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ABSTRACT

Target Motion Estimation Techniques for Single-Channel SAR

Mark T. Crockett
Department of Electrical and Computer Engineering

Master of Science

Synthetic Aperture Radar (SAR) systems are versatile, high-resolution radar imagers
useful for providing detailed intelligence, surveillance, and reconnaissance, especially when
atmospheric conditions are non-ideal for optical imagers. However, moving targets in SAR
images are smeared. Along-track interferometry is a commonly-used method for extracting
the motion parameters of moving targets but requires a dual-aperture SAR system, which
may be power- size- or cost-prohibitive. This thesis presents a method of estimating target
motion parameters in single-channel SAR data given geometric target motion constraints. I
test this method on both simulated and actual SAR data. This estimation method includes
an initial estimate, computation of the SAR ambiguity function, and application of the
target motion constraints to form a focused image of the moving target. Finally, I measure
its performance by investigating the error introduced in the motion estimates.
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Chapter 1

Introduction

1.1 Motivation

For many centuries, the outcome of wars has been decided primarily by the size of

opposing military forces. But during the last century, the success of any military effort has

become largely dependent on military intelligence. Surveillance can help militaries prepare

for and plan attacks and counter attacks by finding weak spots to exploit in the enemy’s

defense, tracking enemy movement, and finding supply lines. Knowing how targets move

can enhance these abilities.

Visual and optical surveillance via manned aircraft were first used in World War I and

became part of common military strategy in World War II. Optical imagers can be accurate,

low-cost, and provide real-time target acquisition, but they underperform in the presence

of clouds, fog, or darkness. Imaging radar provides similar results but its performance is

not compromised by poor atmospheric conditions. Traditional imaging radar requires a long

antenna to produce a finely-spaced imaging grid, but synthetic aperture radar (SAR) utilizes

radar platform motion and a small antenna to synthesize a long antenna aperture in order

to produce fine-resolution images.

Similar to optical images, moving targets in SAR images are generally smeared or

blurred. If the motion parameters of the target are known, this effect can be alleviated

by compensating for target motion. In order to extract these motion parameters, a SAR

system may employ along-track interferometry (ATI) by using two antennas separated by

a baseline to form two images of the same scene at different times. The images can then

be compared for phase differences on a pixel-to-pixel basis, which indicate the presence of

moving targets [1].
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Recent technological advancements have facilitated the development of small, low-

power, low-cost SAR systems which are often found on small unmanned aircraft systems

(UAS). In the last ten years, UAS have become quite common in reconnaissance because

they are cost-efficient and inherently less risky than manned surveillance aircraft. UAS

usually have very tight payload and power restrictions which may prohibit the use of two

antennas for ATI. Since single-channel Doppler shift measurements rely on either the target

or the observer being stationary, we cannot perform ATI with a single antenna. These

conditions motivate us to investigate a practical method for focusing single-channel SAR

images of moving targets.

1.2 Thesis Statement

Ground moving target indication (GMTI) is a radar operation mode used to discrim-

inate targets from surrounding clutter. Previous work shows that the GMTI solution of a

moving target in single-channel SAR is not unique. A complete GMTI solution for targets

with uniform motion requires solving for four parameters (target position in range and az-

imuth, heading, and speed) but single-channel SAR data has only enough information to

solve for three [2]. To address these issues, this thesis explores GMTI for constrained single-

channel SAR. This thesis: (1) considers how to constrain the problem sufficiently in order

to get the complete GMTI solution for a moving target in single-channel SAR; (2) examines

various moving target scenarios of uniformly-moving targets in simulated and actual SAR

data; (3) measures the performance of the algorithm in actual data with an error analysis of

the motion estimates.

1.3 Outline

This thesis is organized as follows. Chapter 2 gives an overview of SAR, the geom-

etry that makes it possible, its signal properties, and image processing. In Chapter 3, I

discuss the behavior of moving targets in a SAR image, the non-unique nature of moving

target signatures in single-channel SAR data, and a SAR moving target ambiguity function.

Chapter 4 provides the base of the work in this thesis by demonstrating successful target

motion parameter estimation for constant motion using simulated SAR data. In Chapter 5,

2



I present the algorithm used to estimate uniform motion in actual SAR data, perform several

case studies on various types of uniform target motion, and present an error analysis of the

algorithm. In Chapter 6, I discuss conclusions from this work and future work.
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Chapter 2

Background

A critical factor in evaluating SAR performance is signal-to-noise ratio (SNR). It

simply compares the received signal power to the noise power, which interferes with the

signal of interest. The SNR of a SAR system can be expressed as

SNR =
PtG

2λ2σnp

(4π)3R4Pn
τβ, (2.1)

where Pt is the transmitted power, G is the antenna gain, λ is the carrier wavelength, σ is

the radar cross-section, np is the number of pulses used to image a single pixel, τ is the pulse

duration, β is the signal bandwidth, R is the slant range from the radar to a target, and Pn

is the receiver noise power [3].

This chapter provides a background of SAR systems, including their geometry, signal

properties, resolution, antenna design, target scattering properties, and image formation.

Throughout this chapter, I also review all of the pertinent terms listed in Eq. (2.1), which

is known as the radar range equation (RRE).

2.1 SAR Geometry

Synthetic Aperture Radar works as it does primarily because the radar is usually on

a moving platform – typically an aircraft or spacecraft. SAR images can often be visualized

in terms of “slow time” and “fast time.” Slow time refers to an amount of time relating to

the coherent processing interval whereas fast time refers to an amount of time on the order

of one inter-pulse period, which is generally orders of magnitude less than the inter-pulse

period. In this thesis, I use “azimuth” to reference the direction of flight (slow time, along-

track direction) and “range” to reference the direction orthogonal to the azimuth direction

(fast time, cross-track direction).
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There are three common types of SAR operation modes: stripmap, spotlight, and

scanning. In stripmap mode, the antenna pointing direction (radar line of sight (LOS)) is

fixed orthogonal to the azimuth direction or squinted forward or backward. As the aircraft

moves along its flight path, the antenna’s footprint also moves along the ground at the same

velocity. The SAR transmits and receives many pulses for the same point on the ground,

but it images a “strip” of ground. In spotlight mode, the antenna moves (using a gimbal

or a phased array) so that it remains pointed at the same spot on the ground throughout

the data collection. This allows better SNR and resolution because of the longer dwell time

on a single area. In scanning SAR, the antenna moves side-to-side in range to increase the

width of the imaging swath. This thesis focuses exclusively on non-squinted stripmap SAR,

as depicted in Fig. 2.1.

Several factors dictate the area of ground to be imaged. The length of time that

pulses are successively transmitted and received is called the collection time and determines

the length of the image. The desired imaging swath width determines the maximum pulse

repetition frequency (PRF) and the unambiguous range. The PRF is given by

PRF =
1

PRI
, (2.2)

where PRI is the pulse repetition interval, which is the amount of time between consecutive

transmit pulses. In order to distinguish one received pulse from another, they must not

overlap. Therefore, the PRF must be low enough that the echo from the farthest edge of the

swath for one pulse is received before the echo from the nearest edge of the swath for the

next pulse. The PRF determines the unambiguous range Rua, which is given by [3]

Rua =
c

2PRF
, (2.3)

where c is the speed of electromagnetic wave propagation. That is, Rua is the maximum

range at which target echoes are received without interfering. Targets at a range greater

than Rua alias to an “apparent range” that is within the imaging swath. Also, since the

unambiguous Doppler fdua , or range of Doppler frequencies that can be measured without

aliasing is given by [3]
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Figure 2.1: Stripmap SAR imaging geometry.

fdua = PRF, (2.4)

the PRF must be as large as the expected range of Doppler shifts observed by the radar.

This range of observed Doppler frequencies Bd is

Bd =
4v

λ
sin

(
θ3

2

)
sinψ, (2.5)

where v is the radar platform velocity, λ is the carrier wavelength, θ3 is the antenna’s azimuth

beamwidth, and ψ is the angle between the aircraft velocity vector and the radar LOS [3].
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2.2 Signal Properties

Some radars use continuous-wave (CW) signals, which are pure-frequency signals that

have uninterrupted transmission. An interrupted continuous-wave (ICW) signal is just a CW

signal with a duty cycle less than 100%. In terms of signal transmission and reception, a

SAR system works much like a traditional imaging radar. The earliest forms of SAR used

ICW signals, but most now employ some type of linear frequency-modulated (LFM) signal.

Figure 2.2 shows an example of an ICW signal. It has a constant frequency and a

pulse duration τ defined by

τ = dt · PRI, (2.6)

where dt is the transmit duty cycle, or the percentage of one pulse period that the signal is

transmitting.

N
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Fast Time0

1

-1

1000

Figure 2.2: A rectangular-windowed ICW waveform.

By contrast, while an LFM signal is also pulsed, its frequency is linearly swept from

low to high or vice versa at the chirp rate kr. Figure 2.3 shows a sample LFM signal. In

general, radar transmit carrier frequencies range from 300 MHz to about 300 GHz, but for

convenience, Figs. 2.2 and 2.3 show signals that have been mixed to baseband. As shown
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in Fig. 2.3, the signal frequency starts at zero and ramps up to a higher frequency and this

pattern repeats for every transmit pulse.

Fast Time
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Figure 2.3: LFM transmit and receive signals.

A zero-phase LFM transmit signal st(t) can be expressed as [4]

st(t) = A exp
(

(
2πf0t+ πkrt

2
))
, (2.7)

where A is the signal amplitude at time t and f0 is the carrier frequency. The received signal

sr(t) is just an attenuated, time-shifted copy of the transmit signal and is given by

sr(t) = A′ exp
(

(
2πf0(t−∆t) + πkr(t−∆t)2

))
, (2.8)

where A′ is the attenuated signal amplitude and ∆t is the two-way time of flight from the

radar to a target at range R:

∆t =
2R

c
. (2.9)

For convenience in processing, the received signal is usually mixed down to baseband

and is given by
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srmd(t) = A′ exp
[

(
2π(f0 − fmd)t− 2πf0∆t+ πkr(t−∆t)2

)]
, (2.10)

where fmd is the mix-down frequency.

