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CHAPTER 1. INTRODUCTION

A scatterometer is a space-borne radar instrument which measures the normalized radar

cross-section (σ◦) of the Earth’s surface. RapidScat is the most recent scatterometer operating in

Ku-band. As such, it is hoped that RapidScat data will contribute to the extensive existing scat-

terometer data set after being cross-calibrated and after the antenna pointing is validated. This

chapter provides background on the history of scatterometers. The measurement geometry of a

conically scanning pencil beam scatterometer, particularly RapidScat, is discussed. The mathe-

matical formulation of radar backscatter measurements is given in order to introduce the spatial

response funciton (SRF). A history of how the SRF has been previously used in scatterometer re-

search is given. I give my thesis statement regarding the use of the SRF in validating the RapidScat

antenna pointing. Finally, I explain the organization for the rest of this thesis.

1.1 Scatterometer History

The first scatterometer was designed to observe the correlation between σ◦ and ocean

winds. This was NASA’s Seasat-A Satellite Scatterometer System (SASS) launched in June 1978.

SASS was operational until October 1978 [2], and provided the first scatterometer data from which

global radar measurements of ocean wind were produced [3]. The Earth Remote Sensing (ERS)

Scatterometer (ESCAT) was the next operational space-borne scatterometer, launched by the Euro-

pean Space Agency (ESA) aboard ERS-1 in July 1991 and ERS-2 in April 1995. These instruments

were in use until March 2000 and September 2011, respectively [4]. In September 1996, shortly

the launch of ERS-2, the NASA Scatterometer (NSCAT) was launched to continue the Ku-band

ocean vector wind mission begun by SASS [2]. NSCAT was operational from September 1996 to

June 1997. SASS, ESCAT, and NSCAT all used fixed fan-beam antennas [2].

The Seawinds instrument on QuikSCAT, referred to as QuikSCAT, was the first wind scat-

terometer to employ a rotating pencil beam antenna design. QuikSCAT was fully operational
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from July 1999 to November 2009 and continues in a post-operational mission to the present day.

QuikSCAT successfully produced a ten-year global scatterometer data set spanning 1999-2009 [5].

The scientific community has benefitted greatly from having a long data set that is consistent in

quality and coverage.

Another scatterometer which has proved useful in scatterometer climate studies is the Ad-

vanced Scatterometer (ASCAT) launched on the European Organisation for the Exploitation of

Meterological Satellites (EUMETSAT) MetOp-A satellite in October 2006 and on MetOp-B in

September 2012 [6]. Unlike QuikSCAT and NSCAT which operate at Ku-band, ASCAT operates

at C-band like its European predecessor ESCAT. ASCAT also uses a fan-beam antenna design and

continues to provide useful radar data. The Oceansat-2 Scatterometer (OSCAT) was the second

pencil-beam scatterometer to be launched. OSCAT was launched on board the Oceansat-2 satellite

in September 2009 by the India Space Research Organization (ISRO) to replicate the success of

the QuikSCAT. OSCAT failed in April 2014 [7] [8].

Scatterometers were originally designed to measure ocean vector winds. However, since

the first scatterometer was launched, the data provided by each of these sensors has played a

part in various other climate studies, including: soil moisture mapping [9], rainforest vegetation

density [10], hurricane tracking [11], oil spill clean-up [12], and iceberg tracking [13]. These

research areas follow naturally from using σ◦ as a measure of surface roughness and scattering

characteristics like what is done in measuring ocean winds. Over time, algorithms have been

developed to produce images from scatterometer data and to enhance the resolution of said images

[14].

RapidScat is the most recent NASA scatterometer. It originally served as the engineering

model for QuikSCAT and was launched as an independent sensor in September 2014. Due to the

success of the QuikSCAT mission, RapidScat was designed to resemble the QuikSCAT system as

closely as possible given the differences in platform and a table comparing the operating parameters

of RapidScat and QuikSCAT is shown in Fig. 1.1. RapidScat is mounted on the International Space

Station (ISS) which follows an equatorial orbit, unlike any preceeding scatterometer platform. The

ISS also introduces a lower altitude and many attitude variations into the RapidScat measurement

geometry. While RapidScat has the same primary scientific objectives as QuikSCAT - to measure

ocean vector winds - other interesting qualities of the Earth including diurnal vegetation cycles in
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the Amazon have already been observed with RapidScat σ◦ data [15]. These studies are uniquely

suited to RapidScat because it has an equatorial orbit.

