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ABSTRACT

Analysis, Validation, and Improvement of High-Resolution Wind Estimates from the
Advanced Scatterometer (ASCAT)

Jeffrey Richard Blodgett
Department of Electrical and Computer Engineering, BYU

Master of Science

The standard L2B ocean wind product from the Advanced Scatterometer (ASCAT) is
retrieved as a 25 km product on a 12.5 km grid. Ultra-high resolution (UHR) processing al-
lows ASCAT wind retrieval on a high-resolution 1.25 km grid. Ideally, such a high-resolution
sample grid provides wind information down to a 2.5 km scale, allowing better analysis of
winds with high spatial variability such as those in near-coastal regions and storms. Though
the wind field is sampled on a finer grid, the actual data resolution needs to be validated.

This thesis provides an analysis and validation of ASCAT UHR wind estimates in
order to determine the improvement in resolution compared to the L2B product. This is
done using analysis tools such as statistics, the power spectrum, and derivative fields, and
through comparison to other high-resolution data such as synthetic aperture radar (SAR).
The improvement of UHR wind retrieval is also explored by reducing ambiguity selection
errors and correcting for contamination of wind vectors near land.

Results confirm that ASCAT UHR winds contain high-resolution information that is
not present in the L2B product. The resolution improvement is difficult to quantify due to a
lack of truth data. Nevertheless, there is evidence to suggest that the resolution is improved
by at least a factor of three to 10 km, and perhaps down to 3 or 4 km. It is found through
comparison of UHR and SAR winds that (1) both products have common fine-scale features,
(2) their comparative statistics are similar to that of L2B and SAR, suggesting that the high
resolution content agrees just as well as the low resolution content because the comparison
is performed at a finer scale (3) both products have derivative fields that match well, (4) the
UHR product benefits from high-resolution direction information, and (5) the UHR product
matches better the expected spectral properties of ocean winds.

For the UHR processing improvement methods, the model-based improvement of
UHR ambiguity selection allows obvious ambiguity errors to be found and corrected, increases
the self-consistency of the wind field, and causes the spectrum to better follow a power law
at high wavenumbers. The removal of land-contamination from near-coastal wind vectors
allows accurate wind retrieval much closer to land and greater visibility of high-resolution
wind features near the coast.

Keywords: remote sensing, scatterometer, radar, ocean winds, high resolution, power spec-
trum
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Chapter 1

Introduction

Wind is an important atmospheric phenomenon related to climate and weather pat-

terns. Wind velocity over the ocean is commonly measured for use in weather reporting

and forecasting. Ocean winds are essential for tracking conditions in shipping lanes and for

monitoring global wind currents and storm paths.

Near-surface ocean winds interact with many other aspects of the atmosphere and

ocean. One important interaction is between wind and waves. Wind over the ocean’s surface

creates friction, causing the surface to roughen. This generates centimeter-scale waves known

as capillary waves. These small waves then lead to larger waves, which continue to propagate.

Waves affect navigation and air-sea interaction.

The velocity of ocean winds can be measured in a number of ways. Such measure-

ments are collected by merchant ships and meteorological buoys, which are limited in extent

and density of coverage. In more recent years, the development of satellite technology and

microwave radar have allowed another form of ocean wind measurement based on satellite

radar scatterometry.

Wind scatterometers transmit a microwave radar signal and measure the reflected

power, or backscatter, from the ocean surface. This backscatter is directly related to the

roughness of the surface from capillary waves caused by ocean winds [1]. The near-surface

ocean wind velocity is related to the backscatter measurement by the geophysical model

function (GMF), which describes how backscatter varies with both wind speed and direction.

After backscatter measurements are taken by the scatterometer, they are combined into a

spatial grid, with each grid point called a wind vector cell (WVC) [2]. The GMF is used

to determine the wind velocity vector for each WVC. There can be multiple solutions for

a given wind vector, called ambiguities, and the correct ambiguity must be chosen using a
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process called ambiguity selection [3]. The size and spacing of the WVCs determines the

spatial resolution of the wind product, which is often in the 25-50 km range.

Wind scatterometers are mounted on satellites. Measurements are made along the

radar antenna footprint, and as the satellite travels in its orbit, these measurements form a

wide track in the direction the satellite is moving. This measurement track is known as a

“swath,” and is generally hundreds of kilometers wide.

A benefit of using a transmitted microwave signal is that the ability to receive mea-

surements does not depend on visibility due to the Sun or any other source. Additionally, the

microwave frequencies used can largely ignore clouds, rain, and other weather phenomena,

although the roughening of the ocean surface by heavy rain may affect measurements.

Spaceborne scatterometers enable the measurement of near-surface ocean winds on

a dense, global scale, regardless of visibility and most weather conditions. This in turn

facilitates improved weather modeling and forecasting, as winds are an important factor in

such models. The high-resolution nature and broad coverage of these scatterometers allow

a more continuous and global view of weather and climate trends and behaviors than do

others methods such as meteorological buoys and merchant ships. Because of these benefits,

many scatterometers have been flown.

The Advanced Scatterometer (ASCAT) is a wind scatterometer that has been in

operation since 2007. ASCAT uses a microwave signal frequency in the C-band (5.255

GHz). It is a fan-beam scatterometer, meaning it has multiple antennas fixed at different

orientations with respect to the satellite ground track. Similar to most scatterometers, wind

vectors are retrieved at standard resolutions of 25 km and 50 km, provided on 12.5 km and

25 km grids. The standard 25 km product, known as Level 2-B (L2B), provides enough

information for most applications. However, important high-resolution information about

some phenomena can only be captured with a higher resolution product. Such cases include

situations with high spatial variation, such as near-coastal regions and storms.

Higher resolution winds may be retrieved from the same scatterometer data that is

generally used for these standard resolution winds. This is done using a method known

as ultra-high resolution (UHR) processing. UHR processing takes advantage of overlapping

measurements from the scatterometer footprint. In the case of ASCAT, the UHR product
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is provided on a 1.25 km grid. This is ten times finer grid resolution than L2B and ideally

provides a data product with frequency information down to a 2.5 km scale, thus supporting

these higher resolution applications.

The effective data resolution of these UHR winds needs to be quantified and validated.

Validation includes visual inspection and analysis of the power spectrum and statistics of the

data set, as compared to both the expected characteristics of ocean winds as well as other

high-resolution wind sources. While a spatial sampling rate of 1.25 km allows frequency data

down to a 2.5 km resolution, the data quality and noise at these high spatial frequencies

must be characterized in order judge what benefit the UHR data is providing.

1.1 Thesis Statement

This thesis attempts to validate the ASCAT UHR wind estimates and determine

the improvement in resolution of UHR winds compared to L2B winds. This is done using

analysis tools such as statistics, the power spectrum, and derivative fields, and through com-

parison to other high-resolution data such as synthetic aperture radar (SAR). Additionally,

improvements to the UHR wind retrieval process are explored to reduce noise and increase

the consistency of the product. Improvement focuses on reducing ambiguity selection errors

by matching to a wind field model, and a method is presented to minimize and compensate

for the contamination of wind vectors near land.

1.2 Research Summary

Improvement in data resolution due to UHR processing is difficult to quantify. Nev-

ertheless, results suggest that ASCAT UHR winds contain high-resolution information not

present in the L2B product. Visual, statistical, and spectral analysis of UHR, L2B, and SAR

winds support this claim.

Small-scale visual features can be identified in UHR wind fields that match SAR

winds but are not present in L2B winds. This is especially true in near-coastal areas and

storms, where more fine-scale wind features are expected. Higher wind speeds in general are

also expected in these situations, and this is more evident in UHR and SAR winds than in

L2B winds.
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Spectral analysis is performed on the various wind fields and compared to the expected

spectral properties of ocean winds. Ocean winds are expected to have a spatial spectrum

that, on average, follows a power law. This means that the spectrum decreases as a constant

power of wavelength. This rate is known as the spectral slope. UHR winds have a spectrum

that extends past the L2B spectrum with a constant spectral slope following the power

law. For example, the spectral slope of the L2B winds is constant to a wavelength of about

λ = 30 km, the UHR slope continues to at least λ = 10 km and possibly λ = 4 km, a

significant improvement in either case.

Further statistical analysis and comparison to SAR winds suggests improvement in

spatial resolution of the UHR winds compared to L2B winds. Mean wind speeds slightly

increase for both UHR and SAR winds due to the preserved high speed, small-scale features

that appear in these two products. The correlation to SAR winds is similar for both UHR and

L2B winds. This is positive because SAR and UHR are compared on a higher resolution grid

than SAR and L2B, suggesting that the added resolution does not degrade the correlation

and providing evidence that the higher resolution content of the two products agrees just as

well as the low resolution content, even though the high resolution products appear to have

more noise.

Promising improvements to UHR wind retrieval are presented with ambiguity selec-

tion and land-contamination removal. These are based on previous work for other scat-

terometer wind products and are applied to this high-resolution ASCAT data set. Land-

contamination removal is essential for accurate near-coastal wind retrieval, and the improved

ambiguity selection can be further analyzed to determine its usefulness in improving the wind

product versus the increased computational requirements.

1.3 Thesis Organization

This thesis is organized as follows. Chapter 2 provides background on the major

topics addressed in this thesis, including ocean winds, scatterometry, wind retrieval, the

ASCAT scatterometer, UHR processing, and SAR wind retrieval. Chapter 3 examines the

ASCAT UHR data set, identifying its unique characteristics and quantifying its enhancement

in resolution over the L2B data set. Chapter 4 uses SAR winds to validate the ASCAT UHR
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winds by comparing the visual characteristics, statistics, and spectra of the two data sets.

Chapter 5 explores the improvement of ASCAT UHR wind retrieval by correcting ambiguity

selection errors with the aid of a simple wind field model, and Chapter 6 presents a method

for removing land contamination in near-coastal ASCAT UHR winds. Finally, Chapter 7

gives conclusions from the work presented in this thesis and offers suggestions for future

work.
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Chapter 2

Background

This chapter reviews the process and applications of ocean wind retrieval via space-

borne scatterometers. Specifically, it discusses properties of ocean winds and their impli-

cations, the basic principles of scatterometry and wind retrieval, and details of the design

and implementation of the ASCAT scatterometer in particular. It then describes UHR wind

retrieval, including the benefits and limitations of such a high-resolution data set. Lastly, a

brief overview is given of SAR imagery and wind retrieval, as compared to scatterometry.

2.1 Ocean Winds

Winds over the ocean are a key factor in many weather and climate applications.

These applications include forecasting and tracking weather patterns as well as analyzing

and projecting storms and cyclones. Ocean winds have both direct and indirect effects on

many other factors in weather and climate models [2]. They affect wave patterns, both

immediately and long after the winds have died down. The immediate effect of ocean winds

on waves is a simple roughening of the surface caused by friction between the air and the

water. These small-scale waves, known as capillary waves, evidence the “grip” of the wind

on the ocean surface. This causes larger waves to form and continue propagating without

the need for continued wind. Waves are thus related to wind, ocean currents, atmospheric

pressures, temperature, and other geophysical and meteorological phenomena.

2.1.1 Power Spectrum

Any signal may be represented by its power spectrum, which describes its temporal

or spatial properties in terms of the power present at different frequencies or wavenumbers.

For a typical one-dimensional signal, the spectrum may be generated as simply the squared
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Figure 2.1: The average spatial power spectrum of high and low resolution ocean winds
measured using the ASCAT scatterometer.

magnitude of the Fourier transform. Ocean winds, however, are represented spatially as a

two-dimensional vector field rather than a one-dimensional scalar. In general, this type of

signal has a two-dimensional spectrum that varies with vector direction. Nevertheless, a

one-dimensional spectrum is easier to analyze and is the most common form in which ocean

wind spectra are presented. A one-dimensional scalar signal is achieved by separating the

vector field into two scalar components and then treating the individual rows of the two-

dimensional signal as a one-dimensional signal. The scalar components of the wind field are

the zonal component (wind blowing in the west-east direction, usually denoted as u) and

the meridional component (north-south, usually denoted as v). Each of these components is

generally analyzed in the along-track direction of the measuring instrument.

Ocean winds are expected to have a one-dimensional spatial power spectrum with an

approximate slope of k−5/3, where k is the wavenumber of the signal [4–6]. This is true of

both the zonal and meridional components (see Figure 2.1). This type of decaying spectrum

is known as a red spectrum and is said to follow a power law. It implies that wind fields over

the ocean are dominated on average by low-order characteristics and variations; in general,

the high-resolution power is relatively insignificant. This is due to an energy cascade that
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transfers energy from one scale to other scales through turbulence. A small increase can

sometimes be seen in the mesoscale range (< 50 km) [6]. At very small scales turbulence

dominates, causing the spectrum to increase again, after which the energy cascade eventually

dissipates into heat at the molecular scale. This happens at scales much smaller than are

typically measured (< 20 m).

It is important to remember that the behavior described is only true on average, and

any given wind field may in fact contain more or less energy at high spatial frequencies than

the power law would indicate. This is especially true of extreme wind events such as storms

and tropical cyclones [7], or in near near coastal areas where land features may cause jets or

otherwise affect wind currents [8, 9].