2.3 Range and Azimuth Resolution

The effective resolution of a SAR image is defined as the half-power width of the

impulse response (IPR) [5], which is a point target’s appearance in the final SAR image.

There are two types of spatial resolution defined for a radar imaging system: range resolution

and azimuth resolution. These quantitatively define how closely targets can be spaced in

each image direction and still be individually recognized by the radar.

One very common metric for range resolution is called Rayleigh resolution, which is

defined as the separation between the peak and the first null of the matched filter response [3].

The Rayleigh range resolution of a pulsed waveform can be expressed as

∆x =
c

2β
=
cτ

2
, (2.11)

where β is the signal bandwidth [3]. If the distance in range between two scatterers is greater

than ∆x, the radar receives distinct signal returns from each and we say that the targets

are resolved. If not, their signal echoes interfere with each other and cannot necessarily be

accurately separated.

The Fourier uncertainty principle [6] states for a given signal that

σtσw ≥
1

2
, (2.12)

where σt and σw are the standard deviations of the pulse duration and the signal bandwidth,

respectively. A common interpretation of the uncertainty principle is that a signal cannot

have both narrow bandwidth and short pulse duration. This provides the foundation for the

relationship 1
β

= τ between LFM and ICW signals seen in Eq. (2.11).

Since its range resolution is directly related to pulse duration, ICW radar benefits from

very short pulses (low duty cycle). However, SNR requirements necessitate more transmit

power, which means transmitting a longer pulse. Since these two ICW system requirements
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conflict where LFM systems do not, LFM signals are generally preferred to ICW ones.

Furthermore, LFM signals can be lengthened for the sake of higher average power without

degrading range resolution since it is only dependent on the range of frequencies swept by

the signal chirp.

The azimuth resolution ∆y of a real aperture radar imaging system is given by

∆y = θ3R, (2.13)

where θ3 is the antenna’s horizontal 3 dB beamwidth (Eq. (2.17)) and R is the slant range to

the target [5]. This means that the best resolution in real aperture radars is achieved with the

narrowest beamwidth (long antenna) and closest range to the target possible. These design

specifications severely limit the use and performance of real aperture systems. However,

Eq. (2.13) can be related to the SAR system model by substituting the synthetic aperture

beamwidth for θ3.

The synthetic aperture along-track beamwidth θ3s is given by [5]

θ3s =
λα

2Ls
, (2.14)

where Ls is the maximum length of the synthetic aperture and is equal to θ3R. Substituting

Eq. (2.14), Ls, and subsequently Eq. (2.17) into Eq. (2.13) gives

∆ys = θ3sR =
λαR

2Ls
=
λαR

2θ3R
=

λαR

2λα
L
R
. (2.15)

After simplifying, this equation becomes

∆ys =
L

2
. (2.16)

Here, we introduce one of the most important properties of SAR imaging systems: that the

azimuth resolution is independent of the carrier wavelength and range to the target. Thus,

we can achieve incredibly-fine resolution images just by using a smaller antenna.
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2.4 Antenna Design

Part of what makes SAR so versatile is its ability to produce fine-resolution images

without the use of a long antenna. In fact, many SAR systems are intentionally designed

to utilize a very short antenna, but a SAR antenna that is too small suffers from degraded

SNR.

According to [3], an antenna’s beamwidth is inversely proportional to its size. The

antenna’s beamwidth is generally understood to mean the angular width of the main lobe’s

radiation pattern at half power as shown in Fig. 2.4. This is often referred to as the 3 dB

beamwidth θ3 and is given by

θ3 =
λα

L
radians, (2.17)

where α is a constant factor dependent on the antenna’s physical properties and L is the

length of the antenna. According to Eq. (2.17), the smaller the antenna, the larger the

beamwidth.

SAR systems often use an antenna with a wide beamwidth in order to maximize the

amount of time a target spends in the antenna’s beamwidth. This is called the dwell time,

and in SAR it is often used interchangeably with the coherent processing interval (CPI).

Traditionally, the CPI is the number of pulses used for target detection but in SAR, the CPI

or dwell time Td is the time spent imaging a single pixel, given by [3]

Td = dwell time = np · PRI. (2.18)

The CPI is generally equivalent to the time required for the radar platform to cover the

length of the synthetic aperture.

One metric used to characterize an antenna’s performance is directivity. An antenna’s

directivity is defined as the ratio of radiation intensity in a reference direction to the aver-

age radiation intensity [8]. The reference direction is usually in the direction of maximum

radiation. Essentially, it tells us where the antenna concentrates transmitted and received

power. Directivity D is directly related to the physical size of the antenna A and is given

by [8]
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Figure 2.4: Typical antenna radiation pattern. Copyright Creative Commons, adapted from
[7].

D =
4π

ΩA

, (2.19)

where ΩA is the beam solid angle, and is given by

ΩA =

∫ ∫
sphere

|F (θ, φ)|2 dΩ, (2.20)

where F (θ, φ) is the normalized electric field pattern. If all power emitted by the antenna

were concentrated in a cone at the antenna’s maximum radiation and constant distribution,

the cone would span a solid angle ΩA. The familiar gain term G in Eq. (2.1) is just the

maximum directivity minus internal antenna losses.

2.5 Radar Cross-Section

Beyond the SAR platform itself, there are external factors that affect the received

signal intensity. Most importantly, the radar cross-section (RCS) of the targets in the scene
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of interest tells us how large a target appears to the radar. As opposed to physically-

large objects that are easily detectable by human sight, RCS is a measure of a target’s

electromagnetically reflective strength [9], which depends not only on its physical size, but

on its shape and material properties as well.

A point target is a target with small physical dimensions relative to the radar’s

imaging resolution, but some point targets can have a very high RCS. Consider, for instance,

a trihedral corner reflector, as shown in Fig. 2.5. Corner reflectors are simple targets with

known RCS that can be generalized as

σ = 4πA2
eff/λ

2, (2.21)

where Aeff is physical area of the corner reflector that participates in the multiple-bounce

mechanism. The corner reflector in Fig. 2.5 has an Aeff of a2/2
√

3 and an RCS of πa4/3λ2 [10].

In this thesis, the targets used in simulation behave similar to corner reflectors.

Figure 2.5: A triangular trihedral corner reflector. The design of three mutually-orthogonal
sides makes this an exceptional radar imaging target. Any incident signal is reflected directly
towards the source. Dihedral corner reflectors are quite prevalent in real-world data when
imaging man-made structures and vehicles.
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Mathematically, the RCS σ of any target can be expressed as

σ = lim
R→∞

4πR2

∣∣Escat
∣∣2

|Einc|2
, (2.22)

where Escat is the scattered electric field and Einc is the electric field incident at the target [9].

2.6 Image Formation

When the radar collects data, it is stored as samples of signal amplitude and phase.

We must compress the data in both range and azimuth and compensate for range cell mi-

gration in order to form an image out of it.

The most common SAR processing algorithms are the range Doppler algorithm (RDA–

frequency domain), the chirp scaling algorithm (CSA–frequency domain), the omega-K algo-

rithm (ωKA–2-D frequency domain), and the backprojection algorithm (time domain). Each

of these algorithms has processing shortcomings that are briefly explained in this section.

RDA is the most commonly-used SAR processing method because it has simple im-

plementation and is efficient and relatively accurate. However, it requires computationally-

expensive interpolation to correct range cell migration. CSA was developed as an alternative

to RDA and uses a more efficient method of range cell migration correction. In order to

optimize processing, both RDA and CSA discard higher-order terms of the Taylor series

approximation of the SAR signal and are therefore unable to accurately process wide-beam

SAR data [11]. While the omega-K algorithm (ωKA) does not make SAR signal model ap-

proximations, it assumes constant radar platform velocity, which introduces errors resulting

from non-linearities in the aircraft’s flight path.

Backprojection is a time-domain azimuth compression algorithm that is computation-

ally expensive but exact. Because backprojection makes no approximations it circumvents

problems from SAR geometry that are common in frequency-domain methods, including

wide antenna beamwidths and non-linearities in the aircraft’s flight path [4]. Backprojection

is the most computationally expensive algorithm of those discussed here, but recent devel-

opments in GPU computing has almost entirely removed its computational cost. My thesis

deals exclusively with the backprojection algorithm.

15



In general, range compression and backprojection are applied to SAR data under the

assumption that the either the radar platform or the targets are stationary. For pulsed SAR,

a good approximation of platform motion is the stop and hop approximation. This means

that the aircraft is assumed to be stationary between transmit and receive pulses. With small

PRFs or very long pulse durations this approximation can cause phase estimation errors and

image anomalies, but it is a reasonable approximation for pulsed SAR since the movement

of the platform from pulse to pulse is negligible compared to the range to the target [12].

2.6.1 Range Compression

The matched filter is the optimal linear filter for maximizing SNR of a signal. It

requires a received signal and a reference signal. The reference signal is used to extract

target features in the imaging scene by measuring differences between it and the received

signal. To perform range compression, the matched filter is implemented by applying an

FFT to each radar echo, performing a complex multiply between the echo and the complex

conjugate of the reference signal, and applying an IFFT to the product. In other words,

it is a cross-correlation between transmitted and received signals. Fig. 2.6 depicts a simple

diagram of how to implement range compression in SAR.

srmd

st

FFT

IFFT

FFT

S R

( ⋅ )
*

Figure 2.6: Block diagram showing the steps of range compression.
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As the name implies, range compression compresses SAR data in fast time and gives

a one dimensional view of the target scene for any one position in slow time. This is done

for every pulse in the data collection, at which point we can perform azimuth compres-

sion. Range-compressed data is depicted in Fig. 2.7, where the range to the target varies

hyperbolically, as indicated by the shape of the range migration curve.

Figure 2.7: Range-compressed data for a stationary target 500 meters away from the flight
path for a radar platform altitude of 500 meters. Image courtesy Joe Winkler [2]. Used with
permission.

2.6.2 Range Cell Migration Correction

With wide antenna beamwidths, the dwell time on a particular pixel can be long

enough that the range to that pixel changes more than one range resolution cell ∆x through-

out the collection. Since all the data across the synthetic aperture is used to form the final

SAR image, the target appears to move through multiple range bins, which is called range

cell migration (RCM). RCM complicates image focusing and in general, must be compen-
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sated for to produce a focused image. Each SAR processing algorithm approaches range cell

migration correction in a different way. For example, the range-Doppler algorithm (RDA)

corrects for RCM by applying a frequency-dependent azimuth interpolation to straighten

each pixel trajectory so its energy lies in one range bin. On the other hand, the chirp

scaling algorithm (CSA) compensates for RCM without interpolation by using chirp scaling

functions [12].

2.6.3 Azimuth Compression

Azimuth compression is vital to SAR because it coherently sums the data from many

positions along a flight path in order to form the synthetic aperture previously discussed.

Backprojection is a time-domain azimuth compression algorithm that can compensate for

any beamwidth, frequency, or platform motion because it makes no signal, range, or motion

approximations. Backprojection uses a matched filter for every pixel in the image by sum-

ming the product of the range-compressed data and the complex conjugate of the expected

phase. The backprojection equation is given by

A(x, y, z) =
N∑
n

SR (R[x, y, z, n]) · exp (4πR [x, y, z, n] /λ) , (2.23)

where A(x, y, z) is the complex pixel value at a particular location and SR is the range-

compressed data for a particular range R[x, y, z, n] that has been interpolated to the range

of the current pixel. The expected phase of R[x, y, z, n] is exp
(
− 4πR [x, y, z, n] /λ

)
, so

Eq. (2.23) is just the matched filter in slow time.

2.7 Signal-to-Clutter Ratio

While the matched filter is ideal for maximizing SNR, signal-to-clutter ratio (SCR)

can be even more important for measuring SAR performance. In SAR images, clutter is the

radar return from objects in the imaging scene that are not of interest [3]. As opposed to

thermal noise, clutter is a kind of signal interference and is only present when a radar signal

is transmitted. Clutter is often measured in terms of radar cross section σc as follows:
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σc = Acσ
◦, (2.24)

where Ac is the area of the illuminated clutter cell and σ◦ is the normalized radar cross-

section of the clutter cell (average reflectivity per unit area) [3]. It is useful to examine

SCR in terms of the radar range equation adapted for the RCS of clutter. This is done by

substituting the RCS in Eq. (2.1) with the RCS of the clutter cell. In this way, all but the

RCS terms cancel and we are left with the signal-to-clutter ratio:

SCR =
σ

σc
. (2.25)

In SAR images, clutter is often present in the form of speckle. Speckle is signal in-

terference that occurs when many individual scattering centers exist in a single resolution

cell. As opposed to the point targets discussed in Section 2.5 that have individually dis-

tinguishable scatterers, speckle is considered a distributed target with random scattering

mechanisms [5].

Consider, for example, a field of grass. As the aircraft moves along its flight path,

the aspect angle varies between each blade of grass in a single resolution cell and changes

slightly between each pulse. Each blade of grass in the resolution cell has different scattering

properties that vary based on aspect angle. The radar returns resulting from the grass in

this resolution cell may constructively or destructively interfere during the SAR’s coherent

superposition of the individual returns. For this reason, speckle often has a noise-like ap-

pearance in SAR images and introduces a graininess to the images [3, 5]. An example of

speckle in a SAR image is given in Fig. 2.8.

A common goal is to distinguish targets from clutter background. The problem in

this is two-fold: the probability distribution function (PDF) of the target signal must be

separated sufficiently from the clutter PDF in mean and variance. Since clutter usually

produces higher pixel intensities than noise, SCR can be even more important than SNR for

image quality and in detecting targets.

In SAR imagery, clutter can generally be understood to mean unwanted signal that

interferes with the signal of interest. When the target of interest is moving, everything but
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Figure 2.8: SAR image of agricultural fields in Spanish Fork, UT. Speckle can be seen resulting
from the crops. It is the noise-like interference present in the image. Image brightness has been
inverted for convenience. Image courtesy Artemis, Inc.

that moving target is considered clutter, includng stationary and other moving scatterers.

The following chapter discusses the behavior of moving targets in SAR images, the single-

channel SAR GMTI solution, and an ambiguity function for constrained target motion.
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Chapter 3

Behavior of Moving Targets in SAR Data

In effect, SAR systems, like digital cameras, take a snapshot in time of a target scene.

However, unlike traditional point-and-shoot cameras, SAR systems do not capture data for

a single instant in time, but over an extended period of time. In this way, they can be

compared to single-lens reflex cameras with slow shutter speeds. When the shutter is left

open for an extended period of time, moving targets are blurred. In a photograph of a

moving subject, the longer the lens aperture is left open (shutter speed), the more out of

focus the subject is, as in Fig. 3.1. The length of time that a SAR is sending and receiving

pulses from a target is called the collection time. In terms of signal-to-noise ratio and image

resolution, SAR images benefit most from long collection times. The collection time of a

SAR is synonymous with the shutter speed of a camera when a moving target is present

in the imaging scene. Hence, moving targets in SAR images are smeared more with longer

collection times.

However, moving targets behave very differently in SAR images than they do in

optical images. In the image shown above, the tail lights of the cars on the freeway trace out

their exact path. Because SAR is a coherent imaging system, moving targets do not trace

out their path in the resulting image. The level and manner of defocusing in SAR images

depends on both the magnitude and direction of target motion. In general, a target that

has a component of motion in the along-track direction is smeared in that direction, but

cross-track target motion causes displacement in the target while preserving image focus.

The rest of the chapter is organized as follows. Section 3.1 and Section 3.2 discusses

the behavior in SAR images of along- and cross-track moving targets, respectively. In Sec-

tion 3.3, I present the key relevant results from Winkler’s work in [2]. Finally, in Section 3.4, I
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Figure 3.1: Photo of night-time traffic with 2 second exposure time. The headlights and tail-
lights indicate the path of the vehicles during the time that the shutter is left open. Copyright
Creative Commons [13].

present an ambiguity function that is a function of target motion parameters and an analysis

of the motion parameter ambiguity in that ambiguity function.

3.1 Along-Track Target Motion

A target in a SAR image with an azimuthal component of motion smears in that

direction and portrays the general motion of the target [14, 15]. Azimuth smearing results

from along-track target velocity, relative radial velocity between the radar and target, and

radial target acceleration [16, 17]. The radar’s azimuth integration angle determines how

curved the target smear is. The integration angle is the angle through which the radar

moves relative to a single pixel during one coherent processing interval [2]. A SAR system’s

largest possible integration angle is the 3 dB antenna beamwidth θ3 and it is common for

a SAR to utilize the entire beamwidth for integration in order to realize the best possible

azimuth resolution [3].

The direction of the target relative to the direction of the radar platform determines

the orientation of the curve. If the target’s along-track component of motion is in the same
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direction as the aircraft, the hyperbolic image curve is concave out from the aircraft. If

the target moves in the direction opposite of the aircraft, the image smear points concave

towards the aircraft [14]. The length of the smear is proportional to along-track target speed,

as shown in Fig. 3.2.

Figure 3.2: Simulated SAR image depicting the effects of along-track target motion. The
radar platform is moving north at 50 m/s and looks to the right. The top six move in the same
direction as the aircraft, and vice versa for the bottom six. The dark green arrows represent
each target’s path during the radar collection, and the light green arrow represents target
motion while it is seen by the antenna. Image courtesy Joe Winkler [2]. Used with permission.
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Figure 3.3: Actual SAR image of targets moving strictly in range and azimuth with optical
images of vehicles overlayed on top of SAR image. The SAR platform is flying North, to the
right of the image. Note that the green truck, which moves strictly in the cross-track direction,
is well-focused but shifted in azimuth from the road. The blue truck, which has strictly along-
track motion, is positioned correctly on the road, but is smeared in azimuth. Image courtesy
Artemis, Inc.

3.2 Cross-Track Target Motion

One might expect cross-track target motion to produce a target smear in SAR images

much like along-track motion does. On the contrary, cross-track motion induces much less

smearing in the final target image and instead produces a shift in azimuth [14, 16, 18]. In

fact, a target with strictly cross-track motion often has so little blurring that it appears as a

well-focused stationary target that is shifted in azimuth from its true position. An example

of cross track motion is shown in Fig. 3.3. As shown in Fig. 3.4, the true position in range
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is approximately the position of the target half way through the time that it is seen by

the antenna’s main lobe, which is the target’s position at zero Doppler shift. An image of

a target that moves towards the flight path of the aircraft shifts in azimuth in the same

direction as the aircraft, and vice versa for a target that moves away from the flight path.

Figure 3.4: Simulated SAR image for moving target with only cross-track motion. The radar
is positioned to the left of the image, looking to the right. Since the target is moving away from
the radar platform, its image is shifted in the opposite direction as the aircraft. The image is
shifted approximately below the position of the target when the antenna is broadside to the
target, or the zero-Doppler line. Image courtesy Joe Winkler [2]. Used with permission.

The amount of shift in azimuth δx is given by [16]

δx =
vr
v
R mod θ3R, (3.1)

where vr is the target’s radial velocity and v is the radar platform velocity. As we can see

in Eq. (3.1), the image shift in azimuth is directly proportional to the radial velocity of the
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target and range to the target and inversely proportional to the aircraft velocity. Winkler

demonstrates these relationships in simulation [2], as given in Figs. 3.5 to 3.7.

Figure 3.5: Simulated SAR images to demonstrate the direct relationship between radial
velocity between the radar platform and target and amount of azimuth shift for a target moving
primarily in the cross-track direction. Each target starts in the same position and moves in
the direction of the green arrow with speeds ranging from 0 to 2.5 m/s in 0.5 m/s increments.
Targets that move towards the flight path are shifted in azimuth the same direction as the
aircraft, and vice versa for targets moving away from the flight path. Image courtesy Joe
Winkler [2]. Used with permission.

3.3 GMTI for Single-Channel SAR

In general, SAR signal processing is performed under the assumption that the imaging

scene contains only stationary targets. As seen in Eq. (2.23), in order to produce a fully-

focused image, time-domain azimuth compression requires a phase estimate for every image

pixel. In single-channel SAR, stationary targets pose no detriment to image formation since

the range to an arbitrary stationary target can be known exactly using a signal’s two-way
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Figure 3.6: Simulated SAR images to demonstrate the direct relationship between ground
range to target and amount of azimuth shift for a target moving primarily in the cross-track
direction. Each target moves in the direction of the green arrow with speeds ranging from
0 to 2.5 m/s in 0.5 m/s increments. The targets in figure (b) are shifted twice as much as
those in (a) because the ground range is doubled. Image courtesy Joe Winkler [2]. Used with
permission.

time of flight to that target. However, the exact phase history of moving targets cannot

be extracted in single-antenna SAR systems because both the moving radar platform and

target contribute to phase changes of a single pixel.

Ground moving target indication (GMTI) can be performed with stationary radars by

examining only radar returns with appreciable Doppler shifts. Since the radar is not moving,

all stationary targets have nearly zero Doppler shift and can be ignored. The Doppler shift

exhibited by any ground target is given by [3]

fd =
2vr
λ
, (3.2)
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Figure 3.7: Simulated SAR images to demonstrate the inverse relationship between platform
velocity and amount of azimuth shift for a target moving primarily in the cross-track direction.
Each target moves in the direction of the green arrow with speeds ranging from 0 to 2.5 m/s in
0.5 m/s increments. The targets in figure (b) are shifted half as much as those in (a) because
the radar platform velocity is doubled. Image courtesy Joe Winkler [2]. Used with permission.

where vr is the radial velocity of the target relative to the radar platform. Since Doppler

shift is literally a measured shift in frequency, we can extract the velocity of a moving target

by measuring frequency differences between transmitted and received signals for a particular

target.

However, Equation (3.2) suggests that in general, when the aircraft is moving, targets

exhibit a Doppler shift. Since Doppler shift varies with relative velocity in relation to the

radar, a stationary target’s Doppler shift varies based on its position relative to the radar.

Therefore, interfering clutter can come from many different directions and eliminating just

the targets with zero Doppler shift is not sufficient in discriminating moving targets from

clutter [19].

GMTI can be performed with single-channel SAR if the moving targets have a Doppler

shift greater than the Doppler bandwidth of the clutter [1] as given by Eq. (2.5). However,

since the clutter’s Doppler bandwidth is proportional to the SAR platform velocity, slow-
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moving targets cannot be extracted from the clutter because their Doppler shift falls within

the clutter bandwidth.

A target’s GMTI solution consists of all the parameters necessary to fully characterize

the motion of the target, including but not limited to, initial position, heading, speed, and

acceleration. In [2], Winkler proves that for uniform SAR platform and target motion, it

is mathematically impossible to realize the target’s unique GMTI solution based solely on

the range migration curve (RMC), an example of which is depicted in Fig. 2.7. The GMTI

solution of a target with uniform motion is given by (x0, y0, ψt, vt), where x0 and y0 are the

target’s initial positions in range and azimuth, respectively, ψt is the target’s heading, and

vt is the target’s speed. The RMC can be expressed as a hyperbolic equation [2] in the form

of

R2(
AC−B2

A

) − (t+ B
A

)2(
AC−B2

A2

) = 1, (3.3)

where A, B, and C are constants and are defined by the parameters of the GMTI solution.

These constants are given by

A = v2
t sin2 ψt + v2

t cos2 ψt − 2vtv cosψt + v2, (3.4)

B = x0vt sinψt + y0(vt cosψt − v), (3.5)

C = x2
0 + y2

0 + h2. (3.6)

Since all four GMTI parameters comprise the three hyperbolic function constants, the

GMTI solution for single-channel SAR is an underdetermined problem. In [20], Chapman

demonstrates that: 1. for every stationary scatterer, there is a set of moving targets at the

same range to the radar that to the radar are indistinguishable from each other; and 2. for

any moving target with uniform motion, there exists a second target with different position

and velocity but same range from the target that is also indistinguishable from the first

target. In single-channel SAR GMTI, this is manifest in the form of many target motion

parameters that produce an identical RMC, as shown in Fig. 3.8.
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Figure 3.8: GMTI solution space for a target moving with GMTI parameters (x0, y0, ψt, vt)
of (500 m, 250 m, 45◦, 10 m/s). The blue dots and corresponding red arrows represent moving
target parameters that would all produce identical range history. Length of the arrows is
proportional to target speed. Image courtesy Joe Winkler [2]. Used with permission.

Winkler’s model, given in Eqs. (3.4) to (3.6), parameterizes a target’s GMTI solution

using the RMC. We can use this model to explore GMTI for single-channel SAR and it is

the foundation of the new material presented in subsequent chapters.

3.4 SAR Ambiguity Function

Backprojection utilizes a 2-D matched filter to maximize image SNR. But when a

moving target induces a Doppler shift in the return signal in addition to that caused by the

motion of the radar platform, the return signal is mismatched to the filter and the output

is lower than its maximum value. An ambiguity function (AF) is a way to characterize

the response of the matched filter [3]. Examples of ambiguity functions for ICW and LFM

signals are depicted in Fig. 3.9 and Fig. 3.10, respectively.

In order to show that the GMTI solution for a target with uniform motion for single-

channel SAR is underdetermined, I took the following approach. Consider a single simulated

SAR collection in a noise- and clutter-free environment. The only non-zero pixels in the

final image come from the target’s impulse response. The one target in the simulated data
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Figure 3.9: Normalized 3-D ambiguity function for a rectangular ICW pulse. ωd is the
Doppler mismatch and ∆t is the time delay in the matched filter response. Image courtesy Joe
Winkler [2]. Used with permission.

Figure 3.10: Normalized 3-D ambiguity function for an LFM pulse with a time-bandwidth
product of 25. ωd is the Doppler mismatch and ∆t is the time delay in the matched filter
response. Image courtesy Joe Winkler [2]. Used with permission.
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is a point target and moves at a constant heading and speed. During the backprojection

algorithm, the target motion can be compensated for by shifting the target pixels according to

target’s motion. If the wrong motion parameters are chosen, the general result is a defocused

image of the target. However, suppose we process the data with motion compensation for

all possible target headings and speeds to some arbitrary precision. We then have a large

data set of SAR images with different levels of image focus quality. For each image, we find

the largest pixel value and map that set of values on a 3-D grid with axes for the applied

compensation to target heading and speed. The result can be seen in Fig. 3.11.

The conventional AF is plotted on a grid of Doppler shift and time delay [18]. How-

ever, because Fig. 3.11 depicts power as a function of parameter matching, it can be con-

sidered an ambiguity function. Since image focus and target return value are generally

functions of applied motion compensation, this AF shows the most probable correct motion

parameters.

The most important feature of Fig. 3.11 is the ridge that is seen near the left and

right edges of the figure. I call this an ambiguity curve (AC) and give a better perspective

in Fig. 3.12. These peaks in the image occur from the target return for the different focus

parameters, which vary based on the accuracy of the applied motion compensation. It is

important to note that in general, the true target motion parameters (15◦, 10 meters/second)

do not give a value any higher than the mean intensity level of the ridge1. In fact, each

peak represents a combination of motion parameters that produce images that are virtually

indistinguishable from each other and all have high target returns. As an example, consider

Fig. 3.13. In this image, I have plotted 20 different combinations of motion that produce

nearly identical image focus. Note that the range resolution is relatively poor relative to the

azimuth resolution, so these targets are not very well focused. Also, there is slight rotation

that is proportional to the error in the estimated target heading and side lobe level variation

among the images, but in general, there is little to distinguish these images from each other,

especially in regards to image focus.

1In general, tests have shown the ridge values to be similar to each other and that low peak values on the
ambiguity curve result from straddle loss [3].
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Figure 3.11: Top-down view of ambiguity function plotted for a single simulated SAR collec-
tion as a function of estimated target heading and speed. These parameters are compensated
for during backprojection and each value in the ambiguity function’s image is the peak pixel
value for an image with some combination of target heading and speed. There is ridge of
peak values starting on the left side of the image at about 10 m/s that wraps around to the
right side of the image. I call this the ambiguity curve, since it represents motion parameter
combinations that produce virtually indistinguishable SAR images. The two parabolic sections
with zero intensity represent motion parameter compensation that caused the target to shift
completely out of the imaging window.
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Figure 3.12: 3-D view of Fig. 3.11’s ambiguity curve. The peaks of this curve represent motion
parameters combinations that produce generally SAR images that are indistinguishable when
applied to the same set of data.

Let us now consider image focus from a quantitative perspective. One of the most

common metrics for image focus is measuring the contrast ratio of the impulse response.

Contrast ratio is often defined as the ratio of the signal power in the 3 dB width of the main

lobe to the power in the side lobes past the first null. I implemented this by summing the

pixel intensities within the nearest 3 dB of the target center and comparing it to the side
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lobe power, while ignoring a guard band from 3 dB to the first null. Table 3.1 shows a table

comparing target image widths based on varying motion compensation.

Table 3.1: Mean target image widths (in pixels) in range and azimuth over all ten targets
for various sets of applied motion compensation. Values here correspond to the images shown

in Fig. 3.13.

3 dB (Range) 3 dB (Azimuth) Heading Speed

106.2 7.1 4.5 9.6
109.2 7.6 356.0 9.6
111.1 8.9 30.5 11.6
113.3 7.5 355.0 9.6
117.3 7.9 11.0 9.8
118.1 7.8 15.0 10.0
120.8 7.9 3.5 9.6
123.0 8.4 20.5 10.4
127.3 8.9 24.5 10.8
131.9 9.2 28.0 11.2
132.2 9.4 26.5 11.0
133.7 9.1 18.5 10.2
134.6 8.9 23.0 10.6
135.2 10.1 31.5 11.8
140.7 10.7 29.0 11.4
141.9 12.8 34.0 12.2
142.6 8.7 357.5 9.6
149.1 14.0 33.0 12.0
162.6 10.1 354.0 9.6
168.1 10.5 6.0 9.6

As seen in Table 3.1, there are several sets of motion parameters that produce target

widths as narrow as that of the true motion parameters. This demonstrates a weakness

of the implemented method of measuring contrast ratio. This weakness is manifest in the

measurements of width in range and azimuth and because incorrect heading estimates rotate

the final image, the measured target width for some motion parameters is less than that of

the true motion parameters. Each line in Table 3.1 represents a peak in the AC shown in

Fig. 3.12. As expected, each peak on the AC has an corresponding image that has similar

image focus quality, as shown in Fig. 3.13.
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As a matter of further investigation, let us assume that we can extract motion pa-

rameters based on image focus. Consider two SAR images from this simulated collection

processed with the true motion parameters and with incorrect motion parameters providing

the best quantitative image focus (4.5◦, 9.6 meters/second). These are plotted side-by-side

in Fig. 3.14 for comparison. They are appear nearly identical, and qualitatively, the image

processed with the wrong motion parameters could be said to appear more focused than

that of the true motion parameters. The only real differences are the asymmetric side lobes

(left) and the rotation of the entire set of targets (right).

