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Abstract - Although electromagnetic waves are
very different from waves in fluids, correlations
can be drawn between the two. The common
fluid waves considered are longitudinal and trans-
verse waves, characterized by motion either par-
allel or perpendicular to the direction of prop-
agation. Acoustic waves are longitudinal waves
which have limited similarities to transverse elec-
tromagnetic waves, while shallow water waves are
characterized by transverse motion of the fluid.
Strong analogies can be drawn between shallow
water waves and electromagnetic waves. Equa-
tions for electromagnetic waves and shallow wa-
ter waves are derived in this paper and a common
mathematical form is found to comprise both
types of waves. The general form is then exam-
ined for several cases as the parameters of the
equation are varied. Such examination reveals
the similarity between the theories.

I. INTRODUCTION

Electromagnetic (EM) waves have frequently been
discussed by analogy with waves in fluids. The major
difficulty with this analogy is that while EM waves
are transverse (that is, the fields are perpendicular
to the direction of wave propagation), acoustic waves
are longitudinal (the analogy between acoustic waves
and electromagnetic waves is explored in (Staelin, et
al, 1994)). On the other hand, examination of shal-
low water (SW) wave theory reveals a strong analogy
with EM waves since they are transverse. SW the-
ory is an approximation of wave behavior with severe
limitations placed on the transmission media, specif-
ically that the fluid depth is very small compared to
horizontal deviations (Pedlosky, 1987). Such an as-
sumption implies that the fluid density is constant
with time; this forbids acoustic waves.

To describe a wave in SW theory, we first present
the geometry of the system. In Fig. (1) a layer of
fluid has been plotted in a coordinate system where
the horizontal plane is the 2-y plane and the vertical
direction corresponds to z. e bottom boundary
of the fluid is a solid floor described by the function
hp, indicating some height above a constant abso-
lute bottom. gI‘he surface of the fluid is a distance
H above the bottom. We can consider the surface
when no waves are present, so that the surface is
some nominal distance Hy above the bottom; then
waves can be described as riding on the nominal sur-
face. By considering the shallow water case, we have
restricted our universe to two dimensions; that is,
we require that the nominal depth is much shorter
than a wavelength, specifically, Hy < 0.07A (Kundu,

1990).

VAVAYS
=

10
Figure 1. Geometry for shallow water waves
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A wave in EM theory is described in terms of
either E or H, the electric or magnetic field in-
tensity, which is a vector field in three dimensions.
To restrict this to two dimensions, consider an EM
wave linearly Folarized so that H has only a z com-
ponent, travelling in the z-y plane. In this two-
dimensional universe, the three-dimensional field is
simply a scalar function describing the intensity at
a point (z,y).

In the next section, wave equations will be derived
for shallow water theory and for electromagnetic the-
ory. Section III will examine these equations for a
few special cases to reveal some correspondences be-
tween the theories.

II. DERIVATION OF THE WAVE EQUATIONS

Maxwell’s laws govern EM theory, and from them
an equation describing the motion of a wave can be
derived. Similarly, fundamental conservation laws
govern fluid dynamics, and these yield a wave equa-
tion for waves in fluids. To yield the shallow water
approximation, we restrict the fluid dynamics wave
equation to low-amplitude waves to yield linear be-
havior, require that the density of the fluid is con-
stant in time, and that the fluid depth is small com-
pared to a wavelength. In this section, we derive
wave equations, using the assumptions stated. From
the equations, we see that a single equation can be
written as a generalization for both.

A. EM Wave Fquations

The governing equations of EM theory in a source-
free region are Maxwell’s laws:

VxE = —%% (1)



V.-D = 0 (3)
V.B = 0 (4)

To find a wave equation, we must also specify some
constitutive relations for the field quantities; for lin-
ear media:
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The parameters, € and 7 are, in general, complex
tensors which depend on frequency and are deter-
mined by the properties of the material through
which a wave is progressing. To simplify the dis-

cussion, let 7 be a constant scalar.

For the simple case of € equal to a constant, a
wave equation can be derived for the magnetic field
assuming time-harmonic waves and two-dimensiona

flow (so that % = —iw and -6?—2 =z)
0’H §*°H w*?
—+ 5=+ =H=0, 7
dz? o ay? G c? (M

where ¢ = (ue)~!/? is the speed of light squared.
An electron plasma is dispersive, with permitivity
depending on the frequency

e(w) = € ( - :—g) ; (8)

With this form for the permitivity, the wave equation

becomes
O O
H=0. 9
dz? + dy? +( c? ) )

Let’s further complicate the plasma by applying

an external magnetic field, By in the z direction (a
gyrotropic medium). This requires the permitivity
to be expressed as a complex tensor:

where
€ = € [1 - (w+§u§):| (10)
€ = € [QT(:T;J—%%J (11)
£, = Eo( = :—g) (12)
O = A2 (13)
m

A complete description of the wave equation would
obviously be complicated, but it would certainly re-
sult in a complex equation. The solution, based on a

magnetic field in the z direction and proEagation in
the z-y plane, is two waves travelling in the same di-

rection but with different dispersion relations (Kong,
1990). Specifically,
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where k£ and k. are found from the inverse of the
permitivity tensor.