2.1.2 Vorticity and Divergence

Vorticity and divergence are important derived variables from ocean winds and de-

scribe spatial trends in the local wind velocity. According to the Helmholtz theorem, these

values decompose the velocity field into rotational and irrotational components. Vorticity

is defined as the curl of the wind velocity field and describes the rotational energy of the

winds at any given point. This rotation measurement helps to quantify the true behavior of

the winds and, when combined with temperature measurements in what is known as poten-

tial vorticity, is a key factor in forecasting the creation and growth of storms and tropical

cyclones. Figure 2.2 shows the wind vectors, vorticity, and divergence for a particular wind

field in the Gulf of Alaska. High magnitude vorticity values correspond to areas with sharp

transitions or high variation in either speed or direction.

Vorticity is a derivative field measuring the rotational component of a velocity field

about a given point. The vorticity (ζ) is given by

ζ = ∇×w,

where ∇× is the curl operator and w is the wind velocity. Although this field is a three-

dimensional vector field in general, ocean wind vector fields are generally given in only two

dimensions (x and y), causing the vorticity vectors to only have a component in the z
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Figure 2.2: A wind field (left) along with its corresponding derived vorticity (middle) and
divergence (right) fields. This example is shown because of large changes in speed and direction,
which better illustrate the derivative behavior.

direction and allowing it to be expressed as a scalar (ζ), given by

ζ =
∂v

∂x
− ∂u

∂y
,

where u and v are, as before, the x and y, or zonal and meridional, components of w.

Divergence, denoted as δ, is another derivative field that measures how much a velocity

field is diverging from or converging toward a given point. It is the irrotational part of the

Helmholtz decomposition. Like vorticity, the divergence of ocean winds helps to describe the

true behavior of the winds and is related to weather trends and storm formations. Divergence

is a scalar value given by

δ = ∇ ·w,

where ∇· is the divergence operator. Again, as wind vectors are generally given in two

dimensions, this can be simplified to

δ =
∂u

∂x
+
∂v

∂y
.
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Positive divergence values correspond to diverging winds, while negative divergence values

correspond to converging wind.

There are some important considerations when computing the vorticity and diver-

gence of a wind vector field. A wind vector field is in general sampled on a discrete spatial

grid. Because of this, the equations must be converted to their discrete form, and spatial

differences must be calculated rather than derivatives. The formulas can then be given as

first order difference equations by

ζ̂i,j =

(
vi+1,j − vi−1,j

xi+1,j − xi−1,j

)
−
(
ui,j+1 − ui,j−1

yi,j+1 − yi,j−1

)

and

δ̂i,j =

(
ui+1,j − ui−1,j

xi+1,j − xi−1,j

)
+

(
vi,j+1 − vi,j−1

yi,j+1 − yi,j−1

)
,

where ζ̂ and δ̂ are discrete approximations of the vorticity and divergence, and i and j are the

horizontal and vertical coordinates of the grid location at which the value is being calculated.

It is also important to consider the coordinate grid in which the wind field is defined.

In order for the calculated values to be correct, the orientation of coordinate grid onto which

the wind vectors are sampled (i, j) must match the coordinate grid in which the wind vector

components and distances are defined (x, y, u, v). In general this is not the case, as the

sample grid is often oriented in the direction of travel of the measuring instrument, while u

and v are in east and north directions and x and y may be in either longitude and latitude or

physical distance. This may be compensated for by rotating one of the coordinate grids to

match the other. This should not affect the values as vorticity and divergence are rotationally

invariant [10].

Lastly, on large scales ocean wind divergence is on average considered to be zero.

This is due to conservation of mass and the fact that wind fields are two-dimensional. In

practice, however, this may not be the case because of noise, vertical wind movement, or

other causes. It is still, however, generally very close to zero on average.
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2.1.3 Measuring Ocean Winds

Proper analysis of ocean winds, as well as the ability to use them in weather models,

requires a method of measurement that is accurate and provides enough coverage to extract

useful characteristics and trends. There are many ways to measure winds, both historic

and modern, and with varying degrees of coverage and accuracy. Highly sparse and localized

forms of measurement come from ships and and meteorological buoys. Dense global coverage

can only be achieved with spaceborne remote sensing instruments, the most common of which

are scatterometers.

Historically, most ocean wind measurements were performed by merchant ships.

These measurements, while helpful for observing weather conditions and determining travel

routes, are often inaccurate and are localized to wherever the ships happen to be at the time

[11]. Their inaccuracy comes from many factors, including human error, mast height, faulty

equipment, and ship movement. Also, the localized nature of these measurements causes

bias in the data, as ships generally stick to certain routes and avoid extreme weather [2].

Moored meteorological buoys are also very localized. There are relatively few of

them, and they tend to be concentrated in coastal regions in the northern hemisphere [2].

They do, however, provide accurate wind measurements and are often included in weather

prediction models. They are also used to validate the low-order trends of other forms of

wind measurement.

As mentioned, only satellite instruments can retrieve global, high-resolution wind

data. Several types of these remote sensing devices can be used to estimate wind speed,

including altimeters, radiometers, scatterometers, and synthetic aperture radar (SAR). Be-

cause of their ability to resolve both wind speed and direction, scatterometers are generally

the preferred instruments for wind measurement. Scatterometers are known to be fairly

accurate, and their accuracy is mostly independent of conditions and location [11]. The

following section discusses the basic principles of scatterometry.

2.2 Scatterometry

Scatterometers are active remote sensing instruments, meaning that they are radar

devices designed to transmit microwave pulses toward a surface and measure the reflected
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power, or backscatter, in order to determine the geophysical properties of the surface in ques-

tion [1]. Rather than use the returned power directly, however, the backscatter coefficient, or

normalized radar cross section (σ0 ), is estimated. This value is more directly related to the

geophysical properties of the surface and can be thought of as the return power normalized

by the transmitted power and the area of the target. The backscatter coefficient can be

calculated using the radar equation, given by

σ0 =
(4π)3R4LPr

PtG2λ2A
, (2.1)

where R is the range to the target surface, L is system loss, Pr is the received power, Pt is

the transmitted power, G is the antenna gain, λ is the wavelength of the transmitted signal,

and A is the illuminated area of the target surface [1].

The σ0 value returned for a single microwave pulse represents the radar cross section

for the illuminated area, or the 3 dB beamwidth of the antenna. This relatively large

measurement area can be subdivided by time-filtering the return pulse. This is known as

range resolution since parts of the target area at farther distances have a longer time delay,

allowing target discrimination based on range.

Resolution is also obtained in the angular direction and depends on the beamwidth

and the time between pulses. Additionally, Doppler processing can be used to further en-

hance the resolution within a single pulse, but in the direction of travel [1]. A single σ0

measurement, after range, angular, and Doppler resolution, is a weighted integral of the

surface σ0 surrounding the measurement location. This weighting is determined by the an-

tenna beam response and resolution processing and is known as the spatial response function

(SRF).

2.2.1 Wind Retrieval

As mentioned, the value of σ0 depends on the properties of the surface being illu-

minated. These properties may include vegetation, moisture, ground type, roughness, and

more. In the case of measurement over the ocean, σ0 increases with surface roughness, which
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Figure 2.3: An example GMF, showing the variation of backscatter coefficient (σ0) with
relative wind direction (χ) and speed (|U |).

consists of the small-scale capillary waves caused by ocean winds. The relationship between

the velocity of these ocean winds and σ0 is known as the geophysical model function (GMF).

The GMF must be known in order to derive wind speed and direction after retrieving

σ0. It is a very complicated function that depends on many variables and is not entirely

understood. In theory, it should be able to be derived analytically, and much work has

been done in this area. However, due to limited knowledge, the models that are used for

this function are derived from observed data [2]. Based on current understanding of these

empirical relationships, the GMF can be generally represented as

σ0 = f(|U | , χ, ...; θ, f, pol), (2.2)

where |U | is wind speed, χ is the azimuth angle between the incident wave and the wind

vector, ... represents the effects of non-wind variables, θ is the incidence angle, and f and

pol are the frequency and polarization of the incident wave.

Because of the shape of the GMF, there are a range of possible wind speeds and

directions for a given σ0 measurement. Figure 2.3 shows an example of the relationship

between σ0 and χ for several different wind speeds. Any particular relationship holds only
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Figure 2.4: An example of the intersection of multiple σ0 measurements.

for a specific incidence angle, frequency, and polarization. If these variables are changed, the

plot has similar periodic behavior, though shifted and scaled. This is only valid, however, for

θ between about 20° and 65°, and for a signal wavelength comparable to that of the capillary

waves on the ocean surface (typically frequencies in the Ku-band or C-band).

In order to resolve wind speed and direction from the range of possibilities, multiple

σ0 measurements are used, taken from antennas at different azimuth angles. Sometimes

different incidence angles and polarizations are used as well. In this way, intersecting points

can be found from the various solutions, ideally resulting in a unique solution (see Figure 2.4).

Unfortunately, for a noisy signal there are generally still multiple solutions of nearly the same

speed but different directions. These are known as ambiguous vectors and must be resolved

using additional processing. This processing includes such strategies as median filtering,

matching to known winds, and matching to predetermined wind field models [3, 12].

The GMF is only valid for open water conditions, and consideration must be made for

near-coastal measurements. These measurements may be centered over the ocean, but have

an SRF that extends over land, contaminating the ocean σ0 value. Even a small amount of

overlap can greatly affect the backscatter because land σ0 values are generally much higher

than ocean σ0 values [13]. This effect is known as land contamination, and must be addressed
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Figure 2.5: Several scatterometer missions and their characteristics. From [1].

to allow accurate wind retrieval near land. Land contamination is considered in more detail

in Chapter 6.

In order to complete the process of wind retrieval into a grid of wind vector cells,

the specific geometry and characteristics of the scatterometer in use must be known. The

following section introduces several major satellite scatterometers that have been used to

retrieve wind data.

2.2.2 Scatterometer Missions

Many spaceborne scatterometers have been used for wind retrieval in the last few

decades. Figure 2.5 summarizes several major scatterometer missions and their characteris-

tics. The first wind scatterometer, called the Seasat-A satellite scatterometer (SASS), was

launched by the National Aeronautics and Space Administration (NASA) on the Seasat

mission in June 1978. This mission unfortunately failed after four months, but it has been

succeeded by many more missions launched by both NASA and the European Space Agency

(ESA).
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Even though SASS was in use for such a short amount of time, useful lessons were

learned from the data gathered and were applied in the implementation of later scatterome-

ters. For example, SASS had antennas at two orthogonal azimuth angles in each side-looking

illumination area (known as swaths). It was found that two measurements at orthogonal

azimuth angles are not able to unambiguously resolve wind direction (looking again at Fig-

ure 2.4, any two curves have several intersections).

Scatterometers after SASS have used more than two measurement angles. There

are two general antenna schemes used to achieve multiple azimuth angles. They have their

antennas arranged as either a fan-beam or a pencil-beam. A fan-beam radar instrument has

multiple fixed antennas oriented in different directions corresponding to the azimuth angles

from which measurements are taken. Each antenna may take measurements at a range of

incidence angles using range resolution, as discussed at the beginning of Section 2.2. As the

satellite travels in its along-track direction, there are overlapping measurements from each

azimuth direction and these are used to retrieve wind for a specific grid location. SASS

was a fan-beam instrument with two antennas. Subsequent fan-beam scatterometers have

generally used three. A pencil-beam radar instrument has antennas that physically rotate,

allowing measurements at a wide range of azimuth angles, though with a fixed incidence

angle. They often have two rotating beams, an outer and inner beam, at different incidence

angles and different polarizations. This layout provides a variety of measurement types from

which to retrieve winds, as there are overlapping measurements from the forward and rear

sections of both rotating paths.

Different scatterometers also use microwave signals from different frequency bands.

Scatterometers launched by NASA are typically Ku-band at around 13-14 GHz, and those

launched by ESA are typically C-band at around 5 GHz. Higher frequency signals are more

sensitive to smaller ocean surface waves. This means that Ku-band scatterometers are more

sensitive to low wind speeds. However, they are also more sensitive to atmospheric effects

and rain contamination, as rain contributes to surface roughness at a very small scale [11].

This thesis focuses on ASCAT, a European fan-beam scatterometer operating in the

C-band. The following section discusses ASCAT in more detail.
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Figure 2.6: ASCAT swath geometry. Adapted from [14]

2.3 ASCAT Scatterometer

The Advanced Scatterometer (ASCAT) is a C-band wind scatterometer that operates

at 5.255 GHz with vertical polarization. It uses a fan-beam antenna scheme with backscatter

measurements at three azimuth angles of 45°, 90°, and 135°. As discussed in the previous

section, using three azimuth angles allows for easier resolution of wind direction. Measure-

ments are taken in each of two 550 km-wide swaths on either side of the satellite ground

track. These wide swaths, separated from the ground track by about 360 km, provide mea-

surements at an incidence angle range of 25° to 65° [14]. Figure 2.6 shows the swath geometry

of ASCAT. Previous European scatterometer missions took measurements on only one side

of the satellite, and using two swaths more than doubles the coverage of previous missions.

