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ABSTRACT

A FIELD-WISE WIND RETRIEVAL ALGORITHM FOR THE

NASA SCATTEROMETER

Charles G. Brown

Electrical and Computer Engineering

Master of Science

An alternative to traditional wind retrieval techniques that does not rely

on numerical weather prediction winds is developed and applied in this thesis. Tra-

ditional satellite scatterometer wind retrieval algorithms consist of point-wise wind

estimation and ambiguity removal. Point-wise estimation yields multiple estimates,

or ambiguities, for the average near-surface ocean wind in each scatterometer reso-

lution element. The presence of ambiguities requires subsequent ambiguity removal

to select unique wind estimates. Even though some point-wise ambiguity removal

techniques perform well, they are still subject to error. Further, the most success-

ful ones, such as the \nudging" method employed by the Jet Propulsion Laboratory

(JPL), incorporate outside information. One alternative to the traditional methods

is �eld-wise wind retrieval.

Like point-wise retrieval, the �eld-wise method consists of estimation and

ambiguity removal stages. However, �eld-wise estimation and ambiguity removal em-

ploy a wind �eld model that exploits the spatial correlation in wind �elds to process

large numbers of resolution elements simultaneously. A �eld-wise retrieval algorithm



that uses only scatterometer measurements is designed for the NASA Scatterometer

(NSCAT) and is applied to data from that instrument.

Test results indicate that the �eld-wise method compares favorably with

the standard NSCAT data product obtained from the Jet Propulsion Laboratory

(JPL); however, the �eld-wise method has the advantage of not relying on outside in-

formation. It is further concluded that the �eld-wise method can be used to repair se-

vere ambiguity removal failures in the output of the median �lter, a traditional point-

wise ambiguity removal scheme. An additional application of the �eld-wise method

is validation of the JPL product. The �eld-wise method and a related model-based

technique are used to assess the reliability of the JPL product, and both methods

suggest over 96% accuracy, which is consistent with other recent validation results.
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Chapter 1

Introduction

Satellite wind scatterometers employ an indirect measurement technique

to observe near-surface ocean wind. The scatterometer transmits microwave pulses to

the ocean's surface and measures the backscattered power. Since changes in surface

wind velocity alter surface roughness, the wind velocity can be inferred from the

scatterometer measurements.

Satellite scatterometers are the only instruments that can provide accu-

rate and frequent measurements of winds over all the oceans. Other methods, such

as meteorological buoy and ship observations, are de�cient in coverage, accuracy, or

both. Buoy observations provide accurate wind measurements, but those data pri-

marily cover coastal areas of the Northern Hemisphere [1]. Ship observations lack

accuracy and coverage. They are inaccurate due to human error and ship motion.

Their measurements are limited to coastal areas and shipping lanes, and avoidance

of storms for safety and economic reasons further limits their coverage [1].

1.1 Brief History of Scatterometers

Scatterometers are relatively new radar systems. While radar was being

developed during World War II, the e�ect of ocean waves on radar backscatter was

�rst observed. These purely accidental observations were regarded as an annoyance.

In World War II applications of radar over the ocean, operators noticed noise on their

screens that blocked the signatures of boats and aircraft. They labeled the noise \sea

clutter" and did not realize that it was radar returns from ocean waves. Scientists in

the 1950's and 60's realized that they could optimize radar instruments speci�cally for
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the purpose of exploiting the sea clutter phenomenon. They discovered a link between

ocean wind, waves, and radar backscatter, and the modern science of scatterometry

was born [2].

Much of the early development of scatterometers was a by-product of the

Apollo program. In 1964, a system originally designed to make measurements pre-

dicting the behavior of the Apollo landing radar was used to measure scattering

characteristics of the land and sea. After the Apollo program was cut short, a group

of scientists and instrument designers met to decide what to do with the remaining

Apollo instruments and spacecraft. Out of these meetings grew the Skylab program.

The �rst satellite scatterometer, S-193, orbited on Skylab in 1973 and 1974. S-193

proved that ocean wind measurements could be made from space [3, 4].

In 1978, the SEASAT Scatterometer (SASS) was orbited on SEASAT, a

remote sensing satellite. However, the SEASAT power supply failed after the �rst 90

days. Even though the SEASAT mission was short-lived, it was a major landmark

in satellite scatterometry, providing the �rst ocean winds measured from space by a

scatterometer [3, 4, 5].

Because of the success of SASS, several other scatterometers have been

orbited. The European Space Agency deployed European Remote Sensing Satellites

one and two (ERS-1 and ERS-2), and the United States orbited the NASA Scat-

terometer (NSCAT) on August 16, 1996. Follow-on missions, such as QuikScat and

Seawinds, have already been planned by the United States.

1.2 NSCAT Mission

NSCAT was launched in a near-polar, sun-synchronous orbit, aboard the

Advanced Earth Observing Satellite (ADEOS), which was designed by Japan's space

agency, NASDA. NSCAT began collecting data during September 1996, but ADEOS

lost power in June 1997. NSCAT used 14 GHz microwave pulses to observe ocean

winds and measured 286000 globally distributed wind vectors per day [6].

Although the mission terminated prematurely as a result of a spacecraft

power failure, its potential impact on meteorology, oceanography, and climatology is

2



Wind Velocity 2 m/s (rms) for 3-20 m/s
10% for 20-30 m/s

Wind Direction 20� (rms) 3-30 m/s
Spatial Resolution 25 km or 50 km

Coverage 90% of oceans every 2 days

Table 1.1: NSCAT mission requirements.

still limitless. NSCAT provided frequent and global coverage (Table 1.1) under all-

weather conditions|coverage that is necessary for understanding complex worldwide

weather and climate change. NSCAT data are expected to lead to improved methods

of global weather forecasting and modeling, and possibly to a better understanding

of large scale environmental phenomena, such as El Ni~no [6]. However, all of these

applications require accurate retrieval of ocean winds from NSCAT data.

1.3 Introduction to Wind Retrieval

The traditional method of retrieving ocean wind is termed point-wise wind

retrieval. In the point-wise method, estimation of ocean wind is performed for single

resolution elements individually. Due to the nature of the relationship between wind

and radar backscatter, point-wise estimation yields several wind vector solutions, or

ambiguities. An additional processing step, known as point-wise ambiguity removal, is

necessary in order to select a unique wind vector for each resolution element. Although

some point-wise ambiguity removal techniques achieve high accuracy, none are perfect.

Further, the most successful ones, such as the \nudging" method employed by the

Jet Propulsion Laboratory (JPL), rely on outside information like numerical weather

prediction winds. This thesis presents �eld-wise retrieval, which is an alternative to

the point-wise methods that retrieves wind from scatterometer measurements alone.

Like its point-wise counterpart, �eld-wise retrieval consists of estimation

and ambiguity removal stages. However, the �eld-wise method operates on many

resolution elements simultaneously using a wind �eld model.
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Field-wise estimation is a form of model-based retrieval [7]. Model-based

processing starts with an initial wind �eld and seeks to improve that initial �eld

through local optimization constrained by a wind �eld model. Model-based retrieval

yields a single solution for each initial �eld. In contrast to model-based retrieval [7],

�eld-wise estimation does not require initialization. Field-wise estimation developed

in this thesis generates its own initial values and re�nes them via global optimization

techniques constrained by a wind �eld model.

As with point-wise estimation, �eld-wise estimation yields multiple solu-

tions, necessitating an ambiguity removal stage. Field-wise ambiguity removal has the

advantage that adjacent wind �eld solutions can be made to overlap, and continuity

considerations can be invoked to greatly simplify the process of selecting a unique

solution [7, 8].

This thesis focuses on the design and application of a full �eld-wise wind

retrieval algorithm. Each of the component stages, �eld-wise estimation and am-

biguity removal, are developed separately, and the complete algorithm is tested on

NSCAT data. Results are used to analyze the accuracy of NSCAT derived winds.

1.4 Summary of Contributions

The �rst major contribution of this work is the development and imple-

mentation of �eld-wise estimation. A global optimization algorithm is adapted to

�eld-wise estimation and is tested on actual NSCAT data. The development and

implementation of a �eld-wise ambiguity removal method is the second major con-

tribution. The algorithm selects and assembles multiple solutions from the �eld-wise

estimation algorithm into unique estimates for large areas of the ocean's surface. The

�nal contribution is the testing of the full �eld-wise retrieval algorithm on NSCAT

data. The algorithm output compares favorably with the standard \nudged" wind

product provided by JPL; however, the �eld-wise method has the advantage of not

using outside information. Finally, evidence is gathered to support recent validation

results of the JPL product.
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Although the �eld-wise methods presented in this thesis are developed

for NSCAT, they can be extended for use with ERS-1, ERS-2, and the upcoming

QuikScat and Seawinds missions.

1.5 Thesis Organization

Chapter 2 provides an overview of wind scatterometry, which is the science

of inferring wind speed and direction from scatterometer backscatter measurements.

Point-wise estimation and ambiguity removal are elaborated, and the chapter culmi-

nates in the introduction of �eld-wise wind retrieval. De�nitions of both �eld-wise

estimation and ambiguity removal are provided, which are expanded in the following

chapters.

In Chapter 3 the �eld-wise estimation problem is characterized. A survey

of several possible algorithms is provided, and one algorithm is selected and tested

on NSCAT data. A �eld-wise ambiguity removal algorithm is developed in Chapter

4. The full �eld-wise wind retrieval method is evaluated in Chapter 5 using NSCAT

data. The thesis concludes with a summary of contributions and recommendations

for future work in Chapter 6.
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Chapter 2

Background

2.1 Introduction to Wind Scatterometry

Wind scatterometry is the science of inferring the speed and direction of

near-surface ocean wind from scatterometer backscatter measurements. The theory

of scatterometry relies on a simple transitive relationship:

� Near-surface wind drives ocean waves

� Ocean waves a�ect radar backscatter

� Radar backscatter is related to the near-surface ocean wind

� Thus from observations of radar backscatter, the near-surface wind can be de-

termined.

Indirect measurement of the wind by observing sea state is facilitated by

the coupling between wind and waves. This section explores the relationship between

ocean wind and waves from both historical and scienti�c points of view. The func-

tional relationship between wind and radar backscatter is introduced in the following

section.

2.1.1 History of Indirect Measurement of Ocean Wind

Aristotle (384-322 B.C.) was one of the �rst scientists to record that wind

is important in wave generation [9]. Benjamin Franklin and his co-workers observed

in 1774 that, \Air in motion, which is wind, in passing over the smooth surface of the
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water, may rub, as it were, upon the surface and raise it into wrinkles which, if wind

continues, are the elements of future waves [9]."

Early sailors also noticed that ocean waves are related to wind. They

developed a visual scale by which they could estimate wind speed from observing

the sea state [9]. In 1805, British Rear Admiral Sir Francis Beaufort took the sailors'

visual scale and applied numbers to it to construct the Beaufort Scale (Fig. 2.1). The

British Navy adopted the Beaufort Scale for general use in 1834. This scale is now

an international means of reporting sea-state [9]. The principles that underlie the

Beaufort Scale, that the wind determines sea state and that the wind speed can be

inferred from ocean waves, are also key relationships in the theory of scatterometry.

In the next section, scienti�c evidence supporting the �rst principle of scatterometry,

that ocean winds drive ocean waves, is discussed.

2.1.2 Ocean Winds Drive Ocean Waves

The ocean's surface is a complex mixture of waves. When Lord Rayleigh,

a 17th century mathematician and physicist, was confronted with the complexity of

the ocean's surface, he said, \The basic law of the seaway is the apparent lack of any

law [9]." However, the complexity of the ocean's surface can be reduced by examining

the basic types of ocean waves.

The vast spectrum of ocean waves can be divided into �ve basic types:

sound, capillary, gravity, inertial, and planetary, based on wavelength and dominant

restoring force. This discussion of ocean waves is limited to capillary and gravity

waves, as these are the most important ocean waves in satellite scatterometry [11].

Capillary waves are the waves that ripple across the ocean's surface when a

light breeze blows. They have wavelengths on the order of a centimeter and are only

a few millimeters in height. The surface tension of water is their dominant restoring

force. Capillary waves dominate the ocean's surface for wind speeds up to 1 m/s.

For higher wind speeds, capillary waves increase in size and wavelength to become

gravity waves [9]. However, capillary waves are still present.
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Figure 2.1: The Beaufort scale was devised as a method of visually inferring wind
speed from sea state. The coupling between sea state and wind is also a key relation-
ship in modern satellite scatterometry. Figure from [10].

Gravity waves are long, undulating ocean waves. They are the most famil-

iar type of wave. They are longer than capillary waves, having periods ranging from

1 to 10 seconds under normal conditions, but sustained ocean winds can form gravity

waves with periods greater than 25 seconds. Gravity is the dominant restoring force

in gravity waves [9].

One of the reasons why capillary and gravity waves are important in wind

scatterometry is that the density of capillary and short-gravity waves changes in

9



response to wind speed. Reference [11] reports results from a wavetank study which

relates the near-surface wind speed to the density of the resulting waves. This study

shows that capillary and short-gravity wave density increases as wind speed increases.

Even though wavetank studies cannot completely replicate open-ocean conditions, the

study in [11] is supported by measurements over the sea.

2.1.3 Ocean Waves A�ect Radar Backscatter

In order to discuss how ocean waves a�ect radar backscatter, it is necessary

to de�ne the normalized radar cross section, which quanti�es radar backscatter. But

�rst \backscatter" is qualitatively introduced by explaining the di�erence between

reection and scattering.

Reection Versus Scattering

The di�erence between reection and scattering may be elucidated by ex-

amining how radiation interacts with three di�erent types of surfaces: smooth, slightly

rough, and very rough (refer to Fig. 2.2). Reection occurs when radiation strikes a

smooth surface, which is also called a specular surface. Radiation reects o� a spec-

ular surface at the same incidence angle at which the incident radiation struck the

surface. No radiation returns along the angle of incidence after striking a perfectly

specular surface [11]. An example of a specular surface is a mirror or the ocean's

surface on a calm day.

Radiation incident on a slightly rough surface is both reected and scat-

tered. Figure 2.2 represents the reected portion of the incident radiation as a single

large arrow and the scattered portions as smaller arrows. The reected portion dom-

inates the scattered portion. This type of mixed reection and scattering, where

the reected portion dominates, is known as quasi-specular reection [11]. In quasi-

specular reection, most of the incident radiation is reected. However, some is

scattered in various directions, including back along the angle of incidence. This

scattered radiation is called \backscatter".