B. SW Wave Equations

The fundamental equations of motion for a fluid are
based on conservation of mass, momentum and en-
ergy (Pedlosky, 1987). The density of the fluid is
specified by p, while u describes the flow velocity
in three dimensions. The pressure is represented by
p, and ¢ describes conservative body forces such as
gravity. §2 is a vector describing the rotation of the
earth so that the coriolis effect can be included. For
the special case that friction is neglected and the

density is considered constant with time, %ﬁi =0,

only two equations are needed to specify the equa-
tions of state, namely

V.u = 0

w? = (k+5:) £ (k—k;)], (14)

(15)

du (16)
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These equations are still harder than we want to
solve. If we make some approximations to neglect
some terms then the eiuations should still be general
enough to be applicable to a wide class of problems,
but simple enough to be tractable.

Now we assume that the only bodﬁ force, ¢, is
gravity. The coriolis parameter describes the effect
of the earth’s rotation and is defined as f = 2{2sin 4,

and the total derivative is expanded as %‘f = %% +
uV-u. The hydrostatic approximation suggests that

the pressure at any point 1s equal to the weight of the
column of fluid above that point, plus a constant, py

P(may»z:t)ng(hfz)+P0- (17)

Further, assuminﬁ that the vertical height of the
fluid is much smaller than the horizontal extent, the
horizontal components of the fluid velocity become
independent of z. The boundary conditions require

that w = 0 at the bottom (z = hp) and w = 92 at

the surface. Defining the total depth as H = h— hp
allows the conservation equations to be rewritten as

OH 8 9,

W+B_I(UH)+@(UH) = 0 (18)
du du du 6h
E??+ua—x+v%—fv+g-é; = 0 (19)
v dv v h
E+H5;+Ua—y+fﬂ+ga—y = 0 (20)

Allowing a time-varying disturbance on the surface
suggeSt’S deﬁning H(zl ylt) = Ho(:ﬂ, y) + 1](11 v, t)
where 7 is the height above the nominal value of the
fluid depth, Hy, at a point:
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du ou  Ou on
(—?t-+u-é;+v-5§—fv+gaz = i (22)
dv dv dv on
§+u8_z+uﬁ+fu+g6y = 0. (23)

These are non-linear equations which can be used
(theoretically) to obtain the surface disturbance and
horizontal velocities of the fluid. In practice, this
is a very difficult problem, but a linear approxima-
tion still provides considerable insight. To linearize
them, we consider only small amplitude variations
so higher order terms can be ignored:

dn a a _

E—)— 32 (uHo) + 5(1’1{0) =0 (24)
du on .
-(:3? - fU + ga—z = 0 (20)
dv on
a + fu+ g% = 0. (26)

A differential equation in the single variable 7 can
be obtained by manipulating these three equations:

% [(% + fa) n—V-(C§Vn)
—g9fJ(Ho,n) =

where C2 = gHy and the Jacobian term is defined
as:

0 (27)
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The velocities u and v can be found as solutions
to the following differential equations:

8* 9 8%y dn
(ﬁw)u —g(azat+f$), (29)

a2 a? an
(B?Jrf‘*)v —g (ﬁ%ﬂa—z). (30)

Equation (27) provides the time-varying wave dis-
placement, 7, in terms of the coriolis parameter, f,
the fundamental speed, Cp, the gravitational con-
stant, g, and the nominal surface height, Hy, all of

which are constants at a point (z,y). As with EM,
we will assume time-harmonic waves in rectangular
coordinates to simplify the equation.

J(A, B) (28)

C. Generalized Wave Equations

The phenomenon of waves has been observed in
many realms of science, and various equations have
been used to mathematically model the behavior.
The equation for EM and SW waves can be writ-
ten in a generalized form, assuming time-harmonic
waves:

2 2 Y/
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dz? = 9y? Oz
+As3v = 0, (31)

where 1 represents the field of interest, and the con-
stants, Ay, A;, and A3, depend on the constitution
of the medium.

For shallow water theory, ¢ relates to n, the fluid
height above some nominal value and the constants
are

f 0H,
Ay = —wHo‘E (32)
_ f dHy
A2 = wHy Oz (33)
_ w'.)_fz
A; = ( c ) (34)

For electromagnetic theory, the wave equation is
derived from Maxwell’s Laws. The constants for
electromagnetic theory will depend on the medium,
as did the shallow water constants, and solutions to
the wave equation will be similar. For example, the
constants

A, = 0 (36)

w? —w?
Az = ( = P) (37)

apply to isotropic media, including dispersive
(plasma-like) media by allowing w, to be non-zero.
For more complicated media (such as anisotropic),
the constants are more complicated.

