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ABSTRACT

The Backus Gilbert Inversion (BGI) technique and the Scatterometer
Image Reconstruction (SIR) algorithm are investigated as methods to create en-
hanced resolution images. The methods offer similar resolution but SIR is com-
putationally much more efficient. SIR processing times are one-twentieth of the
BGI times. SIR is applied to Special Sensor Microwave/Imager (SSM/I) data to
create images of the Amazon Basin. Using these SIR images, a method to re-
move atmospheric distortion from single pass images is developed. This method
uses the single-pass SIR images to generate composite images representing the
surface brightness temperature without small-scale, temporal distortion caused by
clouds or precipitation. The utility of the composite images is illustrated through
a vegetation discrimination study similar to studies completed with scatterometer
images. The SSM/I algorithms discriminate correctly approximately 60% of the
time. Other suggested uses of the composite images include multi-sensor vegetation
studies, cloud and precipitation detection, and cloud and precipitation parameter
extraction.
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CHAPTER 1

INTRODUCTION

Microwave radiometers are electromagnetic receivers which measure ra-
diation in the frequency band of 1-300 GHz. These devices were originally devel-
oped in the 1930’s to study the microwave radiation produced in space [1]. The
basic principle behind radiometry is that all matter emits electromagnetic radi-
ation. The amount of emission depends on the matter’s molecular composition,
temperature, and geometric structure. Radiometers, therefore, are like very sensi-
tive cameras that do not take pictures of the optical electromagnetic frequencies,
but at much lower electromagnetic frequencies.

In the late 1950’s scientists began to use microwave radiometers in ter-
restial studies. Microwave frequencies are particularly useful because they have
a penetrating ability that optical frequencies do not have. They can more easily
penetrate cloud water and atmosphere than other frequencies. In addition, they
make measurements both day and night, thus offering 24 hour coverage. For this
reason, radiometers have been placed on truck platforms, planes, and eventually
satellites in order to learn more about the Earth.

Microwave radiometers are a very important means to ascertain geo-
physical information about the Earth. Global studies require measurements taken
over large areas of the earth. For that reason, most radiometers have been de-
signed to gather accurate measurements using relatively low resolution. These
studies include atmospheric profiling over areas of constant background emission
such as the ocean. Other studies include large area soil and plant moisture content
[2, 3] and surface temperature measurement [4]. The low resolution, however, has
discouraged the application of microwave radiometers in many studies.

Most spaceborne microwave radiometers have poor resolution when com-
pared to other spaceborne sensors. The smallest resolvable area that most radiome-
ters can detect is approximately the size of their antenna pattern on the Earth.
These patterns are generally 20 to 150 km elliptical shapes called sensor footprints.

In contrast, spaceborne optical sensors have resolution as fine as 10 m. In order to
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overcome this low resolution, enhanced resolution reconstruction techniques have
been developed and applied to microwave radiometers.

Enhanced resolution images are advantageous over raw data because
they are able to extract features and boundaries smaller than the sensor footprint.
Two such algorithms are the Scatterometer Image Reconstruction (SIR) technique
[5, 6] and the Backus Gilbert Inversion (BGI) method [7, 8]. Part of this thesis will
report on results of simulating, comparing, and evaluating these two algorithms as
they pertain to land studies over the Amazon basin, showing that the radiometer
data may be applied to vegetation studies.

In addition to having low resolution, spaceborne microwave sensors are
adversely affected by cloud and precipitation interference. Although this interfer-
ence is less than that experienced by optical sensors, the radiometer-derived images
may still contain unwanted atmospheric artifacts which prevent the extraction of
geophysical parameters. The second part of this thesis presents methods for re-
moving the atmospheric distortion which increases the utility of the final images
for gathering geophysical information about the Earth’s surface. The data for this
study was obtained from the seven frequency microwave radiometer known as the
Special Sensor Microwave/Imager (SSM/I).

The contributions of this research are: (1) a qualitative comparison
of SIR and BGI as applied to microwave radiometer data, (2) an application of
SIR and BGI to Amazon basin imagery, (3) an objective atmospheric distortion
removal method, (4) an appropriate method for combining radiometric SIR images
to generate a surface mapping without atmospheric effects, (5) a study of the
enhanced radiometric data for vegetation discrimination over the Amazon, and (6)
a comparison of radiometer and scatterometer based vegetation discrimination.

Chapter 2 contains a brief introduction of microwave radiometry, the
SSM/I, and resolution. Chapter 3 provides a detailed evaluation and compari-
son of SIR and BGI. Chapter 4 uses the enhanced resolution images to produce
cloud-free “base” images of the Amazon. Chapter 5 applies the base images to
study vegetation discrimination over the Amazon basin. Finally, conclusions and

suggestions for further research are given in Chapter 6.



CHAPTER 2

BACKGROUND

2.1 Introduction

This chapter introduces the basic theory behind microwave radiometry
and its application in spaceborne remote sensing. This chapter is not intended
to be a full discussion of blackbody and radiative transfer theory, but it provides
enough information to acquaint the reader with these theories for this thesis. Fol-
lowing that discussion, the chapter describes the effect of antenna patterns on
radiometric measurements. This will lead to a discussion of the Special Sensor
Microwave/Imager data used in this research and to a description of the geograph-
ical area of interest—the Amazon Basin. Lastly, to prepare the reader for following

chapters, a brief review of image reconstruction and image resolution is presented.

2.2 Microwave Radiometric Theory

According to Plank’s law, all matter emits energy in the form of electro-
magnetic radiation. In radiometric terminology this radiation is called brightness.
The basic theory behind radiometric brightness is the blackbody radiator. Classi-
cally, a blackbody is defined as a perfect radiative absorber. In other words, any
frequency and amount of radiation incident upon the material is absorbed by the
molecules of the material. This energy absorbtion increases the temperature of
the blackbody. The blackbody also acts as a perfect emitter. Plank developed an
equation for the energy emitted (brightness By) by a blackbody,

A . (2.1)

2 |erf/FT — 1

where the energy (in Ws™'m~2Hz7!) is a function of Plank’s constant (%), Boltz-
man’s constant (k), the speed of light (c), radiative frequency (f), and absolute
temperature (T). Since the brightness is a function of temperature, the body which

emits energy is often described by its brightness temperature.



A non-ideal material is known as a greybody because it does not act like
a perfect (black) absorber/emitter. All real substances are greybodies. Scientists
have defined a quantity called emissivity as a measure of how close a greybody is
to being a blackbody. Emissivity is the ratio of actual radiated power from the
greybody (By) over the theoretical power emitted by a blackbody (Bys) at the
same temperature (Eq. 2.2).

By,

e= B—‘Zb (2.2)
The emissivity of materials range from close to zero to almost unity. This differ-
ence in emissivity allows the radiometer to distinguish between different types of
materials. In addition, although emissivity is non-polarized, the radiated power
may be polarized due to the geometry of the radiating substance. This provides
another method of distinguishing between different materials such as vegetation
types.

A basic diagram of how a remote sensing spaceborne radiometric mea-
surement is obtained is found in Figure 2.1. The figure illustrates the major con-
tributions to measurements made by a spaceborne radiometer. First, there is
upwelling radiation from the ground. This radiation is scattered and/or attenu-
ated by vegetation, clouds, and precipitation. Some of the radiation is reflected
back down by the vegetation or atmospheric conditions. Second, the clouds and
vegetation also emit their own radiation both toward the radiometer and toward
the ground. Third, the brightness of outer space contributes to the radiometric
measurement in a lesser degree for downward looking radiometers. Thus, decom-
posing the observed energy into the various contributions is theoretically difficult
to accomplish except under many simplifying assumptions. The most crucial fac-
tors affecting a radiometric measurement, however, are the surface emissivity, the
vegetation canopy, and the atmospheric conditions. A more complete description

of radiative transfer theory is found in [1].

2.3 Effect of Antenna Pattern on Brightness Measurements

The radiometric measurements are a function of the scene and the ra-
diometer antenna pattern. Without atmospheric or vegetation distortion, a radio-

metric measurement can be modeled as a product of the surface brightness and
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Figure 2.1: Radiative Transfer Measured by a Spaceborne Radiometer. Total
Energy of Radiometer = Sum of Contributions with Attenuation and Scattering.




the antenna pattern. For example, a measurement T is obtained about a point
(2.,9,) by integrating the surface brightness response k,(z,y) (Km™?) of that spot
with the antenna pattern G(z,y):

T, = —G%//G(:c,y)ho(:c,y)d:cdy, (2.3)

where

G, = //G(m,y)dwdy.
These integrals are usually calculated over the non-negligible area of the antenna
pattern. The antenna pattern is usually characterized by its half power limits.
This characterization is known as the footprint. Radiometric footprints generally

have an elliptical shape on the surface of the earth due to the elevation angle of

the radiometer. (See Figure 2.2).

SENSOR

3-dB BEAMWIDTH

ANTENNA PATTERN
SURFACE _ - . PROJECTED ONTO

.y K / THE SURFACE
PROFILE VIEW e =
TOP VIEW

) SENSOR

3-dB FOOTPRINT

Figure 2.2: Radiometric Antenna Footprint from [6)].

In addition, antenna patterns have sidelobe contributions. These con-
tributions are neglected in this thesis since they are negligible for the microwave

instrument used. A more extensive description of the radiometer data used in this

thesis follows.



2.4 The Special Sensor Microwave/Imager (SSM/I)

This thesis discusses use of radiometric data from the Special Sensor
Microwave/Imager (SSM/I). The SSM/1is part of the Defense Meteorological satel-
lite Program (DMSP) funded by the Navy and Air Force [9]. The goal of the
program is to retrieve geophysical mappings on a global scale. These include cloud
liquid water content [10], precipitation retrieval [11], snow cover classification [12],
and surface temperature measurement [4]. To gather this data, the military has
launched three of these instruments into space, although only two are currently
operational. The spacebased platforms have a near-polar orbit at about 833 km
height and a period of 102.0 minutes. The swath width is approximately 1400 km
resulting in global coverage every three days. Figure 2.3 illustrates the basics of
the SSM/I coverage (from [9]).