The preceding discussion, table, and figures demonstrate the class of moving targets

described by Chapman in [20], where several combinations of target motion compensation

that produce nearly identical images. This chapter has shown that the single-channel SAR

GMTI solution is underdetermined. This motivates us to constrain the problem so that the

GMTI solution is attainable. The next chapter demonstrates a feasible method of target

motion parameter estimation if we constrain one variable of the GMTI solution.
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3.5◦, 9.6 m/s 4.5◦, 9.6 m/s 6.0◦, 9.6 m/s 11.0◦, 9.8 m/s 15.0◦, 10.0 m/s

18.5◦, 10.2 m/s 20.5◦, 10.4 m/s 23.0◦, 10.6 m/s 24.5◦, 10.8 m/s 26.5◦, 11.0 m/s

28.0◦, 11.2 m/s 29.0◦, 11.4 m/s 30.5◦, 11.6 m/s 31.5◦, 11.8 m/s 33.0◦, 12.0 m/s

34.0◦, 12.2 m/s 354.0◦, 9.6 m/s 355.0◦, 9.6 m/s 356.0◦, 9.6 m/s 357.5◦, 9.6 m/s

Figure 3.13: 20 SAR images processed from the same simulated SAR data with varying
motion parameters. Image focus is approximately the same between all images. The motion
parameters used to process each corresponding image are placed below the images. True motion
parameters are 15.0◦, 10.0 m/s. Image brightness has been inverted for convenience.
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(a) 15◦, 10 m/s (b) 4.5◦, 9.6 m/s

Figure 3.14: Images of simulated SAR data processed with the true motion parameters (left)
and incorrect motion parameters (right). Note that the images are nearly identical in image
focus and intensity. Image brightness has been inverted for convenience.

38



Chapter 4

Estimating Target Motion Parameters in Simulated Data

We know that if a target moves uniformly, four parameters completely characterize its

motion, namely position x0 and y0, heading ψt and speed vt. Since the RMC of single-channel

SAR provides only enough information to extract three of the four GMTI parameters, there

are an infinite number of GMTI solutions for any given moving target in single-channel SAR.

However, if we make one of the parameters a constant, it becomes possible to solve for a

unique set of motion parameters using single-channel SAR data.

Considering all four motion parameters of a uniformly-moving target, the easiest

parameter to constrain is heading. Since many ground targets of interest move on paved

roads, for this chapter we assume that the targets of interest are traveling on straight roads

which constrains the target headings to align with the road. If the target heading ψt is a

known constant, this reduces the number of unknowns in Eqs. (3.4) to (3.6) to three. We

can then solve for x0, y0, and vt exactly.

In [2], Winkler approaches the GMTI problem using the range migration curve. I

take a different approach in this thesis and in this chapter present a practical method of

extracting the exact motion parameters using the AF shown in Fig. 3.11. This AF is in a

different form than a typical AF, in that it is plotted on a grid of heading and speed as

opposed to Doppler shift and time delay. However, it still indicates the level of mismatch

between the return signal and the filter.

The remainder of this chapter introduces this thesis’ algorithm and its application to

simuated data. Section 4.1 includes a discussion of backprojection for simulated data. In

Section 4.2, I give an overview of the ambiguity function formed during processing. Finally,

in Section 4.3 I present some important points to consider for AF processing speed and

accuracy.
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4.1 Backprojection Processing of Simulated Data

Figure 4.1 shows an image of simulated SAR data. There are ten targets formed in

the shape of an ’R’.

Figure 4.1: Simulated SAR image of stationary targets. Image brightness has been inverted
for convenience.

Now suppose the targets move throughout the SAR collection as one rigid body at

a constant velocity. In this case, the targets move with a heading of 15◦ at 10 m/s. This

motion is constant throughout the data collection. As discussed in Chapter 3, the target

smears and shifts in azimuth because of its motion as seen in Fig. 4.2.

We now have a defocused image due to motion and would like to focus it. How can

we determine the correct motion parameters in order to focus the image in a reasonable
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Figure 4.2: Simulated SAR image of uniformly-moving targets. Image brightness has been
inverted for convenience.

amount of time? For clarity in explanation, a brief discussion of backprojection efficiency is

warranted. SAR Backprojection is inherently a computationally expensive algorithm because

there are M ×N ×P operations to perform for every image, where M ×N is the number of

pixels in the image and P is the number of pulses in the data collection. A serial approach to

backprojection is extremely inefficient and can take days, or even weeks for a single image.

Recently, graphics card manufacturers like NVIDIA have made graphics processing units

with many cores (more than 3000) on each chip [21]. Each of these chips can have hundreds

of single and double precision units, special function units for trigonometric operations, and

memory registers. This makes these GPUs ideal for parallel computing.

The backprojection algorithm can efficiently take advantage of all those cores and

decrease the time required to process SAR data by multiple orders of magnitude [4]. All of

41



the SAR processing done in this thesis is performed using NVIDIA GPUs. When the task is

especially computationally demanding, a high-end NVIDIA GeForce GTX 690 [21] is used.

4.2 AF Processing

Let us assume that the target of interest is moving with unknown, uniform speed but

traveling on a straight road. These are reasonable assumptions for a ground-moving vehicle

in any urban environment. Given this knowledge, the target heading becomes a known

parameter and there are only three parameters for which to solve in the GMTI solution:

position and speed. However, because it can be difficult to find the exact heading of the

road and because the target heading may vary slightly from that of the road, the algorithm

presented in this thesis considers a range of target headings during processing.

Since we know the general heading of the road, we need only process a section of

the full AF based on a range of headings and estimated velocities, which significantly re-

duces the total processing time. Even a conservative estimate with large variance in target

heading (± 10◦) and speed (0 – 25 m/s) reduces the processing time by a factor of twenty

compared to processing the full AF from Section 3.4. The precision between heading and

velocity estimates can be adjusted based on the desired AF grid spacing. Once we decide

the range and precision of heading and speed estimates for motion compensation, we run

backprojection on the SAR data for each combination of heading and speed, with a resulting

motion-compensated image for each combination.

After backprojection processing is complete, each image is processed in MATLAB to

find its maximum value, which is saved with its corresponding motion parameters. Since we

are working with noise- and clutter-free simulated data, it is safe to assume that the target

image contains the maximum value. The peak image pixel values are then plotted on a grid

that varies with the heading and speed estimates used in processing. This is the estimated

AF, an example of which is shown in Fig. 4.3.

Examining the AF, we see that there are many combinations of heading and speed

estimates that give a peak in the AF. This envelope we call the ambiguity curve represents

combinations of heading and speed that, when used for motion-compensation, produce target
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Figure 4.3: AF plotted for a target moving at 15◦, 10 m/s in simulated SAR data. The
AF is formed over a small heading range of for efficient processing. The peaks in the image
correspond to the peaks in the ambiguity curve in Fig. 3.12.

images with similar image focus. This envelope is the source of our motion parameter

estimate and is discussed in the next section.

4.3 Processing Considerations

In the first stage of processing, it is most efficient to process a coarse AF grid around

the best estimates of the motion parameters in order to pinpoint a narrow range of parameters

for finer processing. Examining Fig. 4.3, it is apparent that for the known target heading,

target speed is fairly consistent with varying heading. This means that we can tightly

constrain the range of heading estimates in our finely-spaced AF to further reduce processing

time. If greater accuracy is desired or if straddle loss is encountered (Fig. 4.4), we can
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decrease the AF grid size to just a few degrees in heading and a few meter/second in speed,

as shown in Fig. 4.5.
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Figure 4.4: AF using coarse pixel resolution and motion parameter sampling for the same
target as in Fig. 4.3. This AF suffers from straddle loss because of inadequate pixel resolution
and motion parameter sampling. Pixel resolution is 10 meters and both heading and speed
sample spacing is 0.2 degrees and m/s, respectively. Improving the pixel resolution gives the
finer grid necessary to determine the strongest target return (and subsequently, the target
motion parameters), as shown in Fig. 4.5.

In order to avoid straddle loss when forming the AF, care should be taken to use both

fine-enough pixel resolution and sample spacing in the motion estimates. Straddle loss occurs

when a signal is sampled infrequently enough that the signal is sampled on either side of the

peak magnitude instead of at its peak [3]. Coarse pixel resolution used during backprojection

may result in an image with low peak values because we are sampling on either side of a
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target return instead of its peak. Likewise, if the space between motion parameter estimates

is too large, we may be sampling on either side of an AF peak. Therefore, this algorithm

uses finer-than-normal pixel resolution and fine motion parameter AF sampling in order to

minimize straddle loss. However, if the pixel resolution or motion parameter sampling is too

fine, processing the AF takes more time than is practical, so a balance must be found in the

pixel sampling frequency.
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Figure 4.5: Finely-sampled ambiguity function with tighter range of heading and speed than
Fig. 4.3. One line has been drawn from each motion parameter axis to the peak of the AF
nearest to the known road heading. In this case, the peak is only 0.06◦ from the road’s heading
of 15◦. The GMTI solution is given by the intersection of these two lines.

Although the ambiguity function in Fig. 4.5 still experiences slight straddle loss, we

can still make a good estimate of target motion by searching for the peak in the envelope

of the ambiguity curve. Finding the point in that envelope corresponding to the known
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road heading gives us the true target motion parameters. Applying these to the SAR data

introduced at the beginning of the section restores Fig. 4.2’s focus and produces an image

that looks identical to Fig. 4.1.

The results from the AF in Fig. 4.5 are very accurate; there is a 0.06◦ error in

estimated heading and a 0.1% error in the speed estimate. However, this simulated SAR

data is free of clutter, noise, and non-linear target and platform motion. These are all

prevalent in actual SAR data and must be dealt with for this algorithm to be very useful.