ASCAT covers 65% of the Earth daily and achieves near global coverage in five days [15].

Within the measurement swaths, each beam is divided into 256 measurement loca-

tions, or nodes, using range resolution processing, as explained in Section 2.2. Only 192 of

these, however, fall into the 550 km swath and are used. Measurements outside the swath

have incidence angles outside the acceptable range. Figure 2.7 illustrates these measure-

ment nodes and the extent of the measurement area (SRF) for each one. The size of and

distance between measurements varies with both incidence angle and azimuth angle, and

they generally overlap. The pulse repetition frequency (PRF) and along-track averaging for
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Figure 2.7: ASCAT beam measurement geometry. Adapted from [17].

ASCAT correspond to measurements taken every 5.6 km in the along-track direction. The

radar product containing these full-resolution, geo-located backscatter measurements along

each beam is known as the “Level 1-B Full Resolution Product,” and is denoted as L1B

SZF, or just SZF. Before wind vector fields are estimated from the measured σ0 data, the

measurements for each beam are spatially averaged into a swath-oriented grid, where all

measurement nodes whose centers lie in a grid location are averaged together. This is done

at two different grid resolutions which are known as SZO for the “operational resolution”

product (25 km grid) and SZR for the “research resolution” product (12.5 km grid) [16].

ASCAT is part of the European Meteorological Operational (MetOp) mission, which

is a joint program between ESA and the European Organisation for the Exploitation of

Meteorological Satellites (EUMETSAT). There are three planned MetOp satellites, which are

part of the EUMETSAT Polar System (EPS). MetOp-A was launched in October 2006 and

MetOp-B in September 2012. Both have identical ASCAT instruments on board. MetOp-C

is due to be launched in 2017. These are all sun-synchronous, polar orbiting satellites with

many meteorological instruments in addition to ASCAT. [18].

ASCAT has been in operation since 2007. Wind data is processed in conjunction

with the National Oceanic and Atmospheric Administration (NOAA), and wind estimates

are provided at spatial resolutions of 50 and 25 km, given on 25 km and 12.5 km grids,

respectively. The standard resolution wind product on a 12.5 km grid is known as Level 2-B

(L2B).
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Figure 2.8: UHR processing takes advantage of overlapping measurements in ASCAT and
averages all measurements touching a given grid location. L2B only averages those whose
centers touch a grid location.

2.4 UHR

The standard L2B product provides enough information for many applications. How-

ever, in some cases it may be useful to have a wind product with a better spatial resolution,

especially in situations with high spatial variation in ocean winds, such as near-coastal regions

and storms. This is not feasible using the standard L2B method, in which the measurement

nodes are averaged in a grid based on their center location. Instead, ultra-high resolution

(UHR) processing is used.

UHR processing is based on a method developed by Long, Hardin, and Whiting for

generating increased resolution σ0 imagery using scatterometry [19]. This process enhances

the spatial resolution of the σ0 measurements and allows a finer σ0 grid, after which high-

resolution wind vectors are retrieved using maximum likelihood retrieval [1]. In UHR pro-

cessing, all measurements that overlap the center of a WVC are combined using a weighted

average based on the SRF of each measurement. This is done separately for each of the three

ASCAT beams in each swath. This exploits the overlap between ASCAT measurements in
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the along-beam and along-track directions, as illustrated in Figure 2.8 [19–22]. ASCAT UHR

data is reported on a 1.25 km grid, ten times the grid resolution of the L2B product.

Wind retrieval is performed using the same wind vector estimation method as L2B

[22]. For a given WVC, a maximum likelihood estimation technique is used to find a wind

vector solution from the three σ0 values and the GMF [1]. This thesis explores the data

resolution of UHR wind estimates, including the effects of noise and the validity of the

high-resolution variations that are not present in L2B.

2.5 SAR Wind Retrieval

Another way to retrieve very high resolution ocean wind data is to use synthetic

aperture radar (SAR). SAR wind retrieval is not as common as scatterometer wind retrieval

because with SAR it is much more difficult to estimate wind direction. Nevertheless, SAR

allows imaging at a finer resolution than scatterometry, and has been used for studies of

near-coastal and other fine-scale winds [8, 9, 23,24].

SAR instruments, like scatterometers, are remote sensors that transmit microwave

pulses toward a surface and measure the reflected power, or backscatter, at the point of

transmission. For the surface or target in question, the normalized radar cross section (σ0)

is determined using the radar equation (see Section 2.2). The key difference between a SAR

and a real aperture radar, such as a scatterometer, is that SAR makes use of the movement

of the aircraft or satellite on which it is mounted and coherently combines multiple pulses

in order to “synthesize” a long array antenna. This allows much finer resolution in the

along-track direction [1].

The along-track spatial resolution of a radar image depends on the beamwidth of the

antenna used. For a real aperture antenna, the beamwidth is decreased (and the resolution

improved) by increasing the length of the antenna. An equation for the resolution of real

aperture radar can be given as

rrar =
λR0

l
, (2.3)

where λ is the signal wavelength, R0 is the minimum range to the target, and l is the antenna

length. This antenna length can quickly become unrealistic when a very fine resolution is
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desired. SAR has a narrow beamwidth because it treats multiple pulses as an array antenna.

This beamwidth is further decreased by increasing the number of pulses that illuminate

the same target location, or the dwell time of a single pulse on a given location. This is

accomplished by increasing the beamwidth of the antenna, meaning that a smaller antenna

will actually cause finer resolution when using SAR. Optimal SAR resolution is given by

rsar =
l

2
, (2.4)

showing a that it is proportional to the true antenna length [1, 25].

As with scatterometers, wind vector estimates can be retrieved using the GMF and the

retrieved SAR σ0. However, while scatterometers measure backscatter at multiple azimuth

angles in order to infer wind direction, SAR backscatter is observed at only one azimuth

angle. This does not allow a unique wind vector solution (see Section 2.2.1). In order to

achieve a unique solution, a previously known wind direction becomes an input and wind

speed is estimated from the SAR backscatter using the GMF. These input wind directions are

typically obtained in one of two ways. The first is from an outside source such as numerical

weather models, and the second uses linear features in the SAR image itself. There are

tradeoffs between these two methods. The linear features in the SAR images are not always

present and may be affected by other atmospheric and oceanographic conditions, and model

wind directions are usually at a much lower resolution than SAR data [1, 8, 23, 24].

2.6 Summary

This chapter provides basic background on the tools and principles of ocean winds and

scatterometry that are used in this thesis. Ocean winds, as an important metric for weather

and climate applications, have unique properties that are used in the following chapters to

examine the quality of UHR data retrieved from the ASCAT scatterometer. These properties

can be studied using analysis tools such as the power spectrum and vorticity.

The dense, global coverage of ASCAT is ideal for analyzing both small and large scale

wind properties and possible improvements in overall quality of wind estimates. Additionally,

UHR data, with a pixel size that is one tenth that of the standard resolution product, has
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the potential to expand the usefulness and application of ASCAT winds. However, the true

data resolution has not previously been quantified, nor has the increase in resolution been

validated. The tools and principles discussed previously can help to accomplish this and find

ways to improve the retrieval of these high-resolution winds. Further background, if needed

for individual analysis techniques, is provided in the appropriate chapter.
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Chapter 3

UHR Resolution Enhancement for ASCAT Winds

The significant reduction in pixel size for UHR winds compared to L2B winds for AS-

CAT ideally allows visibility of higher resolution features. However, UHR processing is also

expected to add noise, and due to the non-linear wind retrieval there is an uncertain increase

in the effective resolution of the resulting data. This chapter investigates the resolution in-

crease in UHR by comparing it to the original L2B data and analyzing the visual features and

spectrum. In this way we attempt to quantify the true increase in data resolution. Though

the UHR process has been investigated for other scatterometers [20–22, 26–28], very little

previous analysis has been done for the ASCAT UHR wind product. Some investigation has

been performed on the low resolution product [29] and using instrument models [30], but

this is the first attempt at validation of the ASCAT UHR data product. Chapter 4 extends

this investigation by comparing the UHR data to independent high-resolution wind data

gathered from SAR.

3.1 L2B and UHR Data Sets

The process of wind retrieval for ASCAT is described in detail in Chapter 2. For

convenience, relevant information is presented again here. The standard L2B wind product

is retrieved by averaging together all σ0 measurements with centers located in a given 12.5×

12.5 km grid location. This is done separately for each of the three antenna azimuth angles

in a swath, and the GMF is used to find a unique wind vector solution from the three σ0

values. If a unique solution cannot be found due to noise or other factors, multiple solutions

with equal likelihood are found and other methods known as ambiguity selection are used

to select a single estimate.
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Figure 3.1: L2B (top) and UHR (bottom) winds retrieved from ASCAT on 5 Feb 2013
near the coast of Alaska and British Columbia. The image highlights the difference in spatial
resolution. L2B vectors are shown at L2B spacing, while UHR vectors are downsampled to
twice the spacing of UHR to increase visibility. The vectors are located at the base of the
arrows, and are scaled according to grid spacing. The background color represents wind speed.
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Figure 3.2: L2B (top) and UHR (bottom) winds from ASCAT. This is from the same time
and location as Figure 3.1, but showing a wider view area. Direction arrows are downsampled
to 0.25° spacing to increase visibility.
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Figure 3.3: L2B winds (top) and UHR winds (bottom) retrieved from ASCAT on 6 Sep 2011
in the North Atlantic. The storm shown is Hurricane Katia. UHR data shows more detail
for a high-resolution wind event such as a storm. Direction arrows are downsampled to 0.25°
spacing to increase visibility.
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In the case of UHR, the σ0 value at a grid location is determined by the response-

weighted average of all measurements with any part overlapping the center of the cell, with

weights and extent based on the SRF of the measurement. This is true even if the center

of the measurement lies in a different cell. A much smaller 1.25 × 1.25 km grid is used for

σ0 averaging, taking advantage of the large amount of overlap between measurements [19].

Wind vectors are found by the same method as with L2B, using the GMF.

Figures 3.1 to 3.3 highlight the difference in spatial resolution between UHR and

L2B wind estimates for a typical wind field. While some analysis has been done for UHR

winds from other instruments [26], a detailed visual analysis has not been done previously

for ASCAT UHR winds. Such a visual comparison is not a rigorous validation of the data,

but provides a preliminary demonstration of increased resolution and a basis from which to

pursue further analysis.

Figure 3.1 shows 1° longitude by 1° latitude images of both L2B and UHR wind fields.

The high resolution features are more clearly defined in the UHR image. Color boundaries

and contour lines show more detail, and higher resolution variations are seen in both wind

speed and direction.

Figure 3.2 shows similar properties, but from a wider view area. Additionally, local

maxima and minima in wind speed are sometimes more extreme. Specifically, in the bottom

left of the image, the UHR winds have more variation than the L2B winds. Also, in the top

left of the image, the UHR speeds are significantly higher, which may be a true property of

the wind that can be seen due to spatial averaging on a finer scale. These same types of

differences are seen throughout the images in Figure 3.2, while the large scale trends and

features are the same.

UHR processing also allows wind estimates to be retrieved closer to land. In general,

σ0 values over land are much higher than those over ocean water. Any ASCAT measurement

over water with an SRF that is too close to land is greatly affected by the contamination of

its ocean σ0 value by leakage from the land σ0 value. Such a measurement is said to have

land contamination. Land-contaminated measurements must be excluded by both L2B and

UHR wind retrieval processes [13]. However, as explained previously, UHR processing uses

the SRF and performs a weighted average of all measurements overlapping a grid location,
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while L2B only uses the center location of each measurement. Therefore, UHR winds may be

retrieved closer to land according to the distance that the measurement SRF extends from

its center.

Figure 3.3 shows an image of winds in a tropical storm in the North Atlantic. Storms

tend to have more high-resolution wind features than many other weather patterns due

to their high wind speeds and cyclonic nature, and therefore provide a good example for

comparing the resolution of two wind products [27, 28]. As in Figure 3.2, UHR wind speed

contours are more detailed with higher frequency variations. Additionally, the eye of the

storm is more clearly defined in the UHR image (see [28]), and the pattern of decrease in

wind speed away from the center is more detailed. The highest wind speeds in a storm such

as this have low accuracy when measured by scatterometers, as the accuracy of the GMF

begins to degrade at such high speeds. Nevertheless, the shape of the storm appears in

greater detail in the UHR image, and the highest speeds make up a small percentage of the

image. Rain may also affect accuracy, although ASCAT is less affected by rain than some

other scatterometers because it operates in the C-band.

The basic visual features and differences discussed in this section between L2B and

UHR wind estimates show some of the potential benefit of using UHR data. It is difficult,

however, to quantitatively analyze the resolution difference or identify the noise content

just from looking at these images. These issues are better investigated by looking at the

spectrum of the winds, as well as other statistical properties. Such analysis requires that

data be collected and averaged on a large scale.

3.2 Global and Regional Averaging

In order to analyze the spectral properties of ASCAT ocean winds, data are gathered

from five different ocean regions over an entire year. Land causes discontinuities in the data,

as well as contamination of wind data that is very close to land. For this reason, the regions

are chosen to minimize the presence of land, so that as much continuous ocean wind data as

possible is represented.

