although the parameter values from Chapter 3 are optimal

in the RMS error sense as per our simulation, we recognize that changing parameter values results

in trade-offs which may be undesirable in specific cases. These trade-offs are discussed for both

tuning and threshold parameters.

Because of the increased SIR iterations and altered threshold for most channels, some

TB change is expected near sharp transitions. For an initial evaluation we choose Iceland as one

comparison target to evaluate the changes. A region internal to Greenland is also chosen to validate

the consistency of theTB image where little change is expected. The low-resolution gridded (GRD)

image serves as a low-resolution reference.
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5.1.1 Iteration

In comparing images of differing SIR iteration, we start with channel 1 where the suggested

iteration change (from 20 to 47) is greatest. Figure 5.1 shows the optimal and sub-optimal iteration

images for the Am1v channel and their difference. The difference image shows that the area of

greatest difference between the two is near sharpTB transitions. A larger difference is expected in

areas near transitions due to the aplification of the high-frequency band with additional iterations.

Figure 5.2 shows a North–South cross section (or slice) through both images over Iceland

for channels 1–6. The GRDTB is also included. The plot shows that the increased iteration

sharpens theTB transition while increasing the ringing amplitude. While the sharp transition is

desirable, more iterations increase the ringing and the noise amplification, forcing us to decide

between sharp transitions or decreased ringing.

Although ringing due to sharp transitions is intuitive, the increased variation internal to

the island may or may not be signal. Even the GRD plot is somewhat unreliable here because

its increased susceptibility to aperture function blurring. One interesting observation comes by

comparing the plots of different channels. We note that the brightness temperatures at similar

frequencies are highly correlated and that higher frequency channels have a higher effective reso-

lution. We use channel 3 as a qualitative reference for channels 1 and 2. (Channel 4 is in the water

band, and may not correlate well depending on atmospheric effects.)

For both channels 1 and 2, increasing iteration lowers the local minimum internal to the

island to more closely match that of channel 3. The same comparison for Fig. 5.3 shows that

channels 1 and 2 match channel 3 better for the optimal iteration number suggested in Chapter 3 as

opposed to the sub-optimal value. These characteristics support the new values of the SIR iteration

parameters.

The optimum value of the iteration parameter for channels 3–6 changes much less than for

channels 1 and 2; however, images of channels 3 and 4 follow similar trends because of increased

iteration number. For channels 5 and 6, while the iteration number decreased slightly from sub-

optimal to optimal, the change inTB image is marginal. Fewer iterations mean less computation

time—so although they provide similar output images, fewer iterations are preferred.

In Fig. 5.4, we see that theTB changes are a fraction of a Kelvin. The most apparent

differences are in channels 1, 2, and 6. Channels 1 and 2 experience an increased variation in
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Figure 5.1: Greenland SIR Am1vTB images produced using the optimal (upper left) and sub-
optimal (upper right) number of iterations and the difference. A difference image of the top two
images (bottom). There is a larger difference near sharp transitions primarily because the image
created using more SIR iterations has higher frequency content and therefore sharper transitions.

67



140

160

180

200

220

240

260
A N−S Cross Section through Iceland, Am1v

T B

 

 

Optimal
Sub−optimal
GRD

160

180

200

220

240

260

280
A N−S Cross Section through Iceland, Am2v

T B

 

 

Optimal
Sub−optimal
GRD

170

180

190

200

210

220

230

240

250

260

270
A N−S Cross Section through Iceland, Am3v

T B

 

 

Optimal
Sub−optimal
GRD

190

200

210

220

230

240

250

260
A N−S Cross Section through Iceland, Am4v

T B

 

 

Optimal
Sub−optimal
GRD

200

210

220

230

240

250

260

270
A N−S Cross Section through Iceland, Am5v

T B

 

 

Optimal
Sub−optimal
GRD

100

120

140

160

180

200

220

240

260

280
A N−S Cross Section through Iceland, Am6v

T B

 

 

Optimal
Sub−optimal
GRD

Figure 5.2: A N–S slice of imageTB over Iceland for Am*v channels, with optimal (as per Chap-
ter 3) and suboptimal (20) SIR iterations. The dashed line is a low-resolution GRDTB plot for
comparison. SIR plots are results of averaging 5 pixels (the SIR-to-GRD pixel ratio) in the cross-
slice direction for all but channels 5 and 6. This exception is due to the imaging gaps in channels
5 and 6 for un-tuned aperture function thresholds.
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Figure 5.3: An E–W cross section through Iceland, as in Fig. 5.2.
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Figure 5.4: A N–S cross section through Greenland, as in Fig. 5.2.
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slope. We attribute this to signal because of the changes’ high correlation with that of channel

3. The decreased iterations for channel 6 causes a slight decrease in the amplitude of the peaks

because of their high frequency.

5.1.2 Threshold

In optimizing the SIR aperture function threshold, the parameter value changed only for

channels 1, 2, 5, and 6. For channels 1 and 2, an increase in threshold (which decreases the

accuracy of the aperture function) is suggested. While this decreases theTB images’ accuracy, it

also decreases the computation time. Figures 5.5, 5.6, and 5.7 show that the difference in image

TB is small, justifying the change of threshold for these channels.

For channels 5 and 6, the threshold is decreased, increasing the accuracy of the aperture

function approximation. While the increased accuracy for these channels comes with increased

computational costs, the benefits outweigh the costs. Also, channel 5 and 6 footprints are much

smaller than those of the lower-frequency channels, so they require much less computation even

after the threshold change.

From Figs. 5.5 and 5.6, we see that the primary difference is the elimination of theTB gaps

in the image, particularly for channel 6. Figures 5.8 through 5.13 showTB images generated using

optimal and sub-optimal thresholds and their differences, where this improvement is apparent.

Figures 5.12 and 5.13 are daily images. Even with the increased sampling density of the

daily set, there are stillTB gaps in the suboptimal image. Also, while effects of temporalTB

variation are apparent in all the daily images, the optimal threshold value decreases the severity

of the effects. These benefits validate using the optimized aperture function threshold for daily

images.

5.2 Aperture Function Estimate

In Chapter 4 a method for estimating the aperture function of a satellite radiometer is devel-

oped and applied to AMSR-E. In this section, we compare GreenlandTB images generated using

the previously-used aperture function to those generated using the new approximations as
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Figure 5.5: A N–S cross section of imageTB through Iceland for Am*v channels, with the optimal
(as per Chapter 3) and –8dB SIR aperture function threshold. The dashed line is GRDTB value for
comparison.
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Figure 5.6: An E–W cross section through Iceland, as in Fig. 5.5.
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Figure 5.7: A N–S cross section through Greenland, as in Fig. 5.5.
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Figure 5.8: SIR Am5vTB images produced using the optimal (upper left) and sub-optimal (upper
right) thresholds and their difference (bottom).
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Figure 5.9: SIR Am5vTB images produced using the optimal (upper left) and sub-optimal (upper
right) thresholds and their difference (bottom), zoomed to the region indicated in Fig. 5.8.
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Figure 5.10: SIR Am6vTB images as in Fig. 5.8.
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Figure 5.11: SIR Am6vTB images as in Fig. 5.9
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Figure 5.12: SIR AM6vTB images as in Fig. 5.8.
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Figure 5.13: SIR AM6vTB images as in Fig. 5.9.
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the aperture function in SIR. The purpose of the comparison is to validate the new aperture function

for each channel. Since most of the aperture function estimates found in Chapter 4 are very close

to the traditional Gaussian approximation, only a small difference is expected in the output images.

Figures 5.14 through 5.21 show Greenland images generated from SIR using the estimated

(Chapter 4) and traditional aperture function approximations and their difference. The maximum

TB difference for most channels is a few Kelvin. There is no obvious evidence supporting the use

of one aperture function over the other.

As with changing SIR iteration, the greatest error is near boundaries between regions of

contrastingTB. However, one distinction is apparent in the difference images. Note in the differ-

ence image that the difference along the southern coast of Iceland is of opposite sign of the northern

coast. This indicates that at least one of the sampling aperture approximations used in SIR is shifted

from the true location. The shift is not universally latitudinal throughout the image—it depends

on the rotations of the aperture function throughout each scan.TB cross sections through Iceland’s

coastline highlight some characteristics which may be useful in supporting a particular choice for

the aperture function.

Figures 5.22 through 5.29 showTB cross sections through Iceland’s coastline. The actual

coastline lies near the center of the transition region for each plot. Each figure contains data from

m andn LTOD TB images and theM daily image for the estimated and traditional aperture func-

tion reconstruction. Because the island is stationary, the reconstruction with the most consistent

transition is assumed to be the most correct.