The following chapter adapts the algorithm as needed to make this practical for actual SAR

data.
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Chapter 5

Estimating Target Motion Parameters in Actual SAR Data

The previous chapter outlines a single-channel GMTI algorithm which it demonstrates

with simulated data. This chapter demonstrates the algorithm with actual SAR data1. While

the simulated data is noise- and clutter-free with idealized platform and target motion, actual

SAR has significant noise, clutter, and signal phase errors introduced by non-linear platform

and target motion. These negatively affect the algorithm’s performance and must be dealt

with.

For example, my algorithm assumes that the moving targets of interest move with

uniform velocity, but since the targets are ground vehicles with human drivers, both the

heading and the speed may vary during the data collection. This degrades the accuracy of

the target’s reported motion parameters. Non-ideal radar platform motion induces similar

errors. Furthermore, the algorithm can mistake clutter for target returns, so a bounding

box is set to remove clutter from the image. Lastly, some SAR data has errors that make

it unusable for motion parameter estimation even though the stationary SAR image looks

normal.

This chapter introduces a practical algorithm for performing single-channel SAR

GMTI on actual SAR data. Section 5.1 gives a detailed description of how the algorithm is

implemented for actual SAR data, including modifications required to deal with real-world

problems like clutter. In Section 5.2, I demonstrate the algorithm’s utility with several case

studies for various types of uniform motion. Finally, Section 5.3 presents a performance anal-

ysis on the algorithm by examining the amount and sources of error in the target motion

estimates.

1L-band SAR data and its associated truth data for target motion were provided by Artemis, Inc.
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5.1 Algorithm Implementation for Actual SAR Data

The algorithm of this thesis can be divided into steps as shown in the flow chart in

Fig. 5.1. These steps are outlined here and are the focus of the corresponding sections within

this chapter.

SAR data 
with moving 

target

Extract 
heading 
of road

Backprojection for 
motion parameter 

combinations

Find max 
pixel value

Plot 3-D 
AF

Does the AF 
provide all the 

information 
we need?

Motion parameters 
at highest peak 

near the associated 
road heading

YesNo

Process SAR 
data with motion 

parameter 
estimates for 
focused target 

image

Figure 5.1: Block diagram of the single-channel SAR GMTI algorithm described in this thesis.

1. Perform backprojection processing on SAR data containing a suspected moving target

without considering target motion.

2. Use shapefiles to get the heading of the road the target is traveling on.

3. Process the SAR data for a range of heading and speed estimates. For each combination

of heading and speed, shift the image grid at the same rate as the estimated target

motion and save an image.
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4. Find the maximum image value in each motion-compensated SAR image. Ideally, this

is the target’s peak response.

5. Plot a 3-D ambiguity function of target values on a grid with axes associated with the

range and precision of the motion estimates.

6. If necessary, process the AF again for a smaller range of motion parameter values at

finer precision, centered around the peak AF values.

7. Find the highest peak in the AF at the known road heading. The heading and speed

at this AF peak are our final target motion estimates.

8. Process the SAR data with the target motion estimates to generate a focused image

of the moving target.

5.1.1 SAR Data with Suspected Moving Target

The first step in this algorithm is to process the SAR data containing a suspected

moving target using conventional (stationary) backprojection. A moving target is smeared

and/or shifted from its true position in the image. Targets with some component of along-

track motion smear and are relatively easy to locate, as seen in Fig. 5.2. In this image, the

target is moving at 269.7◦, 11.1 m/s and because the aircraft is flying at 315◦, the target

has both along- and cross-track components of motion. As with all SAR images used in this

chapter, the image brightness has been inverted for convenience.
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Figure 5.2: L-band SAR image of Spanish Fork, UT. The radar platform has an average
heading of 315◦. The target is moving at 269.7◦, 11.1 m/s and can be seen as a smear in
the image within the orange box. The red arrow denotes the target’s path during the SAR
collection and note that it is shifted from the road in the azimuth direction from it’s true
position, which is outlined by the blue box.

We can determine an initial estimate of the target’s motion by examining the direction

and magnitude of smear and shift of the target in the image. As discussed in Section 3.1,

since the image smear is concave out from the radar, we know that the target’s along-

track component of motion is in the same direction as the radar. Likewise, we know from

Section 3.2 that since the target image is shifted down from the road (opposite the direction

of flight), the target’s cross-track component of motion is away from the flight track. Once

the target and associated road are located, the heading of the road must be determined from

the orientation of the road in the image and the flight track.
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5.1.2 Shapefiles

A shapefile is a common geospatial vector data format for geographic information

system (GIS) software [22]. Shapefiles spatially describe a geographical area using vector

features like points, lines, and polygons. Shapefiles can be used for finding the direction of

roads on a map, as shown in Fig. 5.3. When shapefiles are loaded into GIS software, we can

determine the exact gps coordinates of the start and end points of a road. The standard

formula for bearing ψ calculated from latitude/longitude points is given by [23]

ψ = atan2 [sin(λ2 − λ1) cos(φ2), cos(φ1) sin(φ2)− sin(φ1) cos(φ2) cos(λ2 − λ1)] , (5.1)

where φ1, λ1, φ2, λ2 are the initial and final latitude and longitude coordinates, respectively.

ψ can be normalized to a standard compass bearing by converting to degrees and adding

360◦ to the result. This will give us the bearing relative to 0◦ North. Once we have an initial

heading estimate for the target’s motion, which is given by the direction of the road, we can

process the ambiguity function for that target’s motion.
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Figure 5.3: Shapefile representing the area depicted in Fig. 5.2. The roads in the image are
highlighted in yellow. The red arrow indicates the target’s path during the SAR collection.
Since we can get the gps coordinates of the start and ending points of the target’s path from
the shapefile, we can easily calculate the road’s heading by using Eq. (5.1).

5.1.3 AF Processing

In general, the most common SAR processing algorithm is the range-Doppler algo-

rithm (RDA). Operating in the frequency domain, it makes some approximations of the SAR

signal but is computationally efficient. These approximations are often allowable for most

purposes. Backprojection is a SAR processing algorithm that, although exact in its matched

filter calculations of the SAR signal and phase history, is computationally expensive. What

makes backprojection so demanding is that it operates on every image pixel for each transmit

pulse. With a PRF of 500 Hz this amounts to 60 billion calculations for a 4 megapixel SAR

image of a 30 second SAR collection.

Fortunately, backprojection is highly parallelizable. Companies like NVIDIA have

made major advances in GPU computing technology and now fit nearly 6000 processing cores
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and 12 GB of memory on a single graphics card [24]. These advances, along with NVIDIA’s

CUDA parallel computing software, enable us to do faster-than-real-time backprojection

processing.

Forming the ambiguity function used in this algorithm requires that we process a

section of the SAR data up to tens of thousands of times in order to find the target’s motion

parameters. Therefore, we desire to minimize (1) the number of computations required and

(2) the clutter present in each image. Since we are only interested in the area around the

moving target, we choose an appropriate bounding box for GMTI SAR processing. For this

thesis, the bounding box is generally chosen as the road the target is traveling on, as shown

in Fig. 5.4. After processing the first image, which is used to determine initial target motion

estimates, all subsequent images used to compute the AF are computed only within this

box. This minimizes the calculations required to form the image while still giving us all the

information we need to form the AF. The result is that processing time is reduced by an

order of magnitude or more compared to processing the whole image. In fact, the processing

takes so little time that we can greatly improve the pixel resolution of the small images

without a significant increase in processing time.
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Figure 5.4: SAR image with bounding box highlighted for target’s expected trajectory. By
processing only the road traveled by the target, we reduce clutter, speed up processing, and
enable finer pixel spacing with no loss of information during processing.

When operating on actual SAR data, we must deal with the problem of clutter, as

discussed in Section 2.7. In general, clutter can be understood to refer to scatterers that

interfere with the desired signal. In this thesis, clutter refers to any scatterer but the moving

target. In my algorithm, I compute the AF by finding the peak pixel value of the image

around the target. If that image includes large clutter values, it destroys my information

about the moving target, so I restrict the size of image to exclude major sources of clutter.

Because clutter generally has a high variance and since it can have a higher return than

the moving target of interest, the AF formed from a section of the image that includes high

clutter values is very noisy, as depicted in Fig. 5.5.
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Figure 5.5: AF formed from a section of Fig. 5.2 that includes high clutter values. The
occurrence of clutter in the SAR data my produce SAR returns with higher echo intensities
than the moving target. In this case, the algorithm cannot find the target signal within the
clutter. We alleviate this problem by constraining the bounding box to include just the road
the moving target is on.

The clutter most prevalent in the data used in this thesis occurs mostly away from

the roads. High clutter values are due to strong scatterers found in man-made structures

like buildings and gates. In general, these scatterers are not immediately adjacent to roads,

so a bounding box around a road mostly eliminates clutter caused by these scatterers. We

can therefore assume that for the most part, in any image where a road bounding box is

used, the highest peak value comes from the target’s radar return.

Once we determine the appropriate bounding box, we choose a range of heading and

speed values to use as motion compensation parameters in the backprojection algorithm.

Consider one set of motion parameters ψ1 and v1 as an example. We pass the heading

and speed into the backprojection algorithm, which operates on each pixel for each pulse in
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the data collection. For each pixel during every pulse, the appropriate shift s is calculated

according to the standard displacement equation

s(t) = s0 + vt, (5.2)

where s0 is the initial displacement, v is velocity, and t is time. For our purposes, t is the

number of pulses transmitted since the beginning of the collection which we call the “absolute

pulse number,” and v is the target velocity in m/pulse. t is calculated as the absolute pulse

number minus the pulse number associated with the aircraft’s point of closest approach to

the target. This offset based on the point of closest approach is paramount to focusing the

target in its true location. If it is not used, the target is away from its true position and in

general is outside of the bounding box.

Since the image is formed from the vantage point of the radar, it is convenient to

calculate the shift in terms of its cross- and along-track components. The cross- and along-

track shifts sx and sy are given by

sx(t) = vtt sin(ψt)

sy(t) = vtt cos(ψt), (5.3)

where ψt is the target’s heading and vt is the target’s speed. In Eq. (5.3), s0 is set to zero

because we are compensating only for motion, not for target position. Once we calculate the

proper shift, we apply it to the current pixel and do this for every pixel for each pulse. This

is done for every set of motion parameters we desire to include in the AF.