The SSM/I is a total-power [1], seven channel, four frequency radiome-
ter. The channels consist of the horizontal and vertical polarizations of 19.35,
22.23, 37.0, and 85.5 GHz with the exception that no 22.23 GHz h-pol is avail-
able. (For the SSM/1, horizontal polarization is when electric field is parallel to the
Earth’s surface, vertical polarization is perpendicular.) The 3dB footprints range
from about 15-70 km in the along-track direction and 13-43 km in the cross-track
direction. The antenna patterns are found in [9]. The measurements are made
with an integrate-and-dump filter ranging from times of 3.89 ms for the 85.5 GHz
channels to 7.95 ms for the other channels. The spatial distribution of these an-
tenna pattern changes along the swath scan and begins to overlap at the edges
of the 102 degree scan. (See Figure 2.4). Table 2.1 contains the basic channel
information. Additional information is available in [9].

The SSM/I data used in this thesis comes from September, 1992. It
was made available through the Brigham Young University’s Microwave Earth Re-
mote Sensing Group (MERS) who received it from Remote Sensing Systems, Santa
Rosa, CA. The data was extracted from 8 mm tapes provided by Remote Sensing
Systems and then processed on the MERS VAX workstations. Low level process-
ing used software provided by Remote Sensing Systems [13] to extract brightness
temperature measurements, their locations, and their time stamps from the raw

tape data.
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The upper left group represents the spatial sampling of the midswathi measurements
and the other groups the spatial sampling of angles from the center of the swath. The
A and B scans correspond to the 85 GHz channel.



| SSM/I Channel Data |

Channel (GHz) | Pol. | IF Pass. (MHz) | 3dB Footprint | 3dB Footprint
Along-trk km | Cross-trk km
19.35 Vv 10-250 69 43
19.35 H 10-250 69 43
22.235 \Y 10-250 50 40
37.0 v 100-1000 37 28
37.0 H 100-1000 37 29
85.5 A% 100-1500 15 13
85.5 H 100-1500 15 13

Table 2.1: SSM/I Channel Data.

2.5 Description of the Amazon Basin

The SSM/I images in this thesis come from measurements retrieved
over the Amazon Basin. This thesis focuses on this area for several reasons. First,
previous microwave sensor studies have used the area [5]. Second, the Basin has
large areas of densely vegetated land that has little seasonal variation, making the
brightness mappings of the area more consistent. Lastly, the scientific community
is interested in the Amazon for global warming and deforestation studies.

This thesis defines the geographical area of the Amazon Basin as the
area extending from 80° W to 33° W longitude and 24° S to 7° N latitude (see
the box in Fig. 2.5). As seen in the map, the area covers Brazil, Bolivia, Peru,
Paraguay, as well as parts of Colombia, Venezuela, and Guyana. The majority of
the surface consists of rainforest, savanna, and deciduous woodland, thus causing a
spatial variance in radiometric brightness. These differences are discussed in more
detain in Chapter 5. Some images also come from a subset of this area covering

the Amazon Delta. This area is defined by a 15° square region whose Southwest

corner is 8° S and 60° W.

2.6 Image Processing

The goal of this work was is to produce high resolution SSM/I images
of the Amazon Basin and then analyze them to show their use in geophysical
parameter extraction. Before discussing the image reconstruction techniques in

the next chapter, it is prudent to review a few concepts about image processing
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Figure 2.5: Amazon Basin Area: 80° W - 33° W, 24° S - 7° N.

and define the terminology used in this thesis. The terminology and notation will
be consistent with image processing texts such as Jain [14].

Images are created from raw data through the process of image recon-
struction. I define image reconstruction as the creation of two dimensional images
from vector stored brightness temperatures and locations. For example, a simple
reconstruction method would simply fill pixels covered by measurements. The res-
olution is then the size of the measurement footprint. Although other researchers
have defined resolution differently [6], I use the more traditional definition that
image resolution is the smallest intelligible non-artifact in an image [14]. This
research investigated the use of two reconstruction algorithms that achieve better

resolution than simple averaging (2, 5.

11



It is important to note that I did not develop new image reconstruction
algorithms but instead attempted to verify and compare the algorithms being used
in SSM/I processing (Chapter 3). These images were then used in geophysical
research (Chapters 4 and 5) of the Amazon Basin.

12



CHAPTER 3

SIMULATION COMPARISON BETWEEN THE BGI
AND SIR ALGORITHMS

3.1 Introduction

This chapter compares and validates the Backus-Gilbert Inversion meth-
od and the Scatterometer Image Reconstruction algorithm applied to radiomet-
ric data. The Backus-Gilbert Inversion technique has previously been applied to
SSM/I data [7, 8, 15] and the Scatterometer Image Reconstruction algorithm (SIR)
has been applied to Seasat Scanning Multichannel Microwave Radiometer data [6].
This chapter applies both algorithms to SSM/I data, thus providing the first com-
parison of the two algorithms’ strengths and weaknesses in reconstructing images
from the same microwave instrument. This comparison focuses on characteristics
of images from the Amazon Basin, especially feature edge clarity and overall image
quality.

Both simulated and actual data sets are used to compare the algorithms.
The simulation data set imitates a characteristic background brightness surface of
the Amazon Basin. This surface is sampled at approximately the same spatial
density as the SSM/I measurements. To improve the simulation, I analyzed both
noiseless and noisy simulations using statistical data collected near the Amazon
Delta region. To conclude, actual data from the SSM/I was used in each algorithm.

It is found that the two algorithms yield similar resolution images, but
that SIR is much more computationally efficient than BGI. SIR is over twenty
times faster and requires much smaller input files. SIR is also superior since it
does not require user specified parameters to reduce noise as does BGI.

The chapter contains four main sections: a brief discussion of the imag-
ing algorithms, a report of the simulations, an application of the algorithms to
SSM/I data over the Amazon Basin, and conclusions derived from the simulation
and SSM/I application.

13



3.2 Description of Imaging Algorithms

Enhanced resolution imaging increases the value of microwave data.
Basically, the images aid extraction of geophysical parameters that are hidden
in the lower resolution raw data. Resolution enhancement accomplishes this by
recovering the sensor information between sample measurement centers. The next

sections describe two methods of creating the enhanced resolution images.

3.2.1 The Backus-Gilbert Inversion Method

The Backus-Gilbert Inversion (BGI) algorithm is a correction technique
which uses an inversion method for solving integral equations [16]. In this case
the algorithm is used to determine surface brightness from integrated, overlapping
antenna patterns. Several authors such as Robinson et al. [7], Farrar et al. [8], and
Poe [15] have used this algorithm successfully to adjust the resolution of Special
Sensor Microwave/Imager (SSM/I) to either higher or lower resolution for the use
of multichannel surface studies. The simulations described in this report qualify
these results and compare them to SIR.

The BGI algorithm creates a weighted least squares estimate image. Its
basic operation is to retrieve the actual surface/atmosphere brightness temperature
from the brightness temperature seen by the radiometric antenna. The algorithm
inputs include: the measured antenna brightness temperatures, T,(r;); the antenna
gain patterns for those measurements, G(r,r;); and the location of the measure-
ments, r;. The algorithm then outputs a matrix of pixel values corresponding to
an estimate of the actual brightness temperatures, T;(r;). The relation between
the observed antenna measurements, T,(r;), and the actual surface brightness tem-
perature spatial distribution, T3(r), is found by integrating the antenna pattern
over the distribution of surface brightness temperatures, T;(r), as in the following

equation:
To(rs) = / G(ryr:)Ty(r)dA (3.1)

To reconstruct the desired Ty(r;) values, the algorithm assumes that the actual

brightness temperature may be obtained through a linear combination of N nearby
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antenna brightness temperatures. That is:

Tb(rj) = ;a,—Ta(ri) (32)

Combining the equations above yields:

Ty(r;) = / [f:a,-Gi(r,r,»)J Ty(r)dA (3.3)

i=1
The solution to the equation may be found if the linear combination coefficients a;
are determined. Unfortunately, given a finite number of samples there is no unique
solution. The goal, therefore, is to find the combination of a; which minimizes error
without over-amplifying noise. The solution to this problem is found from a mean
square minimization with additional regularization terms included to reduce the

noise amplification (the details are in [16]). The solution is:

1-uTZ vcos

a; = Z71 [vcos7+ u T7-1q 7 (3.4)
where
w = / G(r,r:)dA (3.5)
1

v, = / G(r,ro)-dA (3.6)
Z;; = Gijjcosy+wATsinv6;; (3.7)
G,‘j = /G(T,T,‘)G(T,T‘j)d/‘l (38)

and « is a subjectively chosen tuning parameter to control the effect of the noise
variance term, (AT)?. The parameter w makes the two terms of Eq. 3.7 dimen-
sionally compatible. This study uses w = 0.001 as did the study by Robinson, et
al. [7]. Further information concerning the algorithm’s parameters may be found
in [7] and [15].

As implemented in this thesis, another key input to the algorithm is
a antenna pattern expansion integer called NSIZE. This parameter increases the
number (N) of antenna brightness temperature measurements used in the bright-
ness temperature estimation (See Eq.3.2). If NSIZE equals zero then the predicted

brightness of a pixel will be computed using only the measurements whose antenna
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patterns overlap the desired pixel. If NSIZE is an integer greater than zero then
any measurement which extends within NSIZE pixels of the desired pixel will also
be used. In Figure 3.1, the solid line represents the antenna pattern of a mea-
surement which would always be used in the linear combination since it overlaps
the desired pixel. The dashed box represents the antenna pattern of a brightness
measurement which does not directly overlap the desired pixel, but is included in
the linear combination if NSIZE=2 since it lies within two pixels of the desired
pixel. (See Figure 3.1.) The NSIZE parameter has a large effect in simulation as

will be seen later in this chapter.

