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Abstract— This paper compares the peak SNR and the point 
target impulse response function of stripmap SAR data processed
with the well-known Omega-k algorithm and ideal matched
filtering. The impulse response function resulting from Omega-k
is distorted and stretched in azimuth compared to a matched
filter. The distortion depends on the amount of frequency shift
required in the Stolt mapping step. In at least some cases, the
range resolution is improved compared to matched filtering at
the expanse of additional azimuth interference. 

I. INTRODUCTION

The so-called Omega-k algorithm is commonly used for
processing raw stripmap synthetic aperture radar (SAR) data
into backscatter images. While the algorithm is well-known
[1], [2], [3], [4], a number of its features are not fully
recognized. In this paper we explore a number of aspects of
the algorithm, including the peak signal-to-noise ratio (SNR)
and the behavior of the point-spread function. For example,
the Omega-k algorithm does not achieve the same SNR as an
optimum matched filter.

It is shown that the focused point spread function obtained
with the Omega-k algorithm differs from the output of a
matched filter. Compared to optimal time-domain processing,
the sidelobes and mainlobe of the point target response are
stretched by the Omega-k algorithm. However, the amplitude
of the Omega-k sidelobes is somewhat lower than that ob-
served for the optimum matched filter. The impact of these
observations on potential interference with nearby scatterers is
considered. We propose a modification of the algorithm which
enables it to achieve optimum peak SNR.

II. BACKGROUND

Figure 1 illustrates the geometry for stripmap SAR. We
consider only straight-line motion and broadside imaging.
With this geometry, it can be shown that the range-compressed,
time-domain SAR signal for a point target at (x0, y0, z0) with
a slant range of closet approach (SRCA) r at an azimuth of z0,
can be expressed exclusively in terms of the spatial variables
ρ (slant range) and z (azimuth displacement) as [5]

v(ρ, z) =
C

[r2 + (z − z0)2]
2 A

(
z − z0

r

)

·

hρ

(

ρ −
√

r2 + (z − z0)2
)

· (1)

e−j2πfρ0

√
r2+(z−z0)2ejφtarget ,

Fig. 1. An illustration of the three dimensional geometry for stripmap SAR
sensors. The slant range of closest approach is denoted r.

where C is a constant which includes the transmit power,
the target’s radar cross-section, the radar wavelength, and the
1/(4π)3 term; A(·) is two-way antenna gain; hρ(·) is the net
effective system range filter response function (including range
chirping); fρ0 = 2f0/c is constant defined as twice the radar
carrier frequency f0 in cycles per meter; and φtarget is the
target phase.

Taking the two-dimensional Fourier transform in slant range
and azimuth of Eq. 1 using the principle of stationary phase
(POSP), the signal in the spatial frequency domain is [5]

V (fρ, fz) = C

[
(fρ + fρ0)

2 − f2
z

] 5

4

r
7

4 (fρ + fρ0)3
·

A

(

fz
√

(fρ + fρ0)2 − f2
z

)

Hρ(fρ) · (2)

e−j π
4 ejφtarget e−j2πr

√
(fρ+fρ0)2−f2

z−j2πfzz0 .

where fρ is range frequency, fz is azimuth frequency, and
Hρ(fρ) is the Fourier transform of hρ(ρ). The first exponential
corresponds to a delay term.

The frequency domain support of the SAR signal is entirely
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Fig. 2. Comparison of the frequency domain support of the SAR signal
before (blue trapezoid) and after (red curvilinear shape) the Stolt mapping,
illustrated for the case of an L-band SAR system with a 60 degree beamwidth
and a 500MHz range chirp. Note that due to the Stolt mapping, the effect of
the Omega-k algorithm is to move energy in the range frequency direction
from one location in the frequency domain to another, i.e. moving point A to
point B.

determined by Hρ(fρ) and the antenna gain A(·). The range
frequency filtering function Hρ(fρ) is a function only of
range frequency, and limits the support of the function in that
dimension. The antenna weighting function limits the azimuth
frequencies; however, we note that such limits depend on the
range frequency as well as the azimuth frequency. Figure 2
illustrates the 3 dB spatial frequency domain support of the
SAR signal.

A. The Omega-K Algorithm
The Omega-k algorithm was first applied to SAR by [1].

An alternate signal processing development of the algorithm
is presented in [3]. While the details vary between implemen-
tations, the Omega-k algorithm requires a change of variables
in the frequency domain referred to as Stolt mapping [6]. This
mapping reduces the phase variation in the frequency domain
to phase ramps which center the signal around its azimuth
position and the SRCA of the target, a result very similar to
that of the matched filter.

From the last term in Eq. 2, the relevant portion1 of the
frequency domain phase is

θ2dfft = −2πr
√

(fρ + fρ0)2 − f2
z − 2πfzz0 (3)

and consists of two terms. The last term in Eq. 3 is the linear
ramp desired to center the signal on the azimuth position of
the target. While the first term is a function of the target’s
SRCA, it is not a linear phase term and cannot be altered
using phase multiplies because the SRCA r for the target is

1There are additional phase terms in Eq. 2, but they are constant or are
associated with the antenna pattern. Antenna phase terms are not compensated
for by the Omega-k algorithm.

unknown. This term is changed into a linear phase ramp by a
change of variables according to

√

(fρ + fρ0)2 − f2
z = f̃ρ + fρ0, (4)

which is the Stolt mapping, a 1-dimensional process (see
Fig. 2). The signal is mapped from frequencies fρ to f̃ρ

where the mapping depends on the value of fz. Performing the
change of variables according to Eq. 4 reduces the frequency
domain phase to

θ2dfft = −2πr(f̃ρ + fρ0) − 2πfzz0

= − 2πf̃ρr
︸ ︷︷ ︸

SRCA Delay

− 2πfzz0
︸ ︷︷ ︸

Azimuth Delay

− 2πfρ0r,
︸ ︷︷ ︸

Carrier Phase

(5)

where the first term is a shift in the range direction, the second
is a shift in the azimuth direction, and the last is a constant
phase term associated with the SRCA. Often ignored, the last
term is of interest for interferometric SAR.

The Omega-k algorithm is an interesting approach to the
problem of focusing the raw SAR data. In the frequency
domain a matched filter cannot be applied because the signal
is range dependent. Instead, the Omega-k algorithm moves the
frequency domain signal to a new position in the frequency
domain as illustrated in Fig. 2 where the phase is appro-
priate for forming an image (focusing the target) using the
inverse Fourier transform. Even though the phase modulation
in the frequency domain depends on the target’s SRCA, the
frequency domain mapping necessary to focus the data is the
same regardless of the target’s SRCA. The Omega-k algorithm
exploits this relationship to focus the SAR data.

III. ALGORITHM ANALYSIS

While the Omega-k is not an exact matched filter, with
a simple modification, the Omega-k algorithm achieves a
SNR that, aside from possible POSP approximation errors,
is the same as that achieved by a matched filter. Note that
while a matched filter achieves compression by frequency
domain multiplication, the Omega-k algorithm avoids this by
moving the frequency domain signal from one location in
the frequency domain to another via the Stolt mapping. This
difference in approach has an effect on the focused impulse
response as explored in the following.

A. Peak SNR

In the space domain, the ideal matched filtered signal corre-
sponding to a point target at (r, z0) can be computed from the
frequency domain signal given in Eq. 2. The frequency domain
signal is factored into constant target-dependent components,
linear frequency ramps in range and azimuth, the range
frequency response, and other spatial frequency-dependent
response terms. The matched filter frequency response cor-
responds to the complex conjugate of the latter. Applying this
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matched filter frequency response to Eq. 2 yields,

V (fρ, fz) =

∣
∣
∣
∣
∣

((fρ + fρ0)
2 − f2

z )
5

4

r
7

4 (fρ + fρ0)3
·

A

(

fz
√

(fρ + fρ0)2 − f2
z

)∣
∣
∣
∣
∣

2

Hρ(fρ) ·

ke−j π
4 ejφtarget ·

e−j2πfρr−j2πfρ0r−j2πfzz0 , (6)

where the bottom terms are the phase ramps and constant and
target terms. This is the frequency response of a point target.

Evaluating the inverse Fourier transform at the position of
the target (r, z0) yields

v(r, z0) =
k

r
7

4

e−j π
4 ejφtarget e−j2πfρ0r

∫
∞

−∞

∫
∞

−∞

Hρ(fρ)

∣
∣
∣
∣
∣

((fρ + fρ0)
2 − f2

z )
5

4

(fρ + fρ0)3
A

(

fz
√

(fρ + fρ0)2 − f2
z

)∣
∣
∣
∣
∣

2

dfρdfz,(7)

which is the ideal matched filter complex image pixel value
for the target. Note that the linear phase ramps in Eq. 6 are
canceled by the exponentials of the inverse Fourier transform.

In contrast, to compute the Omega-k output at the pixel, the
Stolt mapping is applied to the frequency domain represena-
tion in Eq. 2. Then, the inverse Fourier transform is computed
and evaluated at the target location. After Stolt mapping is
applied, Eq. 2 becomes [5]

V (f̃ρ, fz) = k
(f̃ρ + fρ0)

5

2

r
7

4 ((f̃ρ + fρ0)2 + f2
z )

3

2

·

Hρ

(√

(f̃ρ + fρ0)2 + f2
z − fρ0

)

·

A

(

fz

f̃ρ + fρ0

)

e−j π
4 ejφtarget ·

e−j2πf̃ρr−j2πfρ0r−j2πfzz0 . (8)

The inverse Fourier transform (focused image) evaluated at the
target location (r, z0) can be expressed as

v(r, z0) =
k

r
7

4

e−j π
4 ejφtargete−2πfρ0r ·

∫
∞

−∞

∫
∞

−∞

Hρ

(√

(f̃ρ + fρ0)2 − f2
z − fρ0

)

·A
(

fz

f̃ρ + fρ0

)

(f̃ρ + fρ0)
5

2

((f̃ρ + fρ0)2 + f2
z )

3

2

· |f̃ρ + fρ0
|

√

(f̃ρ + fρ0)2 + f2
z

df̃ρdfz, (9)

where the last line contains the Jacobian term for the change
of variables, and the linear phase ramps in Eq. 8 are canceled
by the exponentials of the inverse Fourier transform.

To simplify comparison with the matched filter output, the
Stolt mapping is reversed to yield

v(r, z0) =
k

r
7

4

e−j π
4 ejφtarget e−2πfρ0r ·

∫
∞

−∞

∫
∞

−∞

Hρ (fρ) A

(

fz
√

(fρ + fρ0)2 − f2
z

)

· ((fρ + fρ0)
2 − f2

z )
5

4

(fρ + fρ0)3
dfρdfz. (10)

The key differences between the matched filter (Eq. 7) and
Omega-k (Eq. 10) algorithms occur in the integral. Using
the known antenna azimuth gain pattern, the integrand in the
Omega-k result can be multiplied by

A∗

(

fz
√

(fρ + fρ0)2 − f2
z

)

((fρ + fρ0)
2 − f2

z )
5

4

(fρ + fρ0)3
(11)

to yield the same result as the matched filter. Thus, the
modification of the Omega-k algorithm by multiplying the
Stolt interpolated signal by Eq. 11 achieves the same peak
signal power as the matched filter, within the limitations of the
errors in the POSP approximation used to derive the azimuth
Fourier transform. Fortunately, this not generally a significant
limitation and the achieved peak signal power is valid for
targets appearing at all SRCA values.

B. Stolt Mapping
While the modified Omega-k algorithm achieves an SNR

similar to that of the ideal matched filter, the spatial response
functions are not the same since, as previously noted, the
matched filter uses frequency domain multiplication, while
the Omega-k algorithm moves energy around in the frequency
domain via Stolt mapping. Here we explore the differences
between the two resulting point spread functions.

In the following, the effects of different design choices on
the magnitude of the Stolt mapping are evaluated in two steps:
first, the values of fz and fρ which result in the largest shift are
identified; then, the effect of the azimuth bandwidth and the
radar carrier frequency is developed. As previously noted, the
Stolt mapping shifts energy from the original range frequency
fρ to the new range frequency f̃ρ according to

f̃ρ =
√

(fρ0 + fρ)2 − f2
z − fρ0. (12)

When fz = 0, f̃ρ is equal to fρ. For other values of fz,
f̃ρ is less than fρ. While the difference between them is
greatest for the maximum value of fz, that maximum value
of fz varies for different values of fρ. Note that fz,max =
(fρ + fρ0) sin(φmax) where φmax is the maximum angle at
which the target is seen by the antenna2. Using this value for
fz in Eq. 12 yields

f̃ρ =
√

(fρ + fρ0)2 − (fρ + fρ0)2 sin2(φmax) − fρ0

= (fρ + fρ0) cos(φmax) − fρ0, (13)

2The exact choice of maximum is not critical for the discussion.
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so the difference between fρ and f̃ρ is

fρ − f̃ρ = (fρ + fρ0)(1 − cos(φmax)). (14)

For a fixed maximum angle, the magnitude of the Stolt shift
is greatest for the largest value of fρ. Thus, the Stolt mapping
which corresponds to the largest frequency domain shift is

f̃ρ,max =
√

(fρ,max + fρ0)2 − f2
z,max − fρ0, (15)

where fρ,max is the maximum range frequency, and fz,max is
the corresponding maximum azimuth frequency.

Following the idea of the Q of a filter, which is the ratio
of the filter bandwidth to the center frequency, we define the
Omega-k Q as the the ratio of the magnitude of the Stolt shift
to the range bandwidth,

Q =
fρ,max − f̃ρ,max

fρ,max

=

(

1 − f̃ρ,max

fρ,max

)

(16)

= 1 − 2

√
(

1

2
+

fρ0

2fρ,max

)2

−
(

fz,max

2fρ,max

)2

+
fρ0

fρ,max

,

where an increase in the value of Q is associated with a
more significant shift. Note that the actual values of azimuth
bandwidth and radar carrier frequency are not important.
Instead, it is their value relative to the range bandwidth.

The maximum azimuth frequency fz,max appears in Q
only under the radical term, and increasing the ratio of the
maximum azimuth frequency to the range bandwidth increases
the value of Q. The radar carrier frequency, on the other hand,
appears in two terms which have opposite effects on Q. The
net effect of increasing the radar carrier frequency to range
bandwidth ratio is a decrease in the relative magnitude of the
Stolt shift. This is illustrated in Fig. 3.

In summary, the significance of the Stolt mapping is related
to two ratios: the ratio of the carrier frequency to the range
bandwidth, and the ratio of the azimuth bandwidth to the
range bandwidth. For the purposes of comparing two systems,
the ratio of the azimuth bandwidth to the range bandwidth
is effectively the ratio of the azimuth resolution to the range
resolution. This ratio is greater than one for systems with an
azimuth resolution which is higher than the range resolution.
While the total effect of the Stolt mapping depends on many
aspects of the SAR signal (the time-bandwidth product of the
range chirp, the actual antenna pattern, etc.), comparing these
ratios provides a reasonable starting point for analyzing the
significance of the frequency domain shift.

C. Algorithm Performance Comparison
To illustrate the net effect of Stolt mapping for different

bandwidth ratios, we compare the matched filter and Omega-k
impulse responses computed for two cases. The first case SAR
signal has a 500 MHz carrier, a 200 MHz range bandwidth,
and a 45◦ beamwidth. The carrier to range bandwidth ratio is
2.5, while the azimuth resolution is roughly twice the range
resolution. The second case SAR signal has a 2 GHz carrier,
a 200 MHz range chirp, and a 45◦ beamwidth. The carrier
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Fig. 3. Plots of the ratio of the largest frequency domain shift to the
range bandwidth for various azimuth to range bandwidth ratios. The fractional
azimuth bandwidth is defined as fz,max/fρ,max, and the fractional Stolt
shift is given by Eq. 16. The frequency domain shift becomes more significant
as the radar carrier decreases and the azimuth bandwidth increases (see text).

to range bandwidth ratio is ten, and the azimuth resolution is
about ten times greater than the range resolution. Note that
while the antenna azimuth beamwidth is the same for both
systems, the azimuth bandwidth is greater for case two due
to the higher carrier frequency. