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ABSTRACT

MOTION COMPENSATION OF INTERFEROMETRIC SYNTHETIC

APERTURE RADAR

David P. Duncan

Department of Electrical and Computer Engineering

Master of Science

Deviations from a nominal, straight-line flight path of a synthetic aperture

radar (SAR) lead to inaccurate and defocused radar images. This thesis is an in-

vestigation into the improvement of the motion compensation algorithm created for

the BYU inteferometric synthetic aperture radar, YINSAR. The existing BYU SAR

processing algorithm produces improved radar imagery but does not fully account for

variations in attitude (roll, pitch, yaw) and does not function well with large position

deviations. Results in this thesis demonstrate that a higher order motion compensa-

tion algorithm is not as effective as using a segmented reference track, coupled with

the current lower-order motion compensation algorithm. Attitude variations cause a

Doppler shift and are corrected by limiting the processed azimuth bandwidth or by

reversing the frequency shift with a range-dependent filter. Another important area

considered is the effects of motion compensation on interferometry. When performing

interferometry with YINSAR, motion compensating both channels to a single track

has two effects. First, the applied MOCO phase corrections remove the “flat-earth”



differential phase from the interferogram. Second, range resampling coregisters the

two images. All of these changes have helped to improve YINSAR imagery.
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Chapter 1

Introduction

Synthetic aperture radar (SAR) is a valuable remote sensing tool in many

arenas. Its applications vary from environmental monitoring to military surveillance.

As technology improves, so does the cost and reliability of SAR. In 1995, Brigham

Young University created a low-cost, interferometric SAR using off-the-shelf hardware

and custom programming. This low-cost SAR, called YINSAR, helps to demonstrate

the feasibility of a high-resolution radar imaging system at minimal financial cost.

One of the primary assumptions made during SAR processing is that the radar

carrying vehicle, or platform, moves along a straight-line path with a constant ve-

locity. However, this ideal imaging situation is rarely present due to piloting errors,

wind gusts, and other complications. To prevent image degradation, these motion

errors must be compensated. Basic motion compensation (MOCO) consists of three

principle steps: measuring the aircraft motion using motion sensors (accelerometers,

gyros and GPS), calculating a reference straight-line path, and calculating and apply-

ing motion corrections. These steps are dependent upon the imaging parameters of

the radar system. When the radar has an azimuth beamwidth that is small, motion

compensation is simplified. However, when the azimuth beamwidth is large, motion

compensation becomes much more complicated.

In 1999, Richard Lundgreen created a motion compensation algorithm for YIN-

SAR which consisted of phase correction, range resampling, and azimuth resampling

[1]. While this motion compensation algorithm improves some YINSAR imagery, it

does not perform well with longer collections. This suboptimal performance on these

important cases motivates improvement of the motion compensation algorithm.
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An important step to improved YINSAR imagery is the development of a SAR

signal model and the implementation of better SAR processing algorithms. The most

common SAR processing algorithm is the range-Doppler algorithm which makes many

approximations to simplify SAR processing. Other newer processing algorithms such

as the Chirp-Scaling and the Wavenumber Domain algorithms were implemented to

improve the achievable resolution and computation time.

Different levels of motion motivate varying degrees of motion compensation.

The chosen motion compensation algorithm depends upon the size of the azimuth

beamwidth as well as the magnitude of the position deviations from the selected

reference track. When a small azimuth beamwidth is present with small deviations, a

simple motion compensation known as a narrowbeam or first-order motion correction,

can be used. However, with a large azimuth beamwidth or large deviations, more

complex, higher order motion corrections are required. Such algorithms often require

more computational time.

The existing YINSAR motion compensation algorithm can be improved by in-

cluding Doppler centroid estimation and correction techniques, by considering higher

order motion compensation, and by using a segmented reference track. Attitude er-

rors (roll, pitch, yaw) in a radar carrying vehicle create antenna pointing problems.

These problems result in a Doppler shift of the received data, known as a Doppler

centroid variation. If left unresolved, these Doppler shifts can cause unwanted im-

age artifacts. Doppler centroid variations are corrected either by limiting azimuth

processing bandwidth or by shifting the data back to zero Doppler. The next area

of improvement is the development of higher order motion compensation algorithms

with application to YINSAR. Large deviations caused by a single reference track over

long flights with high platform motion require a higher order motion compensation al-

gorithms. Two such motion compensation algorithms exist that employ higher order

motion corrections. Both algorithms proceed by applying a first-order or narrowbeam

correction, and then applying a higher order correction. Although both algorithms

initially appeared promising, they often produce degraded YINSAR imagery. Instead

I adopt a final improvement by segmenting the reference track. With this technique,
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a reference track is created for each image segment, lowering the track deviations sig-

nificantly during image formation. Although this method can increase computational

time due to increased overlap, it also has the distinct advantage of being able to use

the current YINSAR motion compensation algorithm.

This thesis analyzes these motion compensation techniques and advanced pro-

cessing as applied to YINSAR. The results indicate that using a segmented reference

track with first-order motion compensation results in improved YINSAR imagery

more than with higher order motion compensation algorithms. Also, Doppler cen-

troid variations are minimized through increasing the processed azimuth bandwidth.

Finally, a theoretical evaluation of the motion compensation of an interferometric

system with two bistatic channels produces similar results to systems with only one

bistatic channel.

The thesis is organized as follows:

• Chapter 2 covers basic radar imaging and SAR theory, various SAR processing

algorithms, interferometry theory, and provides background on Brigham Young

University’s interferometric SAR, YINSAR.

• Chapter 3 delves into the modeling of motion in the SAR data model, considers

its effects on final images, and discusses three motion compensation algorithms

to correct various types of motion errors.

• Chapter 4 discusses the application of motion compensation techniques to

YINSAR and discusses how MOCO relates to interferometry of a dual bistatic

radar.

• Chapter 5 summarizes the results and discusses the future work relating to

YINSAR.
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Chapter 2

Background

Synthetic aperture radar (SAR) has become a very important modern remote

sensing tool and has found a variety of applications in military, topographical, and

environmental situations. This background chapter is designed to provide a basic

understanding of SAR imaging theory, and various SAR processing algorithms.

2.1 SAR History

Radar has been a valuable tool throughout much of the 20th century in track-

ing aircraft and ships. It was not until the late 1930s that engineers began to attach

the radar antenna to the fuselage of aircraft. This idea led to the beginning of side-

looking aperture radars (SLARs) in the field of radar imaging. For SLAR, the best

imaging resolution is dependent upon the size of the antenna. In June of 1951 Carl

Wiley described the use of Doppler frequency analysis to improve radar image reso-

lution. The technique was originally called Doppler beam sharpening, but today is

known as synthetic aperture radar [6].

2.2 SAR Geometry

The basic SAR geometry model and its variables can be seen in Fig. 2.1 and

is used throughout this thesis. The radar carrying vehicle, or platform, is located at

(x, 0,−h) and moves along a straight line trajectory, or track, at a constant velocity,

V . As shown in the model, the range, R, from the platform to a target located at

(x′, y′, 0) is a three dimensional range function and is given by

R(x′, x, y′, h) =
√

(x′ − x)2 + (y′)2 + (h)2. (2.1)
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Figure 2.1: SAR imaging geometry

This distance of the radar to its target area is called the slant range or cross-

track direction while the platform flight trajectory is known as the azimuth or along-

track direction. The path along the ground to the target area known as the ground

range. A common convention in many texts is to refer to the slant range as simply

the range direction.

The coordinate system shown consists of right-handed coordinate axes, with

the positive x axis in the azimuth direction, negative z axis representing the platform

height above the ground, and positive y pointing along the ground range direction.

When dealing with radar images, this three dimensional geometry can be reduced to

two dimensions. This is done by substituting the near-range function

r′ =
√

(y′)2 + (h)2 (2.2)

into Eq. (2.1) which reduces the range-to-target function to

R(r′, x′, x) =
√

(r′)2 + (x′ − x)2. (2.3)

6



This reduction helps to simplify the inversion problem and is used in many SAR

processing algorithms.

(a) (b)

Figure 2.2: (a) Stripmap and (b) Spotlight imaging geometries [2]

Another important factor in the SAR geometry model is the azimuth angle

of the antenna beam, or squint angle. This angle may or may not be controlled by

the radar operator and defines how the beam is steered. A beam constantly steered

(either mechanically or electronically) toward the target area is known as spotlight

SAR imaging. However, if the squint angle is held constant during a flight over the

target area, the resulting image is an image “strip” parallel with the flight track.

This type of data collection is known as stripmap SAR. Most stripmap SAR typically

operate with a squint angle orthogonal to the direction of travel, or in a broadside

direction. These imaging methods are illustrated in Fig. 2.2.

The frequency at which the radar transmits pulses is known as the pulse rep-

etition frequency, or PRF. As is discussed in [7], the PRF determines the ambiguity

in the range and azimuth directions.

7



2.3 Range Resolution

Range resolution is a defining parameter of a radar and represents the mini-

mum distance targets can be separated and be distinguished by the radar. The two

main factors affecting range resolution are the transmit pulse shape and the pulse

length. This section discusses two pulses: the interrupted continuous wave (ICW)

and the linear frequency modulated (LFM) chirp. The latter half of the section ex-

plains the techniques of matched filtering or range compression to improve range

resolution.

2.3.1 ICW

An ICW pulse of amplitude a and pulse length Tp is given by

p(t) =

 a : 0 < t < Tp

0 : t < 0; t > Tp.
(2.4)

In a hypothetical situation, if a transmitted ICW pulse reflects off two targets located

at different ranges, they can be resolved by the radar if the trailing edge of the closer

target’s echo arrives to the radar before the forward edge of the further target’s echo.

The resolvable distance is then directly dependent upon the length of the square

pulse, Tp, with the resolution given by

∆R =
c∆t

2
=

cTp

2
. (2.5)

So to improve the resolution, a shorter pulse is needed. Unfortunately, while shorten-

ing the pulse improves range resolution, it also decreases the received signal to noise

ratio. This tradeoff between SNR and resolution makes the ICW pulse an undesirable

choice.

2.3.2 LFM Chirp

As previously noted, a decrease in a square pulse’s length improves range

resolution, but is also accompanied by a decrease in the signal to noise ratio. A

common solution to the tradeoff is to use a modulation or phase encoding scheme

8



on the transmitted pulse. Any modulation scheme can be used, but one of the most

widely implemented is the linear-frequency modulated (LFM) chirp because of its

ease of implementation. This modulation is a sinusoid which linearly increases in

frequency with time (see Fig. 2.3) and is properly named a chirp, for when heard in

an audible frequency range it resembles the chirp of a bird. The LFM chirp is defined

as

p(t) = exp (jπβt2) (2.6)

where β is known as the chirp rate. The chirp can either be modulated up (known

as an up chirp) or down (a down chirp) in frequency. One of the most important

characteristics of this waveform is its correlation property, that is, when a chirp is

correlated with itself, a sinc function is the result (Fig. 2.3). This correlated waveform

contains the same energy as the original modulated waveform; however, the energy

is concentrated around the time bin corresponding to the delay. This correlation

property is often referred to as matched filtering or range compression.

(a) (b)

Figure 2.3: An (a) uncompressed and (b) compressed LFM chirp
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2.3.3 Range Matched filtering

An important technique in the improvement of range resolution is matched

filtering or pulse compression. The matched filter is a tool used in radar and com-

munications to produce the maximum achievable signal SNR when the signal plus

additive white noise are received. As explained in [1], the fundamental factor in

determining achievable radar range resolution is the bandwidth of the transmitted

pulse.