It is important to note that a moving target that is focused and whose motion is

fully compensated with proper motion parameters is located in its true position, which we

define as its position halfway through the radar collection. This is also known as the zero-

Doppler line, as described in Section 3.2. Therefore, a target with any amount of along- and

cross-track motion (assuming it is on the road during the SAR collection) appears on the

road after motion compensation. It is for this reason that we can confidently constrain the

SAR imaging box to the road the target is traveling on. Likewise, applying incorrect motion

56



parameters to a SAR image of a moving target may shift the target far outside the bounding

box so it is not even visible in the final image.

Once the set of individual motion-compensated SAR images are formed for the corre-

sponding range and precision of motion parameters, we iterate through this set of images in

MATLAB to find the peak pixel value of each image. As discussed in the previous paragraph,

it is safe to assume that with the correct motion parameters, the target appears on the road.

We also assume that barring any dominant scatterers in the image when the target is not

present, the radar returns in the image are generally low. Therefore, the peak value in the

image almost certainly comes from the target when it is present.

Once the maximum value in each image is found, we generate a 3-D plot of the values

on a 2-D grid corresponding to the range and precision of motion estimates used in AF

processing. This 3-D plot is the AF. The AF for the SAR data depicted in Fig. 5.2 is shown

in Fig. 5.6.
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Figure 5.6: AF for moving target depicted in Fig. 5.2. The peaks correspond with high peak
values in the motion-compensated SAR images as a result of sharp image focus.

As described in Chapter 4, the last step of the algorithm is to find the target speed

associated with the known target heading. If necessary, we process the AF again for a smaller

range of motion parameters but with finer precision. Figure 5.7 shows lines drawn from the

AF peak to each axis in order to show the combination of motion parameters that are closest

to the actual motion of the target during the SAR collection. Since this is actual data and

the vehicle does not have perfectly uniform motion, the peak in the AF may vary slightly

from the known road heading.
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Figure 5.7: AF for moving target depicted in Fig. 5.2. Lines have been drawn from the AF
peak to each motion parameter axis to show the most likely motion parameters of the target.
The AF peak associated with the road heading is at 270◦, 9.28 m/s.

5.1.4 Application of Motion Parameter Estimates to SAR Data

Once we know the correct target motion parameters, applying them to SAR data

results in a reasonably well-focused image of the target, as shown in Fig. 5.8. For convenience,

the focused image of the moving target is superimposed on the original stationary SAR image

and is shown in Fig. 5.9.
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Figure 5.8: SAR data depicted in Fig. 5.2 processed with motion compensation parameters
of 270◦ and 9.28 m/s. While the target is focused, note that the stationary clutter is now
smeared because of the applied motion compensation.

Figure 5.9: SAR data depicted in Fig. 5.2 superimposed with focused image of target pro-
cessed with motion parameters of 270◦ and 9.28 m/s. The target is relatively well-focused
and is located on the road at the radar’s point of closest approach, as we expect for matching
motion parameters.
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5.2 Case Studies

This section provides a brief analysis of the algorithm’s performance for various types

of target motion, including strictly along-track motion, strictly cross-track motion, and a

combination of both. Each subsection examines one of these three types of motion in actual

SAR data and for specific target motion briefly discusses: (1) the stationary SAR image

and reported truth data for the target’s motion parameters; (2) the ambiguity function

associated with the SAR data; (3) the motion-compensated image formed by applying the

motion parameter estimates in backprojection processing.

5.2.1 Along-Track Target Motion

In SAR data with targets that exhibit along-track motion, the stationary SAR image

of those targets is smeared. In this subsection we consider only targets that move strictly

in the along-track direction. Figure 5.10 shows a stationary SAR image of an along-track

moving target moving at 179.2◦, 2.2 m/s. The image of the target is smeared but located

on the road because there is no cross-track component of motion. Figure 5.11 and Fig. 5.12

are the corresponding AFs for that data and have wide and narrow motion parameter grids,

respectively. Finally, Fig. 5.13 shows the focused target that has been processed with the

estimated motion parameters (177.8◦, 1 m/s) superimposed on the original stationary SAR

image.
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Figure 5.10: SAR image with target moving at 179.2◦, 2.2 m/s on the road as indicated by
the red arrow, which has been moved off of the road for visibility of the target but still gives the
target’s path during the collection. Since the target smear is contained to the road, we know
it has strictly along-track motion, and since the target smear is concave in towards the flight
track, we know it moves in the opposite direction as the radar. The blue box represents the
target’s true position at halfway through the SAR collection. The bounding box is highlighted
in green and represents the area processed for the AF.
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Figure 5.11: Ambiguity function for the SAR data in Fig. 5.10 with wide range of heading
and speed values. This AF is formed processing the SAR data only for the green bounding box
in Fig. 5.10. Note the ambiguity curve that lies along the 1 m/s mark.
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Figure 5.12: Ambiguity function processed with smaller range of values but finer precision
than Fig. 5.11. A line has been drawn to the peak nearest the road’s heading of 179.2◦. This
peak lies at 177.8◦, 1 m/s. These motion parameters are this algorithm’s best estimate of the
true target motion.

Figure 5.13: Focused target image superimposed on SAR image from Fig. 5.10. The motion
parameters derived from the AF and applied to this target are 177.8◦, 1 m/s. The target has
been highlighted in blue for visibility on top of the original target smear.
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Figures 5.14 to 5.17 show the stationary SAR image, ambiguity functions, and focused

target image for an along-track moving target from a different data collection. In this case,

the target moves at 0◦, 6.7 m/s. The AF-derived best estimate of the target’s motion is

-0.5◦, 3.11 m/s.

Figure 5.14: SAR image of target moving at 0◦, 6.7 m/s on the road as indicated by the
red arrow, which has been moved off of the road for visibility of the target but still gives the
target’s path during the collection. Since the target smear is contained to the road, we know it
has strictly along-track motion, and since the target smear is concave out from the flight track,
we know it moves in the same direction as the radar. The blue box represents the target’s true
position at halfway through the SAR collection. The bounding box is highlighted in green and
represents the area processed for the AF.
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Figure 5.15: Ambiguity function for the SAR data in Fig. 5.14 with wide range of heading
and speed values. This AF is formed processing the SAR data only for the green bounding box
in Fig. 5.14. Note the ambiguity curve that lies along the 3.1 m/s mark.
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Figure 5.16: Ambiguity function processed with smaller range of values but finer precision
than Fig. 5.15. A line has been drawn to the peak nearest the road’s heading of 0◦. This peak
lies at -0.5◦, 3.11 m/s. These motion parameters are this algorithm’s best estimate of the true
target motion.
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Figure 5.17: Focused target image superimposed on SAR image from Fig. 5.14. The motion
parameters derived from the AF and applied to this target are -0.5◦, 3.11 m/s. The target has
been highlighted in blue for visibility on top of the original target smear.

5.2.2 Cross-Track Target Motion

As opposed to along-track motion, strictly cross-track motion induces no image smear-

ing in SAR. Instead of smearing, targets with cross-track motion shift in azimuth from their

true positions. Figure 5.18 shows a stationary SAR image of a cross-track moving target that

is well focused but not in its correct location. Figure 5.19 and Fig. 5.20 depict the ambiguity

functions associated with this data. In Fig. 5.21, the focused target image is superimposed

on the stationary SAR image. The true motion parameters for this target are 90.15◦, 2.2

m/s and the best estimate is 90.5◦, 1.1 m/s.
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Figure 5.18: SAR image with target moving at 90.15◦, 2.2 m/s on the road as indicated by
the red arrow, which shows the target’s path during the collection. Since the target is well
focused but shifted from the road, we know that the motion is strictly cross track. The blue
box represents the target’s true position at halfway through the SAR collection. The bounding
box is highlighted in green and represents the area processed for the AF.
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Figure 5.19: Ambiguity function for Fig. 5.18 with wide range of heading and speed values.
This AF is formed processing the SAR data only for the green bounding box in Fig. 5.18.
Notice the ambiguity curve that lies along the 1.1 m/s mark.
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Figure 5.20: Ambiguity function processed with smaller range of values but finer precision
than Fig. 5.19. A line has been drawn to the peak nearest the road’s heading of 90.15◦. This
peak lies at 90.5◦, 1.1 m/s. These motion parameters are this algorithm’s best estimate of the
true target motion.

Figure 5.21: Focused target image superimposed on stationary SAR image from Fig. 5.18.
The motion parameters derived from the AF and applied to this target are 90.5◦, 1.1 m/s. The
target has been highlighted in blue for visibility in its true position at halfway through the
data collection.
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5.2.3 Combined Target Motion

Target motion with along- and cross-track components of motion induces both smear

and shift to the target image. This subsection outlines a case with a combined-motion target

moving at 89.6◦, 2.2 m/s. As with the previous subsections in Section 5.2, here I show the

stationary SAR image, ambiguity functions, and focused target image for a target motion

estimate of 90.15◦, 1.1 m/s.

Figure 5.22: SAR image with target moving at 89.6◦, 2.2 m/s on the road as indicated by
the red arrow, which shows the target’s path during the collection. Since the target image is
smeared and shifted from the road, we know it has both along- and cross-track motion. The
blue box represents the target’s true position at halfway through the SAR collection. The
bounding box is highlighted in green and represents the area processed for the AF.
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Figure 5.23: Ambiguity function for Fig. 5.22 with wide range of heading and speed values.
This AF is formed processing the SAR data only for the green bounding box in Fig. 5.22.
Notice the ambiguity curve that lies along the 1.1 m/s mark.
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Figure 5.24: Ambiguity function processed with smaller range of values but finer precision
than Fig. 5.23. A line has been drawn to the peak nearest the road’s heading of 89.6◦. This
peak lies at 90.15◦, 1.1 m/s. These motion parameters are this algorithm’s best estimate of
the true target motion.
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Figure 5.25: Focused target image superimposed on SAR image from Fig. 5.22. The motion
parameters derived from the AF and applied to this target are 90.15◦, 1.1 m/s. The target has
been highlighted in blue for visibility on top of the original target smear.