Figure 1.1: A table reporting the operating parameters for RapidScat compared with the corre-
sponding parameters for QuikSCAT [1].

1.2 Measurement Geometry for RapidScat

This thesis is primarily concerned with RapidScat which is a conically scanning pencil-

beam scatterometer. The measurement geometry of this particular class of scatterometer is ex-

plained in this section.

RapidScat uses a 0.75-meter-diameter rotating dish to scan the Earth’s surface with an

elliptically shaped beam footprint. The surface is scanned in a swath directly nadir to the radar as

the ISS orbits. An illustration of this measurement system is shown in Fig. 1.2 below. RapidScat

uses both a vertically polarized (V-pol) beam and a horizantally polarized (H-pol) beam. The H-pol

beam is the inner beam and the V-pol beam is the outer beam.
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Figure 1.2: An illustration of the measurement geometry of a conically scanning pencil beam
scatterometer. [1].

As the antenna rotates about the nadir vector, the radar alternates between transmit mode

and receive mode. So, at a certain time, a pulse is transmitted and, at a certain time later, the power

which is backscattered by the Earth’s surface is received. The antenna illuminates the Earth at both

of these times but the illuminated area on the surface, the footprint, is shifted in azimuth between

the time of transmission and reception. The product of these two one-way antenna patterns yields

a two-way antenna pattern that is illustrated in Fig. 1.3. The darker area where the two ellipses,

antenna patterns, overlap is the two-way antenna pattern. The transmit and receive patterns are

shifted relative to each other because of the rotation of the antenna during time of flight of the

pulse.This two-way antenna pattern dominates the spatial response function which is described in

greater detail in the next section. The specifics of the shifted one-way patterns is addressed later in

this thesis.

1.3 The Spatial Response Function

The spatial response function (SRF) is the two-way antenna pattern for a scatterometer

combined with the processign and filtering done in the radar system electronics. The SRF is also

referred to as the impulse response function (IRF), the measurement response function (MRF), or

the measurement point-spread function. The physical meaning of the SRF as a weighting function

for σ◦ [14] is discussed in this section.
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Figure 1.3: An illustration of the shift in the antenna pattern with the change in the antenna position
between transmit-time and receive-time. The darker area corresponds to the area of the main lobe
of the two-way antenna pattern.

Here, the SRF is derived from the radar equation to show that it is a weighting function.

The power received by a radar is

Pr = Pb +Pn (1.1)

where Pb is the backscattered power and Pn in the noise power from interfering microwave sources

and the radar system electronics. The monostatic radar equation for backscattered power, Pb, is

given as

Pb =
Ptλ

2

(4π)3

∫
A

G2(~ν)σ◦(~ν)
r4(~ν)

d~ν , (1.2)

where Pt is transmit power, λ is wavelength, r is slant range, A is the area illuminated by the

footprint, G is the one-way gain pattern, σ◦ is the backscatter coefficient, and~ν represents the lo-

cation of element d~ν within A over a well-defined coordinate system. The radar detects a spatially

weighted average of the surface backscatter coefficient which varies over the illuminated area. The

signal-only weighted spatial average of σ◦ is σ̄◦ as seen,

σ̄
◦ =

Pb

Pt

(4π)3

λ 2

/∫
A

G2(~ν)
r4(~ν)

d~ν , (1.3)
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which can be rewritten as

σ̄
◦ =

Pb

X
, (1.4)

where X is the X-factor commonly used in scatterometer data post-processing,

X =
Ptλ

2

(4π)3

∫
A

G2(~ν)
r4(~ν)

d~ν . (1.5)

Ashcraft and Long [14], derived an expression for the SRF as follows by substituting

Eqs. 1.2 and 1.5 into 1.4 :

σ̄
◦ =

∫
A

G2(~ν)σ◦(~ν)
r4(~ν)

d~ν
/∫

A

G2(~ν)
r4(~ν)

d~ν , (1.6)

A weighting function, h′, for σ◦ can be defined as

h′(~ν) =
G2(~ν)
r4(~ν)

. (1.7)

This implies that the value of the SRF varies with changing gain and slant range over the footprint

defined in~ν . So, a different SRF would need to be defined for every measurement due to varying

observation geometry. Instead, it is beneficial to remove the dependence of the SRF on slant range

in order to eventually estimate a nominal SRF. Appendix A explains the justification for using a

constant slant range per measurement so r4(~ν) can be written as simply r4.

The function h′(~ν) is normalized to integrate to 1 by dividing h′ by h0 where

h0 =
∫

A

G2(~ν)
r4 d~ν . (1.8)

This process yields a normalized weighting function, h, which is the SRF,

h(~ν) =
h′(~ν)

h0
, (1.9)

such that ∫
A

h(~ν)d~ν = 1. (1.10)

6



The spatial variable A is the area on the Earth’s surface which is illuminated by the main lobe of

the two-way antenna pattern seen in Fig. 1.3. The SRF is integrated over this area because it is

dominated by the two-way antenna pattern.

The relationship between the SRF, h, and the observed backscatter is seen by the inner-

product

σ̄
◦ =

∫
A

h(~v)σ◦(~v)d~ν , (1.11)

where h is the SRF.

The backscattered power is estimated by

P̂b = Pr− P̂n, (1.12)

where P̂n is an estimate of the noise power. Using P̂b and Eq. (1.4), an estimate of σ̄◦ is

z =
P̂b

X
= σ̄

◦+ e, (1.13)

where e is the noise-like error in the estimation process. The value z is recorded as the radar

measurement of the surface σ◦. Substituting Eq. (1.11) into Eq. (1.13), z is expressed in terms of

the SRF, σ◦, and estimation error

z =
∫

A
h(~ν)σ◦(~ν)d~ν + e. (1.14)

1.4 The Spatial Response Function in Scatterometer Research

Accurate knowledge of the SRF is required to apply high-resolution image reconstruc-

tion algorithms to backscatter measurements [14] as well as to calibrate scatterometers for wind

retrieval [3]. Early and Long [16], and Williams and Long [17] describe the use of the aper-

ture function, or SRF, in sampling scatterometer data for use in image reconstruction. σ◦ data is

“aperture-filtered” because the SRF is used as a low-pass filter over the σ◦ of the surface. Thus,

knowledge of the shape, size, and frequency response of the SRF is critical for implementing these

image processing algorithms.
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In the case of QuikSCAT, the known antenna pattern permits the SRF for each measurement

to be calculated and tabulated as a function of the antenna rotation angle, and orbit position [14].

Joshua Bradley developed a method of estimating the SRF for Oceansat-2 (OSCAT) using an

island target and a rank-reduced least squares approach [18]. Bradley’s method proved effective

for estimating the OSCAT SRF and [18] shows the improvements in OSCAT image reconstruction

using the estimated SRF.

1.5 Thesis Statement

The previously developed methods for estimating the scatterometer SRF required stability

in the attitude of the radar platform. Despite the success of Bradley’s estimation algorithm in the

case of OSCAT, RapidScat has proven to be more difficult due to large variations over time in

attitude geometry. RapidScat’s irregular geometry suggests that a different approach needs to be

applied. Changing the coordinate system over which the SRF is estimated from a ground-based

coordinate system to an angle-based coordinate system accounts for the variations in geometry.

This yields an estimate of the SRF which is more robust to changes in attitude. This thesis presents

a method of estimating the SRF for RapidScat which employs an angle-based coordinate system.

The usefulness of the SRF in validating the pointing of RapidScat is also demonstrated in this

thesis.

The contributions that my work adds to the field of scatterometry are:

• An alternate method for estimating the SRF of a pencil-beam scatterometer which is more

robust to changes in platform attitude

• A demonstration of how an estimate of the SRF can be used to validate the antenna pointing

of a pencil-beam scatterometer

1.6 Thesis Organization

This thesis is organized in the following order. Chapter 2 provides the mathematical struc-

ture for performing the rank-reduced least squares procedure to estimate the SRF. Chapter 3 de-

scribes the dimensions of the radiation pattern for a generic dish antenna. Chapter 4 lays out the
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methods of estimating the SRF using an angle-based coordinate system. Chapter 5 shows the way

in which the SRF is used to validate the antenna pointing for RapidScat. Chapter 6 derives a

method of approximating the one-way antenna pattern from the estimated SRF. Chapter 7 summa-

rizes the results of this thesis and draws comparisons from previous work done on estimating the