Following the derivation in [6] and [1], the SNR at the output of a matched

filter (SNRout) is related to the SNR at the matched filter’s input (SNRin) by

SNRout = τpBnSNRin (2.7)

where τp is the transmit pulse length and Bn transmitted signal bandwidth. The value

of τpBn is known as the time bandwidth product and represents the gain achieved

through using a matched filter. Therefore, both transmit pulse length and pulse

bandwidth effect radar range resolution. The ideal matched filter is mathematically

represented by the correlation of the transmitted pulse, p(t), with the received,

s(t) =
∫

p(τ)p∗(τ + t) dτ. (2.8)

This operation of matched filtering is typically performed in the frequency domain

where the correlation operation becomes a multiplication. While any pulse modula-

tion can be used, one of the commonly used pulses with high matched filter SNR is

the LFM chirp.

2.4 Azimuth Resolution

While improved range resolution is achievable through matched filtering, good

radar imagery also requires high azimuth resolution. Two important methods of radar

imaging are real and synthetic aperture radar imaging. The azimuth resolution of real

aperture radar imaging is dependent upon the azimuth beamwidth of the transmitting

antenna while synthetic aperture resolution is inversely proportional to the size of the

azimuth beamwidth.
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2.4.1 Real Aperture Radar

In a real aperture radar system the azimuth resolution is dependent upon the

azimuth beamwidth. The azimuth resolution of a real aperture can be derived from

the imaging geometry and is given by [4]

δaz = 2r′ tan

(
θa

2

)
(2.9)

where θa is the azimuth angle, and r′ is the near range. Using the approximations

θa ≈ λ/Laz and δaz ≈ r′θa, the azimuth resolution is

δaz ≈
r′λ

Laz

(2.10)

where λ is the carrier wavelength, and Laz is the azimuth antenna length. Taking

into account the height of the platform

h = r′ cos(θi) (2.11)

where θi is the radar look angle, the real aperture azimuth resolution becomes

δaz ≈
hλ

cos(θi)Laz

. (2.12)

This result shows that the constraining factors on real aperture radar azimuth reso-

lution are the maximum size of the antenna carried by the platform and the platform

height.

2.4.2 Synthetic Aperture Radar

Synthetic aperture radar was described by Wiley as “Doppler beam-forming”

[6]. As a radar flies over a target transmitting pulses, each of the echoes from the

target have a different frequency shift due to the velocity of the platform. Observing

the frequency shift from the target over many pulses closely resembles that of an LFM

chirp, which suggests matched filtering in the azimuth dimension. While using the

Doppler effect to explain SAR is useful to understanding the concept, in actuality the

observed frequency shift over the pulses has nothing to do directly with the velocity

of the aircraft. The shift is actually a result of observing the changing target phase.
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As the radar moves along the track from one pulse collection to the next, each pulse

collected has a phase dependent upon the range to the target. Piecing together various

pulses collected from different points along the flight track forms what is known as

a phase history of the target. Thus, the synthetic aperture is better viewed as a

phased array antenna, where each pulse represents an element and the spacing of the

elements is dictated by the radar PRF and its velocity. The only part the platform

velocity plays in the imaging is to move the radar from one position to the next.

Matched filtering of this phase history improves azimuth resolution and effectively

narrows the azimuth beamwidth.

An approximation of the azimuth resolution for synthetic aperture radar can

be estimated using the idea of a synthetic array antenna. As shown in [4], a radar

with an azimuth antenna of length Laz moving at a constant velocity, the length of

the synthetic array is equivalent to size of the beam footprint on the ground. The

size of the synthetic array given as

Ls =
2λh

Laz

(2.13)

where Laz is the azimuth size of the antenna and h is the height of the platform. The

new 3dB azimuth beamwidth of the synthesized array is

θSAR ≈
λ

Ls

=
Ls

2h
. (2.14)

The corresponding azimuth synthesized resolution is given by

δSAR ≈ hθSAR =
Ls

2
(2.15)

This result demonstrates two important points about SAR: first, to improve the az-

imuth resolution of a radar image, the physical antenna length must be decreased.

Second, the azimuth resolution is independent of changes in platform height. While

these results seem contradictory, they are better explained by observing the larger

antenna footprint on the ground they cause. In the first case, as the azimuth antenna

size is decreased, the azimuth ground footprint increases, which allows for more ob-

servations of the target and consequently creates a longer target phase history which
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improves azimuth resolution. Similarly, an increase in the platform height also in-

creases the length of target phase histories and improves azimuth resolution. While

synthetic aperture radar provides a large improvement in azimuth resolution over real

aperture radar, it requires coherent radar hardware to preserve signal phase, larger

amounts of data storage, and increased amounts of processing. The next section de-

velops the SAR signal model and discusses various processing algorithms used in the

SAR community.

2.5 SAR Processing

As has been shown, synthetic aperture radar has better resolution than real

aperture radar; however, the trade off for increased resolution is signal processing

complexity. The key to understanding SAR processing and motion compensation is

understanding the SAR data model. The SAR processing or azimuth compression

algorithms discussed here include Range-Doppler, Wavenumber Domain, and Chirp

Scaling algorithms [8].

2.5.1 SAR Signal Model

Derivations of the SAR signal model can be found in [6], [8], [9], and [10]. The

particular approach to the model taken here follows the treatment by Bamler [8]. To

begin the derivation of this signal model, the transmitted radar pulse is written

ptransmitted(t) = p(t) exp jω0t (2.16)

where p(t) is the transmitted pulse and ω0 is the carrier frequency. After reception and

demodulation of the echo from a scatterer located at a distance (r′, x′), the received

set of pulses at the radar location x = vt is given by

d(x, t) = σp(t− 2R(r′, x′, x)/c) exp [−jω02R(r′, x′, x)/c] (2.17)

where R(r′, x′, x) is given by the hyperbolic range-to-target function (Eq. (2.3)) and σ

is the target reflectivity. Assuming an ideal range matched filter, the range compressed

form of p(t) becomes a sinc(·). However, for simplicity in this case, it is assumed to
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be δ(·). Thus, the range compressed collection of pulses from the target is represented

as

d(x, t) = σδ(t− 2

c
R(r′, x′, x)) exp [−jω0

2

c
R(r′, x′, x)]. (2.18)

Equation (2.18) is known as the SAR point spread response (PSR) and gives insight

into the nature of the SAR signal and its processing. This function can be visual-

ized by an approximate LFM chirp in the azimuth direction (formed from the phase

function exp(·)) that is bent along the azimuth “smiles” formed from the δ(·) func-

tion (Fig. 2.4). The two-dimensional coupling of the range and azimuth in the target

Figure 2.4: A visualization of the SAR signal model. The range dependent azimuth
chirps are bent along the range dependent azimuth “smiles”.

phase histories is what make exact SAR inversion a difficult problem. Often, the PSR

function is normalized by substituting ∆R(r′, x′, x) = R(r′, x′, x)− r′, the normalized

range to target function, in for R(·).

Using the signal history of a single target in range compressed data, a data

collection of many targets, d(x, t), can be written then as a sum of the of scene
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reflectivities, σ(x′, r′) correlated with the PSR of Eq. (2.18),

d(x, t) =
∫ ∫

σ(x′, r′)δ(t− 2

c
R(·)) exp [−jω0

2

c
R(·)] dr′ dx′. (2.19)

To examine the model in a Hilbert space framework we take the Fourier trans-

form of d(x, t) in the time domain to obtain

d(x, ω) =
∫ ∫

σ(x′, r′) exp [−j(ω + ω0)
2

c
R(r′, x′, x)] dr′ dx′. (2.20)

Equation (2.20) is an inner product of the target scene reflectivity function

with the two-dimensional, non-orthogonal Green’s function given by the exp(·). Both

types of functions exist in a L2 space with the Green’s function representing a basis

onto which scene reflectivities are projected. The goal of a SAR processing algorithm

is to invert this data model quickly and accurately to return the scene reflectivity.

2.5.2 Range-Doppler Algorithm

The first and most common SAR processing scheme is the Range-Doppler al-

gorithm. In the SAR community, a common convention is to call the azimuth Fourier

domain the “Doppler” domain. Hence, this processing method derives it’s name from

the fact that azimuth matched filtering is upon data that is Fourier transformed in

the azimuth direction. The algorithm is often preferred because it makes approx-

imations which simplify the azimuth matched filtering to multiple one-dimensional

correlations. This effectively decouples range and azimuth dependences and creates a

simplified processing problem. The algorithm can be summarized into three principle

steps: range compression, a range-dependent RM correction and a quadratic approx-

imation to the range-to-target function, R(r′, x′, x), found in the exp(·) of Eq. (2.19).

1. The first step is to perform range matched filtering. This operation is often

done in the frequency domain to decrease processing time. This step yields

data in the form found in Eq. (2.19).
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(a) (b)

Figure 2.5: Five target signal histories in the (a) range/azimuth and (b)
range/Doppler domains

2. As illustrated in Fig. 2.5, each target in an imaged scene has a signal which is

traced out along a range-dependent hyperbolic curve. To successfully decou-

ple the range and azimuth dimensions, a correction is required that effectively

straightens the “smiled” signal histories. This straightening of the curved signal

histories cannot be done in the range-azimuth spatial domain due to the varying

azimuth location of the loci of the target signal histories (see Fig. 2.5(a)). But

when taken to the range-Doppler domain, d(kx, t), the transformed azimuth

spectra loci become aligned as shown in Fig. 2.5(b), yet still retain their hy-

perbolic nature. Since the azimuth domain is a spatial domain, the Doppler

wavenumber spacing ∆kx, is defined as

∆kx =
2πPRF

v
(2.21)

where PRF is the radar PRF, and v is the platform velocity.

3. Next, the curved histories in the range-Doppler domain are straightened by

applying a kx-dependent correction given by [8]

∆t(kx, r) =
2

c
r(1− 1√

1− (kxc/(2ω0))2
), (2.22)
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which implies a range resampling or interpolation. It is noted that a high

precision kernel must be used when performing this interpolation or undesired

image artifacts may result. If the hyperbolic curvature is relatively constant

with changes in range (i.e. r ≈ r0 a constant) then Eq. (2.22) can be evaluated

with a single range for the entire image, and the interpolation simplifies to a

phase multiplication applied in the two-dimensional Fourier domain [8]

exp (−j∆t(kx, r0)ω). (2.23)

4. The final step in this algorithm is to apply an appropriate azimuth matched

filter to the straightened signal histories. The newly straightened time domain

data model is expressed as

d(x, t) =
∫ ∫

σ(x′, r′) exp [−jω0
2

c
R(·)] dr′ dx′. (2.24)

A common approach is to create a set of azimuth matched filters with each filter

corresponding to a specific range in the image. This technique effectively sets

the range variable in the data model, r′, to a constant and simplifies the model

down to multiple one-dimensional azimuth correlations. One of the matched

filters with r′ = r0 can be written

d(x, t) =
∫

σ(x′, r0) exp [−jω0
2

c
R(·)] dx′. (2.25)

This equation is easily solved using an azimuth matched filter for each range in

the image. The exact matched filter, which accounts for the hyperbolic term in

the azimuth chirp, is given by

exp(jω0
2R(r0, x

′, x)

c
) = exp(jω0

2

c

√
r2
0 + (x− x′)2). (2.26)

If the azimuth beamwidth is sufficiently narrow enough, a binomial expansion

of the hyperbolic range-to-target function can be used:

R(r0, x
′, x) ≈ r0 +

(x− x′)2

2r0

+ · · · . (2.27)
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Employing only the first two terms of the expansion to form a quadratic approx-

imation, the time-domain azimuth matched filter found in Eq. (2.26) simplifies

to:

exp(jω0
2

c

√
r2
0 + (x− x′)2) ≈ exp(jω0

2

c
(r0 +

(x− x′)2

2r0

)). (2.28)

Matched filtering is often done in the frequency domain for its computational

ease and efficiency, and because the data is still in the range-Doppler domain.

This algorithm has been employed for many years; however, the approximations of

Eq. (2.23) and Eq. (2.28) may create phase errors, which if neglected can cause

unwanted image artifacts. These phase errors can be approximated and corrected

for, but more processing and higher-order interpolators are required [6], [8]. Another

drawback to the Range-Doppler algorithm is its inability to handle linear drift of

target phase induced from squint or from the Earth’s rotation. This linear drift, or

range walk, of the signal history spreads the azimuth time bandwidth product (TBP)

across multiple range bins. The effect of this spreading is lowered azimuth TBP in

any specific range bin, which results in smearing the target in range. To correct for

this drift, the data requires another range matched filter with an adjusted chirp rate.

This second filter, known as secondary range compression, is often represented as

being cascaded with the ideal range filter. Further information about this process

and its effectiveness can be found in [6], [11], [12], and [13].

2.5.3 Wavenumber Domain Processing

The Wavenumber Domain algorithm, also known as the ω-k or spatial fre-

quency interpolation algorithm, emerged in the early 1990’s as a product of seismic

migration techniques. The algorithm operates as if the radar has a stop-and-go mo-

tion. That is, the radar can be viewed as stationary during the time it transmits a

pulse and receives the echo. The targets in the scene are modeled as sources which

emit pulses sampled by the radar as it moves along the track. Since the SAR signal

is a sampled version of the wavefront propagating from many sources, the image is

formed when the data is “backpropagated” to each source [14].
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It is noted [8] that the algorithm assumes that the image data is centered

around a reference range (r0) and a corresponding reference time (t0). Any value can

be chosen for the offsets, but the most commonly chosen reference range corresponding

to the center of the target area. The new range with offset is given by r′ + r0.

Various derivations of this algorithm using the wave equation and Fourier

analysis exist [14], [15]. The final result is the algorithm reduces the SAR inversion

problem into two, two-dimensional FFTs, a phase multiply, and a non-linear interpo-

lation. The computational cost derived from the precision of the frequency domain

interpolation determines the speed of the algorithm. The SAR data model rewritten

using the reference range is given by

d(x, t) =
∫ ∫

σ(x′, r′)δ(t− 2

c
R(·)) exp [−jω0

2

c
R(·)] dr′ dx′ (2.29)

where R(·) =
√

(r′ + r0)2 + (x− x′)2. The range compressed SAR data in the fre-

quency domain is

d(x, ω) =
∫ ∫

σ(x′, r′) exp [−j(ω + ω0)
2

c

√
(r′ + r0)2 + (x− x′)2] dr′ dx′. (2.30)

As previously noted, the difficulty in inverting this equation is the coupling between

the range and the azimuth dimensions. The idea behind the Wavenumber Domain

algorithm is to change the non-orthogonal basis Green’s function to an orthonormal

basis to make the model easily invertible. Changing of basis function is done by

interpolation in the two-dimensional frequency domain. The steps of the Wavenumber

Domain algorithm are

1. As in the Range-Doppler algorithm, the raw SAR data is range matched filtered.

The range compressed data then has the form of Eq. (2.29).

2. Next, the range compressed SAR data is converted to the two-dimensional fre-

quency domain. This involves taking the azimuth Fourier transform of the data

model in Eq. (2.30). Since this cannot be done analytically, the method of sta-

tionary phase is applied. The method is based on the fact that integrals with

highly oscillating integrands do not add a significant contribution to the inte-

gral’s result, allowing for approximations of the integrand to make the integral
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solvable. From [16], the azimuth Fourier transform of the Green’s function in

Eq. (2.30) using stationary phase is given as

Fx[exp [−j(ω + ω0)
2

c
R(r′ + r0, x

′, x)]] ≈

A exp

−j(r′ + r0)

√√√√(2(ω + ω0)

c

)2

− k2
x

 exp [−jkxx
′] (2.31)

where A is a scaling factor ignored. Using this approximation, the two-dimensional

Fourier transform of the SAR data model of Eq. (2.30) is

D(kx, ω) =
∫ ∫

σ(x′, r′) exp

−j(r′ + r0)

√√√√(2(ω + ω0)

c

)2

− k2
x

 (2.32)

× exp [−jkxx
′] dr′ dx′.

Next, the constants from Eq. (2.32) are factored from the integral and substi-

tutions are made leaving

D(kx, ω) = exp [−jkr′r0]
∫ ∫

σ(x′, r′) exp [−jkr′r′] exp [−jkx′x′] dr′ dx′

= exp [−jkr′r0]S(kx′ , kr′) (2.33)

where

kr′ =

√√√√(2(ω + ω0)

c

)2

− k2
x (2.34)

kx′ = kx. (2.35)

3. Next, Fourier transformed data is multiplied by the conjugate complex expo-

nential in Eq. (2.33) which can be viewed as a spatial basebanding of the image

frequency data [10]. This operation is viewed as

S(kx′ , kr′) = exp [jkr′r0]D(kx, ω). (2.36)

4. The expressions in Eq. (2.34) and (2.35) are known as a Stolt mapping and

suggest interpolation in the range frequency domain. The non-linearity of the

mapping, however, requires unevenly spaced interpolation, with the accuracy
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of the processor being dependent upon the interpolation kernel implemented.

An approximation for unevenly spaced interpolation can be found in [10]. It

is noted that some algorithms perform the phase multiplication step before the

interpolation ([9], [10]), while others perform the multiplication step after inter-

polation ([14]). Yet, as was shown in [8], the two approaches are mathematically

equivalent. Once the interpolation step is complete, azimuth bandpass filtering

is applied to make adjustments for antenna pattern and for processing different

image looks.

5. After this step the final image is obtained by taking a two-dimensional inverse

Fourier transform of the data. The data is now azimuth compressed but lacks

a scaling factor correction, which is described in [9].

While this algorithm produces little or no phase errors in final images, the required

precision in interpolation makes this algorithm computationally expensive.

2.5.4 Chirp Scaling

The Range-Doppler and Wavenumber Domain algorithms have a tradeoff be-

tween the amount of required computation and the achievable phase accuracy. Both

algorithms can be extremely accurate if no approximations of the azimuth chirp are

used and if the interpolator used in both cases is of high enough order. In 1992 a new

algorithm known as Chirp Scaling was developed to try to lessen the impact of this

tradeoff [17].

The algorithm description provided here utilizes the time scaling principle as

found in [18]. This principle states that large time-bandwidth LFM signals can have

their phase centers slightly altered by modulating them with another LFM chirp with

a slightly offset chirp rate. This scaling property is used to equalize the range-variant

signal phase histories in SAR signals.

The algorithm differs slightly from the Range-Doppler and Wavenumber Do-

main algorithms in that it performs some of its operations on the data before it has

been ranged compressed. As described in [17], if an LFM chirp is transmitted, the
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received, raw signal history of a single point target at (r0, x0) is

d(x, t) = a(t− 2R/c) exp [−jπβ(t− 2R/c)2] exp [−jω02R/c] (2.37)

where a is the signal envelope, β is the chirp rate, and R(·) is the range-to-target

function.

1. The first step in the chirp scaling algorithm involves converting the raw data

to the range-Doppler domain. This is done applying the principle of stationary

phase [16] and yields

d(kx, t) ≈ a(t− 2Rf/c) exp [−jπβf (t− 2Rf/c)
2] (2.38)

· exp [−j2ω0/c
√

1− (kx/(2ω0c))2].

The first exponential in the expression represents the received range chirp while

the second exponential represents the azimuth modulation (chirp). The chirp

scaling algorithm moves around the need for interpolation by operating on the

range chirp expression. The Rf (·) function describes the range migration of the

data through the range Doppler domain and is given by

Rf (kx, r0) = r0[1 + Cs(kx)] (2.39)

where Cs(kx) is known as the curvature factor [17] given by

Cs(kx) =
1√

1− (kx/(2ω0c))2
− 1. (2.40)

2. The next step removes the range dependence from the range curvatures by

multiplying the range Doppler data by the chirp scaling multiplier

Φ1(r0, kx) = exp (−jπKs(kx, r0)Cs(kx)[
2

c
(r − rref )]

2). (2.41)

This expression ensures that all target phase histories effectively follow the

curved trajectory given by the phase history at range, rref , thus removing the

need for interpolation as needed in the range-Doppler and Wavenumber Do-

main algorithms. As mentioned in [17], it is important to note that while this

multiplier adjusts the phase centers of all the target chirps, it does not change

the location of the signal envelopes, a(·).
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3. The next step is to convert the data to the two-dimensional Fourier domain by

taking a range FFT. The expression then becomes

S(kx, ω) = a

(
ω

2πKs(1 + Cs(ku))

)

· exp (−j2ω0/c
√

1− (kx/(2ω0c))2 − jΘ(kx, r))

· exp (−j
ω2

4π2Ks(1 + Cs(kx))
)

· exp (−jω
2

c
(r + rrefCs(ku))) (2.42)

where Θ(·) is

Θ(kx, r) =
4π

c2
Ks[1 + Cs(ku)]Cs(ku)(r − rref )

2. (2.43)

The phase terms in Eq. (2.42) are the azimuth chirp, range chirp, and a linear

phase term, respectively. The interpretation of each term is better described in

[17] but the important change to note is the removal of the range dependence

from the range chirp term.

4. The next step is to implement a bulk RM correction and range compression

(including any secondary range compression). This is done now using the a

single phase function that corrects the curvature for the reference range. The

expression is given by

Φ2(kx, ω) = exp (−jπ
ω2

4π2Ks(ku, rref )[1 + Cs(kx)]
) exp (jω

2

c
rrefCs(kx)). (2.44)

5. The next step is an inverse Fourier transform in the range direction. Once this

is performed, the expression reduces to

d(kx, t) = a(t− 2r/c) exp (−j2ω0/c
√

1− (kx/(2ω0c))2 − jΘ(kx, r)). (2.45)

6. The signal in Eq. (2.45) contains the final phase function that requires matched

filtering. The needed filter, along with a phase residual correction (from the

chirp scaling), is

Φ3(kx, t) = exp (j2ω0/c
√

1− (kx/(2ω0c))2 + jΘ(kx, r)). (2.46)
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7. The final step is an inverse Fourier transform in the azimuth direction.

This algorithm proves advantageous over both range-Doppler and Wavenumber Do-

main processors since it preserves the phase history of the targets, yet does not require

computationally costly interpolation. The only disadvantage of this algorithm is the

large amount of memory required to process the raw SAR data and the fact that the

algorithm is limited to radar systems that use LFM chirps as their transmit modu-

lation. A few years after the development of Chirp Scaling, an improved version of

the algorithm, known as Accelerated Chirp Scaling [19], was developed. This newer

version utilizes range-compressed data and performs the chirp scaling operation not

on the transmitted chirp, but on a chirp either introduced into the signal or upon a

chirp inherent in the data (the chirp requiring secondary range compression). With

these improvements, the new algorithm requires less memory to focus an image and

has no limitations upon the transmit modulation scheme.

While all SAR processing algorithms strive to return the image reflectivity,

some provide better results but at high computational cost and memory requirement.

We now turn to an application of SAR images. One such application is to calculate

the height of a target area by using two images of the same scene using what is known

as interferometry.

2.6 Interferometry

The idea of determining scene topography from two observations originated

with the area of stereometry. As seen from Fig. 2.6, stereometry uses two range obser-

vations, rb and ra offset by some baseline b to infer information in three dimensions

about a target. Both observations have slightly differing ranges to the target and

using basic trigonometry the height of the target can be inferred.