For channels 1h, 1v, and 2h, the modified SIR using the estimated aperture function pro-

vides a more consistent indication of the location of the coast than the images created using the

traditional aperture function. For the remaining channels, the traditional aperture function pro-

duces better transitions. Based on this criterion, the aperture function estimates for channels 1h,

1v, and 2h are suggested as replacements to the traditional approximation.

To compare results for a more homogeneous target, Fig. 5.30 hasTB slices internal to

Greenland for them data set. Again, the primary difference between theTB values is the expected

spatial shift.
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Figure 5.14: SIR Am1vTB images produced using the estimated (upper left) and traditional (upper
right) aperture functions in SIR and their difference.
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Figure 5.15: SIR Am2vTB images as in Fig. 5.14.
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Figure 5.16: SIR Am3vTB images as in Fig. 5.14.
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Figure 5.17: SIR Am5vTB images as in Fig. 5.14.
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Figure 5.18: SIR Am1hTB images as in Fig. 5.14.TB images have a bottom threshold of 100 K.
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Figure 5.19: SIR Am2hTB images as in Fig. 5.14.
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Figure 5.20: SIR Am3hTB images as in Fig. 5.14.
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Figure 5.21: SIR Am5hTB images as in Fig. 5.14.
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Figure 5.22:TB plots crossing Iceland coasts to compare consistency of transitionTB betweenm,
n, andM images for the estimated and traditional aperture function SIR. North (upper-left), south
(upper-right), west (bottom-left), and east (bottom-right).
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Figure 5.23: An E–W cross section for channel 2h, as in Fig. 5.22.
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Figure 5.24: An E–W cross section for channel 3h, as in Fig. 5.22.
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Figure 5.25: An E–W cross section for channel 5h, as in Fig. 5.22.
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Figure 5.26: An E–W cross section for channel 1v, as in Fig. 5.22.
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Figure 5.27: An E–W cross section for channel 2v, as in Fig. 5.22.
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Figure 5.28: An E–W cross section for channel 3v, as in Fig. 5.22.
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Figure 5.29: An E–W cross section for channel 5v, as in Fig. 5.22.
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Figure 5.30: A N–S cross section through Greenland, comparingTB values from using the es-
timated “optimal” or estimated aperture function and the “sub-optimal” or traditional aperture
funciton in SIR processing. The GRDTB plot is included for reference.
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Figure 5.31: A N–S cross section ofTB over Iceland’s coast, using the newly estimated aperture
function, the old one, and the new one without the spatial shift (∆x,∆y = 0).
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In order to determine the primary cause of the shift between images, we process a new set

of TB images using a modified version of the new aperture function estimate which ignores the

spatial shifts∆x and∆y. Slices through Iceland’s coast for these images are in Fig. 5.31. The plots

suggest that the primary cause for the spatial shifts in the output images is due to the non-zero

∆x and∆y for at least channels 1h, 1v, and 2h. For the other channels, the increasing difference

between the old and modified new SIRTB images indicates that the spatialTB shift is most likely

related to both spatial shift and orientation of the new sampling aperture. Using both spatial shift

and orientation on the new sampling aperture provides a better estimate for use in SIR.

5.3 Conclusion

The image comparisons in this chapter support using the new tuned SIR parameter values

over those used previously. The tuned iteration number increases transition sharpness for lower-

frequency channels. The tuned aperture function threshold eliminates data gaps within individual

swaths and decreases the imaging effects due to temporal variations inTB between swaths.

SIR TB images produced using the traditional Gaussian aperture function and those esti-

mated in Chapter 4 are very similar. This is expected due to the small difference between them.

Showing the similarities between the traditional and estimated aperture functions and their output

images validates using the traditional Gaussian approximation as the aperture function for SIR.

The only apparent difference in images generated using the traditional and the estimated

aperture function is a small spatial shift over some regions. Comparing LTOD and dailyTB im-

ages for each channel indicates the estimated aperture functions give more consistent coastal lines

than the traditional aperture function in SIR for channels 1h, 1v, and 2h. This result supports the

adoption of the estimated aperture functions into SIR for these channels.
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CHAPTER 6. CONCLUSION

In summary, this research develops a simulation-based optimization of SIR parameters for

the AMSR-E radiometer. The parameters—namely the number of SIR iterations and the aper-

ture function threshold—are optimized for each AMSR-E channel. AMSR-ETB images generated

using SIR with the optimized parameter values have sharper transitions between high- and low-

TB regions for the lower-frequency channels. The optimization for the higher-frequency channels

shows improvement in eliminatingTB imaging gaps internal to the swath and decreasing the sever-

ity of artifacts due to temporal variations inTB.

Also presented is a method of estimating the aperture function of satellite-based radiome-

ters. The estimated aperture functions result from the a matrix inversion based on satellite sam-

pling. The mathematical formulation requires imposing assumptions and conditions on the target

scene to reduce problem complexity and to account for the aperture function frequency support.

For most channels, the aperture function estimates differ only slightly from the currently-used

approximations, providing them validation for use in SIR.

Unfortunately, aperture function estimates for channel 4 (water band) and 6 (oxygen band)

were unattainable due to reduced SNR. Both channels suffer from atmospheric contamination. The

estimation for channel 6 requires a smaller island to preserve the frequency band containing the

aperture function, further decreasing SNR and causing singularity issues.

Some channels’ SIRTB images produced using the estimated aperture functions manifest

spatial shifts from those produced using the traditional aperture function. The primary cause of

spatial shift in theTB image is the spatial shift between the center location of the estimated and the

traditional aperture function approximation. Comparing LTOD and daily images for each shows

improvements afforded by the estimated aperture functions for channels 1h, 1v, and 2h. Other

channels’ comparison provides no support for using the new estimates over the traditional approx-

imations.
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6.1 Contributions

This thesis contains the following contributions:

• A simulator-based optimization method for selecting iteration and aperture function thresh-

old parameters for use in SIR and its application to AMSR-E.

• Modification and validation of optimized SIR parameters for AMSR-ETB images.

• The development of an aperture function estimation method for spaceborne radiometers.

• Application of the aperture function estimation method to AMSR-E.

• Use of estimated aperture functions in AMSR-E SIR and a comparison of resulting images

with those generated using previously-used aperture function estimates.

• Bi-daily local time-of-day processing for AMSR-E. Previously AMSR-E images were pro-

duced in daily sets.

6.2 Future Work

Possible direction for future work includes:

• SIR optimization for other satellite radiometers.

• Aperture function estimation for other satellite radiometers.

• Using a more complex target for aperture function estimation. While the oval island tar-

get proved effective for most channels, increased SNR would result from a larger target,

increasing the estimates’ accuracy and perhaps enabling channel 4 and 6 estimation.
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APPENDIX A. ANTENNA FAR FIELD AND THE FAST FOURIER TRANSFORM

In this section we show how the antenna pattern is related by Fourier transform to a space-

limited equivalence current near the antenna. This section provides the basis of our assumption that

the aperture function is low pass. Approximations in the scanning geometry are shown in Fig. A.1.

The relationship between the electric field and the equivalence current induced at the an-

tenna can be expressed in terms of the 3D Green’s Function,

Ē(r̄) = iωµ

∫
V

G(r̄, r̄ ′) · J̄(r̄ ′)dr̄ ′, (A.1)

= iωµ[Ī +
1
k2∇∇] ·

∫
V

eik|r̄−r̄ ′|

4π|r̄− r̄ ′|
J̄(r̄ ′)dr̄ ′,

with

Ē(r̄) : induced electric field,

i : imaginary unit,

ω : radian frequency,

G : Green′s Function,

J : electric equivalence current density,

k : wave number= ω
√

µε,

Ī : identity matrix.

The vectors ¯r and ¯r ′ are position vectors indexing the electric field and current density, respectively.

If r̄ >> r̄ ′, the term|r̄− r̄ ′| can be approximated to zeroth order byr = ||r̄|| in the denominator and
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to first order byr− r̂ · r̄ ′ in the phase of the integral kernel, giving

Ē(r̄) ≈ iωµ[Ī +
1
k2∇∇] ·

∫
V

eik(r̄−r̂·r̄ ′)

4πr
J̄(r̄ ′)dr̄ ′

≈ iω µ
eikr

4πr
[Ī +

1
k2∇∇]

·
∫

V
e−ik(r̂·r̄ ′)J̄(r̄ ′)dr̄ ′.

Furthermore, if the support of̄J(r̄ ′) is restricted to a plane, the broadside electric field can be

approximated as

Ē(r̄) ≈ iωµ
eikr

4πr

∫
A

e−ik(r̂·r̄ ′)J̄(r̄ ′)dr̄ ′.

RestrictingJ̄(r̄ ′) to they−z plane,

r̄ ′ = ŷ y′+ ẑ z′.

Although AMSR-E’s pencil beam is not broadside to the current on the reflector dish, Huygens’s

principle states that the far-field electric field for a current can be generated by an equivalent current

impressed on a surface which encloses the real current. This is the equivalent current corresponding

to J̄. Although the exact location and spatial extent is unknown, the equivalent current is near the

antenna and spatially limited to approximately the size of the reflector.

The phase term ˆr · r̄ ′ can be approximated by truncating the Taylor series of the ˆr term.

r̂ = x̂ cos(γ)cos(ζ )+ ŷ sin(γ)+ ẑcos(γ)sin(ζ )

≈ x̂+ ŷ γ + ẑ ζ ,

with

γ = sin−1
(y

r

)
,

ζ = tan−1
(z

x

)
,

with γ, ζ the elevation and azimuth angles from broadside, respectively. The primed parameters

again refer to the current distribution over the antenna reflector, the unprimed to the far electric
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Figure A.1: Figure showing the simplifications used in deriving the Fourier-transform relationship
between an equivalence current and the far-field antenna pattern. On the left is the equivalence
current assumption and its coordinate system (x, y, z). On the right is the flat-Earth approximation
and coordinates (ys, zs), and the parallel projection plane (γ, ζ ).

field. In our problem, the maximumγ andζ over the main lobe are about a tenth of a radian,

producing a maximum error of a few tenths of a percent through this approximation. These sim-

plifications give

r̂ · r̄ ′ ≈ (x̂+ ŷ γ + ẑ ζ ) · (ŷ y′+ ẑ z′)

= y′ γ +z′ ζ

= y′ sin−1
(y

r

)
+z′ tan−1

(z
x

)
.
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Becauser andx are larger than 1000 km andy andzare on the order of tens of kilometers,

we approximate the arctangent and arcsine to first order:

γ = sin−1
(y

r

)
≈ y

r
,

ζ = tan−1
(z

x

)
≈ z

x
,

r̂ · r̄ ′ ≈ y′
(y

r

)
+z′

(z
x

)
.

As y andz is small in comparison and nearly tangent tor, r ≈ x, and

γ ≈ y
x
,

r̂ · r̄ ′ ≈ y′
(y

x

)
+z′

(z
x

)
.

Note from Fig. A.1 that althoughγ andζ are angles, they’re represented in a plane near

the antenna footprint. This “parallel projection plane” arises from the simplifications we’ve made

based on the geometry of the problem and is called such because it is parallel to the equivalence

current plane. In terms of the parallel projection (γ −ζ , in radians) plane coordinates,

Ēs(r̄(γ,ζ )) = Ēs(γ,ζ )

≈ Ã(γ,ζ )
∫

A
e−ik(y′γ+z′ζ )J̄(r̄ ′)dr̄ ′, (A.2)

γ =
(y

x

)
,

ζ =
(z

x

)
,

r̄(γ,ζ ) ≈ R0

(
1+

γ

cos(θi)

)
,

Ã(r̄(γ,ζ )) = Ã(γ,ζ ) =
ωµ

4π r(γ,ζ )
.

One may recognize the similarities between the integral kernel in Eq. A.2 and that of the Fourier

transform. LettingF ′ be a phase-scaled Fourier transform, we have

Ē(γ,ζ ) ≈ Ã(γ,ζ ) F ′[J̄(y′,z′)],
Ē(γ,ζ )
Ã(γ,ζ )

↔F ′
J̄(y′,z′). (A.3)
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Consider a discretization of this function with∆ f spacing and a finite sum approximation

over∆A-spaced samples of the aperture current.

y′m = ∆Am,

z′n = ∆An,

γu = ∆ f u,

ζv = ∆ f v,

Ē(γ,ζ )
A(γ,ζ )

≈

∆2
A

M

∑
m=1

N

∑
n=1

(
e−ik(y′mγu+z′nζv)J̄(y′m,z′n))

)
. (A.4)

This can be represented as a scaled FFT if the kernel index dimensions agree.

− ik(∆Am∆ f u+∆An∆ f v) = −i2π(
mu
M

+
nv
N

),

2π

λ
(∆Am∆ f u+∆An∆ f v) = 2π(

mu
M

+
nv
N

,)

∆A∆ f mu
λ

= mu
M ,

∆A∆ f nv
λ

= nv
N ,

∆A∆ f
λ

= 1
M ,

∆A∆ f
λ

= 1
N .

Therefore, if the forward or inverse FFT is used to implement this transform for the discrete case,

the factorsλ

M and λ

N must be accounted for in the domain transformation. In our formulation, we

choose to estimateh over a square grid, i.e.M = N.

The AMSR-E beam incidence angleθi is nominally 55◦ with a footprint size that justifies

the local flat-Earth approximation. Because both theγ–ζ plane and the flat-Earth approximation

plane are in the far field, we assume that the antenna pattern is the same function at all ranges over

our estimation grid spatial extent.

With this assumption, theγ–ζ and the corresponding electric field approximation is re-

lated to the surface electric field by projection along the rays of constant angle from the satellite.

Function scaling is dictated by the range at the flat-Earth approximated surface.
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The electric field on the Earth’s surface is

Ēs(r̄) ≈ iωµ
eikr

4πr

∫
A

e−ik(r̂·r̄ ′)J̄(r̄ ′)dr̄ ′, (A.5)

r̂ · r̄ ′ ≈ y′
(

y
χ(z)

)
+z′

(
z

χ(z)

)
,

x = χ(z) = R0 +z sin(θi).

The linear coordinate transformation between theγ −ζ and flat-Earth (ys−zs) planes is

y
χ(z)

=
ys

χ(zscos(θi)
=

ys

R0 +zs cos(θi) sin(θi)
,

z
χ(z)

=
zscos(θi)

χ(zscos(θi)
=

zs cos(θi)
R0 +zs cos(θi) sin(θi)

,

zs ≈ z
cos(θi)

,

ys ≈ y.

This suggests that although the reflector plane is in the spatial-frequency space (in units of inverse

meters), it is also in normal space (in units of meters). This relationship allows us to base the

spectral support of the spatial low-pass model and filters discussed in this paper on the dimensions

of the antenna reflector.
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APPENDIX B. ξ AND APERTURE ROTATION BIAS

If we perform a rotation of anglet:

γ2 = γ1cos(t)−ζ1sin(t),

ζ2 = γ1sin(t)+ζ1cos(t),

then

(
γ2

γ02

)2

+
(

ζ2

ζ02

)2

=
(γ1cos(t)−ζ1sin(t))2

γ2
02

+
(γ1sin(t)+ζ1cos(t))2

ζ 2
02

= γ1

(
cos2(t)

γ2
02

+
sin2(t)

ζ 2
02

)
+γ1ζ1cos(t)sin(t)

(
1

ζ 2
02

− 1

γ2
02

)
+ζ1

(
sin2(t)

γ2
02

+
cos2(t)

ζ 2
02

)
=

(
γ1

γ01

)2

+ξ γ1ζ1 +
(

ζ1

ζ01

)2

,

with

γ01 =
γ2
02ζ 2

02

γ2
02sin2(t)+ζ 2

02cos2(t)
,

ζ01 =
γ2
02ζ 2

02

γ2
02cos2(t)+ζ 2

02sin2(t)
,

ξ = cos(t)sin(t)
(

γ2
02−ζ 2

02

γ2
02ζ 2

02

)
.
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Although the rotation of the axes is more difficult to express in a single equation and slightly

more computationally intensive than simply using the cross termξ , it is perhaps more intuitive.

We callt the estimated aperture rotation bias.

Because our model is in they–z andγ–ζ planes, we need to project it into theys–zs or the

Earth-surface plane. The domain transformations discussed in Appendix A are repeated here:

γ =
ys

R0 +zs cos(θi) sin(θi)
,

ζ =
zscos(θi)

R0 +zs cos(θi) sin(θi)
.

By substituting these equations forγ andζ , we can update the equation forhG in terms ofys and

zs. Note that a direct substitution of these variables neglects the scaling in the radar equation due

to range differences in the elevation angle in the aperture function. Since the footprint pixel range

is approximatelyR0 +zssin(θi) from the antenna, a range mitigation factor

cR =
(

R0

R0 +zssin(θi)

)2

,

can be multiplied to account for the difference in ranges. Since this is a nearly-linear relationship,

we let the spatial shift parameters∆y and∆z compensate for this effect.
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