10



Scattering

Smooth
Surface

Rough
Surface

Very
Rough
Surface

Quasi-Specular
Reflection

Reflection

Figure 2.2: Di�erence between reection and scattering. Adapted from [11].

The interaction between incident radiation and a very rough surface re-

sults mostly in backscatter. A perfectly rough surface reects absolutely no incident

radiation but scatters all of it [11].

Radar Cross Section

The normalized radar cross section �0 quanti�es backscatter and varies

with the roughness of the targeted surface. It is de�ned by the basic radar equation:

�0 =
Ps
Pt

 
(4�)3R4L

G2�2A

!
;

where Pt is the power of the incident (transmitted) radiation, and Ps is the power of

the received backscatter. R is the slant range to the surface, L accounts for known

system losses, G is the antenna gain, � is the wavelength of the incident radiation,

and A is the e�ective area of the ocean's surface illuminated by the radiation [1]. This

equation assumes a monostatic radar system, which transmits and receives with the

same antenna.

In general for large incidence angles, rougher surfaces are associated with

larger �0 values [11]. This is because more of the radiation is scattered back to the

receiver than is reected away from it. On the other hand, for very small incidence

11



angles (looking almost straight down), rougher surfaces are associated with smaller

�0 values.

Bragg Scattering

Satellite scatterometer measurements of the roughness of the ocean's sur-

face are primarily inuenced by a phenomenon known as \Bragg scattering". Bragg

scattering is the dominant backscattering mechanism for scatterometer observations

at incidence angles between 20� and 65�, which range is known as the \plateau" region

[1, 11]. Bragg scattering is a constructive resonance e�ect. The Bragg e�ect is so

pronounced that it can dominate reection from relatively large reectors in the same

area, such as the larger waves on which capillary or short-gravity waves are super-

imposed [11]. The main condition for Bragg scattering is that the incident radiation

be about the same wavelength as the undulations of the surface. Capillary and short

gravity waves cause Bragg scattering at the wavelengths used by scatterometers. For

example, NSCAT transmits microwaves at a wavelength of about 2 cm, which is on

the order of the wavelength of capillary and short gravity waves.

2.2 Geophysical Model Function

Functions that relate wind speed and direction to �0 are called geophysical

model functions. The particular geophysical model function used in this thesis is

NSCAT-1, which was derived from 3 months of NSCAT data and relates the wind 10

m above the ocean's surface to �0 [12]. NSCAT-1 may be expressed as follows:

�0 =M(U; �; �; f; p)

where U is the true wind speed and � is the relative azimuth angle, i.e. � =  � �,

where  is the radar azimuth angle and � is the true wind direction (refer to Fig.

2.3). The parameter � is radar incidence angle, and f and p are radar frequency and

polarization, respectively. Polarization is either horizontal or vertical. The geophys-

ical model function may also be written as �0 = M(U;  ) or �0 = M(w), with the

dependence on �, �, f , and p implied. The vector w is the (U;  ) pair in component

12



Receiver
Source/

Wind

χ

θ

Figure 2.3: De�nition of relative azimuth angle � and incidence angle �. Adapted
from [1].

form, where w = (u; v)T , and u = Usin(�) and v = Ucos(�) by convention [13]. The

omission of factors such as salinity, sea temperature, and long gravity waves intro-

duces geophysical modeling errors. These errors are not considered in this work but

are explored in [13, 14].

Figure 2.4 o�ers one perspective on the NSCAT-1 geophysical model func-

tion. It plots the radar cross section �0 versus relative azimuth angle � for several

di�erent wind speeds U and incidence angles �. The radar cross section generally

increases with wind speed. However, �0 also varies with relative azimuth angle. The

relationship between �0 is nearly cos(2�), where � = 0� is upwind and � = 180� is

downwind. The slight di�erence between �0 for � = 0� and � = 180� is called the

upwind-downwind asymmetry [1].

13



0 90 180 270 360
0

0.2

0.4

0.6

0.8

1

1.2

χ

σ 0
θ = 26o

5m/s

10m/s

15m/s

20m/s

25m/s

U=30m/s

0 90 180 270 360
0

0.1

0.2

0.3

0.4

χ

σ 0

θ = 36o

5m/s

10m/s

15m/s

20m/s

25m/s

U=30m/s

0 90 180 270 360
0

0.05

0.1

0.15

0.2

χ

σ 0

θ = 46o

5m/s

10m/s

15m/s

20m/s

25m/s

U=30m/s

0 90 180 270 360
0

0.02

0.04

0.06

0.08

0.1

χ

σ 0

θ = 56o

5m/s

10m/s

15m/s

20m/s

25m/s

U=30m/s

Figure 2.4: NSCAT-1 radar cross section �0 versus relative azimuth angle � for several
di�erent wind speeds U and incidence angles �. Adapted from [13].

2.3 Inverting the Geophysical Model Function

To retrieve wind from radar measurements it is necessary to invert the

geophysical model function. The geophysical model function describes �0 as a function

of wind velocity but is not one-to-one, i.e. M(U1; �1; �; f; p) =M(U2; �2; �; f; p) does

not guarantee that (U1; �1) = (U2; �2). The many-to-one nature of NSCAT-1 is

evident in Fig. 2.4. Observe that a value of �0 may be linked to many di�erent

(U; �) pairs. Since the geophysical model function is not one-to-one, it does not have

a unique inverse, which greatly complicates wind estimation.
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The inverse relationship between a single measurement and wind velocity

yields an in�nite number of possible (U;  ) pairs. The upper left sub�gure in Fig. 2.5

illustrates this situation for noiseless measurements. A measurement from a single

azimuth angle � does not provide enough information to yield a unique wind velocity.

However, two collocated measurements, each taken from di�erent azimuth angles,

narrow the number of solutions to a �nite set, as depicted in the upper right sub�gure

of Fig. 2.5. Intersections of the curves identify the solutions. That is, a (U;  )

pair is a solution to the inverse problem if �1 = M(U; �1 =  � �1; �1; f1; p1) and

�2 = M(U; �2 =  � �2; �2; f2; p2), where the subscripts denote the measurement

number.

Taking more measurements further re�nes the set of possible solutions.

The bottom two sub�gures in Fig. 2.5 illustrate the case for one and two more

measurements from di�erent azimuth angles. Note that the number of solutions is

reduced to one with three measurements.

Although the series of plots in Fig. 2.5 illustrates the need for multiple

collocated measurements from di�erent azimuth angles, it is an idealized situation

with no measurement noise. Inversion with measurements from real scatterometers

rarely results in single solutions. Noise corrupts the measurements, shifting the curves

in Fig. 2.5 up or down. Exact intersections are changed to near intersections, and the

inversion of the geophysical model function becomes a statistical estimation problem.

Before continuing with the statistical estimation of ocean wind, several per-

tinent aspects of the NSCAT Scatterometer are discussed, particularly how NSCAT

provides collocated measurements from various azimuth angles.
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Figure 2.5: Reduction of multiple wind estimates through additional collocated mea-
surements. One measurement yields an in�nite number of estimates (upper left sub-
�gure). Two collocated measurements, each taken from di�erent azimuth angles,
narrow the number of solutions to a �nite set (upper right sub�gure). Solutions oc-
cur at intersection points and are circled. Taking more measurements further re�nes
the set of possible solutions (lower sub�gures). The bottom two sub�gures illustrate
the case for one and two more measurements from di�erent azimuth angles. Note
that the number of solutions is reduced to one with three measurements (lower left
sub�gure).
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2.4 An Overview of NSCAT

NSCAT is a fan beam scatterometer with six long, narrow antennas pro-

truding from the instrument, three on each side [1]. The antennas cast illumination

patterns several hundred kilometers long but only a few kilometers wide. Figures 2.6

and 2.7 illustrate the antenna illumination pattern on the ocean's surface. The mul-

tiple antennas produce measurements from di�erent azimuth angles. For example, as

NSCAT passes over an area of the ocean to its left (relative to the subsatellite track),

it is �rst observed by antenna 6 from an azimuth angle of 45�. The footprint of an-

tenna 5 then passes over it, and the antenna observes from an angle of 65�. Finally,

antenna 4 looks behind the instrument to view the area from the 135� vantage point.

Figure 2.6: An artist's depiction of NSCAT. Obtained from [15].
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Figure 2.7: NSCAT illumination pattern. Adapted from [1].
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NSCAT takes radar backscatter measurements from two 600 km swaths on

either side of the subsatellite track. These two wind vector swaths are separated by

a nadir gap of 329 km. The extent of the nadir gap and the wind vector swaths is

constrained so that the wind vector swaths are observed from incidence angles within

the plateau region, 20� to 65�.

Since the individual antenna footprints are much longer than the desired

resolution, the illumination patterns are resolved into smaller elements using signal

processing techniques. Doppler �ltering and measurement timing resolve the NSCAT

antenna footprints into resolution elements, or \cells" [1]. The resolution of each cell

is 25 km square. However, the high resolution cells are usually grouped into 50 km

cells in order to increase the number of measurements used in wind estimation. All

of the wind retrieval methods used in this thesis operate on the 50 km scale.

Figure 2.8 graphs a portion of an NSCAT measurement swath for the 50

km scale. Note the two wind vector swaths on either side of the nadir gap. The cells

of the wind vector swaths are located by their along-track and cross-track indices.

The along-track numbers increase in the subsatellite track direction, and they range

from 1 to 401. The cross-track numbers range from 1 at the leftmost cell of the left

wind vector swath to 24 at the rightmost cell of the right wind vector swath, where

left and right are relative to the subsatellite track.

This measurement geometry permits measurement from multiple azimuth

angles to facilitate wind retrieval.
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Figure 2.8: Portion of an NSCAT 50 km resolution measurement swath.
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Figure 2.9: Point-wise wind retrieval.

2.5 Point-Wise Wind Retrieval

Point-wise wind retrieval is the traditional method of recovering wind ve-

locity from backscatter measurements. Figure 2.9 is a ow diagram of point-wise

retrieval, which consists of point-wise estimation and ambiguity removal.

2.5.1 Point-Wise Estimation

Point-wise estimation inverts the geophysical model function for each res-

olution element separately. An actual inversion scenario for a 50 km resolution cell

in NSCAT ascending revolution 2454 is depicted in Fig. 2.10. Observe that there

is no point where all 17 measurement curves intersect. (The 17 measurements are

taken at 25km resolution and then grouped into a single 50km cell.) However, there

are several areas of near intersection, and it is reasonable to assume that the wind

that a�ected the measurements lies somewhere in these areas. In order to narrow the

estimate down to a set of points, it is necessary to de�ne an estimator to locate an

\optimal" set of solutions. Multiple solutions arise because of the harmonic nature

of the geophysical model function [16]. The noisy measurements make it di�cult to

discern between valid near intersections and spurious near intersections. Although

there are numerous possible estimators, the one used in this thesis is the maximum

likelihood approach, since it is believed to work best for the 50 km case [17].
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Figure 2.10: An actual point-wise estimation scenario for a cell in NSCAT ascending
revolution 2454. Observe that there is no point where all 17 measurement curves
intersect. (The 17 measurements are taken at 25km resolution and then grouped into
a single 50km cell.) However, there are several areas of near intersection, and it is
reasonable to assume that the wind that a�ected the measurements lies somewhere
in these areas.

22



The formulation of the point-wise estimator begins with characterization

of the measurement noise. Once the statistical nature of the noise is described, the

probability that NSCAT would observe a given measurement given that the true wind

has a certain velocity is described. The probability is extended for the case of multiple

collocated measurements, and the maximum likelihood estimator is introduced.

Let �0t denote the true radar cross section for the wind velocity (Ut;  t),

i.e. �0t =M(Ut;  t), where the dependence on �, �, f , and p is implied. The observed

�0, denoted z, is modeled as a gaussian random variable with mean �0t and variance

&2 [13]. Hence, the probability that NSCAT would observe the measurement z given

that the true radar cross section is �0t is

p(zj�0t) =
1p
2�&2

exp

"
�(z � �0t)

2

2&2

#
:

Since the equality �0t = M(Ut;  t) is assumed to be true, the probability may be

written as

p(zj(Ut;  t)) = 1p
2�&2

exp

"
�(z �M(Ut;  t))

2

2&2

#
:

In order to simplify notation in the case of several measurements, denote

the kth measurement as zk and de�ne the true radar cross section �0tk as Mk [13].

Write the variance of the random variable zk as

&2k = �kM2
k + �kMk + k:

The noise model parameters �k, �k, and k are known for each measurement. Denote

the vector wind in component form, and represent the measurements as the vector z.

Then the probability that NSCAT would observe the measurements z given that the

true vector wind is w is [13]

p(zjw) =
KY
k=1

1q
2�&2k

exp

"
�(z �M(w))2

2&2k

#
:

The maximum likelihood approach to wind estimation selects the set of

vector winds that locally maximizes p(zjw), which is called an objective function.

Since the dynamic range of the probability can be very large, the natural logarithm
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Figure 2.11: Point-wise objective function for NSCAT ascending revolution 2454,
along-track 81 and cross-track 3.

is optimized. Most local optimizers minimize functions, so the point-wise objective

function used in practice is [1]

JPW (w) = �
KX
k=1

"
(zk �M(w))2

&2k
+ ln(&2k)

#
:

Figure 2.11 is an image of the objective function for NSCAT ascending revolution

2454, along-track 81 and cross-track 3. Each point in the image represents the ob-

jective function value for a particular vector wind in (u; v) form. The high objective

function values have been omitted, leaving a ring-shaped area where the most likely

solutions lie. Solutions may be ranked according to their likelihoods, with solutions

having lower objective function values being more likely and more highly ranked.

There are 4 local minima in this example. They are the point-wise estimates, and

are, in order from most likely to least likely, (�8:5; 0:6), (10:0;�1:6), (6:6;�8:8), and
(�4:0; 9:2). The objective function values at the minima are �141:4, �77:6, 27:0,
and 28:7, respectively. Figure 2.12 plots the point-wise wind estimates for a portion

of NSCAT ascending revolution 2454 that includes the cell in the example above.
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Figure 2.12: Point-wise wind estimates for a portion of NSCAT ascending revolution
2454 that includes the cell in Fig. 2.11. The rankings of the ambiguities are indicated
by color. Red is the highest rank, yellow the second, then green, blue, cyan, and
magenta.

2.5.2 Point-Wise Ambiguity Removal

The presence of multiple solutions, or ambiguities, in point-wise estimates

requires an additional processing step, point-wise ambiguity removal, to select a

unique wind vector for each cell. Many di�erent ambiguity removal schemes exist,

and a brief overview of some of the techniques is provided.

Several techniques are reported in [16] for use with three-beam scatterom-

eters like NSCAT. The three techniques are the University of Wisconsin, Remote

Sensing Systems (RSS), and University of Kansas methods. The University of Wis-

consin method attempts to recognize patterns in streamline of the highest ranked

ambiguities, while the RSS method uses wind �eld continuity considerations. The

University of Kansas method incorporates meteorological procedures into ambiguity

removal. All of the three techniques use only scatterometer data.

25



Reference [18] presents a technique that incorporates surface pressure anal-

ysis �elds. The pressure �elds are used in conjunction with a boundary layer model to

compute unique wind velocity from wind speeds provided by the scatterometer. The

author asserts that the method could be used as an ambiguity removal algorithm.

One of the more recent ambiguity removal algorithms is based on an ex-

tension of the median �lter to vector processing and was developed for NSCAT wind

retrieval [1, 19]. The algorithm begins with an initial �eld, which is usually con-

structed using the most likely ambiguities. The vector median �lter attempts to

smooth the initial �eld without removing abrupt changes in the �eld due to fronts,

cyclones, etc. Processing using the median �lter proceeds as follows:

1. Center a 7x7 element window on the cell at location (i; j)

2. For each of the k ambiguities Ak
ij at (i; j), calculate

Ek
ij = (Lkij)

�2
i+3X

m=i�3

j+3X
n=j�3

Ak
ij �Umn

 ;
where Lkij is the likelihood of the kth ambiguity in the center of the window.

Umn denotes the vector at the location (m;n) in the window

3. Substitute the ambiguity Ak
ij that minimizes Ek

ij into location (i; j) for the next

iteration

4. Move the �lter center (i; j) to the next cell, and repeat process from step 1;

continue until desired convergence is reached.

Reference [1] reports ambiguity removal skills in excess of 96% on simulated NSCAT

data.

A particularly successful application of the median �lter is the \nudged"

median �lter algorithm for NSCAT data processing. National Center for Environ-

mental Protection (NCEP) 2:5� wind �elds determine the initial value �eld for the

median �lter [12]. The initial �eld is constructed from the closest �rst or second

ranked ambiguity to the NCEP wind [20]. The median �lter is then run on this �eld.
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Figure 2.13: Field-wise wind retrieval.

This technique is remarkably successful, due to NSCAT's high �rst and second am-

biguity skill. About 90% of the time one of the two most likely ambiguities is the

closest ambiguity to the true wind, and the �rst ambiguity is the closest about 60%

of the time [19]. The output of the \nudged" median �lter is the standard NSCAT

JPL product.

2.6 Introduction to Field-Wise Wind Retrieval

One alternative to point-wise wind retrieval that relies only on scatterom-

eter data is �eld-wise retrieval [7, 8, 21]. Although �eld-wise estimation is the topic

of this thesis, an overview of the entire process of �eld-wise retrieval proves useful, as

the estimation stage is an integral part of the retrieval process. An introduction to

the topic is presented and �eld-wise estimation is expanded in the following chapter.

Figure 2.13 displays an overview of �eld-wise retrieval. The major pro-

cessing steps are �eld-wise estimation and �eld-wise ambiguity removal, which are

analogous to their point-wise counterparts, except that they process multiple cells si-

multaneously using a wind �eld model. Before proceeding with �eld-wise estimation

and ambiguity removal, the Karhunen-Loeve wind �eld model is introduced.
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2.6.1 Karhunen-Loeve Wind Field Model

The Karhunen-Loeve (KL) model [13] is linear and data-driven and models

MxN wind �elds. It is expressed by the model matrix F , which describes the func-

tional relationship between the parameter vector X and the model-based wind �eld

W.

By convention, W and X are column vectors. W contains the vector

components of the wind for a MxN wind �eld:

W =

0
BBBBBBBBBBBBBBBBBBBBBBB@

u1

u2
...

uMN

v1

v2
...

vMN

1
CCCCCCCCCCCCCCCCCCCCCCCA

:

The u and v components are mapped from the MxN wind �eld so that along-track

varies more rapidly than cross-track. For example, if the upper left corner of the

modeled region is at along-track 73 and cross-track 1, or (73; 1), then (u1; v1) is the

wind in the cell at (73; 1), (u2; v2) is the wind at (74; 1), etc.

The model-based wind �eld W is expressed as a linear combination of the

columns of F , which are called basis vectors, and the number of basis vectors is the

order of the model. The linear combination is written compactly in matrix notation:

W = FX:

Several techniques for calculating KL models exist. The KL model used in

this work is obtained from [22]. A biased estimate of the autocorrelation matrix R

from over 50000 MxN regions of NSCAT wind �elds is generated, whereM = N = 12:

R � 1

P

NX
i=1

WiW
T
i :
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The matrix F is obtained by singular value decomposition of R. Since R is

Hermitian and positive semide�nite, the singular value decomposition is R = F�F ,

where

� =

0
BBBBBBBB@

�1 0 � � � 0

0 �2 � � � 0
...

...
. . .

...

0 0 � � � �2MN

1
CCCCCCCCA

and �1; �2; :::; �2MN are the eigenvalues of R, sorted so that �1 � �2 � � � � � �2MN

[23]. The columns of F are orthonormal eigenvectors of R, and they appear in the

same order as their corresponding eigenvalues. Thus, the �rst column of F is the

eigenvector corresponding to �1, the second column corresponds to �2, and so on.

The associated eigenvalues determine the importance of the columns of F in modeling

wind, with the larger eigenvalues corresponding to more important basis vectors [13].

This fact becomes important when using models with fewer than 2MN columns, or

truncated models, to represent a MxN wind �eld.

Selecting the order of a truncated model is a trade-o� between modeling

error and number of model parameters. It is desirable to model wind with as few

parameters as possible because the computational complexity of �eld-wise retrieval

increases dramatically with the number of model parameters. However, the lower the

order, the higher the modeling error. See [24, 25] for further development of model

order selection. For the purposes of this thesis, a 22 parameter model is adequate

[22]. It is used throughout this work and is denoted F0.

The least-squares model �t [7] obtains a model-based wind �eld Ŵ that

optimally models the wind �eldW in a least-squares sense. Since F0 is not invertible

(it is not full rank), there may be no X that exactly solves W = FX. However,

the left pseudoinverse of F0 can be used to �nd a solution that minimizes the mean

squared di�erence from W. The left pseudoinverse of F0 is F
y
0 = (F T

0 F0)
�1F T

0 , and

the least-squares solution of W = F0X is X̂ = F yW[26, 27]. Ŵ is the model-based

wind �eld.
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2.6.2 Field-Wise Estimation

As mentioned in the introduction, model-based retrieval [7] is the prede-

cessor of �eld-wise estimation. Model-based retrieval requires an initial wind �eld

W. A least-squares model �t is performed: X̂ = F yW to yield the model-based wind

�eld Ŵ. X̂ is re�ned by locally optimizing the �eld-wise objective function with X̂

as the initial value. The �eld-wise objective function is described below.

The formulation of the �eld-wise estimator is similar to that of the point-

wise estimator. However, the �eld-wise approach deals with many resolution elements

at once using the wind �eld model F0.

Using the noise model described for the point-wise case, the probability

that NSCAT would observe a given region of measurements given that the true wind

�eld is a certain vector �eld can be described. In order to simplify the expression of

this probability, it is necessary to introduce notation from [13].

Let the wind �eld vector W be indexed by l, which runs from 1 to MN ,

where the wind �eld mapped into W is MxN . Group the radar cross section mea-

surements for the whole region into a single block vector:

Z =

0
BBBBBBBBBBBBBBB@

z1

z2
...

zl
...

zMN

1
CCCCCCCCCCCCCCCA

;

where the vectors zl composing the block vector are identical to the single measure-

ment vectors de�ned for point-wise estimation. The vectors zl are variable length.

Let the length of zl be denoted as K(l). The kth measurement in the lth cell is writ-

ten Zk;l. Write the true radar cross section for the kth measurement in the lth cell as

Mk;l(wl). The subscript k denotes the implied dependence on the incidence angle,

azimuth angle, frequency, and polarization for the kth measurement. The noise model

parameters for the kth measurement in the lth cell are denoted �k;l, �k;l, and k;l.
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The desired probability may be expressed in terms of these notational

conventions as

p(ZjW) =
MNY
l=1

K(l)Y
k=1

1q
2�&2k;l

exp

"�(Zk;l �Mk;l(wl))
2

2&2k;l

#
;

&2k;l = �k;lM2
k;l + �k;lMk;l + k;l:

The maximum likelihood approach to �eld-wise wind estimation selects the

set of wind �elds that locally maximize the objective function p(ZjW). Since it is

much less computationally intensive to search the space of model parameters X than

to explore all possible wind �elds W, the relation W = F0X is invoked to write the

objective function equivalently as p(ZjX).

As in point-wise estimation, the objective function used in practice is the

negative of the natural logarithm of p(ZjX):

JFW (X) = �
MNX
l=1

K(l)X
k=1

"
(Zk;l �Mk;l(wl))

2

#2k;l

#
:

Since JFW (X) has multiple local minima, the model parameter sets that locally opti-

mize JFW (X) are denoted X̂i, and they represent wind �eld solutions via the modeling

relationship Ŵ = F0X̂.

2.6.3 Field-Wise Ambiguity Removal

As in the point-wise scheme, �eld-wise estimation produces multiple am-

biguities because of the multiple local minima of the objective function JFW (X).

However, since the ambiguities are �elds of vectors rather than individual vectors,

adjacent solutions can be made to overlap, and continuity considerations can be in-

voked to greatly simplify ambiguity removal [7, 8]. Model-based estimation is used

to further re�ne the solutions selected in �eld-wise ambiguity removal.
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Chapter 3

Field-Wise Estimation Techniques

3.1 Introduction

Field-wise estimation is essentially global optimization of the objective

function JFW (X). However, due to the nature of the geophysical model function, the

global minimum is not the only desired solution. Field-wise estimation must locate

the multiple near-global local minima of the �eld-wise objective function. Since the

process of locating the minima must be repeated for each region of data, it is essential

that the global optimization routine be reasonably fast. In addition, the nature of

the �eld-wise objective function places further constraints on the choice of global

optimization methods.

In order to clarify the choice of �eld-wise estimation routines, the general

features of the �eld-wise objective function are explored, and several global optimiza-

tion methods are considered in light of these features. It is determined that since

multiple local minima must be located in a reasonable amount of time, a simple

multistart algorithm is the most reasonable choice for �eld-wise estimation.

A variant of the traditional multistart algorithm is developed for �eld-

wise estimation. A local optimization scheme using median �ltered data is used to

augment the multistart solutions. The multistart algorithm is analyzed and both of

the algorithms are tested on NSCAT data.
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3.2 Characterization of the Field-wise Objective Function

The characteristics of the objective function constrain the viability of global

optimization algorithms in �eld-wise estimation. Some of the salient features of the

objective function are discussed in this section. These characteristics include cap-

ture region size, number of local minima, and solution symmetry. Before probing

these aspects of the objective function, a brief overview of the general features of the

objective function is provided.

3.2.1 General Features

If the time required to run �eld-wise estimation were not an issue, it would

be a relatively straightforward problem, because the objective function is relatively

tame. Even though the objective function is nonlinear and exhibits multiple local

minima, it is moderately low-order, since the wind �eld model F0 has only 22 basis

vectors. Further, the time to evaluate the objective function is approximately 0:1

CPU seconds per evaluation, and the objective function has an analytic gradient.

However, since the �eld-wise global optimization problem must be solved repeatedly

in a reasonable amount of time, the di�culty is compounded, and the �eld-wise

estimation problem is intractable for many optimization algorithms.

3.2.2 Capture Region Size

A gradient-descent algorithm started from a given point in the model pa-

rameter space de�nes a path that leads to a local minimum. The capture region of a

local minimum is de�ned as the set of all points that locally optimize to the local min-

imum using a gradient-descent algorithm. Capture region size describes how di�cult

it is for the global optimization routine to locate a given local minimum. Capture

region size is usually represented by the fraction of the domain of interest occupied

by the capture region.
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Consider, for example, a simple objective function with two parameters.

The camel hump function [28],

f(x; y) = ax2 + bx4 + cx6 � xy + dy2 + ey4;

where a = 4; b = �2:1; c = 1=3; d = �4, and e = 4, has two local minima in

the domain x 2 [�0:5; 0:5]; y 2 [�1; 1]. Figure 3.1 is a plot of the camel hump

function. The leftmost plot in Fig. 3.2 shows the normalized negative gradient of the

camel hump function. The negative gradient points in the \downhill" direction of the

objective function, which is the direction that a gradient-descent algorithm follows.

For reference, all graphs in Fig. 3.2 also display contours of the camel hump function.

In order to graph the capture regions of the camel hump function, 5000

(x; y) pairs are randomly selected from the domain x 2 [�0:5; 0:5]; y 2 [�1; 1]. Each
of the pairs is used as an initial value in a gradient-descent local optimization. The

center and rightmost plots of Fig. 3.2 depict the initial value points that optimize

to the two di�erent local minima. The number of points that optimize to the local

minimum at (0:09; 0:7) is 2453, and the number that optimize to the local mini-

mum at (�0:09;�0:7) is 2547. Reasonable estimates of the capture region sizes are

2453=5000 = 0:49 and 2547=5000 = 0:51. These numbers represent the fraction of

the domain area, or solution space, that is occupied by each capture region. In higher

dimensional objective functions, the extent of the capture region and the size of the

domain are hypervolumes, but the capture region size is a dimensionless quantity.
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Figure 3.1: Camel hump function. The camel hump function is an example of a
function of 2 parameters that exhibits multiple minima. The domain of the graph is
restricted to display only 2 of the 6 minima of the function.
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Figure 3.2: Capture regions of the camel hump function. The capture regions of the
two minima in Fig. 3.1 are illustrated in the left plot by a vector �eld of the normalized
negative gradient, which indicates the \downhill" direction of the function. The center
and rightmost plots depict the initial value points that descend to each minimum as
a result of minimization. Contour plots in each �gure indicate the structure of the
function. The local minima are at (0:09; 0:7) and (�0:09;�0:7).
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Capture region sizes for the �eld-wise objective function are estimated

using a method similar to that employed in the camel hump example. Unlike the camel

hump function, the �eld-wise objective function displays di�erent characteristics for

di�erent wind �eld phenomena. Accordingly, three representative wind �elds with

various features are selected from NSCAT revolution 2454 ascending. Figures 3.3,

3.4, and 3.5 show the JPL product for the three wind �elds. Figure 3.3 is a smooth

wind �eld, while Figs. 3.4 and 3.5 are more interesting features. Figure 3.4 is a

front and Fig. 3.5 is a cyclone. Since the JPL product for these wind �elds appears

reasonable, the optimized least-squares model �t to the JPL product is assumed to

be within the capture region of, or identical to, the optimized least-squares model �t

to the true wind; thus, the capture region properties of the desired solution can be

investigated by probing the capture region of the optimized JPL product. Figures

3.6, 3.7, and 3.8 display the optimized model �ts to the JPL product.
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Figure 3.3: Smooth wind �eld taken from JPL product from NSCAT ascending rev-
olution 2454.
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Figure 3.4: Frontal feature taken from JPL product fromNSCAT ascending revolution
2454.
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Figure 3.5: Cyclone taken from JPL product from NSCAT ascending revolution 2454.
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Figure 3.6: Smooth wind �eld. The wind �eld in Fig. 3.3 is optimized to yield this
plot.
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Figure 3.7: Frontal feature. The wind �eld in Fig. 3.4 is optimized to yield this plot.
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Figure 3.8: Cyclone. The wind �eld in Fig. 3.5 is optimized to yield this plot.
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The multistart global optimization method is used to gauge the capture

region size of the three representative regions. Multistart consists of three basic steps

[29]:

1. Randomly generate an initial value (uniform distribution)

2. Locally optimize the initial value

3. If stopping criteria have not been met, continue with (1).

The ratio of the the number of times a local minimum is reached to the total number

of initial values is an estimate of the local minimum's capture region.

In order to determine capture region size, the multistart algorithm is run

on the three representative regions using 1000 initial values. The initial values are

randomly chosen according to a uniform product distribution de�ned on a limited por-

tion of the model parameter space. Justi�cation of the limits on the model parameter

space are deferred until the description of the �eld-wise multistart algorithm.

The product distribution is formed by examining the variances of the KL

model parameters, which are simply the eigenvalues of the autocorrelation matrix R

used in calculating the KL model. Let �21 = �1 and �22 = �2, where �1 and �2 are

the eigenvalues corresponding to the �rst 2 KL model basis vectors. Let the model

parameter vector Xi = (x1; x2; :::; x12; 01�10)
T denote the ith initial value, where 01�10

is a 10 element row vector with all zero entries. Each nonzero element of Xi is drawn

independently from di�erent uniform populations:

x1 2 [�2�1; 2�1]
x2 2 [�2�2; 2�2]
x3 2 [�120; 120]

...

x12 2 [�120; 120]:

Each initial value is locally optimized, and the number of initial values that converge

to the optimized JPL solution is recorded. An initial value is said to converge to the
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Revolution Location Feature Capture Region Size

2454 ascending Along-Track 127 Smooth Field 0.094
Cross-Track 1

2454 ascending Along-Track 277 Front 0.028
Cross-Track 13

2454 ascending Along-Track 67 Cyclone 0.015
Cross-Track 1

Table 3.1: Estimates of capture region size. The multistart algorithm is run with
1000 initial values on the three representative regions: smooth wind �eld, cyclone,
and front. The fraction of the initial values that converge to the optimized JPL
solution (within 0.75 m/s vrms) is an estimate of capture region size.

optimized JPL solution if the vrms di�erence between the optimized initial value and

the optimized JPL solution is less than 0:75 m/s. The vrms di�erence between two

model-based wind �elds W1 and W2 is calculated as follows:

Vrms Di�erence =

s
(W �W)T (W�W)

MN
;

where M and N are the dimensions of the wind �elds from which W1 and W2 are

scanned.

Table 3.1 summarizes the capture region size for the three representative

regions. Again, the size estimates are for the capture region of the optimized least-

squares model �t to the JPL product. For the smooth wind �eld region, 94 out of the

1000 initial values converge to the optimized JPL solution. An estimate of the capture

region size of the optimized JPL solution for the smooth region is 94/1000=0.094. For

the region with the front, 28 out of the 1000 initial values converge to the optimized

JPL solution. For the cyclone region, only 15 out of the 1000 initial values converge

to the optimized JPL solution. Thus, the capture region sizes of the front and cyclone

regions are 28/1000=0.028 and 15/1000=0.015, respectively.

Capture region size is probably determined by several factors. Certainly

if the data are su�ciently ambiguous to allow a large number of point-wise ambi-

guities per resolution element, then the �eld-wise objective function will also have

a large number of �eld-wise ambiguities. Thus, the capture region size will tend to
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be smaller. Figures 3.9, 3.10, and 3.11 show the ambiguous point-wise winds for the

three representative regions. Observe that there are more point-wise ambiguities in

Fig. 3.11 than in Figs. 3.9 and 3.10. Accordingly, the capture region for Fig. 3.11 is

larger than those of the other regions.
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Figure 3.9: All ambiguity plot|smooth wind �eld region
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Figure 3.10: All ambiguity plot|frontal feature region
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Figure 3.11: All ambiguity plot|cyclone region

43



However, the number of point-wise ambiguities does not completely explain

the capture region sizes in Table 3.1. Even though the region with the front has

fewer point-wise ambiguities than the smooth region, it has a smaller capture region.

Another factor in determining capture region size is the complexity of the wind �eld,

which would explain the discrepancy between the number of point-wise ambiguities

for the frontal region and its capture region size.

3.2.3 Number of Local Minima

The multistart algorithm can also estimate the number of local minima

of the �eld-wise objective function. An obvious method of bounding the number of

local minima is to run the multistart algorithm and count the number of unique local

minima that it identi�es. This method is explored in this subsection.

The multistart algorithm is run on the three representative regions (Figs.

3.3, 3.4, and 3.5) with 200 initial values. The initial values are chosen according to

the uniform product distribution described in the previous subsection. The unique

local minima are enumerated by retaining only those that di�er by at least 0:75 m/s,

in a vrms sense. This process is repeated 5 times for each region, and the results are

summarized in Table 3.2.

Further results varying the vrms threshold justify the 0:75 m/s value as a

reasonable choice for the minimum distance between distinct local minima. The data

from the �rst of the 5 runs are examined for unique local minima using the thresholds

of 0:75, 1:5, 2:25, 3, 3:75, 4:5, 5:25, and 6 m/s. The apparent number of unique

local minima for each region and each threshold is tabulated in Table 3.3. The rapid

decrease in number of apparent local minima, most noticeably observed for the cyclone

region, brings the threshold value of 0:75 m/s into question. Since optimization

routines locate local minima only approximately, it is possible that the threshold

separates solutions that approximate the same local minimum. However, subjective

examination of the solutions that the 0:75 m/s value declares unique indicates that

they should indeed be treated as separate solutions. Thus, the anomaly observed in
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Region
Run Number Smooth Front Cyclone

1 147 153 170
2 157 145 174
3 152 150 160
4 144 140 159
5 157 141 164

Ave 151.4 145.8 165.4
Std 5.9 5.6 6.5

Total Number of
Unique Minima for 672 668 643
All Five Runs

Table 3.2: Number of local minima for three di�erent regions. The data are obtained
by running the multistart algorithm 5 times with 200 initial values for each run. The
vrms threshold value of 0.75 m/s is used to de�ne distinct local minima.

Table 3.3 for the cyclone region is probably due to very small capture regions, not to

an inordinately restrictive threshold.

Although there are a large number of possible solutions, it is acceptable

to miss some of the local minima because only a fraction of these are reasonable.

In a geophysical sense, the �eld-wise objective function provides an e�ective ranking

criterion that tends to rank more reasonable solutions better than less reasonable

solutions. However, due to the nature of the geophysical model function and to the

presence of noise, the most likely solution is not always the true solution. This is the

motivation for locating the multiple near-global local minima.

Figures 3.12, 3.13, and 3.14 graph the objective function value versus solu-

tion number, sorted according to ascending objective function value, for the smooth,

front, and cyclone regions, respectively. The jump in objective function values in Figs.

3.12 and 3.13 around solutions 4 and 15, respectively, marks the transition between

the best solutions and less reasonable ones. Figures 3.15, 3.16, 3.17, and 3.18 plot

solutions on either side of the transitions for the smooth and front regions. Figure

3.15 is the �rst solution for the smooth wind �eld and is very reasonable. It is the
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Region
Threshold (m/s) Smooth Front Cyclone

0.75 147 153 170
1.5 147 153 170
2.25 147 152 161
3 147 151 152

3.75 147 149 137
4.5 145 148 134
5.25 144 147 120
6 142 145 109

Table 3.3: Apparent number of local minima as a function of threshold.

closest to the optimized JPL wind. However, the 14th solution (plotted in Fig. 3.16)

is somewhat less reasonable. Figures 3.17 and 3.18 plot the �rst and 21st solutions

for the front region. Figure 3.17 is a very reasonable wind �eld, although it is not the

closest to the optimized JPL wind. Figure 3.18, however, is an unreasonable solution.

Figure 3.14 does not display such a sharp transition. Subjective inspection

places the transition from the best solutions to the less reliable ones in the neighbor-

hood of the 40th ranked solution. Figures 3.19 and 3.20 plot solutions on either side

of the transition. Figure 3.19 is the �rst solution, and it is reasonable contrasted with

the unreasonable 45th solution in Fig. 3.20.

Even though the objective function tends to rank more reasonable solu-

tions higher than less reasonable ones, the global minimum is not always the desired

solution. For the smooth wind �eld, the global minimum is the desired solution (i.e.

the closest to the optimized JPL product), but for the region with the front, the

desired solution is ranked 5th. The best solution for the cyclone region is ranked 16th.

Since the desired solution is not always the global minimum, a �eld-wise estimation

algorithm must locate a set of local minima. This required set is di�cult to de�ne.

But it does not consist of all possible minima|a �eld-wise estimation algorithm can

a�ord to miss some of the solutions, provided that they are less reasonable ones.
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Thus, the required set includes the global minimum and all of the near-global min-

ima, which occur before the transition from the more desirable solutions to the less

desirable solutions.
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Figure 3.12: Objective function values versus sorted solution number|smooth wind
�eld region. The transition between reasonable and less reasonable solutions is around
the 4th ranked solution.
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Figure 3.13: Objective function values versus sorted solution number|frontal feature
region. The transition between reasonable and unreasonable solutions is around the
15th ranked solution.
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Figure 3.14: Objective function values versus sorted solution number|cyclone region.
Subjective inspection of the solutions places the transition from the best ones to the
less ones around the 40th ranked solution.
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Figure 3.15: First ranked solution|smooth region. This solution occurs before the
transition in Fig. 3.12 and is a reasonable solution.
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Figure 3.16: 16th ranked solution|smooth region. This solution occurs after the
transition in Fig. 3.12 and is a less reasonable solution.
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Figure 3.17: First ranked solution|front region. This solution occurs before the
transition in Fig. 3.13 and is a reasonable solution.
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Figure 3.18: 21st ranked solution|front region. This solution occurs after the tran-
sition in Fig. 3.13 and is an unreasonable solution.
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Figure 3.19: First ranked solution|cyclone region. This solution occurs before the
transition in Fig. 3.14 and is a reasonable solution.
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Figure 3.20: 45th ranked solution|cyclone region. This solution occurs after the
transition in Fig. 3.14 and is classi�ed as an unreasonable solution.
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3.2.4 Symmetry

The �eld-wise objective function displays a useful symmetry: if there is a

local minimum at X̂, there will tend to be a local minimum close to �X̂, where X̂ is

the solution model parameter vector. The symmetry in the objective function arises

from the ambiguity in the geophysical model function.

Evidence of this symmetry is observed in the representative regions used in

the previous subsections. In order to demonstrate the objective function symmetry,

the multistart algorithm, as described previously, was run with 5000 initial values to

yield 5000 solutions. This set is referred to as initial solutions. Each of the initial

solutions was negated, and the resulting parameter vectors were optimized.

If the objective function were perfectly symmetric, all of the negated initial

solutions would be identical to the optimized negated initial solutions. A simple two-

dimensional example of perfect solution symmetry is plotted in the leftmost graph of

Fig. 3.21. However, the �eld-wise objective function is not perfectly symmetric, so

the situation is more like that depicted in the rightmost graph of Fig. 3.21. In the

case of imperfect symmetry, the optimized negated initial solutions are close to the

negated initial solutions, but not coincident.

Figs. 3.22, 3.23, and 3.24 plot the results of the multistart runs for the

smooth, front, and cyclone regions, respectively. The �gures plot the 5000 optimized

negated initial solutions (�X̂) versus the 5000 negated initial solutions (�X̂) by

graphing one model parameter per subplot (for the �rst 9 model parameters). Thus,

the �rst subplot graphs the �rst parameter of the optimized negated initial solutions

(optimized �x̂1) versus the �rst parameter of the negated initial solutions (�x̂1), and
so on for the �rst 9 parameters. The strong linear trend (the line with a slope of one

through the origin) in all of the subplots indicates that if there is a local minimum

at X̂, the optimized value of �X̂ is usually close to �X̂. The horizontal lines are

probably due to the upper and lower speed limits of the NSCAT-1 geophysical model

function.
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Figure 3.21: Two-dimensional example of perfect and imperfect solution symmetry.
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Figure 3.22: Solution symmetry of smooth wind �eld region. The strong linear trend
(the line with a slope of one through the origin) in all of the subplots indicates a
pronounced solution symmetry. The horizontal lines are probably due to the upper
and lower speed limits of the NSCAT-1 geophysical model function. (X in the legend
is equivalent to x̂ in the text.)
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Figure 3.23: Solution symmetry of frontal feature region. The strong linear trend
(the line with a slope of one through the origin) in all of the subplots indicates a
pronounced solution symmetry. The horizontal lines are probably due to the upper
and lower speed limits of the NSCAT-1 geophysical model function. (X in the legend
is equivalent to x̂ in the text.)
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Figure 3.24: Solution symmetry of cyclone region. The strong linear trend (the line
with a slope of one through the origin) in all of the subplots indicates a pronounced so-
lution symmetry. The horizontal lines are probably due to the upper and lower speed
limits of the NSCAT-1 geophysical model function. (X in the legend is equivalent to
x̂ in the text.)
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3.3 Field-Wise Estimation Algorithms

The choice of global optimization algorithms for �eld-wise estimation is

based primarily on the demand for speed in �eld-wise estimation and on the nature

of the �eld-wise objective function. The following is a survey of several global op-

timization algorithms considered for �eld-wise estimation. Each of the methods is

introduced briey, and strengths and weaknesses relative to the �eld-wise estima-

tion problem are discussed. Two other novel estimation algorithms are presented in

[30, 31]. The multistart method is selected for �eld-wise estimation because of its

simplicity, speed, and ability to locate multiple local minima.