SRF. Chapter 8 concludes with a description of the contributions this thesis adds to the scatterom-

eter research community and suggests areas of future work on this topic.
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CHAPTER 2. SPATIAL RESPONSE FUNCTION ESTIMATION MODEL

Joshua Bradley developed a procedure for estimating the OSCAT SRF where he employs

the technique of sampling the SRF with carefully selected island targets [18]. Due to the fact that

an island is much brighter than the dark ocean background, a small, isolated island is an approx-

imation of a delta function. So, the radar measurements taken over an island can be viewed as

samples of the SRF. These measurements are compiled into a matrix which is inverted to estiamte

the SRF. This same method can be used to estimate the RapidScat SRF. The mathematical details

of the process are given in this chapter.

This chapter shows the way in which σ◦ measurements are compiled into a matrix in order

to invert the radar equation and solve for the SRF. The inversion process using a singular value de-

composition (SVD) is described. The mathematical development contained in this chapter closely

follows a similar development in [18].

2.1 Estimation Model

Following the derivation of the SRF and the expression of Eq. (1.14), the m-th measure-

ment, zm, received by a scatterometer can be modeled as

zm =
∫

A
h(~ν)σ◦(γm,~xm,~ν)d~ν + em, (2.1)

where the normalized radar backscatter, σ◦, is a function of γm, which encapsulates the parameters

of the observation geometry including azimuth angle and incidence angle, and ~xm which is the

orbital location of the radar. Here, the SRF, h, is assumed to be independent of γm and~xm. The em

term is the noise-like error in the estimate of the signal only power for the m-th measurement. The

bound of integration, A, is the area illuminated by the two-way antenna pattern. Both h and σ◦ are

defined over the coordinate system ~ν . Historically, ~ν has been defined in x and y on the Earth’s
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surface [18]. An alternative approach is presented in this thesis which defines ~ν in azimuth and

elevation angle independent of the surface. This is explained in greater detail in Chapter 4 of this

thesis. For the sake of notational simplicity, the derivation in this chapter uses~ν .

The inner product of Eq. (2.1) can be discretized as a sum over a sufficiently fine resolution

sample grid for the SRF,

zm ≈
K

∑
k=1

h(~νk)σ◦(γm,~xm, ~νk)∆ν + em, (2.2)

where K is the number of grid elements and ∆ν is the constant area of each grid element (defined

in the coordinate system of~ν). This expression can be expressed as a vector inner product,

zm ≈ ST
mh+ em, (2.3)

where,

Sm =


σ◦(γm,~xm, ~ν1)

σ◦(γm,~xm, ~ν2)
...

σ◦(γm,~xm, ~νK)

∆ν , (2.4)

h =


h(~ν1)

h(~ν2)
...

h(~νK)

 . (2.5)

Collecting M measurements over the K element grid yields a M×K matrix Q where each row

represents the σ◦ for each grid element for the m-th measurement. Many measurements need to be

used in order to sample each element, d~ν , of the coordinate system,~ν .

z =


z1

z2
...

zM

≈


ST
1

ST
2
...

ST
M

h+


e1

e2
...

eM

= Qh+ e, (2.6)
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The h is the discretized SRF. We can calculate a least-squares estimate of the SRF, ĥLS, by per-

forming a pseudo-inverse on Q

ĥLS = Q†z, (2.7)

where Q† is the Moore-Penrose pseudo-inverse Q† = (QHQ)−1QH . In order to improve the con-

ditioning of Q to yield a closer approximation of the inverse, a rank-reduced approximation using

the SVD of Q is done before the pseudo-inverse so that

z = UΣV Hh+ e, (2.8)

= Q̃h+ e, (2.9)

where U is a unitary M×M matrix, V is a unitary K×K matrix which has as its columns the

eigenvectors of Q, and Σ is a M×K matrix with the singular values of Q down the main diagonal.

The matrix Q̃ can be decomposed as

Q̃ =
[
U1 U2

]Σ1 0

0 Σ2

V H
1

V H
2

= U1Σ1V H
1 +U2Σ2V H

2 . (2.10)

The matrices U1, Σ1, and V1 are the portions of U , Σ, and V which correspond to the largest singular

values of Q which represent the signal. U2, Σ2, and V2 correspond to all of the smaller singular

values which represent noise. Q is approximated by setting the small singular values to zero, which

reduces the rank. We are then left with

Q̃≈U1Σ1V H
1 , (2.11)

ĥSV D = Q̃†z = V1Σ
−1
1 UH

1 z. (2.12)

The precise number of singular values to use in the estimate is a tuning parameter for the SRF

estimate that is discussed more in Appendix B.
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2.2 Summary

This chapter describes the way in which samples of the SRF are be used to invert the radar

equation to solve for the SRF. Each measurement is modeled as a vector inner product and many

measurements are combined to sample the whole grid over which the SRF is defined. Performing

an SVD on the matrix of measurements and eliminating noise terms yields a useful estimate of the

SRF.
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CHAPTER 3. ESTIMATION OF THE SPATIAL RESPONSE FUNCTION

There are several steps required to estimate the RapidScat SRF using on-orbit data. These

steps for RapidScat are generally the same as the steps for estimating the OSCAT SRF [18]. There

are several differences which have been made to the process in order to accomodate the highly

variable observation geometery for RapidScat. The most crucial of these differences are manifest

in the coordinate system used to create the landmap and over which the SRF is sampled. Bradley

used a landmap in kilometers on the ground (ground-based). A new coordinate system for the

landmap, in beam azimuth and elevation angles (angle-based), is useful for RapidScat because of

geometric variations from measurement to measurement.

This chapter describes each of the steps in the process of estimating the SRF. First, the

methods used to collect measurements for the estimation process are explained. Creating the

landmap to sample the SRF is discussed. The differences which were made in the case of the

RapidScat SRF estimation are explained and the differences between the two sampling coordinate

systems are presented. Then, the procedure for removing the ocean σ◦ bias from the land contri-

bution to σ◦ is reviewed. Finally, the rank-reduced least squares estimation of the SRF described

in depth in Chapter 2 is briefly addressed as the concluding step in the estimation process.

3.1 Selecting Measurements

In order for Eq. (2.12 to yield a good estimate of the SRF, as many measurements as possi-

ble should be combined into the Q matrix. A colleciton of σ◦ measurements over Rarotonga Island,

capital of the Cook Islands are used in the estimation of the RapidScat SRF. Rarotonga is one of

the island identified by Joshua Bradley to qualify as an approximate delta function. A few key

statistics about Rarotonga are given in the tabel below. The following high resoulion QuikSCAT

image shows Rarotonga in the center with other islands several hundred kilometers away.
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Table 3.1: Rarotonga Island Information
Latitude -159.776◦

Longitude -21.229◦

Max. Width 11 km
Area 67.39 km2

Figure 3.1: A high resolution QuikSCAT egg backscatter image of the region around Rarotonga.
Rarotonga is the bright dot in the center of the image.

The measurements which fall into this region are found by searching all of the RapidScat

Level-1B (L1B) data by date. Almost a year of data is used, specifically Julian Day (JD) 276 of

year 2014 to JD 220 of year 2015. This date range covers the time for which RapidScat was in

a high singal-to-noise ratio (SNR) state. Other SNR states are avoided in order to simplify the

estimation proces by maintaining the same level of quality in the data.

During the finding process, the sigma0 qual flag, frame err status, and the frame qual flag

were checked to ensure that onl the highest fidelity measurements were being used [19]. If any of

these flags were set, the measurement or the frame were thrown out. This is a change that needed

to be made for the RapidScat estimation because there were so few erroneaous measurements with

OSCAT that the estimation was not significantly affected. RapidScat has various states which make

the flags all the more important. For example, the are times when RapidScat is turned off in order

to avoid radiating the ISS.

Another change that I made to simplify the measurement finding process was eliminate

the use of SIR images. Setting a simple threshold on latitude and longitude to determine if a
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measurement fell within the specified region rather than converting to pixel values in a SIR image

streamlined the process.

For all measurements that are good quality and are located within the appropriate region,

key information - regarding the geometry, σ◦, and so forth - is written to a setup file for easy access

in the next processing steps.

3.2 Building the Sample Landmap

Assuming the σ◦ across the island is a constant for any given measurement, the vector Sm

from Eq. (2.3) can be written as

Sm = [landmap]T σ
◦
L∆ν , (3.1)

where landmap is a vector of 1’s and 0’s indicating which grid elements within the SRF correspond

to land, σ◦L is the land component of the reported σ◦, and ∆ν is the area of each grid element in

the landmap. As mentioned previously, the cluster of 1’s representing the island is small compared

to the overall grid for the SRF. Therefore, each Sm corresponds to one sample of the SRF. A

discussion of how to approximate σ◦L is given in the next section. The methods for building the

landmap are described in this section. This section also explains the choice in coordinate system

over which the land map, and therefore the SRF, is defined.