The height of the target can be found using the law of cosines [20],

r2
b = r2

a + b2 − 2bra sin(θ − α). (2.47)

The target height, h, is then found by the equation

h = H − ra cos(θ). (2.48)
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Figure 2.6: Stereometric geometry model

Typically, one of the ranges, the length of the baseline, and the height, H, are known

exactly. This implies that the accuracy of the target height estimate, h is dependent

upon the measurement of the second range, ra, or upon the change in range ∆r, which

is defined as

∆r = rb − ra. (2.49)

Graham [20] first proposed the idea of using the phase difference from two SAR

images, slightly offset, to determine the value of ∆r. The idea is that if one of the

received SAR images has a signal given by

γ1 = A1 exp (−j
4π

λ
ra) (2.50)

and a second SAR image, which is slightly offset from the first, has a signal of

γ2 = A2 exp (−j
4π

λ
rb), (2.51)

then the phase difference

∆φ = arg [(γ1)(γ2)
∗] =

4π

λ
∆r (2.52)

enables estimation of the range difference, ∆r. The accuracy of the estimate is related

to the size of the wavelength and the size of the baseline, b. Two single-look complex
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(SLC) SAR images, one from each channel, are used to make a phase difference image

known as an interferogram. The phase differences contained in interferograms are

initially wrapped between 0 and 2π and require two-dimensional phase unwrapping

in order to find the ∆r estimate.

The steps involved in performing interferometry to find a 3-dimensional height

map of a target scene are:

1. First, a SAR image is created for each observation point. The two resulting

images are slightly offset from each other. The image data is collected either

by using a single-pass system with two receive antennas or by using a dual-pass

system with one receive antenna. The important thing here is that the images

are created with the highest possible phase accuracy (i.e., with the best SAR

processing algorithm).

2. The next step is to assure that every complex data cell from one image corre-

sponds to the same data cell in the other image. This process of image alignment

of two SAR images is known as coregistration. This step is important because

the less well coregistered the images are, the poorer the height estimates they

produce. Often, the images must be reinterpolated to accurately coregister

them. The quality of the interpolation determines the amount of phase error

introduced in the interpolation [21].

3. An interferogram is created through the complex conjugate multiplication [Eq. (2.52)]

of the two coregistered SLC images.

4. The phase differences obtained from the interferogram are wrapped from 0 to

2π. This next step is to unwrap the phase differences. Various two dimensional

phase unwrapping techniques are found in [22]. Prior to phase unwrapping a

variety of optional preprocessing steps can reduce phase noise. In [22], wrapped

interferograms use coherent averaging or “multilooking” to remove noise. This

lowers achievable resolution in the final interferogram, but reduces the multi-

plicative noise (or “speckle”) inherent in SAR images. Another common filter
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applied to interferograms is an averaging filter which smooths a data cell by

averaging the pixels around it. This filter helps to remove Gaussian additive

noise and is given by

φ̂mn = arctan
(∑

sin φij,
∑

cos φij

)
(2.53)

where the data cell φmn is an average over a patch centered around (m, n).

The last common aid in phase unwrapping is the removal of a bulk “flat-earth”

phase from the interferogram. The idea behind this preprocessing step is to

remove the phase differential that corresponds to a flat earth scene. What re-

mains after this flat-earth removal is a phase difference that corresponds to the

topography of the ground with respect to the flat earth. Often, an estimate of

the earth height is used to calculate a flat earth estimate. The final effect of

flat earth removal is a reduction in the interferogram fringe rate which makes

unwrapping significantly easier. However, once this topographical phase is un-

wrapped, the flat earth phase must be added back in to produce valid height

estimates.

5. The last step is to geolocate the image targets using platform location data

obtained during the flight (typically with GPS). Since the targets’ slant ranges

and heights above the reference flat earth are known, the position of the targets

with reference to the platform can be known with some degree of accuracy.

Further information on geolocation of targets can be found in [23].

Interferomtery has found many applications ranging from high-resolution dig-

ital elevation map (DEM) creation [23] to differential images using multiple interfer-

ograms [24].

2.7 YINSAR

Typically, interferometric SAR systems tend to be expensive and large. In

1995 Brigham Young University created a relatively small, low-cost interferometric

synthetic aperture radar, YINSAR [25]. The X-band radar is a dual channel system,
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Table 2.1: Common YINSAR parameters [1]

Parameter Symbol Value

Center Frequency fc 9.9 GHz
Time-Bandwidth Product τB 300
Range Chirp Bandwidth B 200 Mhz
Antenna Azimuth Beamwidth θaz 12◦

Typical Platform velocity v 60 m/s
Minimum PRF PRFmin 629 Hz
Typical PRF PRFmin 1000 Hz
Theoretical single look Range Resolution δr 0.75 m
Theoretical single look Azimuth Resolution δa 0.1 m

operating on two x86 processors. It’s low-cost nature is achieved by using off-the-shelf

A/D, D/A hardware and commercially built microwave circuits. It operates on board

a Cessna Skymaster platform and has a peak transmit power of 10W, limiting the

platform altitude. A table of key YINSAR parameters as from [1] are found in Tab.

2.1. While low transmit power and platform choice help to maintain a low overall

cost, they both introduce large amounts of motion in the platform. Uncompensated

motion in a SAR image induces image errors, and causes geometric inaccuracies.

The goal of YINSAR is two-fold: first, it is used create interferometric images.

An area of particular interest is known as the Slumgullion slide, a landslide near

Montrose, CO (Fig. 2.7). This natural landslide moves at a constant, predictable

rate which has given it much attention by the U.S. Geological Survey (USGS). Until

recently, surveys of the slide’s movement have been a manual process using handheld

GPS. The hope is that through YINSAR and differential interferometry, the slide’s

motion can be tracked with greater accuracy and improved resolution. The second

goal of YINSAR is to aid archaeologists. With SAR, archaeologists can use radar

imaging to aid in excavation and in the search for new sites. However, to attain the

highest accuracy in these applications, motion compensation must be performed.

28



Figure 2.7: Slumgullion Slide near Montrose, CO [3].
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Chapter 3

Motion Compensation

Since SAR processing algorithms assume a straight-line platform track and

constant velocity, undesired platform motion can have adverse effects on images. To

maintain geometrically accurate, focused, images the motion must be accounted for

by either modifying the azimuth matched filters or by adjusting the data itself to

make it optimal for conventional SAR imaging. Three main types of platform motion

error degrade synthetic aperture radar images: translational motion errors, errors in

platform attitude, and unequal PRF spacing due to a varying along-track velocity.

This chapter is provided as a background to understand motion in SAR and is created

from the compliation of various sources. Specifically, this chapter considers each of

the three motion error sources, their effects on SAR, and some select methods of

motion compensation (MOCO) used in literature.

3.1 Translational Errors

The first type of error, translational error, refers to platform position displace-

ments from a straight-line track. The translational motion geometry of the platform

at zero Doppler is seen in Fig. 3.1. These errors depend upon the range to each tar-

get and upon the reference height above the ground. Two primary results arise from

these deviations. First, a phase error is introduced to all targets. This warps target

phase histories and leads to image artifacts and geometric inaccuracies. Second, if

the translational errors are large enough, they can cause target signatures to drift

into neighboring range bins. The key to understanding these effects is to consider the

effect of a displacement upon the range migration function.
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Figure 3.1: Displacement motion geometry at zero Doppler used to understand the
effect of translational motion on SAR.

To modify the range migration function, R, to account for deviations, the near

range displacement at zero Doppler, δr(x, r′), is needed. This is derived using the

geometry in Fig. 3.1 and the Carnot Theorem [26] as

δr(x, r′) =
√

(r′)2 + d(x)2 − 2d(x)r′ sin (θ(x)− α(x)) (3.1)

where x is the along-track position of the transmitting antenna, r′ is the range to

a target, and d(x) is the cross-track antenna displacement. The angles θ and α are

platform look and roll angles respectively. Applying the near range displacement to

the range migration function results in the modified range migration function,

Rm(r′, x′, x) =
√

(r′ + δr(x, r′))2 + (x− x′)2, (3.2)

which can be decomposed into two parts,

Rm(r′, x′, x) = R(r′, x′, x) + δR(r′, x′, x). (3.3)

The R(·) function represents the nominal range migration function,

R(r′, x′, x) =
√

r′2 + (x− x′)2, (3.4)
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and δR(·) represents the range migration displacement,

δR(r′, x′, x) =
√

(r′ + δr(x, r′))2 + (x− x′)2 −
√

r′2 + (x− x′)2. (3.5)

The dependence of δR(·) on the azimuth target coordinate, x′, determines the com-

plexity of the motion compensation required.

Applying the modified range migration function of Eq. (3.3) to the SAR signal,

yields

d(x, t) =
∫ ∫

σ(x′, r′)δ(t− 2

c
[R(r′, x′, x) + δR(r′, x′, x)])

· exp (−jω0 ·
2

c
[R(r′, x′, x) + δR(r′, x′, x)]) dr′ dx′. (3.6)

As seen in Eq. (3.6), range migration deviations have small effects on the range of

the targets (the δ(·) function), but can have greater effects upon the azimuth phase

modulation function. Errors in range migration become significant when displace-

ments are on an order of the range resolution, while any changes on the order of the

transmit wavelength are significant in the phase modulation function.

In the frequency domain, Eq. (3.6) becomes

d(x, ω) =
∫ ∫

σ(x′, r′)

g(r′,x′,x,ω)︷ ︸︸ ︷
exp

[
−j(ω + ω0)

2

c
R(r′, x′, x)

]
× exp

[
−j(ω + ω0)

2

c
δR(r′, x′, x)

]
︸ ︷︷ ︸

m(r′,x′,x,ω)

dr′ dx′

=
∫ ∫

σ(x′, r′)g(r′, x′, x, ω)m(r′, x′, x, ω) dr′ dx′. (3.7)

This expression is a projection of the scene reflectivities onto a space spanned not only

by the nominal Green’s functions, g(·), but also onto a set of motion Green’s functions,

m(·). Any effects caused by m(·) depend upon the azimuth target coordinate, x′.

This dependence can be seen through a binomial expansion of the range migration

deviation

δR(r′, x′, x) =
√

(r′ + δr(x, r′))2 + (x− x′)2 −
√

r′2 + (x− x′)2

≈ (r′ + δr(x, r′))

(
1 +

(x− x′)2

2(r′ + δr(x, r′))2

)
− r′

(
1 +

(x− x′)2

2r′2

)

= δr(·)− δr(·)(x− x′)2

2r′(r′ + δr(·))
. (3.8)
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Thus, any dependence on x′ is primarily due to the magnitude of the zero Doppler

deviation, δr(x, r′).

When deviations are large enough, the higher-order terms introduce into the

model what is known as range migrating phase error. This error, if uncompensated,

can cause inaccuracies in the final image.

From an alternative perspective, the x′ dependence of δR(·) can be viewed as a

dependence upon the azimuth beamwidth. Often motion compensation is approached

with vector analysis, with platform displacements represented as the magnitude of

the difference between nominal and actual range-to-target vectors [1],[27]. Using the

notation from the imaging situation in Fig. 3.2, the correction for a target at zero

Doppler is given by

ractual − rnominal = δr(x, r′), (3.9)

where ractual and rnominal are the nominal and actual range-to-target vectors. However,

when considering the target at the edge of the azimuth swath (see Fig. 3.2), the

deviation is given by

ractual − rnominal = δr(x, r′) cos (θaz/2), (3.10)

where θaz is the azimuth beamwidth. So while range migrating phase error is caused

by large zero Doppler deviations, δr(x, r′), it can also be caused by a wide azimuth

beamwidth, θaz, even when platform deviations are small. For small deviations and a

small azimuth beamwidth, the approximation δR(r′, x′, x) ≈ δr(x, r′) (which assumes

that all targets within the beam of the antenna have a zero Doppler deviation) is valid.

This is known as the narrow azimuth beamwidth, or narrowbeam, approximation and

is useful for understanding the effects of translational motion on SAR images.

3.1.1 Narrowbeam Approximation

The narrowbeam approximation is important for it makes the SAR signal

model linear shift-invariant in azimuth and allows for insightful analysis of motion.