3.3.1 Survey of Global Optimization Methods Considered

Global optimization techniques can be organized into two broad categories:

deterministic and stochastic. Several deterministic methods considered for �eld-

wise estimation are interval branch and bound, the Kronecker-Picard (KP) integral

method, and a novel systematic search technique. Each of these methods is discussed

in turn, and they are evaluated in light of the demands of the �eld-wise estimation

problem.

Interval Branch and Bound

A simple interval branch and bound approach to global minimization di-

vides the parameter space into large hyperintervals, and then seeks to determine

lower and upper bounds for the objective function on each of the hyperintervals. If

the lower bound on a given hyperinterval exceeds the upper bound on another hy-

perinterval, then it may safely be assumed that the �rst does not contain the global

minimum of the objective function. The hyperintervals that can possibly contain the

global minimum are divided, and the process is repeated until only one hyperinterval

remains. The �nal hyperinterval contains the global minimum of the objective func-

tion. A description of a more general branch and bound algorithm and expositions

of bounding methods is found in [32]. It is a di�cult matter to bound the objective

function tightly enough so that the convergence to the hyperinterval containing the
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global minimum is rapid. One commonly used technique of bounding the objective

function is the interval arithmetic method [32, 33, 34]. The objective function is

translated into interval arithmetic functions, which are analogous to point functions,

except that they operate on intervals and yield interval bounds as results. Interval

arithmetic methods can also incorporate information from the partials of the objective

function to produce even tighter bounds.

Several attractions of interval branch and bound is that it can be altered

to locate multiple near-global local minima and that it can guarantee convergence to

the global minimum [35]. However, the need for fast convergence limits its utility in

�eld-wise estimation.

KP Integral Method

The KP integral method [36, 37] is similar to the branch and bound tech-

nique in that the parameter space is divided into increasingly smaller hyperintervals,

and the hyperintervals that cannot contain the global minimum are discarded. In-

stead of bounding the objective function in order to eliminate hyperintervals, the

KP integral method evaluates the KP integral, which yields the number of station-

ary pints within the hyperinterval. Hyperintervals with zero stationary points are

discarded, and the remaining hyperintervals are divided. The process is continued

until the only remaining hyperintervals contain only one stationary point each. A

local optimization method then can be used to �nd the local minima, from which the

global minimum is selected.

The major weakness of the KP integral method is that the KP integral

is prohibitively expensive to evaluate for objective functions much higher than two

dimensions [37].

Systematic Search

The �nal deterministic method considered is a novel systematic search

[28]. The basic idea is to pass from one local minimum to another via points on the

objective function that are like mountain passes. First, a single initial value is locally
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optimized. Then, the gradient �eld is altered in such a way that the \mountain

passes", actually called decomposition points, are local minima. Each one of the

decomposition points is located by a series of local optimizations from the single local

minimum. Finally, points around the decomposition points are locally optimized,

using the original gradient �eld, to �nd new local minima. These local minima are

then used to �nd additional decomposition points, which are used to �nd additional

local minima. The process is repeated until all of the local minima have been visited.

In spite of its esthetic appeal, this method is also inappropriate for �eld-

wise estimation. The numerous local minima and the dimensionality of the problem

make its application to �eld-wise estimation computationally intractable.

Stochastic Algorithms

In addition to the deterministic methods, two stochastic techniques were

considered: genetic algorithms and multistart.

Genetic algorithms treat solutions like chromosomes. A genetic algorithm

generates an initial population of chromosomes, and then it evaluates the �tness of

each chromosome by computing the objective function value for each corresponding

solution. Chromosomes with high �tness are selected to reproduce. In the process of

replication, crossover takes place. Crossover produces o�spring with solution charac-

teristics inherited from both parent chromosomes. Mutation, the random alteration

of the chromosomes, provides further solution variability. As the processes of natu-

ral selection and reproduction progress, the population tends to approach the global

minimum [38]. An encoding of a simple genetic algorithm from [39] is provided by

[40].

Variants of the basic genetic algorithm have been successful at locating

multiple local minima [41]. However, genetic algorithms converge too slowly to the

minima to be used without extensive modi�cation in �eld-wise estimation.

The �nal stochastic algorithm considered was the multistart algorithm,

which is outlined in the previous section. Unlike the other methods, which are useful

for lower dimensional problems or for high dimensional problems where execution
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time of the algorithm is not an issue, the multistart method is designed to locate

multiple local minima very rapidly.

Further, multistart is appealing because it is easily described as a simple

statistical process, which leads to estimates of capture region size and sequential

stopping rules [42, 43], and because it is easily parallelized. Further, more e�cient

variants of the multistart algorithm, such as clustering [44] and repulsion [29], also

exist.

Clustering algorithms seek to speed up the multistart method by intelli-

gently eliminating initial value points. First, as in the multistart method, initial value

points are chosen. In the clustering algorithm, however, the initial value points are

locally optimized only for a few iterations. These partially optimized initial value

points are clustered. For each cluster, only a speci�ed fraction of the points in each

cluster are retained. The process of partially optimizing and clustering continues until

the desired stopping criteria are achieved.

The repulsion algorithm is a more recent variant of multistart. The repul-

sion algorithm proceeds exactly as multistart, except that past initial value points

and all of the intermediate points of the local optimizations are retained. When a

new initial value is selected, the stored points are used to repel the initial value away

from regions which have already been explored. In this way, the repulsion algorithm

seeks to locally optimize only one initial value per capture region.

3.3.2 Field-Wise Multistart Algorithm

I have developed a variant of the multistart algorithm suited for �eld-wise

estimation. It was introduced in a di�erent context in the subsection that explores

objective function symmetry. However, for the sake of completeness and clarity, it is

described again here.

In the �eld-wise multistart method, the initial value points are chosen in

two groups, where one is the negative of the other. This approach uses the symmetric

structure of the objective function to make the multistart method more e�cient.

First, 50 points in the 22-parameter model space are chosen according to a uniform
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product distribution de�ned on that space. The product distribution is the same

as was described previously. Recall that �21 = �1 and �22 = �2, where �1 and �2

are the eigenvalues corresponding to the �rst 2 KL model basis vectors. Let the

model parameter vector Xi = (x1; x2; :::; x12; 01x10)
T denote the ith initial value. Each

nonzero element of Xi is drawn independently from di�erent uniform populations:

x1 2 [�2�1; 2�1]
x2 2 [�2�2; 2�2]
x3 2 [�120; 120]

...

x12 2 [�120; 120]:

The bounds on all of the parameters were subjectively chosen after some experimen-

tation as a balance between maximizing algorithm reliability and minimizing domain

size. Smaller domains require fewer initial value points. However, algorithm relia-

bility depends on the domain including points from the capture region of the local

minimum of interest. It was found that specifying nonzero values only for the �rst

12 initial value parameters was a reasonable balance between these two conicting

requirements. Further, the generous interval bounds on the 12 nonzero parameters

ensures that the domain allows signi�cant freedom in wind features.

The 50 initial values Xi are then locally optimized using the IMSL imple-

mentation of the quasi-Newton method with analytic gradient. Although the con-

straints within the objective function introduce discontinuities, the quasi-Newton

method optimizes adequately, even though it is traditionally used only with con-

tinuous objective functions. If di�culties due to the discontinuities arise in future

tests and applications of this method, local optimization routines for discontinuous

objective functions can be employed, but with a possible increase in computation

time.

After the 50 initial values are optimized, the negative of the resulting so-

lutions are also optimized, yielding a total of 100 optimized solutions. Optimizing

the negative of the �rst 50 optima increases the chance that both the upwind and
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downwind versions of the solutions are present in the solution set, which improves

the success rate of the algorithm. Finally, the 100 optima are examined to remove

redundant solutions. If any two solutions have a vrms di�erence within 0:75 m/s,

only the solution with the lower �eld-wise objective function value is retained. The

following is a summary of the algorithm:

1. Randomly select 50 initial values

2. Locally optimize initial values

3. Locally optimize negatives of the resulting solutions

4. Remove redundant solutions with a vrms threshold of 0:75 m/s, retaining the

solutions with the lowest objective function values.

The performance of the �eld-wise multistart algorithm is considered in

the next section. However, it is necessary to note that even though the algorithm

is reliable, it can fail and that the failures are more likely to occur in regions with

interesting features, such as fronts and cyclones, since those regions have smaller

capture regions. In order to minimize the failure rate of the algorithm, its solution

set is augmented using a local optimization algorithm initialized with median �ltered

wind.

First, the median �lter is run using the �rst and second ambiguity �elds

as initial values. The median �lter outputs are used as initial values in model-based

retrieval. Accordingly, least-squares model �ts are performed, and the model pa-

rameters are locally optimized using the same gradient-descent methods employed in

the multistart optimizations. The resulting solutions are added to those from the

multistart algorithm.

3.4 Test Results

The augmented multistart algorithm is tested on 10 revolutions from week

23 of the NSCAT mission. The NSCAT swaths are divided into 12x12 regions with

50% overlap, and the algorithm is run on each region. In addition, the JPL product
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for the overlapping regions is �t to the wind �eld model (in a least-squares sense) and

optimized, using the same optimization routine as in the multistart algorithm. The

output of the multistart algorithm is compared with the optimized JPL product to

determine the success rate of the algorithm.

Note that the JPL product is only about 96% accurate due to ambiguity

removal errors [22]. In lieu of a better choice, only the reliable portions of it are used

for comparison as \ground truth". The \poor regions", those regions with more than

20% of the cells having possible ambiguity removal errors, are identi�ed using the

quality assessment algorithm developed in [22] and are not used in the comparison.

Figure 3.25 is a histogram of the vrms di�erence between the optimized

JPL product and the closest �eld-wise estimate for the over 700 reliable JPL regions in

the test set. In a high percentage of the regions, the augmented multistart algorithm

is very successful at locating the JPL solution. The actual percentage of times that

the algorithm locates the optimized JPL solution is 97% (0:75 m/s vrms threshold).

However, the success rate of �nding a solution subjectively close to the JPL solution is

higher. Even if the algorithm fails to locate the true solution exactly, a solution close

to true one is admissible. In the �eld-wise ambiguity removal stage the overlapping

solutions are joined by an averaging process which can repair incorrect solutions if

the other overlapping solutions are closer to correct.

A variation of the usual vrms di�erence can be used to quantify how much

deviation from the desired wind is admissible. Let the vrms di�erence between two

model-based wind �elds W1 and W2 be calculated as follows:

1. Fill the valid vector: valid(i) =

8><
>:

0 : no data in resolution element i

1 : otherwise

2. Vrms Di�erence =
r

(W�W)TD2
v(W�W)P

144

i=1
valid(i)

. Dv is the diagonal matrix with the

elements of valid on the main diagonal.

Subjective inspection of solutions indicates that vrms di�erences between

2 and 3 m/s are su�ciently close. Since approximately 99% of the regions have
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solutions this close to the optimized JPL product, the subjective skill of the multistart

algorithm is probably closer to 99%.
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Figure 3.25: Histogram of skill of �eld-wise multistart algorithm measured in vrms
di�erence from optimized JPL product. Approximately 99% of the regions have
solutions subjectively close to the optimized JPL product.
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3.5 Summary

In this chapter, the characteristics of the �eld-wise objective function are

explored. It is found that the objective function exhibits numerous local minima.

However, the �eld-wise objective function tends to rank more reasonable solutions

higher than less reasonable ones, in a geophysical sense. It is also determined that

the �eld-wise objective function displays solution symmetry, which can assist in the

estimation procedure.

Since it is observed that the global minimum of the objective function is

not always the desired solution, it is necessary to �nd a �eld-wise estimation algo-

rithm that could locate multiple near-global local minima. A further constraint on

the �eld-wise algorithm is that it be reasonably fast, since it would need to be ex-

ecuted repeatedly, once for each region. Several global optimization algorithms are

considered, and the multistart method is chosen as the most favorable candidate.

A variant of the multistart method is developed to exploit the solution

symmetry of the �eld-wise objective function, and the algorithm is tested on NSCAT

data. The algorithm displays about 99% success at locating local minima acceptably

close to the desired solution.
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Chapter 4

A Field-Wise Ambiguity Removal Algorithm for the NASA

Scatterometer

4.1 Introduction

The �eld-wise estimation technique developed for NSCAT in the previous

chapter generates multiple solutions (also called ambiguities or estimates) for each

region of the scatterometer swath. A �eld-wise ambiguity removal (FWAR) algorithm

is necessary to determine a unique wind swath estimate. This report discusses the

structure of a FWAR algorithm that does not rely on numerical analysis winds. First,

preliminary de�nitions are o�ered for several terms used in describing the FWAR

algorithm. Then, an overview of the algorithm is provided and each of the major

stages in the algorithm is discussed.

4.2 Preliminary De�nitions

In order to simplify the description of the FWAR algorithm, it is necessary

to introduce several useful terms. Recall that the output of a �eld-wise estimation

algorithm is a set of possible solutions, which are also referred to as ambiguities or

estimates.

The FWAR algorithm introduced in the following section deals with multi-

ple regions overlapping by 50%. A set of solutions, one solution for each overlapping

region, is called an extended solution. The model-based wind on a multi-region scale

is also referred to as a wind swath solution or estimate.
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An additional objective function that is useful in ambiguity removal is the

FI objective function, which uses the wind �eld model FI instead of F0, where

FI =

0
BBBBBBBB@

1 0 � � � 0

0 1 � � � 0
...

...
. . .

...

0 0 � � � 1

1
CCCCCCCCA
:

The FI objective function is then

JI(XI) = �
MNX
l=1

K(l)X
k=1

"
(Zk;l �Mk;l(wl))

2

#2k;l

#
;

and the model parameter sets that locally optimize JI(XI) represent wind �eld so-

lutions via the modeling relationship ŴI = FIX̂I. Observe that X̂I is a vector of

288 elements. Those elements are identical to the (u; v) components of a scanned

vector wind �eld. Inspection of JI(XI) reveals that each of the wind vector cells can

be optimized independently, just as in point-wise estimation. Thus, the FI objective

function can be calculated by selecting the closest point-wise ambiguity to each wind

vector represented by JI(XI) and totaling their point-wise objective function values.

Optimization of the FI objective function can be expedited by choosing

the closest point-wise wind to each of the vectors of the initial value wind �eld. For

example, in order to perform an FI optimization of X̂, a �eld-wise estimate, X̂ must

be transformed into its corresponding model-based wind �eld: Ŵ = F0X̂. Then, the

initial value of the FI optimization is XI = Ŵ. The optimized parameter vector

is X̂I , which contains the closest point-wise winds to the vectors represented by the

initial value XI = Ŵ.