The regions chosen are rectangular regions in the major oceans. They are: North

Atlantic, South Atlantic, North Pacific, South Pacific, and Indian. The coverage of each
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Figure 3.4: Regions used for averaging ASCAT data for statistical and spectral studies.

region is shown in Figure 3.4. Data from all the regions is averaged together to get global

characteristics, and each region is examined separately to analyze differences in wind behavior

between regions. Data is also divided in time, allowing comparison of behavior from different

months or seasons. Both season and region affect weather, and these divisions may isolate

similar data, such as more frequent storms, which could have an effect on the large scale data

characteristics. The following sections contain studies of the overall statistical and spectral

characteristics of ASCAT L2B and UHR winds, as well as case studies for several regions

and time divisions.

3.3 Overall Characteristics

As discussed in Chapter 2, ocean winds are expected to have a red spectrum following

a power law, meaning that the magnitude decreases as a constant power of spatial frequency.

The rate of decay is referred to as the spectral slope because when represented on a log-log

scale, it is ideally a line with constant slope. For ocean winds, this slope is generally about

k−5/3, with k being the spatial frequency, or wavenumber [4, 5].

An averaged periodogram representing the zonal and meridional spectra of global

UHR and L2B winds for the year 2011 is shown in Figure 3.5, along with a k−5/3 line for
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reference. The L2B spectrum approximates this reference slope, with a possible noise floor

appearing to occur at about λ = 30 km.

The UHR spectrum extends further due to its higher sampling rate, but also shows

a clear extension of a constant spectral slope out to at least λ = 10 km, after which noise

may distort the data (see Appendix A for a discussion of noise floor effects). In this case

there is not a clearly defined white noise floor. It appears that multiple levels of noise and

filtering are introduced. An apparent first noise floor occurs at λ = 10 km, where the curve

deviates from the k−5/3 slope. After this the slope steepens again, but at λ = 4 km it flattens

again. These may or may not both be actual noise floors but are referred to as such. Some

of this deviation may be due to the UHR processing algorithm, as it involves gridding and

averaging of measurements with irregular spacing and weighted averaging using an estimate

of the SRF. Other likely causes of deviation are thermal noise and undersampling of the wind

field. The winds are likely undersampled to some degree because an ideal k−5/3 slope is not

band limited and when sampled may cause aliasing that appears as noise (see Appendix A).

It is also possible that the area of the spectrum between the first and second noise

floors contains at least some true wind information. While ocean winds are expected to

approximate the k−5/3 spectral slope, the energy cascade can sometimes be seen to include

such an increase in this mesoscale range (see Section 2.1.1) [6]. Details of the spectrum at such

high resolutions have not been definitively verified, however, as very few such data sets exist.

Possible physical influences on high-resolution winds include the effects of three dimensional

wind flow. Wind fields are typically approximated as two dimensional vector fields. This is

reasonable because the width of the weather-containing atmosphere is usually insignificant

compared to the resolution at which wind vectors are sampled. The troposphere, however,

which contains nearly all weather and wind flow, extends to an average height of about

12 km [31]. At wavelengths smaller than this, three dimensional flow may be significant.

This could have an effect on the observed two dimensional wind vectors and their spectrum.

A comparison between the L2B and UHR spectra suggests that UHR processing

improves the effective resolution of ASCAT wind estimates by at least a factor of three

(from 30 km to 10 km) based on the continuation of the power law behavior past what is

seen in the L2B spectrum. The resolution may extend further to 3 or 4 km, depending on the
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Figure 3.5: UHR and L2B spectra averaged over all regions for the year 2011. The L2B
spectrum only extends to 25 km due to its course grid spacing.

Figure 3.6: UHR and L2B spectra averaged over the North Atlantic region for the year 2011.
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Figure 3.7: UHR and L2B spectra averaged over the South Atlantic region for the year 2011.

Figure 3.8: UHR and L2B spectra averaged over the North Pacific region for the year 2011.
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Figure 3.9: UHR and L2B spectra averaged over the South Pacific region for the year 2011.

Figure 3.10: UHR and L2B spectra averaged over the Indian region for the year 2011.
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true characteristics of the wind spectrum at these high wavenumbers and how they compare

to the spectral deviation from the power law. The spectral behavior is not well known at

high wavenumbers, but has previously been seen to include characteristics similar to those

of the UHR spectrum [6].

3.4 Regional Analysis

A periodogram for each separate region is given in Figures 3.6 to 3.10. There are very

few visible differences between the spectra of each region. The most noticeable difference

is the presence of a small spike in the UHR spectrum at about λ = 12.5 km. This spike is

more discernible in the North Atlantic and North Pacific spectra than in the others, and it

is stronger in the zonal spectrum than in the meridional spectrum. It is unclear what this

may mean, but it is interesting that 12.5 km is the spatial sampling rate of the L2B winds.

The North Atlantic and Indian regions seem to follow the k−5/3 slope best, and the South

Atlantic region has a stronger dip at around λ = 10 km than the other regions.

This comparison of regional winds suggests that the ocean wind spectrum has little

dependence on region, at least based on the regions chosen for this study. It also shows no

evidence that the resolution of ASCAT UHR wind data is related to region, suggesting that

UHR processing provides a global, high-resolution wind product.

3.5 Summary

Close analysis and comparison of ASCAT L2B and UHR wind estimates suggests that

UHR winds contain high-resolution information that is not present in L2B winds. Visual

comparison of the two data sets shows more clearly defined high-resolution features in UHR

images. Wind speed contour lines are more detailed, and local maxima and minima in wind

speed are sometimes more extreme. UHR processing also allows wind retrieval closer to land,

and details of high-resolution wind events such as storms are more visible.

A spectral analysis shows that the k−5/3 power law of the ASCAT wind spectrum is

extended with UHR processing. This suggests that the additional high-resolution content

present in UHR data may contain true wind data. However, the degree to which the resolu-

tion is extended is unclear. The high frequency part of the UHR spectrum deviates from the
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reference slope but then steepens and flattens again. It is unknown how much of this devia-

tion is due to noise or if some is due to true wind characteristics, since the spectral properties

of wind are not well known at such high frequencies. Similar deviations at mesoscale have

been seen in some cases [6]. The spectral slope clearly extends to a wavelength of about

λ = 10 km, and has a final apparent noise floor at about λ = 4 km. Either value is an

improvement to the L2B resolution of 25 km, which has a noise floor at about 30 km.
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Chapter 4

Validation of ASCAT UHR Using SAR Wind Data

Evidence has been presented that ASCAT UHR wind estimates contain high reso-

lution information that is not present in the L2B winds. The next step is to validate the

accuracy of this content. Unfortunately, there is no vector wind field truth data to compare

it against. Instead, validation is performed by comparing to winds retrieved using synthetic

aperture radar (SAR). SAR is a type of radar that is able to retrieve a backscatter signal of

much higher resolution than that of scatterometers, making it a good candidate for validating

high resolution data.

A complication with using SAR wind estimates is that it is much more difficult to

determine wind direction using SAR data than it is using scatterometer data. This is why

scatterometers are more widely used for wind vector retrieval. Because of this, a comparison

with SAR can only involve the wind speed information. In order to allow the wind values to

still be treated as vectors, the wind field is divided into its zonal and meridional components

using direction information from other sources.

This chapter first provides basic background on SAR, especially in how it differs from

scatterometry. The SAR product used to validate ASCAT UHR is then described. It is

a satellite-based SAR on the European platform ENVISAT. The method for finding spa-

tially and temporally collocated SAR and ASCAT data is then explained, following which a

comparison is made between the two data sets using visual comparison, correlations, distri-

butions, and spectra.

4.1 Synthetic Aperture Radar

Like scatterometers, SAR instruments are active remote sensors designed to transmit

microwave pulses toward a surface and measure the reflected power, or backscatter. A σ0
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value is determined for the surface or target in question using the radar equation, as discussed

in Section 2.2.

Scatterometers use a real aperture antenna to transmit and receive signals. The

spatial resolution of the signal received from such an antenna is improved by increasing the

size of the antenna, which decreases the beamwidth, causing a single pulse to illuminate a

smaller area. SAR, on the other hand, takes advantage of the fact that radar instruments

onboard an aircraft or satellite are constantly moving. The moving antenna is treated as

an array of antennas, which allows a significant decrease in beamwidth, especially for small

antennas. The resolution of a SAR instrument is increased by increasing the number of

pulses that illuminate the same target location, or the dwell time of a single pulse on a given

location. This is accomplished by increasing the beamwidth of the antenna, meaning that a

smaller antenna will actually cause finer resolution when using SAR [1,25].

As with scatterometers, wind vector estimates can be retrieved using the GMF and

the retrieved SAR σ0. However, it has already been mentioned that wind direction is not

easily retrieved using SAR. In fact, wind direction is needed as an input to the GMF in

order to determine the wind speed from SAR data, as SAR imagery is typically generated

from only one look angle. These input wind directions are usually obtained in one of two

ways. The first is from an outside source such as numerical weather models, and the second

uses linear features in the SAR image itself. There are tradeoffs between these two methods.

The linear features in the SAR images are not always present and may be affected by other

atmospheric and oceanographic conditions, and model wind directions are usually at a much

lower resolution than SAR data [8, 23, 24].

4.2 ENVISAT ASAR

UHR data is compared to wind estimates retrieved using data from the Advanced

Synthetic Aperture Radar (ASAR), which is a SAR instrument that is part of the ESA’s

Environmental Satellite (ENVISAT) mission. ENVISAT is an Earth-observing satellite that

includes many other remote sensing instruments used in environmental studies. The mission

lasted from March 2002 to April 2012, providing nearly five years of overlap with ASCAT [32].
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ASAR operates in the C band, as does ASCAT. It has several operational modes,

which are designed for different functions and resolutions, as well as several polarization

modes, including horizontal, vertical, and combinations of the two. There are numerous

applications for ASAR data over oceans, land, snow, and ice. It can be used to study waves,

coastal dynamics, ship traffic, vegetation, geology, urban areas, natural disasters, sea ice,

and many other topics [32].

Wind speeds are not a typical product derived from ASAR data. However, ASAR

wind estimates are acquired from the Alaska SAR Demonstration Project (AKDEMO),

provided by the NOAA [33]. This data is retrieved on a 0.5 km grid, a pixel size less than

half of that of ASCAT UHR. Additionally, the accuracy of SAR winds from this project

was validated by Monaldo et al. through systematic comparison to National Data Buoy

Center (NDBC) buoy wind speeds, model wind speeds, and QuikSCAT scatterometer wind

speeds [23,24]. In these studies, the standard deviation of the difference with respect to SAR

winds was found to be 1.76 m/s for buoy winds and 1.78 m/s for QuikSCAT winds.

4.3 Finding ASAR/ASCAT Collocations

A useful comparison of the ASAR and ASCAT wind estimates first requires finding

collocations between the two data sets. Collocated data between the instruments exists

when the their ground swaths illuminate the same surface location at the same time. The

satellites carrying the ASAR and ASCAT instruments have different orbits, limiting the

amount of data that can be used for direct comparison. Time stamps on the data files and

latitude/longitude coordinates for the data points allow these collocations to be identified.

Additionally, the AKDEMO does not provide wind estimates for all ASAR data, but instead

provides only example wind fields, mostly focusing on certain near-coastal areas in North

America (see Figure 4.1) [9]. This limits the number of collocations that can be found.

ASAR wind data files from the AKDEMO are found that overlap in space and are

close in time to available ASCAT data. The criteria chosen for selecting these collocations

are (1) less than a one hour time offset between ASAR and ASCAT data and (2) a spatial

overlap of several degrees in both latitudinal and longitudinal directions. This analysis uses

105 such collocations between May 2010 and August 2011. The locations of these collocations
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Figure 4.1: Locations of ASCAT/ASAR collocations.

are shown in Figure 4.1. One particular collocation represented in Figure 4.2 shows ASAR

and ASCAT winds with a time offset of about 30 minutes and covering almost identical

areas. With interesting visual features that encourage closer examination, this is a good

example for visual inspection and comparison. Later in this chapter, all the collocations are

used to obtain statistical and spectral data for a more quantitative analysis.

4.4 Visual Comparison

In Figure 4.2, there is a clear progression toward higher resolution moving from L2B

to UHR to SAR. Similar low resolution features are visible in all three, which means that

the data sets are consistent at low frequencies. It is unknown whether the high-resolution

features and characteristics in the SAR and UHR winds are valid. They do, however, appear

to be fairly consistent.

A good area for closer examination is the higher wind speed area in the bottom

and left center of the field. While the L2B winds show little variation in these areas, the

UHR winds show evidence of fine scale spatial wind speed changes. These variations appear

consistent with those of the SAR image. A particular example is the area around 85 W and

24 N. Consider also the center of the wind field, where there is a transition between low

and high wind speeds. This transition area has attributes and contour lines that are more
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Figure 4.2: Collocated L2B (left), UHR (middle), and ASAR (right) winds retrieved on 5/15/2010 at 3:12:00 UTC (ASCAT) and
3:42:55 UTC (ASAR).
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Figure 4.3: Two-dimensional histograms of ASAR wind speed (left) and ASAR incidence
angle (right) vs ASAR/UHR wind speed difference. Used to determine cutoff values in order to
reduce the high noise levels of ASAR winds that occur at high wind speeds and small incidence
angles.

detailed in the UHR and SAR fields than in the L2B field. These details are similar across

the two data sets, providing more evidence of the accuracy of the high-resolution winds in

the UHR data set.

Visual comparison of these images builds the case that the added UHR resolution

is accurate and consistent with the SAR data. However, as explained in Section 3.1, such

analysis is not a rigorous validation, but a preliminary demonstration and a basis from which

to pursue further analysis. Some of the especially high frequency variations in both the SAR

and UHR images appear noisy. This appears as the apparent speckling effect in the SAR

image and the rough look in the UHR image. For further analysis, statistical and spectral

data are used to examine the wind estimates and determine the effects of noise and the

consistency of the underlying data.

4.5 Distributions and Correlations

There are several important considerations when performing a statistical comparison

of scatterometer and SAR winds. In remote sensing and wind retrieval, there is an inherent

tradeoff between noise and resolution. We therefore expect UHR wind estimates to have

greater noise content than L2B wind estimates, and SAR winds to be noisier then either of

these. This may affect the statistics and spectra of these data sets.
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Table 4.1: A statistical comparison of UHR, L2B, and ASAR wind speeds. Statistics are
shown before and after excluding data outside the determined ranges for

ASAR incidence angle and ASAR wind speed.

All Data ASAR ASCAT UHR ASCAT L2B

Mean 8.561 7.377 7.314

Median 7.734 7.118 7.048

Std. Dev. 4.776 3.688 3.593

Within Range

Mean 8.204 7.241 7.156

Median 7.693 7.044 6.914

Std. Dev. 3.842 3.635 3.530

It is mentioned in Section 3.1 that the accuracy of the GMF begins to degrade at high

wind speeds. This affects SAR wind estimates as well. Additionally, the higher wind speeds

may contain more noise and be affected by other fine scale oceanographic effects observed

by SAR. While they are useful in observing the overall structure and visible features of a

wind field, high wind speeds may adversely affect a statistical analysis of SAR winds.

Another consideration is the incidence angle of the SAR signal. ASCAT wind retrieval

only uses data corresponding to incidence angles greater than 25°. ASAR wind estimates

from the AKDEMO, however, correspond to incidence angles as low as 14°. It has been

found in previous studies that at very low incidence angles, the expected inverse relationship

between SAR incidence angle and σ0 does not hold. This may cause both σ0 and wind speed

values to be lower than expected [23, 24]. A statistical analysis may be more useful if such

data points are excluded.

Figure 4.3 contains histograms that illustrate these problems with high wind speeds

and low incidence angles. The left plot is the joint distribution of ASAR wind speeds and

the difference between ASAR and UHR wind speeds. It is clear that at high ASAR wind

speeds the difference is much greater. A dotted line is shown at 20 m/s, above which all data

points are excluded from further analysis. The right plot is the joint distribution of ASAR

incidence angle and the ASAR/UHR wind speed difference. Again, it is clear that the data
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Figure 4.4: L2B, UHR, and ASAR wind speed distributions for all collocations, excluding
data outside the determined ranges for ASAR incidence angle and ASAR wind speed.

sets are much less consistent at low incidence angles. The SAR wind speeds are too low at

incidence angles between 14° and 16°, and below 25° the SAR/UHR difference distribution

is more spread out and noisy. In this study, all data points with an ASAR incidence angle

less than 25° are excluded from analysis. This cutoff corresponds to the ASCAT incidence

angle range as well as that used in [23] and [24].

Statistics for the ASAR and ASCAT data sets are shown in Table 4.1, both before

and after excluding data from outside the acceptable wind speed and incidence angle ranges.

The biggest difference is in the standard deviation of the ASAR speeds. Before excluding

out-of-range data, this value is unusually high, but afterwards it is much more comparable to

ASCAT. Both the mean and standard deviation of the ASAR and ASCAT data sets become

closer after the cutoff. It is also important to note that in all of these cases, the UHR

values are closer to ASAR than the L2B values, suggesting that the high-resolution content

in ASAR and UHR is compatible. The actual distributions are plotted for comparison in

Figure 4.4. The ASAR distribution skews higher than the other two, as expected from the

means in Table 4.1. The L2B distribution has a higher peak while the other two are more
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Figure 4.5: Two-dimensional distribution of ASCAT and ASAR wind speed values. ASAR
winds are plotted vs. L2B winds (left) and UHR winds (right). A line with unit slope is plotted
for reference. ASAR wind speeds > 20 m/s and incidence angles < 25° are excluded.

Table 4.2: A statistical comparison of how well UHR vs L2B wind speeds compare to ASAR
wind speeds. ASAR wind speeds > 20 m/s and incidence angles < 25° are excluded.

Data Sets Correlation Coef. Std. Dev. Mean Diff.

L2B/ASAR 0.898 1.992 1.048

UHR/ASAR 0.888 2.028 0.963

spread out, as expected from the higher standard deviation of the ASAR and UHR speeds.

This again suggests that ASAR and UHR have more noise and higher resolution than L2B.

Figure 4.5 shows the L2B/ASAR and UHR/ASAR joint distributions, and their rela-

tive statistics are summarized in Table 4.2. Both distributions skew toward ASAR, matching

the higher ASAR mean. This is more extreme at high wind speeds, suggesting either that

these speeds are too high in ASAR winds, or that there is saturation in the ASCAT wind

speeds. The correlation coefficient and standard deviation between L2B and ASAR are

slightly better than those between UHR and ASAR, but the difference is small. It is promis-

ing that they have nearly the same correlation and difference when ASAR and UHR are

compared on a much higher resolution grid than ASAR and L2B. It means that the added

resolution does not degrade the correlation and provides evidence that the high resolution
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content of the two products agrees just as well as the low resolution content. The mean

difference is better for UHR/ASAR than for L2B/ASAR, though again they are nearly the

same. A slightly higher mean agrees with the visual observation UHR and ASAR winds

show higher peaks in wind speed than L2B.

4.6 Spectrum

The statistical results discussed in the previous section relate to the comparison of

individual wind vectors across the ASAR and ASCAT platforms, as well as overall mean

difference and standard deviation. These comparisons do not address similarities and differ-

ences at different resolutions. A mean difference and a local, high-resolution difference are

treated the same at a given grid point when performing a comparison using the correlation

coefficient or standard deviation.

Comparing the spectra of the different data sets allows comparison based on resolu-

tion. This type of analysis can clarify and enhance some of the previous results, as well as

provide new insights. Figure 4.6 shows the average wind speed spectrum for ASCAT L2B,

ASCAT UHR, and ASAR winds over all collocations. They all have the similar overall trend

of power law decay. However, there are significant differences which are more evident as the

wavenumber increases in the log scale plot. The ASAR spectrum has the highest power at

all resolutions. This agrees with the higher mean and standard deviation of the ASAR data

set from Section 4.5, as well as the observations from the visual comparison in Section 4.4.

At the smallest wavenumbers, the UHR power level is between ASAR and L2B, which is

consistent with the fact that the mean wind speed increases from L2B to UHR to ASAR.

As the wavenumber increases, however, the UHR power decreases more quickly than the

ASAR power. While the UHR spectrum has a steeper slope, the shape is more constant.

The ASAR spectral slope begins to change after the wavelength reaches about 30 km. It is

impossible to know with certainty which is more correct, but there are likely positive and

negative aspects of each.

The greater magnitude of the SAR wind spectrum in Figure 4.6, especially at high

wavenumbers, may indicate that ASAR winds contain more high-resolution wind information

than UHR winds. It may also indicate the the ASAR wind data contains more noise. Both of
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Figure 4.6: L2B, UHR, and ASAR wind speed spectra averaged over all collocations.

Figure 4.7: L2B, UHR, and ASAR zonal and meridional wind spectra averaged over all
collocations.
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these are likely true, as SAR winds are expected to have higher resolution than scatterometer

winds, and the analyses in previous sections have suggested they are noisier. The change

in slope indicates that noise may be a contributing factor, since a more constant slope

is expected for the spectrum of ocean winds. The more constant spectral slope of the

UHR winds is promising, though the lower power could indicate saturation of the ASCAT

instrument at high wind speeds. This could also be caused by the windowing and irregular

spatial averaging in the UHR wind retrieval process.

When direction information is added by generating the zonal and meridional spectra

of each data set, there are significant changes. This is seen in Figure 4.7. All three spectra

have much more similar power levels across all wavenumbers. The L2B spectrum stays

essentially the same. The UHR spectrum, however, is raised in magnitude and follows the

reference k−5/3 slope closely until k = 10−4 m−1, or λ = 10 km. It is higher and more

constant than the L2B spectrum. The changing ASAR slope stays about the same, but

its magnitude is decreased, causing it to drop below the UHR spectrum for the mid-range

wavenumbers and rise back above for the highest wavenumbers.

All the implications of these changes are not known, but the expected properties of

the added direction information can help to explain them. SAR wind retrieval does not

calculate wind direction. Instead it uses interpolated low resolution model wind directions

as an input to the GMF. UHR winds, however, are scatterometer winds and do include wind

direction at the same resolution as the wind speeds. Therefore, when combining wind speed

and direction into zonal and meridional components, the UHR data uses two high-resolution

data sets, while the ASAR data uses a high resolution and low resolution data set. This is a

benefit of UHR winds, and including the direction information allows the analysis to show

the true resolution content of the UHR data. The zonal and meridional spectra in Figure 4.7

suggest that after adding direction information the data sets are compatible, and the UHR

data may have a spectrum that is more representative of expected ocean winds.

4.7 Vorticity and Divergence

A comparison of the vorticity and divergence fields for each wind data set may pro-

vide additional understanding and validation of UHR winds. Vorticity and divergence are
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derivative fields that provide additional information about ocean winds, as described in Sec-

tion 2.1.2. The spectra of these fields are analyzed in order to compare the behavior at

different wavenumbers.

An issue with comparing the derivative fields is that each data set is retrieved at a

different grid resolution. If the derivatives are computed in all cases as first order differences,

the difference will be taken across distances that do not match. The magnitude and behavior

of the vorticity and divergence fields may vary based on the scale at which they are calculated.

For this reason, the higher resolution data sets (UHR and SAR) are resampled at several

different resolutions before calculating vorticity and divergence. Resampling is performed by

averaging a group of pixels into one pixel based on the downsampling order. For example,

downsampling by two involves dividing the grid into 2 × 2 sections and converting each

section into one pixel whose value is the average of the four pixels.

The vorticity and divergence power spectra are shown in Figures 4.8 and 4.9. The

results demonstrated in each of these figures are very similar. Each one shows the spectrum

for each data set at various grid resolutions. As the order of downsampling for ASAR winds

is increased, the spectrum approaches and then passes the power level for UHR winds. The

UHR spectrum is located between the SAR spectrum sampled at 1.5 km and the SAR

spectrum sampled at 2 km. This suggests the possibility that the resolution of the UHR

winds is between these two values. This would correspond to an effective data resolution

between 3 and 4 km. This matches the second deviation from the reference slope in the UHR

wind spectrum, which is located at about λ = 4 km (see Section 3.3).

The UHR and SAR spectra match well when the vorticity and divergence are calcu-

lated at the same grid resolutions, as shown by the 5 km and 12.5 km lines in the figures.

Both the power level and shape of the spectra are very similar, although there is evidence

of sidelobes due to the spatial averaging performed when degrading the sampling resolution.

Additionally, both the UHR and SAR spectra match the L2B spectrum at the 12.5 km grid

resolution. These results validate the consistency of the derivative fields of all three data sets

when analyzed at matching grid resolutions. This suggests that the data itself is consistent

and that ASCAT UHR winds may provide valid high-resolution wind data down to a spatial

resolution between 3 and 4 km.
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Figure 4.8: Vorticity spectrum for L2B, UHR, and ASAR winds. UHR and ASAR vorticity
are computed at multiple resolutions. The subscripts in the legend indicate the pixel size in
meters at which the vorticity was calculated.

Figure 4.9: Divergence spectrum for L2B, UHR, and ASAR winds. UHR and ASAR diver-
gence are computed at multiple resolutions. The subscripts in the legend indicate the pixel size
in meters at which the divergence was calculated.
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4.8 Summary

This comparative analysis of high-resolution ASCAT and ASAR wind data shows

consistencies between the data sets, as well as problems that make it difficult to arrive at

definitive results. A visual comparison of collocated wind fields shows a visible increase in

resolution from ASCAT L2B to ASCAT UHR to ASAR winds. There are high-resolution

features in both the UHR and ASAR winds that are not present in the L2B winds or are less

pronounced. This includes higher peak values in high wind speed areas and more detailed

transition areas between high and low speeds. The two high-resolution wind products also

appear to contain more noise, as evidenced by the speckling and roughness in the images.

Statistical comparison of the data sets results in a high correlation coefficient of 0.888

between UHR and ASAR wind speeds, nearly the same as that between L2B and ASAR

(0.898). The standard deviation between data sets is also comparable to L2B and ASAR.