With the narrowbeam assumption applied in the SAR motion model of Eq. 3.7, any
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Figure 3.2: Two targets at the same range may require different motion corrections
due to their azimuth location in the swath.

x′ dependence is removed from the motion Green’s function, m(·). The SAR model

is then given as

d(x, ω) =
∫ ∫

σ(x′, r′)g(r′, x′, x, ω)m(x, r′, ω) dr′ dx′. (3.11)

Taking the Fourier transform of Eq. (3.11) in the azimuth direction yields a convolu-

tion of the two Green’s functions in the Doppler wavenumber domain, kx,

D(kx, ω) =
∫ ∫

σ(x′, r′) [G(x′, kx, r
′, ω)⊗kx M(kx, r

′, ω)] dr′ dx′. (3.12)

Applying the stationary phase principle to provide the Fourier transform of G(x′, kx, r
′, ω)

and writing out the kx convolution yields

D(kx, ω) =
∫ ∫ ∫

σ(x′, r′)G(γ, r′, ω) exp [−jγx′]M(kx − γ, r′, ω) dγ dr′ dx′. (3.13)

Further simplification of Eq. (3.13) results in

D(kx, ω) =
∫ ∫

σ(γ, r′)G(γ, r′, ω)M(kx − γ, r′, ω) dr′ dγ.

=
∫

[S(kx, r
′)G(kx, r

′, ω) ∗kx M(kx, r
′, ω)] dr′, (3.14)
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where S(kx, r
′) represent an azimuth Fourier transformed version of the reflectivity

function, σ. This demonstrates that in the case of a narrow beamwidth approxi-

mation, the effects of the translational motion on an image is simply the azimuth

convolution of the nominal image spectrum with the spectrum of the motion Green’s

function. The effects on the final image then, depend upon the type of platform de-

viations experienced. The cases of linear and sinusoidal motion are discussed below

and are also treated in [26].

Linear motion assumes that the radar platform is slowly drifting away from

the nominal track at a constant rate, a(r′), over the length of the synthetic aperture,

with the displacement function

δr(x, r′) = a(r′)x. (3.15)

Inserted into the motion Green’s function this expression gives

m(x, r′) = exp(−j(ω + ω0)
2

c
a(r′)x) (3.16)

which has an azimuth Fourier transform of

M(kx, r
′) = δ(kx + 2ka(r′)). (3.17)

Reevaluating the SAR model Eq. (3.14) with this motion function yields

D(kx, ω) =
∫

S(kx − 2ka(r′), r′)G(kx − 2ka(r′), r′) dr′, (3.18)

which is a range dependent Doppler shift of target spectra with the shift dictated by

the magnitude of a(r′). In the final SAR image, this translates into a shift of the

targets in the azimuth direction. An example of the effects of this motion can be

seen in Fig. 3.3. In the case of sinusoidal motion, it is assumed that the motion of

the platform is at least one period over the length of the synthetic aperture. The

displacement function is of the form

δr(x, r′) = a(r′) cos(ζx) (3.19)

where a(r′) is the range dependent amplitude and ζ is the spacial frequency of the

motion. Following the same approach used with linear displacement, the motion
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Figure 3.3: Three simulated targets in the presence of linear motion. Without motion(top).
With motion(bottom). Note the range-dependent azimuth shift of the targets.

Green’s function is

m(x, r′) = exp(−j(ω + ω0)
2

c
a(r′) cos(ζx)). (3.20)

Applying the Jacobi-Anger expansion [28],

exp (iz cos(θ)) =
∑
n

(i)nJn(z) exp (inθ), (3.21)

the azimuth Fourier transform of the motion Green’s function becomes

M(kx, r
′) =

∑
n

(−j)nJn((ω + ω0)
2

c
a(r′))δ(kx − nζ), (3.22)
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Figure 3.4: Three simulated targets in the presence of sinusoidal motion. Without motion
(top). With motion (bottom). Note the range-variant azimuth smearing of the targets.

where Jn is an nth order Bessel function. Evaluating the SAR signal model with this

expression results in

D(kx, ω) =
∑
n

∫
(−j)nJn((ω + ω0)

2

c
a(r′))S(kx − nζ), r′)G(kx − nζ, r′) dr′. (3.23)

Thus, in the case of sinusoidal motion, the azimuth frequency domain consists not

only of the main target spectrum but also with shifted copies of itself that have been

scaled by a Bessel function. The magnitude of the copies is dictated by the amplitude

of the sinusoidal deviations. An example of the effects of this kind of motion can be

seen in Fig. 3.4. Although a narrowbeam approximation gives useful insight into the

effects of translational motion on a SAR image, the effects of large deviations or a
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wide azimuth beamwidth cannot be analyzed in this fashion. Widebeam situations

can be corrected; however, the motion compensation complexity increases.

3.2 PRF Spacing Errors

The second type of motion errors occur when the along-track velocity of the

platform changes while the radar collects with a constant PRF. In terms of a phased

array, this error represents an unequal spacing between phased array elements. This

error lowers the focusing of the synthetic aperture and, if the spacing error is too

large, can introduce image artifacts. The correction of these types of errors is gener-

ally straight-forward and requires interpolation of the complex image in the azimuth

direction.

3.3 Attitude Errors

The last type of motion errors are those in platform attitude which are vari-

ations in yaw, pitch, and roll. These errors generally produce negligible amounts of

range displacement and primarily effect the gain of the SAR image. If the attitude

error is purely one of roll, as shown in Fig. 3.5(a), the principle effect is only a change

in the gain of the image. Variations of either pitch or yaw of the platform, as seen

in Figs. 3.5(b) and 3.5(c), steer the antenna beam ahead or behind the imaged area

in the azimuth direction, with the yaw being range dependent. This squinting of the

beam causes a frequency shift in the azimuth power spectrum of the received data

that may or may not be range dependent. The magnitude of the frequency shift is a

parameter known as the Doppler centroid. Once this value is known (usually through

estimation), the center frequency of the azimuth matched filter is adjusted for the

squint. Any gain problems introduced through variations in roll must be corrected

through a rescaling of the complex SAR image.

3.3.1 Doppler Centroid

As was mentioned, the Doppler centroid is the frequency (or spatial wavenum-

ber) corresponding to the center of the signal’s energy centroid (power spectrum)
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(a) (b) (c)

Figure 3.5: Attitude errors. (a) Roll error. (b) Yaw error. (c) Pitch error. (These
figures were obtained from [4])

and is often range dependent. A shift in this spectrum results from a modulation

caused either by a squint of the antenna away from zero Doppler or from a linear

drift of the platform away from the nominal track in a narrowbeam SAR system.

Aliasing of the azimuth spectrum occurs when the radar PRF is too low with respect

to the platform velocity. This can be viewed as the azimuth power spectrum being

undersampled by the PRF. Untreated aliasing in SAR images can cause artifacts and

make estimation of the Doppler centroid difficult. Fortunately, it can be corrected by

increasing the azimuth sample rate through the interleaving of zeros in the raw data

[29]. If the data has an unaliased azimuth spectrum, the primary purpose of having

a Doppler centroid estimate is to modify the size of the azimuth matched filter for

computational efficiency. This parameter can be estimated from the motion data of

the platform, but is limited by the accuracy of the attitude data. Most often it is

estimated directly from the raw data. Various estimation schemes exist [30], yet the

most common is frequency domain correlation.
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3.3.2 Frequency Domain Correlation

Frequency domain correlation estimation uses the azimuth power spectrum

of the complex data to estimate the Doppler centroid value. An azimuth spectrum

estimate is obtained by creating a periodogram of the raw SAR data in the azimuth

direction. Commonly, the variance of the azimuth periodogram estimate is lowered

by averaging periodograms from multiple range bins. Next, it is correlated with a

weighting function to determine the frequency shift. The Doppler centroid estimation

with some centroid offset fDC , is given as

C(fDC) =
N∑

i=1

S(i) ·W (i∆f − fDC) (3.24)

where S(i) is the SAR azimuth spectrum estimate and W (·) is the weighting function

[31]. The Doppler centroid estimate is found where C(fDC) = 0. In typical detection

situations where a signal is buried in additive Gaussian white noise, the optimal value

is found as the maximum from the correlation of the signal with the nominal signal

function. However, in the case of multiplicative noise in SAR (due to speckle), finding

the minimum with the appropriate weighting function is better for computational

speed. The Doppler centroid estimator that achieves the Cramér Rao bound [31] uses

the optimal weighting function,

W (f) =
A′(f)

A(f)2
, (3.25)

where A(f) is the nominal azimuth spectrum. While this estimator produces optimal

estimates, the SAR image contrast from large scatterers centered away from zero

Doppler can cause errors. These errors arising from strong azimuth chirps located

away from zero Doppler are avoided by an azimuth precompression of the data. Once

Doppler centroid estimates are obtained for the entire image, they can be used later

for increasing the average SNR for a SAR image by adjusting the center frequency of

the azimuth matched filters.

3.4 Motion Compensation

While all motion errors have adverse effects upon SAR images, the primary

source of error is due to undesired platform displacements. The choice of MOCO
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algorithm depends upon the magnitude of these errors and the size of the azimuth

beamwidth.

To perform any motion compensation, we need to know the position of the

platform to calculate pertinent values such as δr(·), the Doppler centroid, etc. Most

often the position is acquired using data from motion measurement devices such

as GPS, accelerometers, and gyros. The displacement, δr(·), is typically estimated

using a flat earth model or can also be estimated from the data itself with a technique

known as the Reflectivity Displacement Method [32]. The Doppler centroid can also

be estimated from the motion data [33], but is most often estimated directly from the

raw data. In this section we assume these values are known or have been previously

computed.

3.4.1 Narrowbeam Motion Compensation

The simplest type of motion compensation is best-suited for narrowbeam sys-

tems and assumes all corrections are not dependent upon the target azimuth coordi-

nate, x′. The narrowbeam algorithm, which operates on range-compressed data, has

four steps.

1. The direct motion compensation begins with a slant range dependent phase

correction

exp (jω0
2

c
δr(x, r′)). (3.26)

2. Next, the drifting of targets into other range bins must be corrected. If there

is a negligible amount of slant range dependence on the deviations, such as

in a satellite platform, then the approximation δr(x, r′) ≈ δr(x) holds and a

simple range bin shift can be applied. This range shift is often coupled with the

phase correction and applied as a single multiplication step in the range-Doppler

domain by

exp (j(ω0 + ω)
2

c
δr(x)). (3.27)
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However, in cases where there is a significant amount of slant range dependence,

such as in a SAR with a wide range swath, range bins cannot be shifted. They

require a resampling which must be done with enough precision to preserve

phase information [1]. A good interpolation scheme is a multiple point sinc

interpolator [2].

3. Next, any variations of Doppler centroid are accounted for by adjusting the

center frequency of the azimuth matched filters in the range-Doppler domain to

increase the average SNR of the final image.

4. Finally, any unequal spacing due to variations in the along track velocity coupled

with a constant PRF are corrected by interpolation in the azimuth direction.

Similarly, to maintain high phase accuracy, the interpolation must be a higher-

order interpolator. This step could also be performed at the beginning of the

motion compensation process with minimal error in the results [26].

This process motion compensates narrow beamwidth SAR data, including data with

a slant range dependence. This approach makes the assumption that platform devia-

tions from the nominal track are small enough that any x′ dependence can be removed.

Unfortunately, in many situations deviations from a nominal track are large and the

motion compensation algorithm must include higher-order corrections.

3.4.2 Second-Order Narrowbeam Motion Compensation

In many SAR situations the narrowbeam approximation does not hold due

to the large magnitude of platform deviations. As discussed in the previous sec-

tion, large deviations introduce a dependence upon x′, which causes range migrating

phase errors. A common approach to deal with these situations is to decompose the

platform deviations into range-dependent (δvr(x, r′)) and range-independent (δr0(x))

components [26], [33]

δr(x, r′) = δr0(x) + δvr(x, r′), (3.28)
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resulting in what is known as a first- and second-order motion corrections. The

following algorithm operates upon range compressed data and attempts to make the

system appear narrowbeam.