4.3 Field-Wise Ambiguity Removal Algorithm

The algorithm (refer to Fig. 4.1) begins with an initial extended solution,

assembled from the most likely �eld-wise estimates. The algorithm detects discontinu-

ities in the initial extended solution, and then it repairs them by trying combinations

of lower-ranked solutions. Finally, the most likely extended solution is re�ned through
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Figure 4.1: The FWAR algorithm. The algorithm begins with an initial extended so-
lution. It detects discontinuities in the initial extended solution, and then it attempts
to repair them. The repaired extended solution is further re�ned, and a unique wind
swath solution is output.

model-based estimation, and a unique wind swath estimate is output. Each of the

major divisions of the algorithm is discussed in detail in a separate subsection.

4.3.1 Form Initial Extended Solution

The FWAR algorithm acts on sets of overlapping solutions to piece together

the solutions into extended solutions. The �rst step in determining the extended

solution for a given set of regions is to form an initial extended solution. In the

FWAR algorithm, the initial extended solution is assembled from the most likely �eld-

wise estimates. First, the �eld-wise estimates are ranked according to their �eld-wise

objective function values, and only the 20 highest ranked solutions are retained. The

�eld-wise objective function tends to rank more reasonable solutions higher than less

reasonable ones, so retaining only the top solutions eliminates unlikely solutions. The

20 retained solutions are ranked according to their FI objective function values. The

highest ranked ambiguities from each region according to this scheme are assembled

into the initial extended solution.

4.3.2 Detect Discontinuities

Although the initial extended solution is generally realistic, there may be

some discontinuities due to improper choice of initial solutions from the �eld-wise

ambiguities. However, these discontinuities can be detected and repaired. In order

to detect the discontinuities, the vrms di�erence between overlapping portions of
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solutions are computed. If a pair of solutions exhibits an overlap di�erence in excess

of a �xed threshold value, that pair is marked as a discontinuity.

A threshold value of 4.5 m/s is selected by subjectively locating disconti-

nuities in 10 revolutions of NSCAT data from week 23 and determining which thresh-

old level locates a high percentage of the discontinuities. Initial extended solutions

are constructed, and the discontinuities in each extended solution are identi�ed. A

threshold of 4:5 m/s locates approximately 86% of the discontinuities. The unde-

tected discontinuities are successfully identi�ed only with a threshold of about 2 m/s,

which generates an excessive number of discontinuities. Even though false alarms are

not as critical as missed detections, the scheme performs su�ciently well. It produces

good results in the next stage of the algorithm, which involves identifying the extent

of the initial value errors around the discontinuities. It is possible that many of the

undetected discontinuities are su�ciently close to the detected discontinuities that

they are included in the clusters of possibly erroneous regions. Further support of the

4:5 m/s threshold value is provided below.

4.3.3 Repair Discontinuities

All of the discontinuous pairs are grouped to de�ne continuous sets of

possibly erroneous initial solutions. The groups are called \clusters". The clusters are

centered on the discontinuous pairs and include two pairs of solutions to either side of

the discontinuous pair. This conservative approach tends to exclude initial solutions

of high con�dence from the clusters, and these solutions can be used to assist in

repairing discontinuities within the clusters, as they help establish the general wind

ow. However, it has been observed that the initial solutions adjacent to the clusters

can still be incorrect, so an additional test is necessary to determine which solutions

not included in the clusters help establish the correct wind ow.

Identi�cation of Anchors

Initial solutions that help establish the correct wind ow are called \an-

chors". Model-based thresholding [13] is employed to identify the anchors.
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Model-based thresholding takes the form of a hypothesis test, but not

one in the traditional Neyman-Pearson sense. The decision rule employed in model-

based thresholding eliminates improbable solutions while keeping the probability of

eliminating the correct solution below a �xed threshold �0.

In order to construct the decision rule, the log-likelihood-ratio statistics

between the highest ranked �eld-wise ambiguity and each of the lower ranked solutions

is formed:

�2(z) = ln

 
pz(zjŵ2)

pz(zjŵ1)

!
(4.1)

�3(z) = ln

 
pz(zjŵ3)

pz(zjŵ1)

!
(4.2)

...

�n(z) = ln

 
pz(zjŵn)

pz(zjŵ1)

!
; (4.3)

where ŵn represents the nth ranked �eld-wise estimate for the measurement vector z,

according to �eld-wise objective function value. Since the measurement vector z is

a random variable, �2(z); �3(z); :::; �n(z) are also random variables. Denote a given

realization of z by z0. Then, using the techniques developed in [13], calculate the

following probabilities:

�2 = Prob[�2(z) � �2(z0)jw = ŵ2] (4.4)

�3 = Prob[�3(z) � �3(z0)jw = ŵ3] (4.5)

...

�n = Prob[�n(z) � �n(z0)jw = ŵn]; (4.6)

with the estimates ŵ2; ŵ3; :::; ŵn obtained from the deterministic measurement vector

z0. As stated in [13], these probabilities are approximations since the true wind

should be used on the given side of the argument. With these de�nitions in place,

the decision rule is stated as

Retain the solutions ŵ1; ŵ2; :::; ŵi if �i � �0:

The �rst ranked �eld-wise estimate (by the same criterion as used to de�ne

the initial extended solution) is compared to the solution that is closest to its negative.
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This test is roughly analogous to performing point-wise thresholding on the �rst and

second point-wise ambiguities. The test, in e�ect, determines to what degree the

highest ranked �eld-wise ambiguity can be trusted above its negative. If there is a

high degree of separation in FI objective function value, then there is a good chance

that the �rst �eld-wise ambiguity correctly de�nes the true wind. In terms of the test

de�ned in the above paragraph, the �rst �eld-wise ambiguity is assumed to de�ne the

general wind ow correctly if the test determines it is reasonable to retain the solution

ŵi, where ŵi is the closest solution to the negative of the �rst �eld-wise ambiguity.

In this test, the FI objective function values are used for ranking and to calculate

�i(z0).

Solutions not initially included in clusters are anchors if the size of the

above test is locally low. That is, the size of the hypothesis test involved in the

�eld-wise thresholding is calculated for each of the solutions in the initial extended

solution, and local minima of the graph of the size versus location are identi�ed. The

local minima mark the anchors.

The anchor location algorithm is run on 10 revolutions of NSCAT data.

First, initial extended solutions are constructed and clusters are formed. Anchors are

chosen from regions not included in the clusters. The number of anchors used in later

stages of the �eld-wise ambiguity removal algorithm is 82, and out of those 82, only

two are subjectively identi�ed as poor anchors.

In order to determine which anchors (if any) are associated with each

cluster, the endpoints of the clusters are expanded until they arrive at either the

extended solution boundaries or an anchor. The anchors adjacent to the extended

clusters are associated with the clusters and are used in later processing.

Retention Threshold

Each of the clusters is processed in turn. Within the cluster, the compati-

bility of pairs of solutions is tested by examining their vrms overlap di�erences. Those

exceeding an overlap threshold of 7:5 m/s, termed the \retention threshold", are con-

sidered discontinuous and are discarded. Initial support for the retention threshold
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is in Fig. 4.2. This �gure is generated by parsing the JPL product for 10 revolutions

in week 23 into 7468 pairs of regions that overlap by 50%. For each overlapping pair,

model �ts are performed using a pseudo-inverse: X̂ = F y
0W, where W denotes the

JPL vector wind. The resulting model parameter vectors X̂ are locally optimized

using the IMSL quasi-Newton algorithm with analytic gradient. Finally the vrms

overlap di�erence is calculated according to the following procedure:

1. Fill the valid vector: valid(i) =

8><
>:

0 : no data in resolution element i

1 : otherwise

2. VRMS Overlap Di�erence =
r

(ŵl�ŵr)TD2
v(ŵl�ŵr)P

72

i=1
valid(i)

, where ŵl and ŵr are the col-

umn vectors containing the wind in the left and right overlapping regions, re-

spectively. Dv is the diagonal matrix with the elements of valid on the main

diagonal

The vrms overlap di�erences for overlap areas with more than 57 resolution elements

of data are used to generate the histogram in Fig. 4.2. Note that 7:5 m/s is clearly in

the tail of the histogram. For a threshold of 7:5 m/s, only roughly 1:7% of the JPL

overlapping pairs are declared discontinuous. The JPL pairs declared as discontinuous

probably su�er from ambiguity removal errors or the model �t to the JPL solutions

is poor.

The threshold for this portion of the algorithm is selected as low as possible

in order to reduce the number of pairs that survive. This signi�cantly reduces the

computational time of the algorithm. A higher threshold, in addition to increasing

the processing time, would also allow the undesirable introduction of discontinuous

pairs of solutions into the solution set. Of course, a lower threshold does increase the

chance of pruning desirable solution pairs. However, the �eld-wise ambiguity removal

algorithm is quite robust with respect to the choice of threshold.

In order to quantify the e�ects of varying the retention threshold, 5 revo-

lutions from week 23 are processed by the FWAR algorithm with di�erent thresholds:

5, 7:5, and 9 m/s. The discontinuity detection threshold is kept constant at 4:5 m/s.

The unre�ned product of the FWAR algorithm is compared with the JPL product,
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Figure 4.2: Histogram used to select the vrms threshold that de�nes what vrms over-
lap di�erence is allowed between two overlapping solutions. This �gure is generated
by parsing the JPL product for 10 NSCAT revolutions into regions that overlap by
50%. The vrms overlap di�erences for overlap areas with more than 57 resolution
elements of data are used to generate the histogram.

and wind vectors having a vector di�erence within 2 m/s are declared as matches.

Only wind vector cells where the JPL wind is above 4 m/s are considered. Table 4.1

displays the results of the tests. It is apparent that the exact value of the threshold is

not critical to the overall performance of the FWAR algorithm. However, examina-

tion of the individual swaths indicates that the local skill can vary with the choice of

threshold. When desirable pairs of solutions are pruned because the threshold is too

restrictive, the resulting errors can be signi�cant. For instance, it is observed that

with a threshold of 7 m/s the FWAR algorithm reverses the direction of the wind for

a section of revolution 2457 descending. The correct solution is pruned because the

threshold is too restrictive. Such aberrations in the algorithm a�ect the local skill,

but occur infrequently enough not to signi�cantly a�ect the overall agreement with

JPL. Varying the discontinuity threshold from 4:5 to 8 m/s produces similar results.
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Retention Threshold (m/s) FWAR Algorithm Skill

5 91%
7 89%
7.5 91%
9 91%

Table 4.1: E�ect of threshold variation on FWAR algorithm skill. This table quan-
ti�es the overall e�ects of varying the FWAR algorithm retention threshold. The
discontinuity detection threshold is kept constant at 4:5 m/s. The unre�ned product
of the FWAR algorithm is compared with the JPL product, and wind vectors having
a vector di�erence within 2 m/s are declared as matches. Even though the local skill
can vary, the overall skill seems robust with respect to the threshold.

Extended Solution Assembly

Multiple extended solutions spanning each cluster are formed by joining

solutions from adjacent pairs of regions, moving from left to right (Fig. 4.3), although

the assembly direction has no e�ect on the �nal product. A multi-stage �ltering

process is used to select which solutions, out of the many that �eld-wise estimation

provides, participate in the pair-wise assembly.

Only the top 20 solutions (in order of �eld-wise objective function value)

from each region are used to form pairs. This �ltering step tends to eliminate unreal-

istic solutions from the solution set. The remaining solutions are sorted according to

their FI objective function values, and only the top 6 are considered in the remaining

portion of the algorithm. In order to increase the chances that the set of 6 solutions

contains the correct one, the set is searched for the closest to the negative of the

most likely solution. The set is also searched for the solution that is the closest to its

closest point-wise �eld. Further, it is searched for the closest to the negative of that

solution. If any of these solutions are missing from the set of 6, they are added to the

set in place of the least likely solutions.

All of the possible pairs of the remaining solutions are enumerated. Those

pairs that meet the 7:5 m/s vrms continuity criterion described above are retained,
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and the rightmost solution in each pair is compared with the solutions in the over-

lapping region immediately to its right (Fig. 4.3). The surviving pairs from this

comparison are appended to the growing solution sets, and this process is repeated

across the cluster. Clusters with anchors have the further constraint that all of the

extended solutions in the cluster must be continuous with the anchors (7:5 m/s vrms

overlap di�erence) or they are discarded. After all of the admissible extended solu-

tions have been enumerated, the model-based wind corresponding to each extended

solution is constructed via an overlap-and-average process. Each of the model param-

eter sets comprising the extended solution generates its corresponding model-based

wind �eld. The resulting wind �elds overlap by 50%. The model-based wind �eld

represented by the extended solution is calculated by adding the overlapping wind

�elds and averaging them with trapezoidal along-track weighting, with the highest

weighting in the center of the wind �elds. Trapezoidal weighting is used because it is

known that �eld-wise estimates are less reliable farther away from their centers [13].

The overlap-and-average method can be expressed in mathematical terms.

The following derivation is only for the 12x12 50% overlap case with trapezoidal

weighting, although the derivation could be made more general. First form the 12x12

weighting matrices

W1 =

0
BBBBBBBB@

1 1 1 1 1 1 :75 :75 :5 :5 :25 :25

1 1 1 1 1 1 :75 :75 :5 :5 :25 :25

: : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : :

1 1 1 1 1 1 :75 :75 :5 :5 :25 :25

1
CCCCCCCCA
;

W =

0
BBBBBBBB@

:25 :25 :5 :5 :75 :75 :75 :75 :5 :5 :25 :25

:25 :25 :5 :5 :75 :75 :75 :75 :5 :5 :25 :25

: : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : :

:25 :25 :5 :5 :75 :75 :75 :75 :5 :5 :25 :25

1
CCCCCCCCA
;
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and

WN =

0
BBBBBBBB@

:25 :25 :5 :5 :75 :75 1 1 1 1 1 1

:25 :25 :5 :5 :75 :75 1 1 1 1 1 1

: : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : :

:25 :25 :5 :5 :75 :75 1 1 1 1 1 1

1
CCCCCCCCA
:

Let D1 = Diag(V ec(W T
1 )), D = Diag(V ec(W T )), and DN = Diag(V ec(W T

N )), where

the V ec(�) represents the column scan operation and Diag(�) forms a matrix from a

vector with the vector on the main diagonal and zeros elsewhere. Then

Ŵ = G1F0X̂1 +G1F0X̂2 + � � �+G1F0X̂N (4.7)

where

Gi = I2�2 


8>>>>><
>>>>>:

2
666664I12�12 


0
BBBBB@

06(i�1)�12

I12�12

06(N�i)�12

1
CCCCCA

3
777775Di

9>>>>>=
>>>>>;
;

with

Di =

8>>>>><
>>>>>:

D1 ; i = 1

D ; 1 < i < N

DN ; i = N

:

Equation 4.7 can be further simpli�ed to yield

Ŵ = (G1F0
...G2F0

... � � � ...GNF0)

0
BBBBBBBBBBBBBBBBBBB@

X̂1

� � �
X̂2

� � �
...