UHR and ASAR have a slightly smaller mean difference, though again nearly the same.

It is positive that the statistics are so similar when ASAR and UHR are compared on a

much higher resolution grid than ASAR and L2B. It gives evidence that the high resolution

information of the data sets agrees just as well as the low resolution content. The ASAR and

UHR products have higher individual standard deviations than L2B wind speeds, agreeing

with the visual clues that they have a higher noise content. This suggests more noise, which

reduces the correlation and makes comparison and validation more difficult.

Spectral analysis extends the comparison. The spectral slope of the ASAR wind

changes to become more shallow at high wavenumbers, further indicating the presence of

high-resolution content as well as noise. The UHR spectrum has a significantly lower magni-

tude and steeper slope than ASAR at high wavenumbers when only wind speed is included

in the analysis. When direction information is included by calculating the spectra of the

zonal and meridional components, the relative magnitudes of the spectra are closer. The

magnitude of the UHR spectrum increases and follows a k−5/3 slope closely up to a 10 km

resolution, while the ASAR spectrum decreases slightly in magnitude. This helps to show

the benefit of UHR winds in providing high-resolution direction information.

An analysis of vorticity and divergence gives more evidence of the consistency be-

tween ASCAT UHR and ASAR wind estimates, further validating the high-resolution wind
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content present in the UHR data. This comparison is performed by calculating vorticity and

divergence at similar grid resolutions for each data set. The UHR results are most similar

to the SAR results at a resolution between 3 and 4 km, which is near where the second

noise floor of the UHR wind spectrum is located. When the vorticity and divergence are

calculated at exactly the same grid resolution for UHR, L2B, and ASAR winds, the spectra

match very well.

Due to the lack of truth data, it is impossible to precisely quantify the accuracy of

either ASCAT or ASAR winds. The consistency of the high-resolution features in the data

sets suggests that they do contain useful high-resolution content, and that UHR processing

increases the resolution of ASCAT winds from what is contained in the L2B data set. Statis-

tics show that all of the products are correlated, though the high-resolution data is noisy.

It appears that the UHR wind data have a spectrum indicative of what is expected from

ocean winds to at least a 10 km resolution. These results suggest that ASCAT UHR winds

represent a valid high-resolution wind product that can be used with care in applications

that need such additional resolution.
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Chapter 5

Improving ASCAT UHR Wind Retrieval

In the previous two chapters, ASCAT UHR wind estimates are analyzed and vali-

dated. With limited truth data, it is impossible to determine the true accuracy and noise

content of the UHR wind vectors. Nonetheless, It is determined that the high-resolution con-

tent in this data set appears useful. The UHR spectral slope is extended from what is seen

in the L2B data, and many high-resolution features match what is seen in high-resolution

SAR winds.

Careful examination suggests some issues with the data, including multiple noise

sources, possible saturation at high wind speeds, and inaccuracy at low wind speeds. This

chapter explores counteracting these problems using model-based improvement of ambiguity

selection.

First, common issues in scatterometer wind data are summarized. Then, the current

ASCAT UHR ambiguity selection process is described. The effects of ambiguity selection

errors on wind quality and spectrum are then investigated, following which a data-derived

wind model is developed and used to find errors in ambiguity selection and correct them.

The results of this process are compared to the results of using a simple median filter on the

original UHR wind field, and the effects on the quality of the wind product are considered.

5.1 Noise and Inaccuracy in Scatterometer Winds

Noise and inaccuracies may be introduced at many points in the process of scatterom-

eter wind retrieval. These have been mentioned and discussed in Chapter 2 and throughout

this thesis. They are summarized here for convenience.
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Atmospheric phenomena may affect the microwave backscatter, yet are not directly

related to the wind velocity. Rain especially is known to adversely affect wind retrieval, and

there may be other unknown or less significant variables, such as temperature.

The GMF may only be accurate over a limited range of wind speeds. For example,

the GMF may not hold at low wind speeds because the wind speed must reach a certain

point before having enough traction with the ocean surface to actually cause such waves [34].

At high wind speeds, the GMF may saturate.

Additionally, the frequency band used by the scatterometer may affect sensitivity to

certain wind speeds because of a difference between signal wavelength and water wavelength,

and the scatterometer instrument itself adds thermal noise as it measures backscatter, de-

grading the SNR.

Other possible noise and inaccuracies come from the data processing. ASCAT UHR

processing in particular involves gridding and averaging of measurements with irregular

spacing, as well as windowing and weighted averaging using an estimate of the SRF. After

this main processing is finished, there is still the issue of ambiguity removal. Each grid point

in a wind field can have multiple possible vectors with equal probability according to the

GMF. The ambiguity removal step must choose which of these vectors is the most accurate

and self consistent with the rest of the field. This is difficult to accomplish, and there are

various methods, causing it to be another source of inaccuracy.

5.2 ASCAT Ambiguity Selection

Improvement of ASCAT UHR ambiguity selection is a good candidate for reducing

noise and inaccuracies in the wind product. Ambiguity selection has been a frequent subject

of studies of scatterometer wind quality and improvement [3, 12, 35, 36]. It is important,

however, to first understand the specific ambiguity selection algorithm for ASCAT. The

ASCAT product guide [16] describes the ambiguity selection process used for ASCAT L2B

winds as follows:

“A wind direction ambiguity removal step is further applied, based on variational

meteorological analysis and relying on prior numerical weather prediction (NWP)

model information. In 2D-VAR a cost function is minimised. The cost function
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is formulated in terms of wind increments and penalises deviations from both a

background wind field and the ambiguous scatterometer wind solutions obtained

from scatterometer wind retrieval.”

This is a typical ambiguity selection algorithm that minimizes a cost function using

NWP model winds and self-consistency within the retrieved wind vectors. This description

is specific to the L2B product, while ambiguity selection for UHR is more simple. It consists

of choosing the ambiguity closest in the L2 norm to the interpolated L2B wind vector. This

is a simple solution that should be quite accurate, but inaccuracies and inconsistencies in

the wind field may remain due to the presence of fine scale variations. The following sections

discuss the potential impact of such errors, and present a model-based ambiguity selection

process that extends this preliminary solution and reduces errors.

5.3 Preliminary Spectral Analysis

A possible way to analyze the effect of ambiguity selection errors on wind field quality

is to examine their effect on the spectrum. Ocean winds are known to have a one-dimensional

wavenumber power spectrum that follows the power law with an approximate slope of k−5/3.

In this thesis, UHR winds have been shown to follow this rule fairly well, with the exception

of variations at the highest wavenumbers. These variations can most likely be attributed to

the noise and inaccuracies discussed in Section 5.1. This section investigates whether errors

in ambiguity selection may cause or add to this variation from a constant spectral slope.

A simple analysis of the effect of ambiguity selection on the wind spectrum is done by

purposefully choosing incorrect ambiguities for some of the wind vectors and observing how

the spectrum is affected. Three levels of ambiguity changes are analyzed. First, the same

ambiguity number is chosen for all wind vectors. This may at times coincide with the correct

ambiguity selection, but causes many to be incorrect. This is the “all bad” case. Next, the

same ambiguity is similarly chosen, but for only a small strip of the wind field. This is the

“bad strip” case. Last, only two “bad” ambiguities in each row of wind vectors are chosen.

This is the “two bad values” case. Figure 5.1 shows the averaged periodogram for one month

of data for each of these cases in the North Atlantic region. Figure 5.2 illustrates each case

and how the ambiguities are changed. The spectra in Figure 5.1 show that this type of
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Figure 5.1: Spectra for wind fields with different levels of changed ambiguities. Data is
averaged over one month in the North Atlantic region.

Figure 5.2: Illustration of how different amounts of ambiguities are changed in the wind fields
to analyze the effect on the spectrum. The wind direction field is shown.
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change in ambiguity selection is essentially like adding white noise, although the “bad strip”

case also adds sidelobes due to the fact that making it a strip is like adding a rect function.

The more bad ambiguities are selected, though, the higher the noise floor is raised.

It is unclear from this initial analysis if ambiguity errors contribute to the spectral

deviations from a k−5/3 slope at high wavenumbers. Adding ambiguity errors does raise

the noise floor at these high wavenumbers, however, warranting further investigation into

the actual ambiguity errors present in UHR data. A model-based method for finding and

correcting possible ambiguity errors is presented in the following section, after which the

effect of these corrections on the spectrum is examined.

5.4 Ambiguity Errors and Correction

In order to identify and correct potential ambiguity selection errors in ASCAT UHR

wind vectors, a wind field model is created based on ASCAT data in order to create a field

that is self-consistent [12, 35–37]. The ambiguity that is closest to the model vector for a

given location is considered the “correct” ambiguity and ambiguity errors are selections that

do not fit this criterion.

5.4.1 Wind Field Model

A linear model is used to characterize the wind vectors, adapted from the process

used by Gonzales and Long [35]. Such a model can be expressed as

W = FX,

where X is a vector containing the model parameters and F is a model matrix whose columns

form a basis set for possible wind fields. W is a row scanned vector of the u and v components

of a sampled wind field. The model used is the Karhunen-Loève (KL) model, in which F

is derived from the eigenvectors of the autocorrelation matrix R of the sampled wind field.

R is defined as E[WWT ]. The true R is not known, so it is estimated from the sample

autocorrelation of one month of UHR data in the North Atlantic. Different seasons and
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Figure 5.3: First 50 eigenvalues in the KL
model.

Figure 5.4: RMS error based on the num-
ber of basis vectors being used in the wind
model.

regions may have slightly different correlation matrices, but testing shows they do not have

significantly different results in finding and correcting ambiguity errors.

The W vectors used are taken from 18 × 18 wind vector regions that overlap by

50% in both directions. These regions are relatively small, since each ASCAT swath has a

width of about 440 UHR wind vector cells. A single UHR rev file with very little land, for

example, contains over 20,000 regions. However, the regions are constrained in size to allow

a reasonable processing time. A size of 18 is subjectively chosen based on a tradeoff between

processing time and data extent. With an 18 × 18 region, each vector has 648 elements,

and the one month of North Atlantic wind data used in the analysis includes 2,353,748 such

regions. Figure 5.3 shows the first 50 eigenvalues of the estimated autocorrelation matrix,

and Figure 5.4 shows the RMS error between the retrieved wind field and the model wind field

based on the number of eigenvectors used in the model to form the matrix F. These values

are used to subjectively choose the number of basis vectors used in the model, accounting for

a tradeoff between better modeling and inclusion of high-resolution information, and finding

ambiguity errors. The number of basis vectors chosen for the model is 64, which is about a

tenth of the eigenvectors of the 648× 648 matrix R, and is sufficiently past the area where

the two graphs taper off significantly.
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Figure 5.5: First six basis vectors of the KL model.

The first six basis vectors of the model are shown in Figure 5.5. These are important

because they represent the most common wind field components, and the corresponding

eigenvalues are larger for these than the remaining eigenvectors (see Figure 5.3). The first

two basis vectors represent linear wind fields, and the others represent converging winds,

diverging winds, and saddle points. The best linear fit of all the basis vectors is used to find

a model representation of each 18× 18 wind vector region. Model errors are then calculated

and possible ambiguity errors are found.

5.4.2 Errors

After a retrieved region of wind vectors is fitted to the model, all the ambiguities

for each wind vector are examined, and the closest ambiguity in the vector sense (using the

L2 norm) to the model vector is selected as the correct ambiguity. If this is different than
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Figure 5.6: Illustration of the process of correcting ambiguity selection errors using model
fitting. Top row: original retrieved UHR winds, model fit, difference field. Bottom row: All
ambiguities overlaid in separate colors, ambiguities closest to the model field, corrections.

the originally chosen ambiguity, a possible ambiguity error has been found. This process is

illustrated in Figure 5.6 with a region that contains clear examples of ambiguity selection

errors. Visually, it appears that six of the vectors in the wind field are incorrect, because

they are discontinuous with the surrounding vectors. The model fit supports this, producing

a nearly linear field with none of the discontinuities. Upon examining all ambiguities for

each wind vector, it is found that there are unused ambiguities which allow the retrieved

field to better fit the model field.

Some wind fields, however, are much more difficult to model. In these cases, it is

unclear if found errors are truly ambiguity errors or if they are the result of noise or modeling

error. One such example is shown in Figure 5.7. There are many apparent discontinuities

and ambiguity errors in this field, so many that it is hard to know if the model actually
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Figure 5.7: Correction process for a field that is difficult to model.

captures the true behavior. The corrected field looks a little more self-consistent, but still

has discontinuous transitions from one wind direction to another. Cases such as this often

arise when they are on the border of a wind front or a storm, which is hard to model because

it naturally has properties that are close to being discontinuous.