3.2.1 Review of Method for OSCAT

When Bradley developed the original version of this algorithm for OSCAT, the coordinate

system ~ν was in (x,y) displacement in kilometers on the ground. The origin of his coordinate

system for the SRF estimate was the position at which the boresight vector of the antenna was

incident on the ground. Bradley fixed the orientation of the island in his estimation, with the

vertical axis being North-South and the horizontal axis being East-West, and used the reported

antenna rotation angle to rotate the SRF into the same orientation as the island in the search grid.

The figure below illustrates this coordinate system.
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Figure 3.2: An illustration of the coordinate system used to build the landmap in the OSCAT
SRF estimation, for the i-th and the j-th measurements. The SRF is rotated in to the North-East
coordinate system and then the landmap is constructed from gridding the rotated frames.

This method extensively used SIR images to define distances from the island in pixels,

the location of the SRF relative to the island, and the search grid over which the Sm vectors are

compiled. The SIR images also provided a useful standard of pixel size on which to define the size

of the footprint on the ground. The landmap was constructed for each measurement by selecting

a certain number of pixels from the center of the location of the SRF. The SRF estimate was

eventually computed to be in kilometers on the ground. This worked for OSCAT because the

geometry (attitude, altitude, slant range) was fairly stable. This means that the shape and size of

the OSCAT beam footprint (i.e., the SRF) on the ground were nearly constant.

3.2.2 The Method for RapidScat

RapidScat has a lot of variability in attitude and altitude so the beam footprint dimensions

on the ground cannot be assumed to be constant like that of OSCAT. This is problematic because,

the estimation procedure uses the size of the beam on the ground in kilometers to define distances

and to decide if a measurement is an ocean measurement or a land measurement. These challenges

motivated the use of a different coordinate system.
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The huge variations in slant range and attitude can be accomodates for the most part by

computing the SRF estimate using a fixed boresight angle and a randomly placed and oriented

island. The angle bearing from the spacecraft for the measurement boresight becomes relevant

only to locate the island in the search grid. Then the island location can be specified as an azimuth

and elevation angle coordinate relative to the boresight of the antenna. The landmap is made by

converting the angle coordinates of each grid element into latitude and longitude and determining

if the (lat,lon) is land or not. The following figure illustrates how the island is located relative to

the boresight.

Figure 3.3: An illustration of the coordinate system used to build the landmap in the RapidScat
SRF estimation, for the i-th and the j-th measurements. The island is located in azimuth and
elevation angle relative to the boresight. The landmap is made by determining which pixels in the
frame are land.

This new coordinate system is implemented using the BYU X-factor computation routines.

First, the latitude and longitude for each measurement is converted into an azimuth and elevation

angle from the nadir vector of the spacecraft. Then the known location in latitude and longitude

of the island is used to compute the same angles for the island relative to the spacecraft. Subtract-

ing the boresight angles from the island angles sets the boresight at the origin of an angle-based

coordinate system in beam azimuth and elevation from the antenna boresight. The island, with
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the calculated angles, is then located within an the angle grid centered on the antenna boresight at

transmit time (the latitude and longitude reported in the RapidScat L1B data is the latitiude and

longitude of the boresight at transmit time).

Once the island location is specified in the angle-based coordinate system, each pixel in

the grid is tested for land. This is done by converting the azimuth and elevation angles of each

grid element to latitude and longitude and then tested for land using the world land map. If a grid

element is land, it is marked with a 1, and a 0 otherwise. This grid, essentially a local landmap,

is then normalized to sum to 1 and is written column by column into the landmap of Eq. (3.1).

The normalization occurs because the integration of power received at the antenna is the reported

σ◦ which is being multiplied by the local land map. Thus, the integration of the land map must

equal 1. The normalization is also useful to make every measurement including a piece of the

island equal in weight for the overall estimation process and to remove any dependence on the

dimensions of the footprint on the ground.