� � �
X̂N

1
CCCCCCCCCCCCCCCCCCCA

(4.8)
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= (G1
...G2

... � � � ...GN)F0

0
BBBBBBBBBBBBBBBBBBB@

X̂1

� � �
X̂2

� � �
...

� � �
X̂N

1
CCCCCCCCCCCCCCCCCCCA

(4.9)

= F�X̂�; (4.10)

with

F� = (G1
...G2

... � � � ...GN)F0

and

X̂� =

0
BBBBBBBBBBBBBBBBBBB@

X̂1

� � �
X̂2

� � �
...

� � �
X̂N

1
CCCCCCCCCCCCCCCCCCCA

:

These manipulations reveal the linear nature of the overlap-and-average output. It is

simply a linear transformation of the model parameter set X̂� using the model F�.

The extended solution that meets the vrms overlap di�erence constraints

and has the lowest FI objective function value is selected as the optimum extended

solution for that cluster. It is then grafted into the initial extended solution in place

of the original cluster.
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The method of selecting solutions that repair the discontinuities in the

initial extended solution is an optimization process. With

X̂� =

0
BBBBBBBBBBBBBBBBBBB@

X̂k1
1

� � �
X̂k2

2

� � �
...

� � �
X̂kN

N

1
CCCCCCCCCCCCCCCCCCCA

;

where X̂k1
1 is the kth1 solution for region 1, x̂k22 is the kth2 solution for region 2, etc.,

form the extended solution objective function

JS(x̂�) = JI(F�X̂�);

where JI denotes the FI objective function. Since solution indices kj; j = 1; 2; :::; N

in X̂� take on only natural number values, the optimization problem is discrete. It

is stated as

(k1; k2; :::; kN) = arg

8<
: min
s:t: vrms(Ŵ

kj
j ;Ŵ

kj+1
j+1 )�7:5

h
JI(F�X̂�)

i9=
; ;

where the function vrms(Ŵ
kj
j ;Ŵ

kj+1
j+1 ) calculates the vrms overlap di�erence for the

model-based wind �elds Ŵ
kj
j and Ŵ

kj+1
j+1 . Note that Ŵ

kj
j = F0X̂

kj
j , and Ŵ

kj+1
j+1 =

F0X̂
kj+1
j+1 . The extended solution that satis�es the optimization criteria is represented

by the index numbers of the individual model-based solutions (k1; k2; :::; kN). The

wind swath corresponding to the extended solution is F�X̂�.

This process is repeated for each cluster. Occasionally, the vrms constraints

listed above make it impossible to �nd a continuous extended solution for a given

cluster. If this is the case, the cluster is split at the point where no valid solution

pairs are available, and processing resumes at the �rst portion of the new cluster.

All of the regions included in the original cluster are marked with a warning ag.

Warnings also occur if 100000 extended solutions have been accumulated. Again,
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each region of the entire cluster is agged with warnings, and the cluster is split at

the point where the 100000 extended solutions accumulated. Processing resumes at

the �rst portion of the new cluster. Another special case is that of clusters with

single regions. Such clusters are unable to utilize the continuity information from

overlapping regions and are also marked as potential errors. In such cases, the initial

extended solution ambiguity is used.

4.3.4 Re�ne Solution

Finally, the closest point-wise ambiguity to each vector in the resulting

swath, after overlap-and-average, is selected and the closest-ambiguity swath is used

as an initial value for model-based estimation. The swath is segmented into 12x12

regions overlapping by 50%, and the F0 model is �t to each of the point-wise winds

for each region. The model �t is locally optimized using the IMSL �nite-di�erence

quasi-Newton algorithm, and the solutions for overlapping regions are averaged using

trapezoidal weighting. The �nal output of the algorithm is the model-based wind or

the closest point-wise �eld to the model-based wind.

4.3.5 Example of Field-Wise Ambiguity Removal Algorithm

As an example of the FWAR algorithm, consider the portion of NSCAT

revolution 2454 ascending, from along-track 43 to 139. For reference, Fig. 4.4 shows

the point-wise all-ambiguity plot for this section, and Fig. 4.5 plots the JPL product.

Form Initial Extended Solution

The initial extended solution is shown in Fig. 4.6, where the model-based

wind �elds comprising the extended solution are plotted with 50% overlap.

Detect Discontinuities

Observe the minor overlap di�erences around along-track 50 and between

along-track 70 and 100. These minor di�erences are admissible. However, the overlap

di�erences in the along-track ranges from 120 to 130 and 130 to 140 are clearly errors
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in the initial extended solution. Table 4.2 shows vrms overlap di�erences for the

solutions in the extended solution in Fig. 4.6. Note that the vrms threshold of 4:5

m/s detects the major and minor incongruities between the overlapping solutions

beginning at along-track 115 and 121; beginning at 127 and 133; and at 67 and 73.

In Table 4.2, these overlapping solutions are marked with \1" in the \Discontinuity?"

column. Since it is not always obvious which regions are at fault, the clustering

algorithm takes a very conservative approach and ags the two overlap regions to

either side of each discontinuity. For example, observe that in Table 4.2 the clustering

algorithm marks all overlapping pairs of solutions from 55 to 85 and 103 to 139 as

being possible errors.
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Figure 4.3: Extended solution assembly. Extended solutions are formed by joining
pairs of overlapping solutions from adjacent regions, moving from left to right. This
�gure plots 5 overlapping solution pairs from 2 adjacent regions of NSCAT revolution
2454 ascending. Only the �rst 4 overlapping solution pairs are retained for further
consideration because they are reasonably continuous and the last is not. The right-
most solutions of the retained pairs are paired with all solutions in the next region
to the right, and discontinuous solution pairs are discarded. The process of pairing
solutions and discarding discontinuous pairs is repeated for the length of the extended
solution.

80



50
60

70
80

90
10

0
11

0
12

0
13

0
14

0
15

0

0 5 10

A
lo

ng
−

T
ra

ck

Cross−Track

Figure 4.4: Plot of all point-wise ambiguities for a portion of NSCAT revolution 2454
ascending
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Figure 4.5: JPL product for a portion of NSCAT revolution 2454 ascending
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Figure 4.6: Initial extended solution for a portion of NSCAT revolution 2454 ascend-
ing
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Region 1 Region 2 VRMS Overlap Discontinuity? After Clustering
Along-Track Along-Track Di�erence (0{No, 1{Yes) Algorithm

(m/s)

43 49 1.7 0 0
49 55 0.5 0 0
55 61 0.4 0 1
61 67 1.9 0 1
67 73 4.9 1 1
73 79 2.3 0 1
79 85 2.9 0 1
85 91 4.1 0 0
91 97 2.0 0 0
97 103 1.0 0 0
103 109 1.5 0 1
109 115 1.5 0 1
115 121 19.4 1 1
121 127 0.7 0 1
127 133 20.0 1 1
133 139 1.0 0 1

Table 4.2: Vrms overlap di�erences and resulting clusters. This �gure details the pro-
cessing of a sample swath for NSCAT revolution 2454A. The vrms overlap di�erences
for the solutions in the extended solution in Fig. 4.6 are listed in the \VRMS Overlap
Di�erence" column. Note that the vrms threshold of 4:5 m/s detects the major and
minor incongruities between the overlapping solutions beginning at along-track 115
and 121; beginning at 127 and 133; and at 67 and 73. These overlapping solutions are
marked with \1" in the \Discontinuity?" column. The next stage of the processing,
the clustering algorithm, marks all overlapping pairs of solutions from 55 to 85 and
from 103 to 139 as being possible errors.

Repair Discontinuities

The next step in the algorithm identi�es anchors. First, the clusters from

Table 4.2 are extended to form the clusters in Table 4.3 in the \Extended Clusters"

column. In order to extend the clusters, the regions that are a part of the original

clusters are marked with a \1" in the \Extended Clusters" column of Table 4.3. The

extended clusters are important in determining anchors, as anchors cannot be selected
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within the extended clusters. This serves to prevent selection of anchors from initial

solutions that could be erroneous.

Figure 4.7 shows a plot of the log bound of the hypothesis test size (log(�i))

as a function of region. Again, the hypothesis test for each region is between the

solution in the initial extended solution and the solution that is closest to its negative.

The local minima in Fig. 4.7 outside of the extended clusters represent regions for

which the con�dence of the initial extended solution is high, at least relative to the

surrounding regions. Since the region beginning at along-track 43 is the only local

minima outside of the extended clusters, its initial solution is the anchor.
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Figure 4.7: Log bound of the hypothesis test size (log(�i)) as a function of region.
The local minima of this plot outside of the extended cluster are possible anchors.
Since the region beginning at along-track 43 is the only local minimum outside of the
extended cluster, its initial solution is the anchor.

Once the anchors are identi�ed, the clusters are expanded until both edges

of the extended clusters touch either an anchor or the beginning or ending of the

initial extended solution. Table 4.3 shows the result of the expansion operation on

the extended cluster. The cluster now includes the regions from along-track 43 to
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139. The initial extended solution for the region beginning at along-track 43 is the

anchor for the cluster.

The solutions for each region in the cluster, except for the anchor, are

�ltered after they are ranked in order of their �eld-wise objective function values.

Only the top 20 are retained (after removing solutions with a vrms di�erence within

0:75 m/s). The remaining solutions are sorted according to their FI objective function

values, and only the top 6 are considered in the remaining portion of the algorithm.

Multiple extended solutions spanning each cluster are formed by assem-

bling solutions from adjacent pairs of regions, moving from left to right. Those pairs

that meet the 7:5 m/s vrms continuity criterion described above are retained, and the

rightmost solution in each pair is compared with the solutions in the overlapping re-

gion immediately to its right. The surviving pairs from this comparison are appended

to the growing solution sets, and this process is repeated across the cluster.

After the process of growing possible extended solutions is complete, the

model-based wind for each extended solution is constructed, and overlap-and-average

is used to produce wind swaths corresponding to the extended solutions. The wind

swath with the lowest FI objective function value is selected as the optimum extended

solution for the cluster. It is then grafted into the initial extended solution in place

of the original cluster. Figure 4.8 shows the repaired initial extended solution after

overlap-and-average. In this case, since the cluster includes the entire range of the ex-

tended solution, the optimal extended solution replaces the initial extended solution.

Figure 4.9 shows the closest point-wise ambiguity �eld.

Re�ne Solution

Finally, Fig. 4.9 is divided into overlapping regions (50% overlap), and

least-squares model �ts are performed on each of the overlapping wind �elds. Each

model �t is optimized, and the resulting model-based winds, after overlap-and-average,

are displayed in Fig. 4.10. Figure 4.11 shows the closest point-wise ambiguity �eld

to the �nal model-based product.

86



First Along-Track Extended Clusters Extended Clusters with Anchors
of Region (Marked with 1) (Clusters Marked with 1

and Anchors
Marked with \A")

43 0 A
49 0 1
55 1 1
61 1 1
67 1 1
73 1 1
79 1 1
85 1 1
91 0 1
97 0 1
103 1 1
109 1 1
115 1 1
121 1 1
127 1 1
133 1 1
139 1 1

Table 4.3: Extended clusters and anchor regions. The example from Table 4.2 is
continued in this table. The clusters from Table 4.2 are extended to form the clusters
in the \Extended Clusters" column. In order to extend the clusters, each region that
is a part of the original clusters are marked with a \1" in the \Extended Clusters"
column of this table. After anchors are chosen, the extended clusters are further
expanded until they border anchors or the boundaries of the initial extended solution.
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Figure 4.8: Repaired initial extended solution after overlap-and-average
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Figure 4.9: Closest point-wise ambiguity �eld to Fig. 4.8
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Figure 4.10: Model-based winds after overlap-and-average
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Figure 4.11: Closest point-wise ambiguity �eld to Fig. 4.10
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4.4 Summary

A FWAR algorithm is developed and tested in this chapter. The FWAR

algorithm is designed to use scatterometer measurements only.

The �rst stage in the algorithm is to form an initial extended solution from

the individual highest ranked �eld-wise estimates. Discontinuities in the initial ex-

tended solution are then detected, and the vrms threshold value used in the detection

algorithm is supported by tests on NSCAT data.

Once the discontinuities are detected, they are repaired by patching in

lower ranked solutions that \�t" according to another vrms threshold value, called

the retention threshold. Choice of this threshold value is also supported by tests

on NSCAT data. It is observed that the algorithm is not sensitive to the particular

choice of discontinuity and retention thresholds.

Finally, the repaired initial solution is re�ned using model-based estima-

tion. The chapter concludes with a detailed example of the FWAR algorithm.
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Chapter 5

Results

To demonstrate and test the �eld-wise wind retrieval algorithm, the al-

gorithm is run on a withheld set of 45 revolutions from week 27. The set covers

approximately half of the week. In addition, the median �lter is run on the data set,

using the �rst point-wise ambiguities as the initial �eld. Further, the re�ned JPL

product is obtained by performing model-based estimation on the raw JPL product.

The data listed above are used to evaluate the �eld-wise method. It is

determined that the method compares favorably with the JPL product and that it

can be used to repair severe ambiguity removal errors in the median �lter output.

Another application of the �eld-wise method is validation of the JPL product. Since

the algorithm does not employ the median �lter, it can be considered an independent

validation of the JPL method. Validation using the �eld-wise technique is discussed,

and a faster method using only model-based retrieval is introduced.

5.1 Preliminary De�nitions

Several comparison tools and metrics are used in this chapter to evalu-

ate the �eld-wise, median �lter, and JPL ambiguity removal algorithms. These are

described here.

5.1.1 Ambiguity Removal Skill

Ambiguity removal skill is perhaps the most straightforward evaluation

tool. Ambiguity removal skill is de�ned as the percentage of wind vectors selected

by an ambiguity removal algorithm that are the closest vectors to the true wind [19].
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Since the true wind is not available, the skill comparison is performed relative to the

JPL product, which has been shown to be only about 96% correct [22].

5.1.2 Greater-Than-90� Error Percentage

The greater-than-90� error percentage is the percentage of wind vectors

that are more than 90� in error with respect to reference winds [12]. In the case of

comparison with the JPL product, this measure is almost certain to reect retrieval

errors, since the JPL product is assumed usually to display the correct general wind

ow. The reliability of the JPL product in this respect arises from the NCEP initial

value �eld that correctly orients the streamline before the median �ltering.