Touching Antenna Pattern if

Touching Anfenns Patiern / NBIZE =2

\

l = = Desired Pl
[ p— Brightness

Figure 3.1: Antenna Patterns Included in Linear Combination: Solid Line Always
Included, Dashed Line if NSIZE=2.

3.2.2 The SIR Algorithm

The second imaging method used in this thesis is known as the Scat-
terometer Image Reconstruction algorithm or SIR [17]. The algorithm, originally
designed to produce scatterometer images, produces radiometric images by using
an iterative procedure and an initial brightness estimate. The procedure is non-
linear and depends on the antenna pattern dimension and shape for its resolution.

The SIR algorithm is a variation of the multiplicative algebraic recon-
struction technique (MART), a maximum entropy reconstruction. MART uses a

predicted value of brightness temperature of each measurement and compares that
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to the actual measurement. A new prediction is then calculated using a scale factor
from the ratio of the forward projection and the actual measurement. As itera-
tions continue, the scale factor approaches unity and the pixel value is determined.
The detailed derivation for scatterometer data is found in Long et al. [5] and its
adaptation to radiometer data in Davis [6].

As mentioned in Davis [6], several other options are applied to help
stabilize SIR and reduce noise. One of these options is a modified version of
SIR known as SIRF. SIRF stands for Scatterometer Image Reconstruction with
Filter. As implied in the name, the algorithm is basically the same as the SIR
algorithm with the exception of a 3 x 3 edge preserving filter defined in [6] which is
applied between iterations. This filter helps reduce noise effects but also decreases

resolution enhancement.

3.3 Simulation

This section describes the simulation used to compare BGI and SIR.
First, it describes the simulation image. Second, it outlines the method to gener-
ate simulated antenna measurements. Third, non-enhanced images are discussed.
Lastly, noise-free and noisy simulation results are presented for BGI and SIR (and

SIRF).

3.3.1 The Simulation Brightness Surface

The synthetic simulation image (see Fig. 3.2) is 60 x 60 pixels in size.
The figure has features similar to those seen by radiometric data over the Amazon.
The features include a 270 K “river,” 295 K “dry spots,” and a pyramid-like
increasing feature. The background temperature is set at 285 K, similar to the
average temperature from raw SSM/I data over the Amazon. The feature sizes are
also significant since they are smaller than the artificial antenna pattern used to

sample the surface. The next section discusses the antenna pattern.

3.3.2 Noise-Free Simulated Antenna Measurements

Synthetic brightness measurements are extracted from the simulated

surface by sampling the surface using an artificial antenna pattern. This antenna
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Figure 3.2: Large Simulation Test Image (The Antenna Pattern is Slightly Bigger
than One of the Squares in Upper Left Corner).
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pattern (Fig. 3.3.2) is a 7 x 7 pixel grid with a roll off gain in the 5 x 5 center.

The non-normalized pattern gain follows the equation

640 39)
2+ Vi + 57 '

Large Simulation Antenna Pattern
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Figure 3.3: Simulated Antenna Pattern for Large Simulation.

where the parameters i and j are the distances in pixels from the center of the
antenna pattern.

The simulated measurements are extracted from the simulated surface
by shifting the antenna pattern throughout the image and integrating the product
of its overlap with the simulated surface (see Eq. 3.1). The sample spatial density
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of the synthetic image is set so that only one row of non-zero pixel gains overlap
between samples. This is similar to the overlap of SSM/I data [9]. The antenna

pattern output samples serve as the noise-free simulation data.

3.3.3 Noisy Simulated Antenna Measurements

Additional simulations include noisy data. The SSM/I has two main
sources of noise: instrument noise and atmospheric distortion. Instrument noise
is treated in this chapter while Chapter 4 treats the atmospheric distortion. To
study the instrument noise, raw SSM/I measurements from a fairly uniform sur-
face background of the Amazon Basin were examined. By using an area with little
surface type variation, this study isolates the SSM/I measurement noise from vari-
ations caused by spatially changing brightness. Table 3.1 contains the resulting
measurement statistics. As one may see, the average brightness temperature is
in the mid 280 K range while the standard deviation is generally less than 1 K.
The noisy simulation uses 1 K as its standard deviation as a measure of the noise

distribution.

Channel | Ave T}, (K) | 0 (K) | Max (K) | Min (K)
19.35 GHz V 288.3 1.06 291.5 285.6
19.35 GHz H 287.6 1.05 290.5 284.3
2223 GHz V 287.0 0.53 290.3 284.0
37.00 GHz V 284.1 0.76 287.0 2814
37.00 GHz H 283.7 0.91 286.4 280.7
85.50 GHz V 286.2 0.33 289.4 282.5
85.50 GHz H 286.0 0.94 289.4 282.0

Table 3.1: F10 SSM/I Data Summary from —55° to —52° E , 0 to 3° N, September,
1992.

Independent and identically distributed noise is added to the measure-
ment readings by adding a Gaussian random variable with standard deviation of
AT = 1K to each simulated antenna power reading. Actual SSM/I data may
have noise correlation between adjacent measurements due to atmospheric effects.

Atmospheric effects are treated in the following chapter.
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3.3.4 Enhanced Resolution Reconstruction

SIR and BGI are called enhanced resolution reconstruction algorithms
because they create images with resolution smaller than the raw measurement
footprints. It is important to note that the algorithms do not modify or “enhance”
existing low resolution images, but instead reconstruct enhanced resolution images
from the raw data.

To illustrate an image created from the raw measurements without res-
olution enhancement, Figure 3.4 shows an example of a non-enhanced, noise-free
reconstructed image. The smallest features in the reconstructed image are the
size of the sensor footprint since the algorithm directly plots the sensor brightness
temperature for each measurement. The reader is referred to [17] for an expanded

discussion of enhanced and non-enhanced reconstruction.

3.3.5 Noise-Free Simulation Results

The noise-free simulation results for BGI and SIR are given in Figs. 3.5
to 3.8. Overall, both algorithms offer similar results though SIR is subjectively
superior in reconstructing the spots of the upper left corner. They both track the
course of the dark river and illustrate the “pyramid” pattern of the upper right
corner. They each fail, however, to accurately reconstruct the proper width of the
river and to clearly detect the “dry” spots in the upper left side. The most obvious
difference between SIR and BGI is in their responses to the river’s edge. The BGI
algorithm tends to cause more high wavenumber artifacts than SIR. These artifacts
increase in number as the BGI NSIZE parameter is increased (compare Fig. 3.5
with Fig. 3.7). While these high wavenumber artifacts are undesirable, the higher
wavenumber content also seems to aid BGI to a more accurate representation of
the “pyramid” pattern. Thus, there is a trade off between SIR and BGI in the
number of high wavenumber artifacts vs. the high wavenumber content of the
image.

To try to reduce the BGI artifacts, the noise parameter 4 is changed
from zero to m/4. The algorithm’s noise variance parameter, (AT)?, is set at 1 K
and the w at 0.001 even though the measurements are noise-free. The results are

in Figure 3.9. As one may see, the noise parameter has little to no effect when
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Figure 3.4: Non-Enhanced Reconstruction: Simple Measurement Plotting.
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Figure 3.5: Noiseless BGI Results with NSIZE=0.
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Figure 3.6: Noiseless BGI Results with NSIZE=2.
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Figure 3.8: Noiseless SIR Results.
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operating on noiseless data. Therefore, it is apparent that the high wavenumber
artifacts are inherent to the BGI algorithm. Since v is a noise control parameter,
additional simulations on the noise-free data are not performed.

Similarly, to improve the “pyramid” feature with the SIR image, SIRF is
applied instead of SIR. Recall that SIRF applies a median filter between iterations
so that smoother figures are generated. The result is in Figure 3.10. The resulting
image does do a better job in reconstructing a smoother “slope” than the SIR image
does. SIRF, however, sacrifices resolution. The resolution decrease is illustrated
by the disappearance of the upper left bright spots. The resolution decrease, thus,
makes SIRF an inferior algorithm for noise-free data.

To objectively compare the algorithms, consider the tabulated root
mean square error (RMSE) between pixel values of the reconstructed images and
the truth image (see Table 3.2). This table shows that objectively, SIRF is the best
algorithm with SIR as second best. The difference, however, is not large enough
to warrant the subjective loss in resolution caused by SIRF. The SIR and BGI er-
rors are nearly equivalent supporting the subjective judgement that the algorithms

offer similar resolution.

| Root Mean Square Error in Noise-Free Reconstruction |

| Algorithm | NSIZE | v | RMSE (K) |
SIR - - 2.57
SIRF - - 2.49
BGI 0 0 2.72
BGI 2 0 2.60
BGI 4 0 2.61
BGI 0 | /4 370

Table 3.2: Root Mean Square Error Between Noise-Free Reconstructed Images and
Truth Synthetic Image.

3.3.6 Noisy Simulation Results

The results of the noisy simulations are found in Figures 3.11 through
3.19. These images are first contrasted to their counterpart noise-free simulation

and then compared among reconstruction algorithms.
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Figure 3.9: Noiseless BGI Results with NSIZE=0 and v = 7 /4.
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The first three of these images (Figs. 3.11 - 3.13) are noisy reconstruc-
tion counterparts of the noise-free simulation images when NSIZE is varied from
zero to four (see Figs. 3.5 - 3.7). Asin the noise-free simulation, the greater NSIZE
parameter tends to increase high wavenumber content. This high wavenumber con-
tent, however, is almost negligible compared to the noise level of the image. To
decrease the noise level, the noise parameter v is varied between zero and #/2.
To understand the effect of 7, consider the fact that when it is equal to zero the
algorithm takes no action to reduce noise. On the other hand, when v = /2 then
the algorithm does not try to enhance resolution, but instead simply averages the
antenna measurements which “touch” each pixel. The optimal choice of v depends
on the data being used [8] [15] and will not be discussed in this thesis. The results
for this simulation are found in Figures 3.14 - 3.17 (all use NSIZE=0). The fig-
ures show that the greater v value decreases noise to a slight degree. The largest
change is between 37 /8 and 7/2. This also is the step where resolution decreases
the most. Thus, BGI has a large trade off between resolution and noise reduction.