3.3 Removing the Ocean Bias from σ◦

Measurements over a small island target inevitably include contributions to σ◦ from the

land, σ◦L , and from the ocean, σ◦O. The combination of σ◦L and σ◦O can be understood by

σ
◦ = σ

◦
L +σ

◦
O (3.2)

Since, the approximation of the island as a delta function requires that all of the backscattered

power is due to σ◦L , σ◦O must be negligible. Bradley used a spatially varying quadratic fit on σ◦O to

estimate the ocean contribution to σ◦ over land.

In the method developed for OSCAT, the pixels that were outside a certain pixel width were

considered ocean and the contribution of the ocean, σ◦O, was estimated and subtracted out of σ◦ as

seen by

σ
◦
L = σ

◦− σ̂◦O, (3.3)
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where σ̂◦O is the estimated σ◦O. The estimation and subtraction is done for every pass because σ◦O

can be assumed constant for one pass but not multiple due to weather conditions. This process

yields σ◦L to be used in Eq. (3.1) to compute Sm.

In the case of RapidScat, the same method of estimating σ◦O is used. However, the land

measurements and ocean measurements are determined by an angle distance away from the bore-

sight rather than a number of pixels in a SIR image grid.

3.4 Solving for the SRF

After unbiasing each measurement and building the corresponding landmap, each Sm rep-

resents the contribution of one measurement to the SRF estimate. The M, Sm vectors are compiled

as rows to create the Q matrix seen in Eq. (2.6). This is the matrix which is inverted using the

singular-value decomposition to solve for the SRF.

3.5 Conclusion

This process yields a good estimate of the RapidScat SRF defined in beam azimuth and

elevation angle. The primary difference made to the SRF estimation process for RapidScat is

the change in coordinate system. This new coordinate system is an improvement for RapidScat

because the SRF geometry variations are all accounted for in changing the way that the landmap is

built. The angle grid is able to include changes in geometry like slant range for example, because

as the slant range changes, the range of latitude and longitude covered by a single grid element

adjusts appropriately. In other words, the value of ∆ν from Eq. 3.1 is fixed in the angle-based

coordinate system and it is only treated as a fixed value in the ground-based coordinate system

when in reality the footprint of the two-way antenna pattern is different for every measurement.

The angle-based SRF estimate is also very helpful because of the clarity intuition regarding how

the antenna pointing might influence the SRF. If there were biases in the antenna pointing, they

would be seen in a constant shift in the center of the SRF.
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APPENDIX A. SLANT RANGE DEPENDENCE OF THE SRF

For any given measurement, the slant range from the radar to the surface varies over the

illuminated two-way antenna pattern. The expression given by Eq. (1.7) shows that the SRF which

is defined over ~ν is a funtion of the gain G and the slant range r. Both G and r are functions

of ~ν which includes the observation geometery for r. Since the geometry is different for every

measurement, the SRF would need to be recomputed for every measurement. This makes the

estimation process described in Chapter 2 cumbersome and impractical. To solve for a nominal

SRF rather than an SRF for every measurement, the dependence of r on~ν can be removed.

This appendix presents a reasonable approximation for the slant range. The approximation

is verified with parameters from RapidScat.

A.1 Approximation of Slant Range

Consider defining the slant range at each point within the footprint as

r = r0 +∆r, (A.1)

= r0

(
1+

∆r
r0

)
, (A.2)

where r0 is the slant range to the center of the footprint on the ground and ∆r is the difference

between r0 and the slant range to any other point within the footprint. Since r0 is much greater

than ∆r the ratio ∆r/r0 is very small and r ≈ r0.

A.2 The Case of RapidScat

In order to verify this slant range approximation for RapidScat, the parameters contained

in Fig. (1.1) can be used to calculate the approximate variations in slant range. Only the variations

in slant range in the elevation dimension of the beam are significant because the slant range across
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the azimuth dimension is almost constant. Using the law of cosines, the maximum slant range and

the minimum slant range in the elevation dimension can be computed. The computed values are

found in the table below.

Table A.1: RapidScat Slant Range Variations
Nominal Slant Range (r0) 600 km

Max. Slant Range 609.54 km
Min. Slant Range 590.57 km

Max. ∆r 9.54 km
Ratio ∆r

r0
0.0159

Nominal r4 1.2960×1011 km4

Max. r4 1.3804×1011 km4

Max. Percent Error 6.12%

The values in the table above show that it is a reasonable approximation to ignore the

variations in slant range over the coordinate system~ν in the case of RapidScat.
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