5.1.3 Vector Correlation

Vector correlation is a method of determining the similarity of two vector

sequences and is de�ned in Ref. [45]. Let the individual vectors of the �rst vector

sequence be denoted W1i, i = 1; 2; :::; N . Denote the corresponding vectors in the

second sequence as W2i, i = 1; 2; :::; N . Form the vectors

Xi =

0
B@ W1i

W2i

1
CA ;

where i = 1; 2; :::; N . The vector correlation �2v is estimated from the sample covari-

ance matrix of the Xi sequence:0
B@ S11 S12

S21 S22

1
CA =

1

N � 1

NX
i=1

(Xi � �Xi)(Xi � �Xi)
T :

The estimate of vector correlation is then

�̂2v = Tr(S�111 S12S
�1
22 S21):

The result is a scalar value which describes the similarity of the vector sequences

W1i, i = 1; 2; :::; N and W2i, i = 1; 2; :::; N . �̂2v varies from 0 to 2, with higher values

indicating greater correlation. Two vector sequences with a �̂2v of 1.5 or greater are

considered highly correlated [45].
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5.2 Evaluation of Field-Wise Wind Retrieval Algorithm

Evaluation of the the �eld-wise algorithm is accomplished by comparing

its output with the JPL product, using the closest point-wise ambiguities to the �eld-

wise output. The median �lter output also is compared with the JPL product, in

order to provide a benchmark for the �eld-wise performance.

In the evaluation process, the wind swath solutions from the �eld-wise,

median �lter, and JPL methods are segmented into 12x12 regions with 0% overlap.

Recall from Chapter 4 that the ambiguity removal stage of the �eld-wise algorithm

sets warning ags for regions with possible ambiguity removal errors. Accordingly,

vectors in regions agged with warnings are not considered in the evaluations. In

addition, only wind vectors where the speeds of the JPL product are above 4 m/s

are included, as it has been shown that ambiguity removal performance degrades for

low wind speeds [22]. Since the performance of �eld-wise techniques can be poor in

regions with sparse data or large numbers of low wind speed vectors, only vectors

in regions where more than 85% of the resolution elements have valid data and the

corresponding JPL vectors have speeds greater than 4 m/s are considered. About

75% of the data satisfy these constraints.

Table 5.1 displays the ambiguity removal skills of the �eld-wise and median

�lter methods, compared with the JPL product, for the constraints listed above. The

marginally better statistics for the median �lter are misleading. Investigation of 90�

error percentages and vector correlation illuminates the advantages of the �eld-wise

method.

Table 5.2 lists the 90� error percentages for the �eld-wise and median �lter

products, relative to the JPL product. Note that the �eld-wise method has fewer

signi�cant deviations from the JPL product than the median �lter. That is, the

�eld-wise method tends to predict the correct general wind ow better than the

median �lter. Table 5.3 tabulates the vector correlation between the JPL product

and the �eld-wise and median �lter outputs. The higher correlation value for �eld-

wise retrieval output indicates that it is in better general agreement with the JPL

product than the median �lter is.

95



Algorithm Skill

Field-Wise 95.0%
Median Filter 95.4%

Table 5.1: Ambiguity removal skills, relative to the JPL product. Vectors from regions
with �eld-wise ambiguity removal warnings are not included in the skill calculations.
Vectors corresponding to JPL winds with speeds 4 m/s or lower are not included in
the skill calculations. Further constraints are listed in the text.

Algorithm Greater-Than-90� Error Percentage

Field-Wise 1.8%
Median Filter 2.1%

Table 5.2: Greater-Than-90� error percentages of �eld-wise and median �lter methods.
Vectors from regions with �eld-wise ambiguity removal warnings are not included in
the skill calculations. Vectors corresponding to JPL winds with speeds 4 m/s or lower
are not included in the skill calculations. Further constraints are listed in the text.

Algorithm Vector Correlation Value

Field-Wise 1.83
Median Filter 1.78

Table 5.3: Vector correlation values of �eld-wise and median �lter methods with the
JPL product. Vectors from regions with �eld-wise ambiguity removal warnings are
not included in the skill calculations. Vectors corresponding to JPL winds with speeds
4 m/s or lower are not included in the skill calculations. Further constraints are listed
in the text.
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Algorithm Skill

Field-Wise 90.9%
Median Filter 92.6%

Table 5.4: Skill values of �eld-wise and median �lter methods for JPL wind vectors
with speeds greater than 4 m/s.

Algorithm Greater-Than-90� Error Percentage

Field-Wise 5.0%
Median Filter 4.0%

Table 5.5: Greater-than-90� error percentage for �eld-wise and median �lter methods
for JPL wind vectors with speeds greater than 4 m/s.

When the constraints on the vectors used in the evaluations are relaxed,

the performance of the �eld-wise method degrades. Table 5.4 lists skill values and

Table 5.5 presents the greater-than-90� error percentages using all vectors with corre-

sponding JPL wind speeds above 4 m/s. Observe that the �eld-wise algorithm di�ers

more than 90� from the JPL product 5% of the time, while the median �lter di�ers to

that extent only 4% of the time. The 1% higher greater-than-90� error percentage of

the �eld-wise method accounts for most of the skill di�erence from the median �lter,

and the other 0.7% is probably due to the similarity between the median �lter and

the nudging algorithm. At least 1% of the di�erence is not a result of modeling error

problems, since the greater-than-90� error percentages are about the same when the

two algorithms are compared with the re�ned JPL product.

Several plots of the outputs of the �eld-wise, median �lter, and JPL algo-

rithms are included to illustrate typical performance of the �eld-wise method. The

�rst two sets of plots demonstrate the e�ectiveness of the algorithm on di�cult fea-

tures, and the third set of plots depicts a region of greater-than-90� errors.

Figures 5.1, 5.2, and 5.3 show the �eld-wise, median �lter, and JPL prod-

ucts for a portion of revolution 2856 descending, and all three algorithms perform
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reasonably well in this example. However, the �eld-wise and JPL algorithms turn the

cyclone located at along-track 305 better than the median �lter.

The outputs of the three algorithms are displayed for revolution 2881 de-

scending in Figs. 5.4, 5.5, and 5.6. All three algorithms resolve the cyclone at

along-track 337, but the JPL algorithm di�ers from the �eld-wise and median �lter

methods in the area around along-track 343 and cross-track 3. It is not obvious which

interpretation of this area is correct.

Figures 5.7, 5.8, and 5.9 illustrate a case where the �eld-wise algorithm

fails by greater than 90�. Figures 5.8 and 5.9 are the median �lter and JPL products

for a segment of revolution 2945 ascending, and Fig. 5.7 is the �eld-wise product.

Observe that the �eld-wise product reverses the wind direction from along-track 169

to about 205; however, this set regions is agged with warnings by the �eld-wise

ambiguity removal stage.
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Figure 5.1: Closest ambiguity to �eld-wise product for a portion of revolution 2856
descending.
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Figure 5.2: Median �lter product for a portion of revolution 2856 descending.
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Figure 5.3: JPL product for a portion of revolution 2856 descending.
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Figure 5.4: Closest ambiguity to �eld-wise product for a portion of revolution 2881
descending.
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Figure 5.5: Median �lter product for a portion of revolution 2881 descending.
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Figure 5.6: JPL product for a portion of revolution 2881 descending.
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Figure 5.7: Closest ambiguity to �eld-wise product for a portion of revolution 2945
ascending.
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Figure 5.8: Median �lter product for a portion of revolution 2945 ascending.
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Figure 5.9: JPL product for a portion of revolution 2945 ascending.
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5.3 Correction of Median Filter Errors

Evidence suggests that the �eld-wise method could be a powerful correction

technique for the median �lter. Table 5.2 indicates that the �eld-wise method exhibits

fewer errors in excess of 90� than the median �lter for the constraints de�ned above.

Computation of collocated greater than 90� errors shows that only 1% of the errors

in excess of 90� are in common to both algorithms. If all of the excessive errors in

the median �lter output could be identi�ed, then the �eld-wise method could correct

more than half of them. Perfect detection is probably impossible. However, it is

reasonable to expect a detection scheme that could locate regions with extensive

blocks of errors, such as occur where the scatterometer skill is low. These regions

could be bounded, and the �eld-wise method, with regions anking the errors as

anchors, could be implemented to correct the errors.

Although such a method improves the median �lter product by only about

1%, it corrects the major errors that are otherwise di�cult to repair automatically

and that are probably the most disruptive to applications incorporating the data.

A hybrid algorithm executes much more quickly than �eld-wise retrieval alone, and

provides better data than �eld-wise retrieval or the median �lter used individually.

Figures 5.10, 5.11, 5.12, 5.13, 5.14, and 5.15 display the �eld-wise, median

�lter, and JPL products for two regions where a hybrid algorithm would be e�ective

in repairing median �lter errors. Figure 5.11 is the median �lter output for revolution

2877 descending. Note the rift in the ambiguity removal at along-track 287. Compare

the median �lter output the �eld-wise and JPL products in Figs. 5.10 and 5.12,

respectively. The �eld-wise algorithm avoids the error correctly. Other ambiguity

removal rifts are in Figs. 5.13, 5.14, and 5.15, which represent a portion of revolution

2859 ascending. Refer to the median �lter output (Fig. 5.14). Severe ambiguity

removal errors are located in the left swath around along-track 181 and in the right

swath at along-track 200. Comparison with the �eld-wise and JPL products in Figs.

5.13 and 5.15 reveals that the �eld-wise method correctly mends the rifts.
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Figure 5.10: Closest ambiguity to �eld-wise product for a portion of revolution 2877
descending.
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Figure 5.11: Median �lter product for a portion of revolution 2877 descending.
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Figure 5.12: JPL product for a portion of revolution 2877 descending.
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Figure 5.13: Closest ambiguity to �eld-wise product for a portion of revolution 2859
ascending.
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Figure 5.14: Median �lter product for a portion of revolution 2859 ascending.
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Figure 5.15: JPL product for a portion of revolution 2859 ascending.
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5.4 Validation of NSCAT JPL Product

In addition to repairing severe ambiguity removal errors in the median

�lter output, the �eld-wise algorithm can be employed to validate the JPL product.

The �eld-wise and JPL \nudging" methods use decidedly di�erent estimation and

ambiguity removal techniques. Perhaps the most signi�cant di�erence is that the

JPL method uses the median �lter, while the �eld-wise technique does not. Another

di�erence is that the \nudging" algorithm uses NCEP winds in its ambiguity removal.

The �eld-wise method does not use this outside information. Since the �eld-wise

method is algorithmically independent of the \nudging" algorithm, it is a useful

comparison tool.

The relative similarity between the �eld-wise and JPL products is calcu-

lated for vectors satisfying the strict constraints in the previous section. The skills of

the �eld-wise and median �lter methods are provided in Table 5.1. The performance

of both algorithms is very close. The greater-than-90� error percentage is tabulated

in Table 5.2. From Table 5.2 it is observed that about 1.8% of the di�erence between

the �eld-wise and JPL products is most likely due to errors in the �eld-wise method,

but that does not account for the remaining 3.2% of the di�erence, which could be

�eld-wise or JPL errors. Thus, we conclude that the JPL product is probably more

than 96% accurate, compared to the true wind. This �gure is consistent with the

observations in Refs. [12, 22].

Another method used in this thesis to validate the JPL product employs

model-based estimation. Model-based estimation re�nes the JPL product, and the

JPL product is compared with the re�ned product. It is assumed that the statistically

justi�able model and the model-based optimization correct minor incongruities in

the JPL product; however, the model-based estimation can introduce errors, so the

comparison yields only an approximate lower bound on the skill. The re�nement

process changes only 3.9% of the JPL vectors, which again suggests a JPL skill of

about 96% or higher.
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5.5 Summary

In this chapter, the �eld-wise wind retrieval algorithm is run on a withheld

set of NSCAT data. The output of the �eld-wise method is evaluated. The output

compares favorably with the JPL product. In contrast with the JPL technique,

the �eld-wise method has the advantage of not requiring outside information. It is

further noted that �eld-wise retrieval can be employed to repair severe ambiguity

removal errors in the median �lter output. An additional application of the �eld-wise

method is validation of the JPL product, since the �eld-wise and JPL techniques are

algorithmically independent. Validation using the �eld-wise technique is discussed,

and a faster method using only model-based retrieval is introduced.
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Chapter 6

Conclusions and Future Research

6.1 Conclusions

In this work a �eld-wise wind retrieval algorithm, consisting of �eld-wise es-

timation and ambiguity removal stages, is designed for NSCAT. The �eld-wise method

does not employ outside information. A variant of the multistart global optimization

method is developed to perform �eld-wise estimation. The �eld-wise estimation al-

gorithm is tested on NSCAT data. It displays about 99% success at locating local

minima acceptably close to the desired solution. A �eld-wise ambiguity removal al-

gorithm is developed to assemble multiple solutions from �eld-wise estimation into

unique wind estimates for large areas of the ocean's surface.

The full �eld-wise retrieval algorithm is tested on a withheld set of NSCAT

data. Tests indicate that even though the �eld-wise method uses only scatterometer

measurements, its output compares favorably with the JPL product, which is pro-

cessed using NCEP winds. It is further concluded that the method can be used to

repair severe ambiguity removal errors in the median �lter output.

A further application of the �eld-wise method is validation of the JPL

product. The �eld-wise and model-based retrieval methods are employed to gauge

the reliability of the JPL product. Both methods suggest a skill of 96% or higher,

which is consistent with other recent validation results.
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6.2 Summary of Contributions

In summary, the contributions of this thesis are

� Development of a variant of the multistart global optimization method to per-

form �eld-wise estimation

� Design of a �eld-wise ambiguity removal algorithm that does not rely on outside

information

� Application and testing of the full �eld-wise wind retrieval method.

6.3 Future Research

Although this thesis demonstrates the e�ectiveness and utility of �eld-wise

retrieval, more work is necessary in order to extend the applicability of this technique.

Research into �eld-wise methods is a promising area, especially with the upcoming

launches of QuikScat and Seawinds. Several possible extensions of this work are

� Optimize thresholds in �eld-wise ambiguity removal algorithm

� Implement �eld-wise retrieval as a median �lter correction algorithm

� Run �eld-wise retrieval on full NSCAT data set

� Run model-based retrieval on full NSCAT data set

� Adapt �eld-wise retrieval for use with QuikScat and Seawinds.

As progress in �eld-wise techniques continues, they will become an even more viable

alternative to the traditional point-wise methods of scatterometer wind retrieval.
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