Modeling error can also occur in cases of low wind speeds. The C-band signal used on

ASCAT is not as sensitive to low wind speeds as it is to high wind speeds, and low wind speeds

are also more sensitive to noise since they correspond to a lower signal strength. Figure 5.8

shows the percent of the total regions that are above a certain threshold in ambiguity errors

and normalized RMS error. It is clear that the percent of regions with error is high for low

wind speeds. There seem to be two boundary speeds: one at about 7 m/s, and one at about

2 m/s. Below these speeds the error likelihood increases greatly.
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Figure 5.8: Percent of total regions that have at least one ambiguity error (left) and a
normalized RMS error > 0.05 (right) at different RMS wind speeds. The dashed lines are at
2 m/s and 7 m/s, and show two cutoff points below which percent error increases rapidly.

Whatever their cause, errors caused by noise and modeling error may cause ambiguity

errors to be found that are not true ambiguity errors. This is a problem with this type of

ambiguity correction. However, in general, the corrections still produce a more self-consistent

field, which may still have benefits in the wind product.

5.5 Spectrum

The effects of the ambiguity correction on the wavenumber spectrum of the wind field

are analyzed in reference to the spectral properties of ASCAT UHR winds that are discussed

in Chapters 3 and 4 and reviewed in this chapter. Specifically, it is considered if correcting

errors in ambiguity selection affects the spectrum in a way that reduces variation from a

constant k−5/3 spectral slope at high spatial frequencies.

Figure 5.9 shows average spectral data over the month of North Atlantic wind data

that is used in this study. It shows the spectrum for the original retrieved wind, the model

wind, the corrected wind, and the original wind field after being filtered with a 3×3 median

filter. A dotted line is also given as a reference k−5/3 spectrum. The ambiguity correction in

this study appears to at least lessen the high-frequency variations and bring the spectrum

closer to the reference slope. The wind model has a more extreme effect and brings the

spectrum down below the reference. This is to be expected however, as the model only
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Figure 5.9: Average zonal spectrum of the original retrieved UHR wind field (blue), the model
fit of the wind field (green), the wind field with corrected ambiguity errors (red), and original
UHR wind after median filtering (cyan).

includes the most important basis vectors and thus essentially has a low-pass filter effect.

Figure 5.10 shows the differences from the original wind field for both the model and the

corrected wind.

The median filtered wind spectrum is provided in both plots in order to determine how

similar this process is to simply applying a median filter in order to get rid of the outliers and

discontinuities. A median filter is a less complex and computationally intensive procedure

than the model-matching process, so if it produces similar results it may be preferable. The

resulting spectrum is changed in a similar manner to the other two, and is between them

in the magnitude of the difference. It results in a more constant slope than the ambiguity

correction, but this slope may be too steep, showing more similarities to a low pass filter, like

the model spectrum. It significantly reduces the deviation from k−5/3 at high frequencies,

and may warrant further investigation as a viable option for wind correction. The benefit of

ambiguity correction, though, is that it keeps an actual retrieved value for each wind vector.
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Figure 5.10: Change in spectrum between the original retrieved UHR wind field and the
different changed wind fields.

5.6 Summary

There are many causes of noise and inaccuracies in ASCAT UHR wind data. Ambigu-

ity errors are one such source that may be corrected to possibly improve the quality of these

winds. A model-based approach to finding and correcting ambiguity errors has promising

results. Obvious ambiguity errors are easily corrected by this approach, while areas that

are difficult to model are still improved in terms of making the field more self-consistent.

It also appears that the high-frequency spectral characteristics of ASCAT UHR winds are

contributed to by ambiguity errors, and the corrections applied cause the spectrum to more

closely approximate a k−5/3 slope at these high spatial frequencies. A median filter also

appears to benefit the high-frequency part of the spectrum, but it is unclear whether this

approach brings the wind field closer to the true high-frequency wind data, or simply acts

as a low-pass filter.
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Chapter 6

Land Contamination Removal for ASCAT UHR Wind Retrieval

In the previous chapters, ASCAT UHR winds are analyzed, validated, and improved

in terms of ambiguity selection by fitting to a data-derived model. In these processes, wind

vectors near land are largely thrown out or ignored. In Chapter 3, analysis regions are chosen

in the major oceans to avoid coastal areas. In Chapter 4, many of the available regions are in

coastal areas, but the near-coastal wind vectors are not included in the analysis. Chapter 5

likewise does not use near-coastal winds.

In general, backscatter values over land are much higher than those over ocean water.

Any ASCAT measurement over water with an SRF that is too close to land is greatly

affected by the contamination of its ocean σ0 value by leakage from the land σ0 value.

Such a measurement is said to have land contamination. Land-contaminated σ0 values cause

errors in wind retrieval, and for wind vectors to be as accurate as possible land-contaminated

measurements must be excluded from the wind retrieval process [13,26,38].

After providing a more detailed description of land contamination in scatterometer

wind retrieval, this chapter presents a method for identifying land-contaminated ASCAT σ0

measurements and excluding them from the UHR wind retrieval process. It is based on the

method proposed by Owen and Long for the Ku-band QuikSCAT scatterometer [13] and is

tuned for application to the C-band ASCAT.

6.1 Land Contamination

The σ0 value reported for a given scatterometer measurement does not correspond to

a single point. Rather, it is a weighted integral of the backscatter from the target surface

over the extent of the SRF. If the surface varies spatially within that extent, the weighted

average may not correspond well to the properties of the surface at the measurement center.
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Figure 6.1: Land and ocean σ0 distri-
butions for a representative ASCAT SZF
file with 53 000 valid land measurements
and 153 000 valid ocean measurements.

Figure 6.2: The -3 dB contour of a scat-
terometer measurement with an SRF that ex-
tends over land, causing contamination of the
ocean σ0 value.

This effect is very apparent in coastal locations because of the relative σ0 values of land and

ocean water.

Land typically has a much larger σ0 value than ocean water, though the values for both

can vary depending on the land or ocean surface features of a particular location. Figure 6.1

shows an example of land σ0 and ocean σ0 distributions for a representative ASCAT SZF

file with 53 000 valid land measurements and 153 000 valid ocean measurements, excluding

measurements near the coast. In this case there is an 11 dB average difference between land

and ocean σ0. With such a large difference, even if the SRF causes only a small amount of

land backscatter to be averaged into the measurement, the σ0 value may be greatly affected.

This is illustrated in Figure 6.2. In this example a scatterometer measurement is shown with

its center over the ocean, but with an SRF that extends partly over land. This results in

land contamination, and such measurements should not be used to accurately retrieve wind

vectors [13,26].

6.2 Detecting Land Contamination

Several metrics can be used to determine the amount of land contamination for a

particular scatterometer measurement. Two of these are the minimum distance to land

(MDL) and the land contribution ratio (LCR) [13]. The MDL is determined by the shortest
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distance between either the 3-dB contour or the center of a measurement SRF and land. The

LCR takes into account the full SRF to perform a weighted calculation of how much land

contributes to each measurement. This is a more robust method, as it takes into account

more information about each measurement. Owen and Long determined that the LCR metric

has superior results for determining land contamination for QuikSCAT [13], and it is the

metric that is used in this application to ASCAT.

A disadvantage of using the LCR is the need for a precise definition of the sensor SRF.

If this is not available, a simpler method such as the MDL must be used. The documentation

for ASCAT does not provide a detailed description of the SRF [14, 16, 39]. However, the

ASCAT SRF has been estimated by Richard Lindsley [17,40], and this estimate can be used

to calculate the LCR and perform land-contamination removal for ASCAT.

The LCR is the normalized and weighted integral of the land area contributing to

the backscatter for the given measurement. It is calculated as the ratio of the portion of the

measurement over land and the whole measurement, assuming a constant σ0 value over the

whole surface. This can be written as

LCR =
σ0
land

σ0
total

=

∫∫
Aland

Rx,ydxdy∫∫
Ameas

Rx,ydxdy
,

where σ0
land is the measurement land contribution, σ0

total is the whole measurement, Aland is

the area of the measurement over land, Ameas is the area of the whole measurement, and

Rx,y is the SRF value at location (x, y). In practice, this calculation is performed by using

a discrete approximation of the SRF, in which case the equation becomes

LCR =

∑
x,y Lx,yRx,y∑

x,y Rx,y

,

where Lx,y is a land indicator function that is “one” for land and “zero” for ocean at location

(x, y).

The relationship between LCR and σ0 for 73 000 individual ASCAT backscatter mea-

surements is shown in Figure 6.3 for a single representative SZF data file in the Caribbean,

where there is plenty of coastal area for analysis. Figure 6.4 shows a similar plot of MDL for
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Figure 6.3: LCR versus σ0 for represen-
tative individual ASCAT measurements in
the Caribbean. At high LCR values, σ0 in-
creases significantly.

Figure 6.4: MDL versus σ0 for represen-
tative individual ASCAT measurements in
the Caribbean. At low MDL values, σ0 in-
creases.

comparison. As expected, σ0 increases for both metrics when the values denote more land

contribution (higher LCR, lower MDL). The correlation appears more significant for LCR,

suggesting that it is the superior metric for ASCAT, as it is for QuikSCAT.

A threshold LCR value is subjectively chosen based on Figure 6.3. It appears that

σ0 begins to increase significantly above an LCR of about -10 dB. It is found that small

variations in the threshold value have minimal effects on the results, and a threshold of -20

dB is chosen to be safely below the point where σ0 increases. It is important to note that

the ideal LCR threshold may vary depending on the rms wind speed in the region and other

factors. However, if the threshold is chosen to be low enough, a single value will work in all

situations, allowing the calculation to be more simple.

After an LCR threshold is determined, wind retrieval is performed as usual with the

added step of excluding measurements that have an LCR above the chosen value of -20 dB.

A wind vector can only be calculated if there are valid σ0 values for multiple azimuth angles

at the given grid locations. This means that there may be some WVCs near the coast for

which a wind vector cannot be determined. However, there should be valid wind vectors

closer to the coast than can be achieved without detection of land-contamination using the

LCR.
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Figure 6.5: UHR winds before (top) and after (bottom) land-contamination correction. Re-
trieved from ASCAT on 5 Feb 2013 in the Caribbean. Direction arrows are downsampled to
0.25° spacing to increase visibility.
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Figure 6.6: Joint distribution of wind speeds and distance to land for ASCAT L2B winds (top
left), ASCAT UHR winds (top right), and LCR-corrected ASCAT UHR winds (bottom). The
wind data used comes from eight days in the Caribbean in February 2013. The L2B product
masks out wind vectors within 25 km of land to avoid land contamination

6.3 Results

The process described in the previous section is applied to ASCAT UHR wind re-

trieval, and the results are shown in Figures 6.5 to 6.7. Figure 6.5 shows a high-resolution

ASCAT wind field before and after land-contamination correction. The non-corrected image

shows significant land contamination near the coast, with wind speeds much greater than

those in the surrounding wind field. This is typical of any scatterometer wind field that

does not account for land contamination. The corrected image is greatly improved, with the

near-coastal wind speeds generally matching the rest of the wind field. There are still some
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Figure 6.7: Mean (left) and standard deviation (right) of wind speed vs distance to land for
ASCAT L2B, UHR, and LCR-corrected UHR winds.

spots that appear to have possible contamination, but it is small. These are likely due to

modeling and estimation error in the SRF estimate [17,40]. It is also possible that there are

some errors in the reported measurement locations or in the land mask.

The effect of the correction process is further illustrated by considering the variation

of the wind speed distribution with distance to land [13, 26, 38]. Figure 6.6 shows this

relationship for ASCAT L2B, UHR, and corrected UHR winds. The wind data used comes

from eight days in the Caribbean in February 2013, where there is plenty of near-coastal

area. The wind speed mean and standard deviation are shown as well in Figure 6.7. The

low-resolution L2B wind data is shown for comparison. Using a conservative, fixed distance-

to-land mask, the L2B wind field does not include wind vectors that are close enough to

land to have any possible land contamination. Again, the wind speed is shown to increase

greatly close to land for UHR wind before correction. This increase appears to begin about

25 km from the coast. After correction, the distribution appears constant across all distances,

and there are still many wind vectors that are much closer than 25 km to the coast. This

behavior is expected for ocean winds [13,26,38]. The mean variation plot in Figure 6.7 shows

that there is still a slight increase in wind speed right next to the coast, but it is much less

significant, and the standard deviation does not spike as it does before correction. This small

remaining spike in the mean can likely be attributed to modeling error in the SRF estimate.
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6.4 Summary

Land contamination is an important consideration in scatterometer wind retrieval,

and it significantly affects near coastal ASCAT UHR winds. Retrieved ocean wind speeds

increase greatly within about 25 km of land. This is readily seen in both wind field images

and wind speed distributions. Land-contaminated ASCAT σ0 measurements can be detected

and excluded from wind retrieval using the LCR metric, which uses the SRF to determine

how heavily a measurement is affected by contamination.

Results show that using the LCR to remove land contamination significantly improves

the retrieved near-coastal wind vectors. Some of the wind vectors closest to land cannot be

retrieved, but retrieval is possible much closer than the 25 km at which contamination begins.

The wind speed distribution appears constant across all distances to land, although the mean

wind speed plot shows there is still a slight increase at the smallest distances. This is likely

due to modeling and estimation error in the SRF estimate.
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Chapter 7

Conclusion

ASCAT ocean wind vectors are typically retrieved as a 25 km product on a 12.5 km

grid, known as the L2B product. UHR processing allows ASCAT wind retrieval on a high-

resolution 1.25 km grid. This processing method takes advantage of overlapping measure-

ments from the scatterometer footprint. Ideally, such a high-resolution sample grid provides

wind information down to a 2.5 km scale, allowing better analysis of winds with high spatial

variability such as those in near-coastal regions and storms. Though the wind field is sam-

pled on a finer grid, the actual data resolution and noise content of the underlying signal is

unknown. The true resolution and quality of this UHR wind product must be validated in

order to determine its usefulness and potential applications.

This thesis provides an analysis and validation of ASCAT UHR wind estimates in

order to determine the improvement in resolution compared to the L2B wind product. This

is done by comparing to high-resolution SAR wind estimates and by using analysis tools

such as statistics, the power spectrum, and derivative fields. Improvement of the UHR wind

retrieval process is also explored in order to reduce noise and increase the effective resolution.

Improvement is focused on reducing ambiguity selection errors by matching to a data-derived

wind field model. Lastly, a correction process is given for near-coastal wind vectors that are

contaminated by land backscatter.

7.1 Summary of Results

Results suggest that UHR processing improves the data resolution of ASCAT wind

estimates as compared to the standard L2B product. This improvement is difficult to quan-

tify definitively due to a lack of adequate truth data. Evidence is given, however, that the

resolution is improved by at least a factor of a factor of three (from 30 km to 10 km), and
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possibly a factor of seven or eight. Based on comparison to SAR winds, SAR and UHR

wind fields have comparable high-resolution features that are not present in the L2B winds,

validating both products. This validation has limits because of noise and lack of truth data,

but the results suggest that ASCAT UHR winds are a valid high-resolution wind product

that can be used with care in applications that need such additional resolution.

Visual comparison of ASCAT UHR and L2B wind fields reveals that high-resolution

features appear more clearly defined in the UHR images. Contours in the UHR wind speed

images are more detailed with more fine-scale variation. Also, areas of maximum or minimum

wind speed are sometimes more extreme, and details of high-resolution wind events such as

storms are more visible. Lastly, UHR wind processing allows wind retrieval closer to land.

Additional comparison to SAR ocean winds shows comparable high-resolution features in

both UHR and SAR winds that are not present or are less pronounced in L2B winds. This

includes the UHR features described above. The two high-resolution products also appear

to contain more noise.

A spectral comparison between UHR and L2B winds reveals that the k−5/3 power law

slope of ASCAT L2B winds is extended with UHR processing. This supports the validity of

the added resolution of UHR winds. It is unclear, however, how far the spectrum should be

expected to extend. At the highest wavenumbers of the UHR spectrum there appear to be

two locations of deviation from the power law, which can be seen as possible noise floors.

The first deviation may be contributed to by the windowing and irregular sampling in the

UHR wind retrieval process, though it may represent some true wind behavior as well. The

final noise floor likely shows the thermal noise and effects of undersampling. The deviation

starts at about λ = 10 km while the final, noise floor occurs at about λ = 4 km. These are

both a significant resolution improvement compared to the L2B noise floor which is evident

at about λ = 30 km. These noise floor locations suggest a resolution improvement by a

factor of 3 or improvement by a factor of 7.5 with some possible distortion due to UHR

processing or noise for λ < 10 km.

Statistical comparison to SAR winds results in high correlation coefficients and low

standard deviations between SAR and UHR as well as SAR and L2B. These statistics are

slightly better between SAR and L2B, but very close. Such similar statistics are promising
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when SAR and UHR are compared on a much higher resolution grid than SAR and L2B. It

gives evidence that the high resolution information of the data sets agrees just as well as the

low resolution content. Higher individual standard deviations for SAR and UHR than L2B

agree with the previous suggestion of more noise in these product.

Extending the spectral comparison to SAR wind speeds, the SAR spectrum has a

less constant spectral slope than the UHR and L2B spectra. The SAR slope becomes more

shallow at high wavenumbers, deviating significantly from k−5/3. This causes the power

levels at high wavenumbers to be much higher in the SAR wind speed spectrum than in

the ASCAT spectrum, indicating more fine-scale wind variations as well as high noise con-

tent. When direction information is included by calculating the spectra of the zonal and

meridional components of the wind field, the relative magnitudes of the spectra are closer.

The magnitude of the UHR spectrum increases and follows a k−5/3 slope very closely up

to a 10 km resolution, while the SAR spectrum decreases slightly in magnitude and keeps

a less constant spectral slope. This shows the unique benefit of UHR winds in providing

high-resolution direction information. The fact that the spectral slope of the UHR winds

more closely follows a constant k−5/3 slope suggests that this product may more closely

approximate the expected behavior of ocean winds at fine scales than does the SAR wind

product.

An analysis of vorticity and divergence shows additional consistency between UHR

and SAR wind estimates, further validating the high-resolution wind content present in the

UHR product. This comparison is performed by calculating vorticity and divergence at

various grid resolutions for each data set and calculating the power spectrum. The UHR

results at full resolution lie between the SAR results for 3 and 4 km resolution, which is

where the second noise floor in the UHR wind spectrum is located. When the vorticity and

divergence are calculated at exactly the same grid resolution for UHR, L2B, and SAR winds,

the spectra match very well.

The proposed improvement of the UHR wind product applies a model-based approach

to finding and correcting ambiguity errors to ASCAT UHR wind data. Current UHR ambi-

guity selection chooses the ambiguity closest to the L2B wind vector. This works fairly well,

but can be improved. Model-based correction easily finds and corrects obvious ambiguity
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errors, while areas that are difficult to model are still improved in terms of making the field

more self-consistent. The corrections cause the spectrum to more closely approximate a

k−5/3 slope at high wavenumbers, better following the expected behavior of ocean winds.

Lastly, land-contamination correction significantly improves the performance of UHR

wind retrieval near the coast. Land contamination has not previously been addressed for

ASCAT UHR winds. The LCR metric is used to detect the amount of land contamination

for a given σ0 measurement and those above a certain threshold are excluded from the wind

retrieval process. Some of the wind vectors closest to land cannot be retrieved, but retrieval

is possible much closer than the distance of 25 km at which land contamination begins.

There is still a small small amount of apparent land-contamination error, but this is likely

due to modeling and estimation error in the SRF estimate.

7.2 Contributions

The previously summarized results provide specific contributions to science and en-

gineering. The main contributions of this thesis are as follows:

1. The power spectrum is used to compare wind products and analyze their resolution

content. This spectral comparison and analysis provides a unique method of validation

for ocean wind data. It enables the data to be compared to expected properties of

ocean winds even though there is no truth data. It allows the data be analyzed and

compared according to the power levels at different spatial scales. This spectral analysis

is additionally performed on the vorticity and divergence fields, allowing the benefits to

be extended to derivative fields and enabling further investigation of spatial behavior

and resolution.

2. Although the resolution improvement of ASCAT UHR winds cannot be precisely quan-

tified due to a lack of truth data, the results obtained suggest improved resolution of

UHR winds compared to L2B and provide quantitative values for the level of that im-

provement. Evidence is shown that the UHR product contains valid wind data down

to at least λ = 10 km, and perhaps down to λ = 3 or 4 km with possible distortion for

λ < 10 km. This is a significant improvement in either case and suggests that UHR
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wind data may be useful for applications that require wind vectors on a finer scale

than is typical of scatterometer winds.

3. Comparison between ASCAT UHR and ASAR wind fields provides an analysis of two

high-resolution wind products that are retrieved differently using different instruments.

There are issues in such a comparison, including the noise content of the data sets. The

tradeoff between noise and resolution reduces the effectiveness of statistical comparison,

although it can still provide useful information. Nevertheless, much is learned from

comparing UHR and SAR winds, especially the presence of common fine-scale features,

the similarity of their comparative statistics to that of L2B and SAR despite being

compared on a finer scale, the added benefit of high-resolution direction information

in UHR winds, the compatibility of the UHR product with the expected spectral

properties of ocean winds, and the similarity of the derivative fields in both data sets.

4. Techniques for improving wind retrieval that have previously been applied to other

scatterometer wind products are applied to the ASCAT UHR wind product. The im-

provement of ambiguity removal using data-derived modeling allows obvious ambiguity

errors to be found and corrected and increases the self-consistency of the wind field.

The removal of land contamination from near-coastal wind vectors significantly im-

proves the UHR winds in those near-coastal areas, allowing accurate wind retrieval

much closer to land and greater visibility of high-resolution wind features near the

coast.

7.3 Future Work

The ASCAT UHR wind product may continue to be analyzed, validated, and im-

proved. The methods presented in this thesis may be expanded or new methods may be

explored. Some suggestions for future work include the following:

1. In Chapter 3, a brief analysis is performed of the regional variation of the ASCAT UHR

wind spectrum, which suggests that the region has no visible effect on the effective

resolution of the wind field. This issue can be explored further by changing the region
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definitions or including additional regions. Additional regions may include equatorial,

polar, or near-coastal regions.

2. Although high-resolution wind products are relatively uncommon, additional products

may be found and included in the comparison besides ASAR. The Alaska SAR Demon-

stration Project, from which the ASAR wind product is acquired, includes some wind

estimates from other SAR instruments. These include the Canadian RADARSAT SAR

and the European TerraSAR-X, which are both satellite-based SAR instruments [33].

The provided winds from these different SAR instruments do not tend to overlap in

time. Nevertheless, these or other high-resolution ocean winds may be investigated

and compared to the results in this thesis.

3. Only one model-based ambiguity selection improvement method is explored. Other

wind models or improvement methods can be investigated to judge any possible further

improvement to the UHR wind product. Such methods may include spatial filters,

adjusted windowing and gridding, or other wind models based on different data sets

or wind parameters.

4. The land-contamination correction process may be enhanced by improving the SRF

estimate used to find the LCR. Errors in land-contamination removal have been at-

tributed to modeling and estimation error in the SRF estimate used. The model used

is described in detail by Lindsley, along with its limitations and more precise models

and approximations [17,40,41]. A more precise model is expected to improve the cor-

rection process. Such an improved SRF estimate may also improve UHR wind retrieval

in general.
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Appendix A

Undersampling vs Noise in a Power Law Spectrum

When analyzing a signal based in its power spectrum, it is important to understand
how noise and sampling may affect the the shape of the spectrum. The ocean wind products
studied in this thesis contain noise, but their spectrum may also be affected by the manner
in which they are sampled. This appendix explores these issues for a signal that follows the
power law, such as ocean winds.

A.1 Noise

Any signal generally contains noise if it is measured by some real instrument. This
is an important consideration when analyzing the power spectrum of a signal that follows a
power law. Such a signal has a spectrum that decreases as a constant power of frequency. If
the noise is white, it does not affect the signal at low frequencies where the SNR is high, but
at high frequencies a noise floor may appear as the SNR decreases due to the signal power
decreasing. This is illustrated in Figure A.1 using a log-scale plot. A example of a signal
that follows a power law is an ocean wind field. Ocean winds are expected to have a spatial
power spectrum that approximates a k−5/3 slope, where k is the wavenumber.

A.2 Undersampling

There is another phenomenon that may cause an apparent noise floor behavior in the
power spectrum of discretely sampled ocean winds. If we assume that the k−5/3 spectrum
extends farther than the Nyquist rate, which is half the sampling rate, then the signal will
be undersampled. The effect will be small because at high wavenumbers the power is very
low, but an effect could still likely be seen. This is illustrated in Figure A.2 for a general
decreasing spectrum. It can be seen that at high frequencies there is an “apparent noise
floor” which is not really noise, but is due to the effect of aliasing.

A.3 Experiment

In order to illustrate the effects of undersampling on a signal following the power law,
such as ocean winds, an ideal k−5/3 signal is artificially generated and then undersampled.
Experiments are performed by filtering the signal before sampling. This is done in an attempt
to recreate some of the effects of the wind retrieval process. In this process (1) individual σ0

measurements are a weighted integral of the true signal over some area, (2) measurements are
averaged into a grid, and (3) median filtering is used in ambiguity selection. An averaging
filter and a median filter are used on the original signal and the result is downsampled by
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Figure A.1: Illustration of the effect of white noise on the single-sided spectrum of a signal
following the power law. Axes are on a log scale.

Figure A.2: Illustration of the expected effect of undersampling on a decreasing power spec-
trum. Sampling causes the signal to be repeated in the spectral domain. The tail of the
spectrum will overlap if the spectrum extends past half the sample rate (Nyquist). This over-
lap will cause the signal to positively interfere and produce aliasing, which may show up as an
apparent noise floor.

taking every other sample. The various spectra are shown in Figure A.3. Note that no noise
is included in either the signal or the processing.

The figure demonstrates that downsampling appears to create the effect of a noise
floor. Filtering before sampling reduces the power increase, but the change in shape of
the spectrum tail can still be seen. This experiment illustrates that undersampling may
contribute to the appearance of a noise floor in the ocean wind power spectrum at high
wavenumbers.
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Figure A.3: A k−5/3 signal with various forms of filtering and downsampling. The averaging
filter has an impulse response that is a rect of length two, the median filter is of width three,
and downsampling is performed by taking every other sample.
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