III. SOLUTIONS TO THE WAVE EQUATION

In this section, we will examine the general equa-
tion for waves, Eq. (31), specifically for various SW

circumstances, and see how these correspond to EM
circumstances.

A. Plane Waves with A{ = A, =0

Requiring that Ay = A; = 0 su Eests for SW that
the bottom is flat, while for EM % at the medium is
isotropic, but possibly dispersive. The generalized
wave equation [Eq. (31)] becomes

Y 8%y _
922 +-6"!';—2'+A31,[)—0. (38)

Assuming the solution is separable as ¥(z,y) =
X(z)Y (y), then

X”

< =1 (39)
Y.H 3
7 = _753 (40)

where 7; and v, are complex constants. The solu-

tions to these second-order differential equations in
an unbounded medium are plane waves, so the full

solution, ¥(z,y) = tge~7=*~7¥¥ represents a plane
wave traveling in the z-y plane.

The constants v, and v, are the propagation con-
stants in the z and y directions, respectively; they
must satisfy the constraint that v2 + ‘792, + A3 = 0.
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Figure 2. The dispersion diagram when Hp is a constant
(for various values of f)

In general, v, and -y, are complex. If they are real,
we have the uninteresting case of attenuation (un-
interesting because we are interested in waves that
propagate a long distance). But if these constants
are imaginary, v; = ik, and 7y, = iky, then the

\/ k2 + ki = /A3 is real; the
phase velocity of the wave is defined as the frequency

divided by the wavenumber, w/+/A3. Using the vari-
ables from the electromagnetic case,

wavenumber, k =

C

Up = ————. (41)
l— (“’p/w)

The dis}p;ersion relation provides the relationship be-
tween the frequency, w, and the wavenumber, k; this
1s found from As,

w? = w;;’ + k2 (42)

The phase velocity and dispersion relation clearly
correspond to EM wave propagation in a parallel
plate wave guide in the TMg mode (also called the
TEM mode) with dispersion. Figure (2) shows the
wavenumber as a function of frequency. The cutoff
frequency is not normally seen in the TEM mode,
though 1t does appear in rectangular waveguides
where additional boundary conditions constrain the
wave. The coriolis parameter or plasma frequency
provides an additional constraint manifest in a cut-
off frequency.

In SW theory, the dispersion diagram describes
Kelvin waves (the mode with no cutoff fre-
quency, corresponding to the dispersionless case)
and Poincare modes where the cutoff frequency de-
pends on the coriolis parameter.

B.  Plane Waves with Ay #0

Generalizing to allow A, to be negative implies for
SW that the fluid bottom slopes in the positive y di-
rection, and for EM that the medium is anisotropic.
Note that with a simple coordinate rotation, this is

the same case as A5 # 0. Equation (31) (the general

wave equation) becomes

%y 8% ..

w + ayz - lAla—z + Azy = 0. (43)
Again, assuming the non-attenuating solution
¥(z,y) = e "(k=T+kv¥) the dispersion relation is

k2 + k2 — Ark: — A3 = 0. (44)

If the wave is travelling up the slope, k; = 0, and
we have simply that k] = A3. That is, this is sim-

Ely the wave travelling at its characteristic velocity
ased on the paramters of the fluid. However, if
the wave is travelling across the slope, k, = 0, then

k; = 4t +1/(41)” + A3. This implies that travel-

ling across a slope in the positive z direction allows
two possible speeds of propagation. While not a di-
rect analogy with gyrotropic media, this does show
similar behavior in t,{nat there are two types of waves.

IV. DISCUSSION

The wave equations based on electromagnetic the-
ory and shallow water theory have been examined
and, upon examination, the similarities between the
theories are striking.

The general form of a wave equation applies quite
well to both theories. Because we are looking at
travelling waves, we would expect each theory to
have a frequency, w, and a fundamental speed based

on the parameters of the medium, ¢ = (ue)~'/? or

Co = v/gHy. But what is rather surprising is the cor-
respondence between dispersive materials. Because
SW is subject to the rotation of the earth, an addi-
tional constraint based on the coriolis parameter, f
establishes a cutoff frequency below which waves will
not prqpagg.te. Similarly, plasma-like EM media are
dispersive based on the plasma frequency, w,. The
mathematical forms of these effects are identical.

In EM theory, gyrotropic materials are cumber-
some to deal with mathematically and difficult to
visualize intuitively. While the analogy is not exact,
SW waves which depend on the topography of the
bottom provide a similar type of effect in that mo-
tion across the slope yields two types of waves; that
is, two waves with different speeds.

SW theory provides strong intuition for EM the-
ory because we can see water waves and recognize
that the fluid height corresponds to the magnetic
field intensity of a similar EM problem. The general
wave equation is readily applied to bounded systems
?uc%%s rectangular waveguides for EM or channels
or :
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