Figures 3.18 and 3.19 contain the noisy results of SIR and SIRF respec-
tively. SIR shows “checker-board” noise. The “checker-board” noise shows that
the SIR results depend highly on the spatial-sampling density of the simulation.
Since each measurement has only a single pixel overlap with each adjacent mea-
surement, SIR is unable to perform a spatial averaging. The SIRF algorithm is
able to perform the averaging but, again, also eliminates any chance of recovering
small resolution spots. This is unsatisfactory because the spots may be recovered
from an ensemble of enhanced resolution images. The methods to combine images
is discussed in Chapter 4.

A comparison of the RMSE between the algorithms indicates that SIRF
is the superior method for noisy data (see Table 3.3). The RMSE, however, is
nominally the same among all algorithms. Therefore, the images are subjectively

classified as having similar resolution.

3.3.7 Computational Differences Between SIR and BGI

Although SIR (SIRF) and BGI offer similar resolution, SIR is computa-

tionally less intense than BGI and is, therefore, much faster and uses less memory.
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Figure 3.13: Noisy BGI Results with NSIZE=4 and v = 0.
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Figure 3.14: Noisy BGI Results with NSIZE=0 and y = /8.
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Figure 3.15: Noisy BGI Results with NSIZE=0 and v = 7 /4.

35



Lot

NR)

(&S]

™)
(N
~
@)

Lon

Figure 3.16: Noisy BGI Results with NSIZE=0 and v = 37/8.
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Figure 3.17: Noisy BGI Results with NSIZE=0 and v = 7 /2.
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Figure 3.18: Noisy SIR Results.
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| Root Mean Square Error in Noisy Reconstruction |

[ Algorithm [ NSIZE | v | RMSE (K) |
SIR - - 2.86
SIRF - - 2.62
BGI 0 0 2.88
BGI 2 0 2.83
BGI 4 0 2.85
BGI 0 | 7/8 2.73
BGI 0 7 /4 2.70
BGI 0 | 37/8 584
BGI 0 | 7/2 573

Table 3.3: Root Mean Square Error Between Noisy Reconstructed Images and
Truth Synthetic Image.

For example, a SIR processed simulation image takes about one minute on a VAX
workstation. The fastest BGI algorithm (NSIZE=0), on the other hand, takes
approximately 30 minutes. The ébmputational difference comes from basic algo-
rithmic approaches. BGI requires matrix inversions for each pixel and, hence,
much more CPU time. The processing time becomes very critical for actual data
because the images are much larger. In addition, in order to speed BGI up to its
present rate, the algorithm uses direct access files which are over twenty times the
size of the sequential SIR files.

The other computational difference between the algorithms is their user
chosen parameters. While BGI requires subjectively chosen input values for pa-
rameters such as NSIZE, v, and w, SIR does not require any inputs other than the
data. Thus, SIR images are created directly while the user may have to experi-
ment with BGI’s parameters by running the algorithm many times to optimize the
images. For the reasons stated in this section, SIR (SIRF included) is chosen as

the superior reconstruction algorithm.

3.4 SSM/I Images Produced with Backus-Gilbert and SIR

Thus far, simulations have been used to compare BGI and SIR. I now
consider actual data. This data from the F10 SSM/I satellite was collected during

September, 1992. In this example, the antenna pattern and measurements are
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from the low resolution 19 GHz v-pol channel with effective footprints of about
40km x 60km. The image area is a 15° x 15° square centered over the Amazon
delta. The results of the Backus-Gilbert algorithm for NSIZE equal zero is given
in Figure 3.20. The SIR reconstructed image is shown in Figure 3.21. The images
are very similar. The BGI image seems a bit smoother but not significantly more.
The major difference between the algorithms is processing time. The SIR image
takes approximately 15 minutes to process on a VAX workstation while the BGI
algorithm requires almost 12 hours. This processing time becomes very crucial
when processing very large areas such as the Amazon basin. BGI also requires
a much larger file in order to work at its present speed (it requires a formatted
direct access file). For example, the input data for the delta BGI image must be
preprocessed and stored in a file containing on the order or 40,000 blocks while an
equivalent input data for SIR is about 2,000 blocks. Thus the actual data agrees
with the simulation results that SIR is the superior algorithm, in a computational
load sense, for SSM/I data.
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Figure 3.20: BGI Image of Amazon Delta Region with NSIZE=0 and y=0.
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3.5 Conclusions

This chapter has presented simulations used to compare the performance
of the BGI and SIR algorithms. The simulation includes both noise-free and noisy
cases. The simulations show that SIR and BGI give comparable resolution results,
but that SIR is much more computationally efficient. SIR is chosen as the su-
perior algorithm because it is over twenty times faster, requires input files up to
twenty times smaller, and requires no user provided parameters other than sen-
sor data. For those reasons, this thesis uses SIR images for the rest of its image

reconstructions and experiments.
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CHAPTER 4

SINGLE PASS COMBINATION AND ATMOSPHERIC
DISTORTION REMOVAL

4.1 Introduction

One of the challenges in surface mapping the Amazon from microwave
radiometer data is atmospheric distortion. Although cloud and rain cause little
microwave attenuation for frequencies less than 10 GHz, the higher microwave
frequencies of the SSM/I (19.35, 22.235, 37.0, and 85.0 GHZ) show substantial
atmospheric loss due to scattering on hydrometeors (rain, ice, etc.) and water
vapor. In some studies, especially those over the ocean, this distortion is preferable
since cloud water content and particle size may be deduced from the change in
brightness. For studies of the Earth’s surface, however, these atmospheric effects
may prevent the accurate gathering of microwave brightness measurements of the
surface.

Clouds and precipitation effect surface brightness measurements in two
ways. First, the cloud scattering non-uniformly lowers the measured brightness
temperature for all frequencies of the SSM/I, especially the 85 GHz channels.
These can be confused with surface features when caused by small-spatial scale
clouds. Second, the clouds attenuate the polarization differences caused by the
geometrical or chemical composition of different surface types. This prevents the
surface polarization difference from being used to discriminate between vegetation
types (i.e. rainforest and savanna) or standing water. Thus, the ability to perform
surface mappings is reduced by atmospheric distortion.

In this chapter we investigate several objective methods to regain the
utility of SSM/I images over land by producing enhanced resolution surface map-
pings without the atmospheric anomalies. From these methods, an algorithm called
the Modified Maximum Average is chosen as superior. This method is capable of
removing small-scale temporal effects from SSM/I images by combining multiple

images from the same SSM/I channel. Cold atmospheric distortions are removed

45



from the ensemble by windowing, thus enabling the technique to generate a set
of “base” images which describe the surface brightness without cloud interference.
These “base” images are used in the next chapter to extract geophysical data about
vegetation types in the Amazon.

This chapter contains the following: 1) a discussion of the atmospheric
effects in single pass images, 2) a description of the geographical area imaged, 3)
the development of the objective atmospheric distortion removal technique, and 4)
a presentation of a background mapping to be used in a vegetation discrimination

experiment considered in the next chapter.

4.2 Atmospheric Effects in Single Pass Images

SSM/I images are able to detect small-spatial scale, temporal atmo-
spheric distortions over the Amazon Basin. These correspond to moving clouds or
precipitation areas less than 1000 km wide. The distortions appear as cool spots in
the SSM/I data. Spencer, et al. [11] explain that the cold measurement distortions
over land come from scattering off of hydrometeors. Although one theoretically
could track the clouds crossing the Amazon Basin with the SSM/I data, the SSM/I
does not provide adequate spatial and temporal coverage to track clouds (same area
coverage is available only every 2-3 days). The distortions appear, therefore, as
random artifacts in a time series of images over the same geographical area. These
artifacts are now discussed.

Figure 4.1 contains several SIR processed images of the Amazon Delta
from September, 1992. These images are generated from 19 GHz v-pol measure-
ments from local hours of 8-11 AM. The images differ in two ways. First, there
is a small brightness difference between each image generated by the sensor noise
level. These differences are small and are spread throughout the images. The sec-
ond difference comes from the atmospheric effects. Figure 4.2 contains the same
images but with white boxes indicating some of these effects. Although the 19
GHz channel is the least sensitive frequency of the SSM/I, the dark blotches on
the images indicate temporal, localized changes in brightness. These blotches are
initially predicted to be clouds, rain, or standing water. Standing water, however,

causes a large difference between horizontal and vertical polarization of the 19
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Figure 4.1: SSM/I Images of the Amazon Delta.
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Figure 4.2: Same Images as Previous Figure with Boxes Surrounding Examples of
Atmospheric Distortion.
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GHz channels. Difference images between the two polarizations do not indicate
any dominant polarization so it is assumed that the distortions can not be caused
by standing water. Thus, the cools spots are likely caused by rain or clouds.

The next sections of this chapter will discuss various methods to remove
these atmospheric effects from single pass images. To give the reader a peremptory
understanding of the results, consider an image generated from the method called
the Modified Maximum Average (See Fig. 4.3). Although the composite image
resolution is the same as the single pass images, the clouds indicated in Figure 4.2
are not present in the composite image. It also lowers the noise level between the
single day images. The composite image, therefore, is much more valuable as a

tool to perform radiometric studies of the Amazon surface.

Composite Image JD 245-65

285K 295 K

Figure 4.3: Example of Composite “Base” Image with No Atmospheric Distortion.

4.3 Techniques to Combine Images and Remove Atmospheric Effects

The previous chapter investigated methods to reconstruct images from
SSM/I data. These images indicate temporally changing brightness measurements

caused by clouds and precipitation. This section presents and compares several
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methods to remove these atmospheric scattering effects from single pass images
(i.e., Figure 4.1). These methods generate “composite” images of the Amazon sur-
face which are less contaminated by atmospheric distortion. While most current re-
search has sought multi-channel algorithms to accomplish this task [12, 18, 19, 11},
this research only uses enhanced resolution images from the same microwave chan-
nel. By only using single frequency information, these methods generate composite
images of the geographical area for each channel of the SSM/I without causing ad-
ditional correlation between channels. The less correlated images are more useful
for geophysical research since more variation exists (see Chapter 5). The image
combination algorithms rely, however, on the assumption that surface brightness
variation over an area is only caused by small-scale, temporal atmospheric distor-
tions rather than changing surface brightness. This condition is satisfied by the
consistent vegetation of the Amazon. Composite images can also reduce measure-
ment noise from the frequency ensemble without decreasing resolution.

The question, therefore, is: What is the best way to produce an en-
hanced resolution composite image without atmospheric distortion? To address
this question, this thesis reports on several techniques such as SIR processing of
all data, ensemble averaging, windowed averaging, second highest value choosing
[20], and modified maximum averaging [21]. While all of these methods are de-
scribed later in this chapter, the modified maximum average is chosen as the best
method to remove atmospheric effects.

SSM/T data from the first fifteen days of September are used to inves-
tigate the techniques previously mentioned. For most of the techniques, the data
is first SIR reconstructed to give single-pass images of the Amazon Basin similar
to the Delta images of Figure 4.1. These images offer an ensemble of 5-10 pixel
values for each geographical location in the image. Larger ensembles of pixel values
may be obtained by using a longer time period, but then there is a greater risk
of contamination by seasonal changes in surface brightness. Thus, a half month
period of passes was used. The techniques were tested in two ways. First, each
technique’s composite image from the high resolution data of the 85 GHz v-pol
channel was studied. Second, the techniques were simulated and compared using

synthetic data.
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4.3.1 SIR Processing of All Data

This technique is distinct from the other techniques because it combines
different pass data and uses the SIR algorithm to process all of the data into a
single image. This is the easiest method to produce multipass images since the
input is simply the raw data supplied to SIR. The resulting image for the 85 GHz

v-pol channel is found in Figure 4.4. As seen in the figure, the main weakness

Bl -V8 —76 -74 =72 -70 -68 66 -64 -62 -60 -58 56 -5d4 -52 50 -48 -46 -44 -472 -40 -38 -326 -34 -322
Lon
290 BP0 85 GHz v-pol Direct SIR Processing Composste Image

Figure 4.4: Direct SIR Processing Image: 85 GHz v-pol.
of the algorithm is that it does not objectively remove atmospheric distortion.
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When both cloud-covered and cloud-free measurements are taken over exactly the
same geographical location, SIR averages the measurements together. If these
measurements are just slightly offset, however, SIR will weight each more heavily
in its center. The result of this causes the undesirable arc-like appearance in the
image. Since this technique generates unacceptable composite images, the other
techniques do not attempt to combine data from different satellite passes into
the same SIR image. Instead, they first generate a set of images from individual

satellite passes and then combine these images to to remove atmospheric effects.

4.3.2 Mean

This technique is the simplest form of combining single pass images.
The algorithm input is a set of single pass SIR images. These images are averaged
on a pixel basis to produce the composite image. Cross image registration is not
a problem since the image reconstruction plots the images to the raw measure-
ment’s pre-registered geolocation. Pixel values less than 50 K or greater than 325
K are ignored in this average since it is assumed that they are erroneous data
(320 K corresponds to 115 degrees Fahrenheit). The results are found in Figure
4.5. Theoretically, this technique reduces atmospheric distortions by ensemble av-
eraging. Unfortunately, the very cold atmospheric distortion lowers the averages
to an unacceptable level, as seen in the image’s black spots. As in the previous
technique, this method’s main weakness is that it does not remove the distorted

measurements.

4.3.3 Windowed-Average

The windowed-average technique is similar to the mean calculation but
it first attempts to remove atmospheric distortions by creating a range of non-
distorted brightness values. This is a three step process. First, each pixel’s average
brightness temperature is found by using the mean calculation method described
above. Second, the ensemble standard deviation is computed for each each pixel.
Third, each composite pixel value is calculated by averaging only the ensemble val-
ues within a user defined range or window based on the pixel’s standard deviation

from its mean. In effect, this algorithm treats two types of distortion: Gaussian
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noise and atmospheric cold spots. By removing the “tails” of the pixel value distri-
bution, the cloud cold spots that lie outside range of Gaussian noise are eliminated.
Methods to pick the window size are found in [20]. As with the other algorithms,
this technique assumes that the distorting atmospheric conditions are temporally
random such that no geographical area attracts semi-permanent clouds, rain, etc.
Such conditions cause multi-population distributions of cloudy and cloud-free pixel
values. These conditions may occur in mountain-locked areas such as the Andes
but appear not to exist in the flatter Amazon. Figure 4.6 illustrates the results of
this technique using pixel values within one standard deviation of their ensemble
mean.

The windowed-average technique gives results similar to the mean.
Again, the method fails to detect and remove the cold atmospheric measurements.
Since the 85 GHz channel is highly effected by clouds and rain, a single cold mea-
surement increases the standard deviation as well as lower the mean. Thus, the
large standard deviation makes the window of cloud-contaminated ensembles so
large that the cloud-covered values are not removed. If the window range is re-
duced by a percentage of the standard deviation, then ensembles without cloud
contamination (low std. dev.) are not averaged because almost all pixel values are
outside the window. If no measurement values are found in the window, then the
average value is used. In short, the algorithm fails because the range of standard

deviations differs too greatly between cloud-free and cloud-covered ensembles.

4.3.4 Second Highest Value

This method is used by Choudhury, et al. [21]. In this approach at-
mospheric distortion is removed by only using the second highest pixel value from
the ensemble. Since the atmospheric distortion generally lowers the brightness
temperature measurements, high pixel values should offer images with the least
atmospheric influence. However, the highest value is often strongly influenced by
noise or can come from processing artifacts. For that reason, the technique uses
the second highest pixel value. The results of this method are found in Figure
4.7. The image produced by this technique appears to be free from the cold at-

mospheric distortion seen in the other techniques. In that aspect the technique is
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Figure 4.6: Windowed Average (-1 St.Dev to +1 St. Dev): 85 GHz v-pol.
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successful.

Although the second highest value algorithm does not “average” pixel
values to reduce noise, it does produce a noise variance lower than the complete
ensemble noise. Choosing the second highest value is an example of rank order
statistics. The best known type of rank order technique is the median filter of
which there is a large body of literature [14]. Some aspects of the median filter
will be presented here to give some insight into performance of the related “second
highest value” method.

Narenda [22] has compared the noise reduction of the median filter and
the average filter as they are applied to normal and uniform distributions. Adapt-
ing his results to a one dimensional study, the estimate variances of the mean and

median values from a set of n measurements are listed in Table 4.1. For these sim-

| Comparsion of Mean and Median Techniques with Noise Variance o2 |

(Gaussian Noise Uniform Noise
wo? 302
Medi —_—
Rl BTG B n+2
2 2
Mean z z
n n

Table 4.1: Variance of the Mean and Median Estimate Noise using “n” Samples.

ple distributions, the mean filter is more effective at noise reduction. Tail heavy
distributions, however, offer opposite results. Narenda illustrates this by analyz-
ing the log-normal distribution. For this case he finds that the median filter is
approximately 50% better than the mean for a sample size of n = 9. Thus, the
second highest technique’s ability to reduce noise is strongly influenced by the
measurement distribution.

According to order statistics, from an ensemble of n independent, iden-
tically distributed measurements, X, Xs, ..., X,, , the probability density function

fx((y) of the rth largest measurement X(,) is a function of its position in the
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ordered ensemble and the distribution of each independent measurement, i.e.,

n!
(r—1Dl(n—r)

where Fx(y) and fx(y) are the cumulative distribution function and probability

Fxy(9) ![Fx(y)]T—l[l — Fx()]"" fx(v) (4.1)

density function of the independent measurements, respectively. Such rank order
statistics may be helpful in estimating the reduction in noise variance when the
amount of distortion and its distribution is unknown [23].

Since the distribution function for the SSM/I data is not known pre-
cisely, it is not possible to analytically compare estimator variance reduction for
the “second highest value” and mean value methods. However, it is known that
in the presence of atmospheric distortion, the distribution is skewed low, while the
desired estimation parameter is the mode on the high end of the distribution (See
Section 1.3.5). This strongly suggests that the rank order statistic needed, r, is
closer to n than the median, n/2. Given this insight, the “second highest value”

method is a reasonable approach.

4.3.5 Modified Maximum Average

The modified maximum average technique was created ad hoc during
this research by combining attributes of the previous three techniques. The algo-
rithm attempts to estimate the brightness of a pixel by first selectively choosing a
set of pixel values from the ensemble and then by averaging those selected values
together. This is done in the hope that the selection of values from the ensemble
will remove the cloud distorted pixel values and that the averaging of the selected
pixels will help to reduce noise and attenuate bias.

To select pixel values from the ensemble, one first calculates the sample
mean value, p,, of the entire pixel ensemble. Values which are greater than pu,
yield a subset of the complete ensemble corresponding to its highest values. To
complete the selection process, the highest value of this subset is eliminated. Thus,
the selected values consist of all those values which are above the ensemble mean
but less than the highest value of the ensemble.

Analyzing this technique statistically is challenging for two reasons: 1)

the distribution of pixel values when clouds are included is not clearly known and
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2) the algorithm combines both box averaging statistics and order statistics. To
justify this approach, consider the simple model where a pixel measurement is a

Gaussian distribution with a weighted binary random variable:

Ty = n(p,0,) — paK (4.2)

where T}, is the measured brightness temperature, 5 is the Gaussian distribution
with mean y and standard deviation o, py is either one or zero based on the prob-
ability that a measurement contains cloud distortion (about 30%), and K is a large
positive RV representing the drop in brightness temperature due to a cloud (thus
K will depend on the cloud thickness, water content, etc., the statistics of which
are unknown). An example of such a continuous distribution of measurements is
found in Figure 4.8. The marks below the temperature axis illustrate samples of
an ensemble of seven pixel values with K = 10 and p; = 30% cloud distortion.

The algorithm also illustrates the bias from the different techniques.

K
|
I
|
[
|
|
|
|'
|
|
| |
- : | T
X X X X 'X X X
N Ve
Selected in Mod. Max
Location of T ¢ ?
"Distortion-free"
Estimates Mean Mod. Max 2nd High

Figure 4.8: Example of Radiometric Measurement Distribution with Sample Dis-
crete Ensemble.

To compare the variances of the modified maximum mean algorithm
and the second highest technique consider Figure 4.9. The “X”’s represent an
example ensemble of seven samples taken from the distribution. The variance of

the second highest technique is governed by the average temperature difference
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between the highest and third highest value of the ensemble. The variance of the
modified mean algorithm will depend on the variances of the second, third, and
usually fourth measurement. Graphically, one may see that the averaging of these
values will lower the estimate variance more than just using the second highest
value.

Desi Val
esired Value Estimated Value

Mod. Max. Ave.
Sample Mean i e—j
I |

Estimated Value
2nd Highest

Mod. Max 2cd Highest
Variance Variance

Figure 4.9: Example of Variance for Modified Maximum and Second Highest Tech-
niques.

The modified maximum average estimate in this example is biased high,
and will be whenever the ensemble includes more than one sample form the lower
mode of the mixture distribution. However, it is clear that this bias is less than
that from the second highest approach, and the estimation variance will be less if
the main mode is from a Gaussian distribution.

The results of the modified maximum algorithm (see Figure 4.10) are
very promising. The image does not contain cold atmospheric distortions nor swath

edge artifacts. A simulation further compares and demonstrates the algorithms.

4.3.6 Atmospheric Distortion Removal Simulation

This section shows the results of the techniques in an atmospheric re-
moval simulation. The simulation tests the four algorithms that remove or attenu-

ate distortion by combining images on a pixel basis. The SIR processing algorithm
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Figure 4.10: Modified High Measurement Calculation: 85 GHz v-pol.
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is not simulated because it performed so poorly with true SSM/I data. The simu-
lation is now described.

The simulation assumes that the true pixel brightness for a certain ge-
ographical area is 280 K. An ensemble of seven pixel values is then created by
adding a Gaussian random variable of standard deviation 1 K to the “true” value.
Seven pixels simulate an average number of radiometric measurements in a fifteen
day period while the Gaussian random variable represents the sensor noise in those
measurements. Two of the ensemble measurements are then assumed to be atmo-
spherically distorted by an amount Ty;s. This is referred to as the atmospheric
dip. The first measurement is reduced by Ty;; and the second measurement by one
half that amount. This models a pixel which is contaminated by two clouds, one
twice as distorting as the other. The seven member ensemble is then processed by
each algorithm and the results are saved. The results of 1000 simulations are then

averaged to give the results in Figure 1.11.

Simulation Results for Atmospheric Distortion Removal
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Figure 4.11: Simulation Results of Atmospheric Distortion Removal (True value is
280 K).
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For pixels with little to no atmospheric distortion, the mean and
windowed-average algorithms generate values closest to the 280 “true” value. For
ensembles which are more corrupted by atmosphere (greater than 5 K), the sec-
ond highest and modified maximum techniques are superior. Finally, the modified
maximum mean technique is chosen as the best algorithm due to its averaging

effect. Thus, the simulation confirms the results found with real SSM/I data.

4.4 Summary

This chapter discussed ways to generate surface brightness mappings
for the SSM/I channels. These surface mappings represent the surface bright-
ness temperature without temporal scattering from clouds or precipitation. These
mappings are generated with single pass SIR images and a modified averaging al-
gorithm. Since the composite “base” images are used in the next chapter, they are
presented now (See Figs. 4.12 to 4.18).
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Figure 4.12: Background Mapping of Amazon Basin for 1-15 September, 1992:
19.35 GHz v-pol.
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Figure 4.13: Background Mapping of Amazon Basin for 1-15 September, 1992:
19.35 GHz h-pol.
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Figure 4.14: Background Mapping of Amazon Basin for 1-15 September, 1992:
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Figure 4.16: Background Mapping of Amazon Basin for 1-15 September, 1992:
37.0 GHz h-pol.
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Figure 4.17: Background Mapping of Amazon Basin for 1-15 September, 1992:
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CHAPTER 5

IMAGE ANALYSIS

5.1 Introduction

The threat of global warming has motivated many studies about the
role the Amazon rainforest and surrounding regions play in global climate. To un-
derstand the area’s impact, scientists need accurate geophysical information from
the region. A key source for this information comes from remote sensing instru-
ments such as the SSM/I. This thesis explores the utility of enhanced resolution
imaging of SSM/I data as applied to vegetation studies of the Amazon. While
previous chapters have focused on the enhanced resolution imaging techniques of
reconstruction and atmospheric distortion removal, this chapter illustrates how
the enhanced resolution images may be applied to surface studies. In particular,
this chapter focuses on using the “base” composite images developed in the pre-
vious chapters to discriminate between Amazonian vegetation classes. It is found
that the SSM/I correctly discriminates between the five major vegetation types
of the Amazon Basin 60% of the time. This is comparable to, but less than, the
discriminatory capability of scatterometer images.

This chapter presents the following topics: 1) the motivation to use
radiometry for vegetation discrimination, 2) a discussion about vegetation dis-
crimination vs. vegetation classification, 3) a description of “truth” data used in
discrimination learning algorithms, 4) a presentation of several discrimination al-
gorithms, 5) a comparison of SSM/I discrimination results including a comparison

with SASS results, and 6) conclusions of the vegetation discrimination experiment.

5.2 Using Radiometry in Vegetation Discrimination

Earth-looking spaceborne instruments are valuable in detecting multi-
decadal and seasonal vegetation changes. Such vegetation changes help researchers
understand regional/global climate trends and evaluate the effect of man-made in-

fluences. In order for researchers to perform these studies, however, multiannual
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spaceborne sensor data must be available and that data must show discriminatory
potential. To a degree microwave radiometers fulfill each of these requirements.

Microwave radiometers have been flying in space continuously since the
1970’s. Thus, they can provide data to support multiannual studies about the
last two decades. In addition, land-based radiometers have demonstrated that
the radiometer has the ability to discriminate between vegetation classes through
scattering differences from plant structure and leaf shape.

In the past, however, atmospheric distortion and the spaceborne ra-
diometer’s low resolution have impeded the radiometer’s ability to perform veg-
etation discrimination. For this reason, most vegetation studies have used other
sensors, such as high resolution, limited-coverage IR instruments or atmospheric
penetrating microwave scatterometers. The techniques described previously in this
thesis help overcome the limitations of the spaceborne microwave radiometer so
that the multidecadal data may be more useful. Specifically, this chapter shows
that the SSM/T’s enhanced resolution, atmospheric-free base images are useful in

discriminatory studies.

5.3 Vegetation Discrimination vs. Vegetation Classification

This thesis defines vegetation discrimination as the attempt to differ-
entiate between classes of vegetation on the Earth’s surface by using spaceborne
sensor data. This is accomplished by characterizing vegetation types according
to their sensor response. Defined this way, vegetation discrimination is a tool to
increase the ability to correctly estimate broad classes of vegetation types. Veg-
etation classification algorithms, on the other hand, attempt to uniquely identify
vegetation type for an entire region including troublesome spots at boundaries
where the vegetation types may be mixed. This thesis does not attempt such a
classification. The goal of this research is to demonstrate that radiometric data
has a discriminatory correlation with Amazonian vegetation classes. This will be

demonstrated through confusion tables instead of a classification pseudocolor map.
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5.4 Ground Truth Data

To use the SSM/I base images, a vegetation discrimination algorithm
needs “ground-truth” data. This data consists of the vegetation types known from
in situ measurements for a given set of geographical locations. This ground data is
then used in conjunction with the SSM/I base images to train the discriminatory
algorithm.

The “truth” data points used in this research are obtained from the
United States Environmental Protection Agency Climate Research Program’s Glo-
bal Ecosystems Database [24]. This database is a joint project of the EPA’s
National Geophysical Data Center, U.S. National Oceanic and Atmospheric Ad-
ministration, and the Environmental Research Laboratory-Corvallis. It’s primary
goal is to provide global information on a variety of geophysical parameters which
contribute to the world environment. Included in this data set are geographical
and time sequential information about temperature, cloud cover, soil moisture,
soil types, animal density, etc. The data used in this thesis comes from a subset
database entitled World Ecosystems by Jerry S. Olson from the Global Patterns
Company.

The World Ecosystems digital vegetation map classifies all Earth land
regions into 73 categories. The map resolution is between 10 and 30 geographical
minutes (20-55 km near the equator). Using the EPA provided software, IDRIX,
vegetation parameters for the Amazon Basin are extracted. According to World
Ecosystems the Amazonian region contains 19 different surface classifications. Ta-
ble 5.1 lists these vegetation types according to vegetation identification number,
vegetation description, and surface percentage.

As seen in the table, approximately 85% of the mapped surface is clas-
sified in one of six surface classes: 0, 29, 33, 41, 43, or 59. Each of these classes
covers a minimum of 5% of the mapped area, thus offering a suitable number of
“truth” points to be used in the supervised discrimination. A vegetation pseudo-
color mapping of the Amazonian basin is found in Figure 5.1.

The World Fcosystems data, however, has two major limitations. First,
the database resolution is lower than the resolution of the SSM/I images. This

prevents detailed discrimination tests. Second, the vegetation classes are more
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[ Amazon Vegetation/Surface Classifications |

| ID | Description of Surface Type | Pct. |
0 | Ocean and sea 27.4
8 | Desert, mostly bare stone, clay or sand 0.4
28 | Tropical montane complexes, typically evergreen 2.3
29 | Tropical broadleaf seasonal, with dry or cool season 14.0
31 | Mild/hot farmland and settlements 3.0
32 | Rain green (drought deciduous) or seasonal dry evergreen 2.2
33 | Tropical rainforest 14.7
36 | Paddy rice and associated land mosaics 0.5
37 | Warm/hot cropland, irrigated extensively 0.5
41 | Mild/warm/hot grass/shrub 14.8
43 | Savanna/grass, seasonal woods interspersed 9.1
45 | Marsh or other swampy wetlands 1.7
48 | Dry evergreen woodland or low forest 0.2
51 | Semidesert/desert scrub/succulent/sparse grass 0.3
53 | Tundra 1.0
56 | Forest/field complex with regrowth after disturbance 1.0
58 | Field/woods with grass and/or cropland 1.7
59 | Succulent thorn woods or scrub is widespread 5.1
71 | Salt/soda flats desert playas 0.1

Table 5.1: Vegetation/Surface Classification Groups for Amazonian Region
(80 W - 33 W, 24 S - 7 N) from World Ecosystems [24].

broad than those used in other experiments [25]. Unfortunately, a ground truth
database with more detail is currently unavailable.

Given the “truth” data set, a group of prototype feature vectors is pro-
duced to train the discrimination algorithms. A prototype vector is formed by
choosing a large number of geographical points on the EPA vegetation map where
the vegetation type is known. These geographical coordinates are then located on
each of the seven SSM/I base images. The array of seven brightness temperatures
for each geographically located point serves to characterize the known vegetation
type and is known as prototype feature vector. I used a prototype data set of
5000 “truth” points extracted manually from the EPA map. These points were
extracted from the middle of the specified vegetation regions to avoid areas of
mixed vegetation types. After extracting the prototype feature vectors, I was able

to characterize each vegetation class by finding the mean and standard deviation
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of the prototype points corresponding to its particular vegetation class. A statis-
tical breakdown of the brightness values according to vegetation type follows (See
Tables 5.2 and 5.3). Given the colocated ground truth and brightness values just

tabulated, I am prepared to implement vegetation discrimination algorithms.

| Mean T (K) by SSM/I Channel and Surface Type |
Veg. ID | Pts. 19-V 19-H| 22-vVv| 37V | 37-H 85-V | 85-H
29 938 | 288.42 | 286.38 | 286.81 | 284.58 | 282.97 | 286.50 | 285.88
33 1107 | 286.83 | 285.06 | 285.27 | 282.93 | 281.47 | 285.49 | 284.92
41 1106 | 286.90 | 281.23 | 285.15 | 283.84 | 279.89 | 284.19 | 282.59
43 877 | 288.29 | 284.97 | 286.46 | 284.60 | 282.33 | 285.74 | 284.97
59 570 | 288.43 | 283.94 | 287.04 | 285.96 | 282.59 | 286.87 | 285.40
0 402 |198.40 | 135.09 | 222.75 | 216.37 | 159.50 | 260.03 | 231.53

Table 5.2: Average Ts in K for Amazonian Vegetation and SSM/I Channels.

[ Std. Dev. of T (K) by SSM/I Channel and Surface Type |

Veg. ID | Pts. | 19-V | 19-H | 22-V | 37-V | 37-H | 85-V | 85-H
29 938 | 2.602 | 3.938 | 1.872 | 2.581 | 4.259 | 1.819 | 2.197
33 1107 | 2.238 | 3.975 | 1.494 | 2.106 | 3.998 | 1.417 | 1.737
41 1106 | 4.474 | 5.759 | 3.725 | 4.250 | 5.334 | 3.538 | 3.850
43 877 12.678 | 3.757 | 1.956 | 2.864 | 3.216 | 2.229 | 2.155
59 570 | 3.658 | 5.087 | 2.856 | 3.734 | 5.517 | 2.452 | 2.879
0 402 |{13.29 | 21.29 | 19.75 | 9.67 | 17.27 | 7.70 | 15.58

Table 5.3: T Standard Deviation (K) for Amazonian Vegetation and SSM/I Chan-
nels.

5.5 Vegetation Discrimination Algorithms

Many algorithms have been developed to perform multivariate discrim-
ination [14, 26, 27]. These algorithms use either supervised classification (@ priori
knowledge of feature classes) or unsupervised classification. In addition, the algo-
rithms may or may not require detailed knowledge of statistical density functions.
For this thesis, sample discrimination algorithms of each type are implemented.

The prototype information derived in the previous section serves as the

basis for the first three discrimination algorithms used in this thesis: 1) Minimum
Mean Distance (MM), 2) Mahalanobis Distance Minimization (MDM), and 3)
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Nearest Neighbor. The fourth discrimination algorithm is unsupervised and hence
disregards the prototype set. This algorithm is called K-means clustering. In this
thesis, the seven SSM/I channels form the seven dimensional space used in the
algorithms. Each unknown feature vector is a point in that space as is the mean

for each vegetation class. The algorithms are now described.

5.5.1 Minimum Mean Discrimination (MM)

Minimum mean discrimination is a supervised, distribution-free algo-
rithm [14]. The algorithm is tested by choosing a point of known vegetation type
from the World Ecosystems map and then finding its feature vector from the seven
SSM/I maps. The vegetation type is then estimated by calculating its feature
vector’s Euclidean distance from the mean brightness values of each vegetation
class (see Table 5.2). The unknown feature vector’s vegetation type is estimated
as the class with the closest Euclidean mean. The estimation is then compared
to the actual vegetation type to quantify the sensor’s discriminatory capability.
The algorithm yields linear discrimination functions and a very basic classification

algorithm.

5.5.2 Mahalonobis Distance Minimization (MDM)

The main weakness of the minimum mean discrimination is its failure
to take measurement distributions into account. These distributions are apparent
in the differing standard deviations for each SSM/I channel within various sur-
face vegetation classes. To overcome this weakness, the MDM algorithm assumes
that each microwave channel of each vegetation class has a normal, correlated
distribution. The vegetation is then discriminated using a supervised, distribu-
tion based Mahalonobis discriminant function described in [26]. The Mahalonobis
discriminant function determines a score based on a non-Euclidean distance from
the unknown feature vector to each vegetation type. The algorithm estimates the
unknown vegetation type to be the type that yields the highest score. The covari-
ance matrix for each vegetation class is approximated by the arithmetic average of
the auto-Kronecker product for each prototype point and the probability of each

vegetation class according to its surface percentage.
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5.5.3 Nearest Neighbor (NIN)

The nearest neighbor algorithm is similar to the minimum mean dis-
crimination functions in that it uses the Euclidean distance between prototype
vectors and undiscriminated feature vectors. The algorithm assumes that similar
vegetation classes cluster together. To estimate a unknown vegetation class, the
algorithm calculates the Euclidean distance from the unclassified feature vector
to each of the prototype vectors. A specified number of the closest prototype are
found and considered neighbors of the unknown feature vector. The unknown
vector is estimated to be the vegetation class most common within the prototype
neighbors. If a majority of the prototype neighbors are not dominated by one
vegetation class then the algorithm determines that discrimination may not be
performed. Jain [14] classifies this algorithm as supervised, distribution-free, and

“piecewise linear.”

5.5.4 K-Means Clustering (KMC)

The K-means clustering algorithm differs from the previously described
algorithms because it is unsupervised. It does not use prototype statistics. Instead,
the algorithm groups feature vectors into a user specified number of “clusters” so
that the overall Euclidean distance within a cluster is minimized while the inter-
cluster distance is minimized. The goal of this algorithm is to separate and cluster
different feature vectors solely upon their measurement statistics. The algorithm,
therefore, may cluster together two features corresponding to different vegetation
types if they have similar feature vector values. In this way the algorithm indicates
vegetation classes that have similar sensor responses. Similarly, two features of
the same vegetation type may be split into different clusters due their differences
in feature vector values. The differences may indicate large subclass variation
in the vegetation type caused by geographical variation in surface temperature
or elevation. Basically, clustering helps develop a natural correlation among the
brightness temperature vectors which may or may not correspond to same-class

vegetation clusters.
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5.5.5 Discrimination Results

The discrimination algorithms described on the previous pages were
tested by estimating the vegetation type of 1500 geographical points of known
vegetation types and measured brightness temperatures. The discrimination is
completely based on the brightness temperatures of the points and the prototype
vector space described earlier.

Confusion matrices (See Tables 5.5 to 5.7) illustrate the discriminated
vegetation types and the most common errors with other vegetation types for the
supervised discrimination algorithms (MM, MDM, NN). The confusion matrices
use the vertical axis to indicate the true vegetation type and the horizontal axis
to indicate the estimated vegetation class. The far right column of each table

indicates the percentage of points correctly discriminated between classes.

| Major Amazon Surface Classifications |

| ID | Description of Surface Type | Pct.J
0 | Ocean and sea 27.4
29 | Tropical broadleaf seasonal, with dry or cool season 14.0
33 | Tropical rainforest 14.7
41 | Mild/warm/hot grass/shrub 14.8
43 | Savanna/grass, seasonal woods interspersed 9.1
59 | Succulent thorn woods or scrub is widespread 5.1

Table 5.4: Major Vegetation/Surface Classification Groups for Amazonian Region.

The supervised discrimination algorithms offer favorable results. The
best discrimination algorithm is the nearest neighbor algorithm utilizing the ma-
jority of the nearest 25 neighboring prototype feature vectors. It perfectly discrim-
inates the water and also has the highest minimum discrimination among any of
the classes. Disregarding ocean and sea features, the algorithm correctly discrim-
inates between vegetation types 65% of the time. The next best algorithm is the
Mahalonobis algorithm at 60% correct and the minimum mean algorithm at 49%
correct. These results clearly indicate a correlation between the vegetation types
and the brightness temperatures since the percentages are much higher than un-
correlated data would produce. To put things in perspective, an unknown feature

vector would be correctly discriminated less than 20% of the time if the classes
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|

Minimum Mean Distance Discrimination
Estimated Vegetation Class P
Right
29 33 41 43 59 0
29 149 13 31 3 4 0 75
True 33 70 84 38 7 1 0 42
Veg. 41 36 0 103 18 43 0 51
Class
43 52 31 66 15 36 0 7
59 5 13 35 7 40 0 40
0 0 0 6 0 0 218 97

Table 5.5: Confusion Matrix for Minimum Mean Discrimination Algorithm.

Mahalanobis Distance Discrimination
Estimated Vegetation Class P
Right
29 33 41 43 59 0

29 135 49 3 5 8 0 68

True 33 18 177 1 2 2 0 89

Veg. 41 8 3 150 | 35 4 0 75
Class

43 31 54 45 60 10 0 30

59 14 6 35 28 17 0 17

0 0 0 0 1 0 223 99

Table 5.6: Confusion Matrix for Mahalonobis Discrimination Algorithm.
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Nearest N:_ighbor Discrimination (Over 50% of 25 Neighbors)

Estimated Vegetation Class %

29 33 41 43 59 0 Right

29 136 48 8 5 3 0 68

True 33 15 174 2 8 1 0 87
Zfags-s. 41 5 4 166 9 16 0 83
43 22 60 36 60 22 0 30
59 1 11 32 8 48 0 49

0 0 0 0 0 0 224 100

Table 5.7: Confusion Matrix for Nearest Neighbor Discrimination Algorithm.

were randomly estimated. ne

To better understand the success of the radiometer data, a discrimina-
tion is made using the nearest neighbor algorithm with the proven successful Seasat
Scatterometer SASS images [25]. The results are found in Table 5.8. As one may
see in the table, the SASS discrimination offers similar results to the radiometer
data.

Previous work done by Long and Hardin [25] shows that SASS has
better discriminatory abilities than this research yields. The cause of its decrease
in reliability may be based in the two major differences between the work done by
Long and Hardin [25] and this thesis: different discrimination algorithms and more
detailed digitized truth maps. First, the nearest neighbor algorithm was chosen
in this research for its superior performance with radiometer data. The algorithm
used by Long and Hardin [25] optimized the discrimination for the scatterometer.
Yet the similar results between the studies’ algorithms tend to dismiss this as the
main source of discrepancy. The “truth” maps used in the different studies offer
a more likely reason for the lower discriminating ability. The map used by Long

and Hardin [25] contained better resolution and more detailed types of vegetation
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Nearest Neighbor Discrimination Using Seasat Scatterometer Image

Estimated Vegetation Class %
' Right
29 33 41 43 59 0
29 138 44 1 15 2 0 69
True 33 19 178 0 2 1 0 89
Veg. 41 3 8 158 5 26 0 79
Class
43 62 30 76 17 15 0 9
59 6 0 48 12 34 0 34
0 0 0 | 6 0 0 | 224 100

Table 5.8: Confusion Matrix for Nearest Neighbor Discrimination Algorithm Ap-
plied to Seasat Scatterometer Data.

than the digitized map in this thesis [24]. Thus, the map used in this thesis may
have biased both the discriminating ability of the SSM/I data as well as the SASS
data. As will now be presented, the non-supervised clustering algorithm supports
this claim.

The last discrimination algorithm applied to SSM/I data is K-means
clustering. As mentioned earlier, the K-means algorithm does not attempt to dis-
criminate between vegetation types but instead to do a non-supervised clustering
of similar vegetation brightness temperature feature vectors. The algorithm di-
vides the prototype points into five main clusters (See Table 5.9). The first three
clusters are dominated by class 41 and the other clusters by vegetation types 33
and 29. Only the first cluster, however, has over three quarters of the cluster as
one vegetation type.

Clustering the SASS data (see Table 5.10) using the K-means clustering
yields similar results to the SSM/I data: only one cluster has over 75% from the
same vegetation class. Although SASS may be considered slightly better because
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Cluster | Pts. | Veg. Types | Pct.
1 413 41 76
33 10

2 793 41 32
43 24

33 22

29 11

518 41 37

59 25

43 19

29 17

4 1497 33 43
43 20

29 16

5 1206 29 38
43 19

33 15

59 15

Table 5.9: SSM/I K-Means Clustering Results for 5000 Point Prototype Feature

Vectors.

its clusters are more strongly dominated by unique vegetation types, the unsuper-
vised clustering suggests that the SSM/I has discriminatory abilities close to those

of other spaceborne sensors such as SASS.

5.6 Conclusion of Vegetation Discrimination

I have illustrated the use of enhanced resolution SSM/I images to extract
geophysical data over heavily vegetated land masses. The radiometric images offer
vegetation discrimination similar to the discrimination available from scatterom-
eter images. Although the radiometer images can not be used as an exclusive
vegetation classifier, they do contain discrimination ability. A multi-sensor ap-
proach combining both the radiometer and scatterometer may yield better results.

I do not claim to have found optimal geophysical extraction methods
from all discrimination algorithms; instead it shows that enhanced resolution back-
ground images produced by SIR have potential. This potential may be better used
in traditional radiometric studies which require surface temperatures or direct

moisture content readings. The vegetation discrimination, however, shows that the
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| SASS K-Means Clustering Results |

Cluster | Pts. | Veg. Types | Pct.
1 468 41 78
43 20
2 855 41 51
59 27
43 18
3 1333 33 67
29 17
43 11
4 1183 29 50
43 26
33 16
5 751 59 40
41 27
43 19
29 11

Table 5.10: SASS K-Means Clustering Results for 5000 Point Prototype Feature
Vectors.

enhanced resolution, atmospheric distortion-free images increase the radiometric

utility to studies usually dominated by other sensors.
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CHAPTER 6

CONCLUSIONS

6.1 Discussion

This thesis explores the use of enhanced resolution radiometric images
in extracting geophysical information about the Amazon Basin. This research is
driven mainly by the need to gather multidecadal data about the Amazon Basin.
Multidecadal data from microwave radiometers is available but its low resolution
limits its utility in land-based studies. This thesis compares methods to improve
the resolution of radiometer data, offering a possible method to use the exist-
ing data. This research uses data from the Special Sensor Microwave/Imager to

investigate these methods. The thesis draws the following conclusions and results:

1. The image reconstruction methods known as the Backus Gilbert Inversion
technique and Scatterometer Image Reconstruction Algorithm are both suit-
able for generating enhanced resolution images. These images improve resolu-
tion over raw data in amounts previously found [6]. The enhanced resolution
is illustrated in both simulated and actual SSM/I data.

2. Since SIR is computationally more efficient than BGI, it is a much faster
algorithm making it preferable in large area image reconstructions such as

the Amazon Basin. The processing time is approximately twenty times faster.

3. Reconstructed SSM/I images over the Amazon Basin indicate small-spatial
scale, temporal atmospheric effects caused by clouds and precipitation. These
effects appear as random dark spots in images reconstructed from single

satellite pass data.

4. Images without the small-spatial scale atmospheric distortion may be gener-
ated by compositing images created from single satellite pass images through
a technique called Modified Maximum Average. The composite images re-
move the atmospheric distortion and lessen the sensor noise level. Simulation

results suggest that resulting image may be biased high.
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5. Enhanced resolution radiometric images have vegetation discrimination ca-
pabilities. Scatterometer studies yield similar, but superior, results. A clus-
tering algorithm shows that the scatterometer data naturally is dominated to
a greater extent by vegetation type than the radiometer data. Nevertheless,
the radiometric images offer abilities usually ignored in non-traditional ra-
diometric land studies. The vegetation discrimination in this thesis is limited
by coarser, less descriptive truth data than previous scatterometer studies.
The truth data has low spatial resolution which may be a factor in limiting

the radiometer’s discrimination capability to 60%.

6.2 Contributions

The contributions of this thesis are: (1) a simulation comparison of the
Backus Gilbert Inversion technique and the Scatterometer Image Reconstruction
algorithm, (2) an application of BGI and SIR to Amazon Basin imagery, (3) an
objective algorithm to remove atmospheric distortion from SSM/I Amazon images,
(4) a comparison of several techniques to create composite SSM/I images from
multipass data, (5) a study to discriminate between Amazon vegetation using
enhanced images, (6) and a summary comparison of vegetation discrimination

abilities between scatterometer and radiometer enhanced images.

6.3 Future Research

The vegetation discrimination and image compositing algorithms only
use SIR processed images in this thesis. The SIR images are used because SIR
is superior to BGI in processing efficiency. Further research can verify if BGI
enhanced resolution images yield similar vegetation discrimination abilities as SIR
images.

Methods to optimally pick the BGI parameters to suppress noise and
increase resolution are not investigated in this thesis. The NSIZE parameter,
especially, has not been analyzed although its large effect on processing is noted in
this thesis. Methods to optimally chose this and the other parameters are needed.

Methods to combine images and remove atmospheric distortion based

on order statistics and quantile techniques need to be further investigated. This
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study could provide theoretical support for the existing techniques which have
been previously justified on an ad hoc approach. For example, future research
could include modeling a “third highest” value technique, etc.

The SSM/I images in this thesis suggest that they have discriminatory
potential. This vegetation discrimination may be improved by using multisensor
data. This includes discriminatory algorithms which utilize both scatterometer
and radiometer data. Methods which more efficiently use polarization differences
in the SSM/I channels are also needed. The polarization differences should be
useful in detecting areas of standing water and grass.

Lastly, the “base” composite images act as background surface bright-
ness maps. This thesis uses those maps in vegetation discrimination. Other re-
search may use these maps along with enhanced images of single pass data to
detect and evaluate clouds and precipitation. The differences between the “base”
images and the single pass images may be related to geophysical parameters such
as cloud particle size and water vapor content. This may aid weather prediction

over densely vegetated areas.
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