5.3 Error Analysis

Since the SAR data used in this chapter has accompanying truth data, we can perform

an analysis of the algorithm’s performance by comparing its motion estimates to the truth

information. A table of error results for the tests performed on actual SAR data is given in

Table 5.1. The errors in the results come from several sources. A key issue is the quality of

the “truth” data, which was gathered as follows. A two-way radio link was made between

the radar and vehicle operators. As the aircraft flew by to start each data collection, the

radar operator requested that the driver maintain a particular target speed throughout the

collection. The driver attempted to maintain a constant speed as close to the target speed as

possible with the speedometer as the only indication to his speed; there was no independently-

recorded vehicle speed. The reported truth data is the vehicle speed requested by the radar

operator. Therefore, while the target speed may be reported as constant, the actual speed

may be different than the recorded speed by a constant with some variability because of

operator error. Unfortunately, GPS data for the target is unavailable, so there is no way of

confirming the true motion of the target.
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Table 5.1: Error results for five cases of moving target parameter estimation in actual SAR
data.

Heading Speed
Truth (◦) Estimate (◦) Error (◦) Truth (m/s) Estimate (m/s) Error (%)

269.7 270 0.3 11.1 9.28 16.4
179.2 177.8 1.4 2.2 1 55

0 -0.5 0.5 6.7 3.11 54
90.15 90.5 0.35 2.2 1.1 50
89.6 90.15 0.55 2.2 1.1 50

A discussion of the algorithm’s performance results is warranted. Because the vehicle

is constrained to the road, we do not expect much variance in the error of the target head-

ing estimate. This is confirmed in Table 5.1 with consistently low error in target heading

estimates. On the other hand, target speed estimate error is typically high. However, upon

closer analysis of the motion-compensated SAR images, we find that the images often do

not focus at the reported truth speed which we believe may be incorrect.

We desire to demonstrate the accuracy of the AF-derived target motion estimates.

In the following analysis, we examine the SAR images of two different targets processed

with various speeds for motion compensation. The heading used in motion compensation

is assumed to be the heading found in the AF for each of these targets. We examine just

the targets within the SAR images to determine where they are located and how they focus.

In the case of along-track motion, the target is focused to a small point when its motion

is properly compensated. In the case of strictly cross-track target motion, the target’s true

position is the middle of the road it is traveling on and will focus to that point with proper

motion compensation.

Consider the stationary SAR image in Fig. 5.10 as an example of strictly along-

track target motion. The reported target speed is 2.2 m/s and as expected, the along-track

image smear is concave in towards the aircraft, corresponding to the reported 179.2◦ target

heading. Figure 5.26 shows a progression of speed compensation at a constant heading of

177.8◦, which is the AF-derived target heading estimate in Fig. 5.12. When we use the

reported true speed for motion compensation, the target is actually focused worse than the

stationary SAR image. We observe that the compensated speed is too much after 1.0 m/s
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because the target begins to smear again and the concavity of the target smear changes.

This result confirms the AF-estimated speed of 1.0 m/s even though the reported true speed

is 2.2 m/s.

0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 2.2 (m/s)

Figure 5.26: Sequence of images of along-track moving target for varying speed compensa-
tion. Reported target motion is 179.2◦, 2.2 m/s. Incorrect motion compensation produces an
unfocused image that is stretched out in the along-track direction and curved, whereas the
most correct motion compensation produces an image that is localized to a small area. Each
image contains only the road traveled by the target and is as wide as that road. All images are
processed at 177.8◦ at varying speeds which increase from left to right. Moving from left to
right, note that the image starts smeared, focuses at 1.0 m/s, and defocuses from that point.

Now let us consider strictly cross-track motion, as found in the stationary SAR image

of Fig. 5.18. Since the target is moving towards the aircraft with strictly cross-track motion,

we expect the target to be well focused but shifted above the road. Since the target is

traveling on the middle of the road, we expect that with correct motion compensation, it

will be focused to that position. At the AF-derived motion estimates of 90.5◦, 1.1 m/s, the

image focuses well and is located at its true position in the middle of the road, as shown
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in Fig. 5.21. Figure 5.27 shows a series of motion-compensated SAR images with varying

compensated speed. Since each image contains only the road traveled by the target, when

the wrong speed is used for motion compensation, the target shifts out of the image. As we

sweep the applied speed compensation from 1.04 m/s to 1.18 m/s, the target shifts onto the

road from above and off the road in the opposite direction, as shown in Fig. 5.27. This change

in shift is the cross-track equivalent of the along-track target smear changing concavity in the

previous example. When compensating for the target’s motion at the reported speed of 2.2

m/s, the target is far outside of the bounding box, not on the road at its true position. When

using the AF-estimated motion parameters for motion compensation, the target focuses to

its proper position on the road. This behavior confirms the accuracy of the 1.1 m/s estimate

even though the reported target speed is 2.2 m/s. Furthermore, the fact that the AF-derived

speed estimates in Table 5.1 produce focused targets but are up to 50% less than the reported

truth speed indicates a mean error in reported versus actual vehicle speed.
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Figure 5.27: Images of target moving on cross-track road with varying speed compensation.
Each image contains only the road traveled by the target. Since the target is moving to the
right in each image, when its motion is properly compensated, the target appears in the middle
of the road, which is the vertical center of each image. The reported target motion is 90.15◦, 2.2
m/s. All images are processed at 90.5◦ at varying speeds which increase from top to bottom.
Moving from top to bottom, note that the target starts outside of the image, focuses to the
middle of the road at 1.1 m/s, and leaves the image at 1.18 m/s.

In all cases, my algorithm estimates a slower target speed than the reported truth

data. For strictly along-track motion, no better image focus is had than using the motion

estimates derived from the AF. When the reported true target speed is used for motion

compensation, the target is generally smeared because the speed is too high. In strictly

cross-track motion, the target is focused on the road in its correct location when using the

motion parameters found from the AF. However, when the reported truth speed is used

for motion compensation, the target shifts off the road and out of the bounding box in the

direction opposite the initial shift in the stationary SAR image. For combined along- and
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cross-track motion, both smearing and shifting are present when using reported truth data for

motion compensation, and the best target location and focus results from using the estimated

motion parameters. These results suggest that the reported truth data overestimates the

actual target speeds.

The results in this chapter show that this algorithm is practical for use with actual

SAR data. The AF formed from real data works as expected based on the results for

simulated data. Several types of uniform motion are studied, including strictly cross- and

along-track motion and a combination of both at various target speeds. Applying the AF-

derived motion estimates as motion compensation parameters to the original SAR data

produces well-focused images of moving targets in their correct locations. Although errors

in the estimated target speeds tend to be high based on comparison to reported vehicle

speeds, these errors may be a result of inaccurate reporting of the target speeds.
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Chapter 6

Conclusion

Moving targets are smeared and/or shifted in SAR images. Target motion can be

extracted using interferometry, but that requires the use of two antennas. It is shown in

previous work that the GMTI solution for a moving target in single-channel SAR is under-

determined. However, by constraining the target’s motion to a straight road, we eliminate

one variable in the GMTI solution and it becomes solvable. This thesis presents a practical,

although computationally expensive algorithm, for estimating target motion in single-channel

SAR data.

The algorithm performs backprojection processing on a single SAR data collection

with a suspected moving target. Backprojection is performed for a variety of motion esti-

mates, during which, for each set of motion parameters, the entire image grid is shifted with

the motion parameter. The result of this process is a large set of images with different levels

of focus and target motion compensation. Ideally, at least some images have good target

image focus. In general, since image focus improves when the target return is higher and

narrower, an image of a moving target has its highest radar return when it is fully focused

with proper motion parameters. By examining the target peak of each image in this large

set of processed images, we can determine which set of motion parameters best estimates

the true target motion. These peaks are evident in the AF, which is essentially a matched

filter for the moving target.

Without some constraint on our data, however, there are many combinations of mo-

tion that produce target images that look identically well-focused. This is seen in the AF,

where there is usually a dominant ambiguity curve that represents the motion parameters

the produce identical target image focus. I analyze a sample set of simulated SAR data

processed with the motion parameters corresponding to this ambiguity curve. Visually, it
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is difficult to distinguish the image resulting from one set of motion parameters from that

of another set. The use of a contrast ratio metric confirms that even on a quantitative ba-

sis, the target images processed with the motion parameters lying on the ambiguity curve

have very similar image focus. This analysis shows that image focus alone is insufficient for

determining target motion parameters in SAR. The basis of my algorithm is constraining

the target to have uniform velocity on a straight road during the SAR collection. I then

process the AF for a range of motion parameters around the constraint. By choosing the

peak in the AF corresponding to the constrained road heading, I effectively limit the target

motion estimates to a single heading and speed. By processing the original SAR data with

this single motion estimate, the result is generally a well-focused image of the target.

In this thesis, I apply this algorithm to both simulated and actual SAR data. It works

well in both cases, although there are some differences between the estimates for actual data

and ground truth. Some of this error is caused by non-linear aircraft and target motion and

is unavoidable. To minimize error and processing time, I choose a bounding box around

the straight road on which the target travels so I only process relevant data. This speeds

up processing and significantly reduces image clutter, thus enabling more accurate motion

estimates. I demonstrate my algorithm’s facility with tests on targets with varying speeds

having along-track motion, cross-track motion, and a combination of both. I show that based

on target image focus and location, the algorithm chooses accurate motion parameters.

6.1 Future Work

This work is only initial and was done with favorable conditions. The algorithm in

this thesis can be improved by exploring more conditions of motion and clutter. Some future

work includes:

• Extend this work to complicated ground motion including curved paths and non-linear

acceleration.

• The asphalt roads this thesis’ actual SAR data have low clutter. Examine the effect

on the algorithm when targets are traveling on dirt or cement, or when other moving

vehicles are present on the road.
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• Improve the algorithm’s robustness to handle clutter in a larger imaging grid with a

better target return discrimination technique.

• Investigate time-frequency analysis for SAR GMTI using backprojection.

• Investigate the feasibility of using techniques for single-channel SAR target motion

estimation with backprojection that have previously only been used with frequency-

domain algorithms, such as Keystone transforms.

• Extend the algorithm to work for 3-D motion exhibited by maritime targets.
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