1. The first step in higher-order motion compensation is to apply what is known as

first-order or bulk motion compensation. This correction, called a narrowbeam

correction [9], is a bulk phase and range bin shift with respect to a specific

reference range, r0. A commonly chosen reference range is the center of the

image. The correction is reduced down to a phase multiplication

exp (jω0
2

c
δr0r(x)) (3.29)

and a range bin shift

exp (jω
2

c
δr0r(x)). (3.30)

Both operations are typically applied as a single multiply on the range Fourier

transformed data. This correction, while not completely correct, puts the data

in approximately the correct location [34]. The idea is that when bulk deviations

are compensated, the system is reduced to a narrowbeam equivalent and that

any range migrating phase errors are considered negligible.

2. Next, after applying a range migration correction from one of the azimuth

processing algorithms, the residual motion deviations, δvr(x, r′), are applied.

The correction here is simply a multiplication of the data by the phase correction

exp (j(ω0 + ω)
2

c
δvr(x, r′)). (3.31)

If the data is slant-range dependent, the bins may also need to be resampled to

account for any range dependence.

3. Next, variations of Doppler centroid are accounted for by adjusting the cen-

ter frequency of the azimuth matched filters in the range-Doppler domain to

increase the average SNR of the final image.
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4. The final step in this algorithm is to correct any faulty PRF spacing by resam-

pling the motion compensated data in the azimuth direction. As was mentioned

in the previous algorithm, this step could have been performed at the beginning

of this algorithm.

This algorithm functions fairly well in reducing any range migrating errors that may

be introduced into a narrow azimuth beamwidth SAR system by large deviations from

a nominal track. However, in some instances the assumption that a SAR model can

be reduced to narrowbeam is not valid. It is in these cases that motion compensation

needs to be done pixel-by-pixel.

3.4.3 Widebeam MOCO

The assumption of a narrow azimuth beamwidth supports the idea that the

deviations in the broadside direction are the same for all targets in the beam. This

allows the removal of the target azimuth coordinate dependence from the deviation

function and enables easier motion compensation. Unfortunately, in cases where

a SAR has a wide azimuth beamwidth, the motion deviation may have a target

azimuth position dependence, even when platform deviations are small. This effect

is visualized in Fig. 3.2 where the target at the leading edge of the azimuth beam

requires a smaller correction than the target located at zero Doppler. In considering

a narrow beam SAR system the motion compensation procedure outlined in the

previous section above works acceptably, however in the case of a system with a wide

azimuth beamwidth the method must be modified. The following approach is used

for widebeam motion compensation.

1. In [10] the problem is approached by applying the same first-order motion com-

pensation as shown in Eq. (3.29) and Eq. (3.30). This shifts the data to an

approximately correct location, minimizing the effects of range-varying phase

error.
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2. The next step is to azimuth compress the image and apply a phase correction.

Due to the spatially varying nature of the data this correction is a target de-

pendent filter that is most efficiently applied in the two-dimensional Fourier

domain. The filter for a target at (x′, r′) is given by

H(kx′ , kr′) = exp (j2kδrv(x, r′)) (3.32)

where

2k =
√

k2
r′ + k2

x′

x = x′ − kx′

kr′
r′ (3.33)

and where δrv(x, r′) is the residual motion error after the first-order motion

correction. The primary difficulty behind this algorithm is the large amount of

computation required when dealing with a new filter for every target.

In [34], the approach is slightly modified to help improve the overall computation

time. In this modified approach, the same first-order correction is applied, but the

target-dependent phase correction is done in patches or segments rather than for each

target. The correction for an entire patch is chosen to be the correction for a target

at the patch center. All other targets in the patch need a slight phase correction, but

this can be done using an analytic expression.

3.5 YINSAR Motion Compensation

The motion compensation algorithm for BYU’s interferometric synthetic aper-

ture radar was initially developed by Richard Lundgreen in 2001. The motion of the

radar platform is determined by using two differential GPS units that sample posi-

tions at 5 and 10 Hz respectively, an accelerometer and gyros that sample at 500

and 1000 Hz, and a kinematic GPS that samples attitudes at 5 Hz. The primary

difficulties are the synchronization of the various motion data streams, the removal

of accelerometer and gyro biases, and the conversion of all different data types to

the same spatial frame. All these problems are discussed by Lundgreen [1]. Because
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YINSAR operates on a low-altitude aircraft and with a large range swath, the transla-

tional displacements are highly range dependent. These displacements, δr(x, r′), are

calculated using estimated range values from a flat earth estimate. A single nominal

track is used for the entire duration of each flight and a narrowbeam motion compen-

sation is applied to range-compressed YINSAR data. The algorithm consisted of the

following steps [1]:

1. First, the range dependent phase correction

exp (jω0
2

c
δr(x, r′)) (3.34)

is applied to all targets.

2. Next, due to the range dependent nature of δr(x, r′) an unevenly spaced inter-

polation is performed in the range direction using a cubic spline interpolation

scheme.

3. The final correction is an azimuth interpolation of the data to correct for unequal

PRF spacing. Cubic spline interpolation is used here.

The algorithm was originally written in Matlab and later translated to C. The motion

compensated images are generally improved compared to uncompensated data. As

can be seen in the images in Fig. 3.6, details become more distinct and images are

more geometrically correct. While the quality of the motion compensated images im-

prove, the motion compensated interferograms are slightly degraded. Compensated

interferograms tended to be slightly more decorrelated than the uncompensated inter-

ferograms. This suggests the need for improved motion compensation when dealing

with an interferometric system like YINSAR.

3.6 Interferometric Motion Compensation

When applying motion compensation in interferometric SAR, an accurate

phase correction is required as it has a direct effect on the height estimation. To

obtain accurate phase corrections, the terrain height needs to be exactly known;
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(a) (b)

Figure 3.6: YINSAR flight R, image 1300. (a) Before motion compensation and (b)
after motion compensation.

however, this fact reveals a circular problem because the height is what is being esti-

mated. This problem is typically approached with a flat earth estimate as in typical

non-interferometric SAR. A commonly used geometric model is two-channel interfer-

ometric SAR with one monostatic channel (transmit and receive) and one bistatic

channel (receive only). Two options are available for motion compensation for this

interferometric SAR model. The first is to motion compensate each channel to a sin-

gle reference track while the other is to motion compensate each channel to its own

reference track. Both assume each channel has the same reference height, and both

have distinct advantages and disadvantages [5] [35]. This geometric model is useful

because it allows one of the channels to be independent of the look angle and results

in an exact solution for the height estimate. The motion compensation assumed here

is a narrowbeam compensation and that consists only of a phase correction. These

assumptions make the analysis of the differential phase easy to perform and give

insightful results.

3.6.1 Single Reference Track

With a single reference track, both channels are both compensated to the same

nominal track with a single reference height. Due to a narrowbeam approximation,
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the differential phase is zero whenever the range of the target at a certain height is

equal to the flat earth range. The geometry of the single reference track is shown in

Fig. 3.7(a). The applied and ideal motion compensated phase of the two images is

(a) (b)

Figure 3.7: (a) Single and (b) double track geometry found in [5].

given as [35]

φA(applied) = −2π

λ
(2(rto − rao)) (3.35)

φB(applied) = −2π

λ
((rto − rao) + (rto − rbo)) (3.36)

φA(ideal) = −2π

λ
(2(rth − rao)) (3.37)

φB(ideal) = −2π

λ
((rth − rao) + (rth − rbh)) (3.38)

and the resulting differential phase is given by

ΦS = φA(applied)− φA(ideal)− φB(applied) + φB(ideal)

= −2π

λ
(rbo − rbh). (3.39)

As is discussed in [5], this differential phase is used to find a height estimate of the

target using known data. The height estimates found [5] by

h = H − rao cos (θ) (3.40)
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where

θ = sin−1


(

λ
2π

ΦS + rbo

)2
− b2 + r2

ao

2brao

− α. (3.41)

The main advantages to the single track approach are: first, flat earth fringes

are automatically removed from the interferogram and, second, no discontinuities are

present in the differential phase even if the nominal track is segmented over the entire

flight. Unfortunately, a single reference track increases the chance of range migrating

phase error (i.e., a dependence upon the azimuth position, x′). Any range migrating

error in either of the two images introduces a bias in the final interferogram and

causes a spectral shift in the data. An alternative to using a single track is to motion

compensate each channel to its own ideal track.

3.6.2 Double Reference Track

With a double reference track, each channel is motion compensated to its

own nominal track with both tracks having the same reference height. The same

narrowbeam approximation is also assumed in the double reference track approach,

with the differential phase being zero whenever the range of the target at some height

is equal to the flat earth range. The geometry of the double reference track is shown

in Fig. 3.7(b). As discussed in [5], the interpretation of the dual track differential

phase is similar to that of dual pass imaging except for the phase difference

Φ = −2π

λ
(rah − rbh). (3.42)

Using a similar approach to that of Eqs. (3.35)-(3.38) the applied and ideal motion

compensated phase of the two channels is given by

φA(applied) = −2π

λ
(2(rto − rao)) (3.43)

φB(applied) = −2π

λ
((rtao − rao) + (rtbo − rbo)) (3.44)

φA(ideal) = −2π

λ
(2(rtah − rao)) (3.45)

φB(ideal) = −2π

λ
((rtah − rao) + (rtbh − rbh)). (3.46)
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Adding the phase difference between the ideal tracks (Eq. 3.42) to the resulting dif-

ferential phase of the double track approach is given by

ΦS = −2π

λ
(rtao − rtbo + rbo − rbh). (3.47)

As mentioned in [5], when this differential phase is combined with known data an

exact estimate of the target height above the reference flat earth can be created. The

primary advantage to this method is its insensitivity to range migrating phase errors,

as each channel has its own nominal track which minimizes translational deviations.

Unfortunately, while reducing the amount of range-varying phase error, the dual track

method does not share the advantages of removing the flat earth phase or the ability

to handle track segmentation as does the single track approach. A combination of

the two approaches is described in [5] and [35]. It first applies motion compensation

using dual tracks to reduce range varying phase error, and after range migration

correction and azimuth compression, converts the data to a single track form by the

phase correction

φ = −2π

λ
(rtao − rtbo). (3.48)

This correction effectively motion compensates one of the channels onto the other

channel and makes the resulting differential phase similar to that of the single track.

While both single and dual track methods function well for the suggested geometric

model (with one channel bistatic, one channel monostatic), it must be modified in

the case of BYU’s interferometric synthetic aperture radar to account for both of its

bistatic channels.
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Chapter 4

YINSAR Motion Compensation

4.1 Overview

One of the primary goals of this thesis is to evaluate the effectiveness of the

current YINSAR motion compensation algorithm and make improvements upon it.

The narrowbeam MOCO algorithm prescribed by Lundgreen can be improved in its

ability to deal with high Doppler centroid variations, through either a higher-order

motion compensation algorithm or a segmented reference track, and by considering

the effects of motion compensation on a bistatic interferometric system using the

analysis of [5].

4.2 YINSAR Processing

Due to the narrow azimuth beamwidth of YINSAR and memory limitations,

a data collection is commonly processed in subimages. The first processing step is

range compression of the received radar data using a fast correlation method. Due

to memory limitations, only a segment of range compressed lines are loaded into

memory for azimuth compression, creating a smaller subimage. The final SAR image

is created by connecting together multiple subimages. A byproduct of creating a large

SAR image from many smaller images can be a light/dark periodic banding caused by

gain variations due to platform roll and the antenna pattern. If the pattern and roll

are known, a compensation can be applied [20]. Otherwise, the data is processed in an

overlap/save overlap/add method. The amount of overlap is a tradeoff between the
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amount of tolerable azimuth banding in the image and the amount of extra processing

required.

Image segmentation also needs to be considered during motion compensation.

When a single reference track is used for an entire flight, all motion corrections can be

applied to the range compressed data prior to azimuth compression. This approach

requires less computation and is typically less complicated to implement. On the other

hand, when a segmented reference track is used, motion corrections for each range line

can change with each new segment to be processed. The computation time increases

with increasing overlap between image segments during azimuth compression.

4.3 Doppler Centroid

The first area of motion compensation improvement is to make adjustments for

variations in Doppler centroid. The Doppler centroid can range from a fairly constant

value to being highly variant due to platform instability. The primary concern in

estimating the Doppler centroid is to know when azimuth spectrum aliasing occurs.

When azimuth compressed, an aliased spectrum introduces undesired artifacts into

the image. If the azimuth spectrum is unaliased, then the effects of a non-zero Doppler

centroid can be compensated for.

For YINSAR, the Range Doppler azimuth compression algorithm prescribed

by Thompson [25] limits the processed azimuth bandwidth to minimize the need for

range migration correction. A consequence of the narrowed Doppler bandwidth is

that any non-zero Doppler centroid reduces the SNR of the processed image. These

changes in SNR create dark/bright azimuth bands or strips in the final image (e.g.

Fig. 4.1). Yet, if the passband of the azimuth matched filters is increased to better

handle more variation in the Doppler centroid, then a range migration correction is

necessary.

Due to YINSAR’s narrow beamwidth and low imaging altitude, its range mi-

gration through cells is limited, but not negligible. The range migration in the current

YINSAR processing scheme is eliminated by zeroing out the higher portions of the
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(a) (b)

Figure 4.1: Azimuth Banding seen in Flights (a) 2209 and (b) 0717 due to excessive
Doppler centroid and a small azimuth passband.

Doppler bandwidth. This removes the need for a range migration correction, but leads

to lower azimuth resolution and is problematic for variations in Doppler centroid.

The YINSAR range Doppler algorithm was modified to include a range mi-

gration correction as described in Section 2.5.2. Cubic spline interpolation is used in

the resampling to help preserve phase. An example of the corrected range Doppler

data is seen in Fig. 4.2.

After correcting for range migration, the azimuth processing bandwidth can be

increased. These changes in processing produce two benefits: first, azimuth resolution
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(a) (b)

Figure 4.2: (a) Range migrated Range Doppler SAR data from flight 2209 (Note the
moon-like curvature along the vertical axis) and (b) the same data with the range
migration corrected (note the corrected curvature).

improves (e.g. Fig. 4.3). Second, light/dark azimuth banding in the final image is

reduced. However, a larger azimuth bandwidth can introduce undesired artifacts into

an image if the Doppler spectrum is aliased.

When an aliased azimuth spectrum is present, one can either limit the pro-

cessed azimuth bandwidth (as done originally) or apply a squint correction prior to

azimuth compression. This correction, with an accurate estimate of the Doppler cen-

troid, fDC , shifts an aliased spectrum back to zero Doppler. The correction applied

to range compressed data is given by the linear, range-dependent filter [6]

H(x, r′) = exp (j2πfDC(r′)x). (4.1)

For an entire image to be continuous, all the subimages must be processed with the

same squint. If the squint is large, the data may require secondary range compression

[6]. After making adjustments for a varying Doppler centroid, the next step in the

improvement of the YINSAR motion compensation algorithm is to employ higher-

order motion compensation.

4.4 Higher-Order MOCO

As mentioned in Section 3.1, large platform path deviations in SAR imag-

ing create range varying phase error. One solution is to use a higher-order motion
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Figure 4.3: Azimuth resolution in improved more azimuth bandwidth is employed.
Flight R, pass 1124, top: motion compensated with decreased azimuth bandwidth.
Bottom: motion compensated with increased azimuth bandwidth
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compensation algorithm. Of the higher-order motion compensation algorithms de-

scribed in Sections 3.4.2 and 3.4.3, the first choice is the higher-order narrowbeam

compensation which applies a second-order correction. This algorithm applies first-

order (or bulk) corrections and assumes that any residual motion error is not affected

by range migration correction (i.e., the bulk-compensated system is approximately

narrowbeam). Using data from pass 2209 of flight U over the Slumgullion slide, the

higher-order correction outlined in Section 3.4.2 was employed with the results shown

in Fig. 4.4.

(a) (b)

Figure 4.4: Flight U, pass 2209 over the Slumgullion slide. (a) No motion compensa-
tion applied. (b) Higher-order motion compensation applied using a single reference
track. Note how higher-order MOCO has degraded image quality due to the large
first-order correction created by the large platform deviations.

The most noticable issue with Fig. 4.4 is that higher-order MOCO has not

enhanced image quality. This is primarily due to the magnitude first-order corrections

which can eliminate interesting parts of the image. Also, if the ideal track is greatly

changing over the synthetic aperture, then the azimuth shifting caused by the large
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phase corrections causes breaks in the image at azimuth overlap points and produce

image distortions (Fig. 4.4). If higher-order motion compensation does not produce

desired results, a second option is to segment the ideal track.

4.5 Track Segmentation

The YINSAR motion compensation algorithm creates a single, linear (straight-

line) reference track for an entire flight using a linear least squares fit. This ap-

proach works acceptably on short flights with low amounts of motion (e.g., passes

over Wolfcreek, UT) where the δr(x, r′) measurements remain small enough that a

narrowbeam motion compensation is sufficient (Fig. 4.5).

However, in flights with longer collection times (e.g., Slumgullion slide passes),

applying a single, straight-line track to the entire flight track leads to large values

of δr(x, r′) (Fig. 4.6). The results of these large deviations are an increase in range-

varying phase error. Applying a narrowbeam correction to these data with large path

deviations results in large range bin resampling and distorted images. It is for these

types of collections that a segmented reference track may be the best option.

To maintain small deviations for the entire flight, an ideal track is created for

each SAR subimage, ameliorating the need for a higher-order correction. The problem

associated with segmenting the track is the possibility of image discontinuities. There

are two ways that a discontinuity is introduced into an image. First, they occur during

the range resampling step if the δr(x, r′) at the joining points of each subimage differ.

The discontinuities become noticeable in the images and interferograms when the

differences of δr(x, r′) between segments become large. Second, discontinuities can

occur when the the ideal track segment changes greatly from one segment to the next.

This can happen if there is significant high frequency motion. With sufficient overlap

between reference tracks is used, image discontinuities are minimized (e.g. Fig. 4.8).

4.6 YINSAR Interferometry

The final area of improvement for YINSAR is motion compensation analysis

for a dual channel, bistatic, interferometric radar. As discussed in [5], the model for
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Figure 4.5: Platform deviation from a single,straight-line reference track for pass 1124
of flight R.

Figure 4.6: Platform deviation from a single, straight-line reference track for pass
2209 of flight U.
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Figure 4.7: Flight U, pass 2209 over the Slumgullion slide with no motion compen-
sation applied.
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Figure 4.8: Flight U, pass 2209 over the Slumgullion slide with Narrowbeam motion
compensation applied using a segmented ideal track.
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most interferometric systems includes one bistatic channel and the other monostatic.

This model yields an exact height estimate of a target utilizing the fact that the

transmit and receive paths for the monostatic channel are the same. In this section

the same analysis is extended to YINSAR, which has two bistatic channels. The

same narrowbeam motion compensation assumptions apply, which are that motion

compensation only consists of a phase correction [5].

4.6.1 Single Reference Track

The assumption for the interferometric measurement model in Section 3.6.1

is that the transmit and return ranges are the same for the monostatic channel,

independent of the radar look angle. However, in the case of a bistatic channel, the

transmit and receive paths can differ depending on the baseline between transmit

and receive antennas or upon the radar look angle. Using the bistatic geometry of

Fig. 4.9(a), the applied and ideal motion compensation phase corrections of each

channel to a single reference track are given as

φA(applied) = −2π

λ
((rTo − rto) + (rTo − rao)) (4.2)

φB(applied) = −2π

λ
((rTo − rto) + (rTo − rbo)) (4.3)

φA(ideal) = −2π

λ
((rTh − rth) + (rTh − rah)) (4.4)

φB(ideal) = −2π

λ
((rTh − rth) + (rTh − rbh)) (4.5)

where rTo, rao, rbo, and rto are the ranges from the reference track, channel A, channel

B, and the transmit antenna to the reference height, respectively. Also, rTh, rah, rbh,

and rth are the ranges from the reference track, channel A, channel B, and the transmit

antenna to the actual target, respectively.

The resulting single reference track differential phase is given by

ΦS = φA(applied)− φA(ideal)− φB(applied) + φB(ideal)

= −2π

λ
((rao − rah) + (rbo − rbh)). (4.6)

In the model of Section 3.6.1, the assumption is that the path from channel A to the

actual target is the same as the path to the flat earth estimated target. While not
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(a) (b)

Figure 4.9: (a) Single and (b) double track geometries for a bistatic model.

necessarily true in this case, in this development for convenience we make the same

assumption which yields the single track differential phase as

ΦS =
2π

λ
(rbo − rbh). (4.7)

So, using the same assumptions as those in the case of a monostatic radar, a height

estimate can be found exactly as it was in Section 3.6.1. The look angle to a target

is derived using the values computed from motion compensation, rao and rbo as

θ = sin−1


(

λ
2π

ΦS + rbo

)2
− b2 − r2

ao

2brao

− α (4.8)

with the height estimate found as

h = H − rao cos (θ). (4.9)

4.6.2 Double Reference Track

As in Section 3.6.2, the main benefit of compensating each channel to its own

ideal track is to minimize any range migrating phase error. Although the YINSAR

has slightly different geometry, the same approach is taken as in Section 3.6.2 with

similar results. The resulting differential phase added to the phase difference between
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ideal tracks, 2π
λ

(rTah − rTbh), is given as

ΦS = −2π

λ
((rTao − rTbo) + (rbo − rbh)). (4.10)

As the results in [5], this differential phase does not have the flat earth removed

and is sensitive to reference track segmentation. This geometry does not have an exact

solution, but can be approximated using a range bin estimate as done in the previous

section. The only advantage to using a double track is the feature of minimizing the

range migrating phase error.

4.6.3 Application to YINSAR

For YINSAR, the single track motion compensation method is used because

of its narrow azimuth beamwidth and limited range migration. The motion compen-

sation consisted of not only the phase correction described in the previous section

but also of a range bin resampling. The resampling not only helps correct the two

images, but also coregisters them. The resulting interferograms created from the two

images are unwrapped using a Lp norm algorithm as specified in [22].

The wrapped and unwrapped interferograms of flight 1124 over Wolf Creek are

shown in Figs. 4.10, 4.11, 4.12, and 4.13. A height map created using the estimation

of Eqs. (4.8)-(4.9) is shown in Fig. 4.14.

4.7 Summary

In investigating how to improve the motion compensation algorithm for YIN-

SAR, the main areas of improvement were considerations for Doppler centroid, ap-

plying higher-order motion compensation, reference track segmentation, and motion

compensation considerations for interferometry.

Monitoring changes in Doppler centroid of a SAR image is important to know

when the azimuth spectrum aliases. When an azimuth spectrum is aliased, one can

limit the processed azimuth bandwidth or apply a squint correction. By limiting the

processed Doppler bandwidth, there is a loss of azimuth resolution yet image artifacts
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Figure 4.10: A phase wrapped, non-motion compoensated interferogram from pass
1124 over Wolf Creek, UT.
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Figure 4.11: A phase wrapped motion compensated interferogram from pass 1124
over Wolf Creek, UT. Note that by compensating both channels to a single track, the
a flat earth differential phase is removed – i.e. there are less phase fringes.
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Figure 4.12: An average-filtered version of the wrapped, motion-compensated inter-
ferotram from pass 1124.
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Figure 4.13: The phase unwrapped, motion-compensated interferogram from pass
1124.
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Figure 4.14: Height map of pass 1124 over Wolf Creek, UT. The SAR image has been
superimposed onto the height map.
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caused from the aliasing are left out. Using a constant squint, a range dependent linear

filter can be applied to the data to shift the azimuth spectra back to zero Doppler.

While higher-order motion compensation algorithms appear theoretically at-

tractive to alleviate large deviations in YINSAR, the application of such algorithms

does not enhance the imagery and at times introduce error into the images. What

proves more successful is the segmentation of the straight-line reference track into

multiple straight-line, reference tracks. This approach allows the use of the original

narrowbeam motion compensation algorithm, and improved YINSAR imagery.

When considering interferometry, the bistatic nature of YINSAR implies a

slightly different model than those of conventional models [5]. However, the modified

model produces the virtually the same results and allows for a height estimate using

the motion compensation parameters. In considering interferometric motion compen-

sation for YINSAR, a single track approach is used because of its insensitivity to a

segmented reference track.
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Chapter 5

YINSAR Operation

Although mathematical theory is fundamental to BYU’s synthetic aperture

radar, YINSAR, its operation and practical usage is also important. This chapter

summarizes the practical contributions I have made to the YINSAR program: the

implementation, testing and evaluation of other SAR processing algorithms, the ver-

ification the translation of the first-order Matlab motion compensation software into

C, maintenance of YINSAR hardware, and planning and execution of YINSAR flights

to collect data.

5.1 SAR Algorithms

One facet of the YINSAR research I have investigated is the use of other

SAR processing algorithms to see if they enable more efficient, improved motion

compensation.

SAR processing for YINSAR uses a Range-Doppler algorithm developed by

Doug Thompson [25]. One of the shortcomings of this algorithm is the limited azimuth

bandwidth required to eliminate the need for any range migration correction. As

part of my research, I investigated and implemented the Wavenumber Domain and

Chirp Scaling SAR processing algorithms to evaluate other motion compensation

methods. As described in the background section, these algorithms differ from the

Range-Doppler algorithm in that they better compensate for range migration.
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5.1.1 Wavenumber Domain Processor

The Wavenumber Domain algorithm perfectly compensates for range migra-

tion but requires computationally intensive two-dimensional interpolations [14]. In

the algorithm, the range-compressed data is first converted into the two-dimensional

frequency domain using a two-dimensional Fourier transform (see Fig. 5.1) and the

ideal matched filter for the center of the image is applied by multiplication in the

frequency domain. The effect of this matched filter is to focus the SAR image around

the center range, leaving the nearby ranges somewhat focused (Fig. 5.2). The next

step is to perform the Stolt interpolation using the expressions in Chapter 2 which

focuses the other ranges which are away from the center of the image. The final step

is an inverse Fourier transform on the data to produce the image.

A visual comparison can be made between the Wavenumber Domain and

Range-Doppler algorithms in Figs. 5.3 and 5.4. As can be seen in the figures, the

two algorithms produce virtually the same output with a few differences. First, the

Wavenumber domain processor tends to focus a little better and yield improved image

contrast. However, more undesirable image artifacts are produced in the Wavenum-

ber Domain processed image than the Range-Doppler processor. Unfortunately, the

motion compensation implemented upon the data in the two-dimensional frequency

domain is not any more efficient that the implementation in the spatial domain as is

done in the Range Doppler algorithm.

Although the Wavenumber Domain processor produced crisp, accurate im-

agery, the long computation time made it an undesirable choice of algorithm to use

for YINSAR.

5.1.2 Chirp Scaling Processor

The next SAR processing algorithm I investigated is the Chirp Scaling algo-

rithm. This algorithm adjusts the phase centers of the received chirps in order to

remove the need for interpolation [17] (which is required in both the Range-Doppler

and Wavenumber Domain algorithms). The algorithm begins with an azimuth Fourier

transform and the application of a “chirp scaling” multiplier. Next, a range Fourier
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Figure 5.1: Two-dimensional spectrum of range-compressed data. An intermediate
step for the Wavenumber Domain processor.

Figure 5.2: Image after the matched filter for the center range is applied. Note how
only the center of the image is focused.
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Figure 5.3: Sample image focused using the Wavenumber Domain processor. Note
the improved image contrast, but also more undesired artifacts as compared to same
image focused with the Range-Doppler algorithm (Fig. 5.4).

Figure 5.4: The same raw data of Fig. 5.3 is used, but the image is focused using the
Range-Doppler processor. The dark edges are artifacts of the processor.

76



transform is followed by a bulk range migration correction and range compression.

The final steps are a range inverse Fourier transform, the azimuth compression and

an inverse azimuth Fourier transform.

As seen in Figs. 5.5 and 5.6, the Chirp Scaling algorithm does not focus the

image as well as the Range Doppler algorithm. While both use the same azimuth

matched filters, the Chirp Scaling algorithm does its range compression at a different

step than the Range Doppler. In this implementation, the range compression is not

as effective as in the Range-Doppler algorithm and this results in low image SNR.

Further, it makes the undesired artifacts more apparent in the image. Although no

interpolation is required, the motion compensation requirements remain the same

and no improvements to motion compensation are made in the implementation of

this algorithm.

While this algorithm tended to process faster than either the Wavenumber

Domain or Range-Doppler algorithms, the less effective range compression and the

fact that it did not simplify motion compensation made it an undesirable choice as a

SAR processing algorithm for YINSAR.

5.2 Motion Compensation

The original YINSAR motion compensation algorithm was written in Matlab

by Richard Lundgreen in 1999. In 2001 I validated the algorithm and code and later

converted this algorithm to C in 2002 to improve computational time. The C code

performs the same operations and functions as the Matlab counterpart aside from a

couple of changes. The first difference is between the functions used to convert the

GPS latitude/longitude data to UTM. The function written by Lundgreen in Matlab

produces inaccurate UTM coordinates, which in some instances are as much as a kilo-

meter off the correct position. The C code is corrected by using the latitude/longitude

to UTM conversion function provided in the Jeeps software package [36]. This open

source software provides better UTM positions than the previous function. The sec-

ond difference is the method of removing accelerometer bias. The original code does

a direct correction of the INU position data to the GPS position, when in reality
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Figure 5.5: Image focused with Chirp Scaling. Note the lowered image SNR due to
poor range compression which leads to brighter undesired artifacts.

Figure 5.6: Image focused using the Range-Doppler processor. This image is repeated
from Fig. 5.4.
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a simple parametric, quadratic model is better [37]. The C code implements this

quadratic model with a linear least squared error fit.

5.3 YINSAR Maintenance

YINSAR was originally assembled in 1995 by Doug Thompson. Since that

time, various upgrades and maintenance operations have been performed. One of

the important upgrades I did was the installment of the new differential GPS that

uses a satellite-based differential GPS correction called the SATLOC. I installed the

hardware receiver into the YINSAR motion box and developed software to interpret

the recorded data.

Another hardware issue I addressed is the overheating A/D cards. During

many summer data collections the A/D cards in the radar would fail to collect or

miss samples due to high temperatures. The problem was corrected by installing

various computer cooling fans which helped to improve air circulation in the YINSAR

computer box and decrease the chances of overheating.

An unresolved issue is the data storage method. The YINSAR system design

contains large IDE hard drives for the collection of large SAR data sets. These

storage devices functioned exceptionally well for ground tests, but proved to be very

unreliable during actual flights. Through many flights, I diagnosed and discovered

the problem to be caused by the vibrations of the aircraft. A solution to this problem

is to replace the hard drives with solid state IDE hard drives. This has been left for

future work.

5.4 YINSAR Flights

YINSAR has been flown in many areas such as Utah (Logan, Provo, and Wolf

Creek) and Colorado (Slumgullion Slide). In most cases, the flight path chosen by the

pilot is flat (i.e. at a constant altitude); however in some collections (such as those

over the Slumgullion slide), the flight path must be chosen to follow the topography.

For instance, for the Slugullion slide flights, this requires descending passes. This

tilted flight path complicates processing and requires the processing to be adapted
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to handle the slanted path. I modified Doug’s Range-Doppler processing and motion

compensation to handle this case.

The planning and logistics for a flight represent a significant effort. I planned

eight flights and operated the instrument on four of them. A primary responsibility

of the radar operator is to estimate the range gate of a flight before collection. It

is important that the range gate is set to a correct value and is typically estimated

using a rough estimate of the radar above the ground. If the range gate is set too

low, much of the image is blank. On the other hand, if the it is set too high, then

the final image SNR is too low. Future plans include a method to estimate the range

gate for a flight automatically.

After the data from the flights are collected, an archive of the data is created on

9mm and DLT tapes and both stored in the BYU ECEn storage vault. I have created

an extensive inventory of all the SAR images from all the collections by YINSAR up

until January of 2003. The inventory consists of the images processed with YINSAR

Range-Doppler code, the motion compensated images (if available), and a basic plot

of the GPS motion data for the flight. Imagery of the various flights are archived on

the BYU MERS web page.

5.5 Summary

While the theory of synthetic aperture radar has an important place in the de-

velopment of YINSAR, so do many of the practical details. Some important contribu-

tions to YINSAR has been the implementation of various SAR processing algorithms,

the translation of the Matlab motion compensation code into C, the maintenance of

YINSAR hardware, and planning YINSAR flights.
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Chapter 6

Conclusion

Synthetic aperture radar (SAR) imaging is a useful tool in many applications.

Since SAR data processing typically assumes a straight-line flight path, motion com-

pensation is often required to improve imagery. The motion compensation algorithms

appropriate to a SAR processor depend upon the radar imaging system. SAR sys-

tems with a narrow azimuth beamwidth and that experience small amounts of flight

motion can use first-order or narrowbeam motion corrections, while systems that have

a large azimuth beamwidth require more complex, widebeam corrections.

Although sufficient for short flights with small motion, the YINSAR narrow

beam motion compensation algorithm developed by Lundgreen fails for long flights

or with flights that have large deviations. These cases must be corrected by a higher-

order motion compensation algorithm or by using a segmented ideal track.

Unfortunately, the higher-order motion compensation proves to be either too

computationally costly or eliminates interesting parts of the image due to resampling

with a large range error. A segmented ideal track procedure, where the ideal track is

locally fit to each data segment, minimizes deviations from the ideal track and allows

the use of a narrowbeam motion compensation algorithm to improve final images.

When dealing with motion compensation in interferometry, it becomes a ques-

tion of whether the two channels are compensated to a single ideal track or whether

each track should be compensated to its own reference track. While perhaps more

susceptible to range varying phase error, the compensation of the channels to a single

track is better of the two methods because of its insensitivity to an ideal track seg-

mentation. Of the two methods, compensating to a single track is used for YINSAR
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because of its narrow azimuth beamwidth and use of segmented ideal track on longer

flights.

6.1 Contributions

The contributions made through this research are:

• A matlab to C translation of the motion compensation algorithm developed by

Lundgreen.

• Improved understanding of the effects of motion on synthetic aperture radar

and higher-order motion compensation.

• Analysis of the effects of Doppler centroid on YINSAR and correction methods.

• Research into the effects of motion compensation on a bistatic, interferometric

SAR system.

• YINSAR data collection and maintenance.

• Research into the use of a segmented ideal track in YINSAR.

6.2 Future Work

Suggested future work in the area of SAR motion compensation for YINSAR

include:

• The design and implementation of a real-time motion compensation system for

YINSAR.

• Improving the estimation of platform motion by using the raw data and the

RDM and roll estimation techniques found in [32] and [38].

• Investigate techniques to improve YINSAR interferogram correlation using tech-

niques such as Spectral Diversity [39]

• Using improved motion compensation and interferometry, investigate differen-

tial interferometry.
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• Create improved SAR processing by implementing the wavenumber domain,

and chirp scaling algorithms in a lower level programming language, such as C.

• Apply the described motion compensation methods to continuous-wave (FM-

CW) SAR.
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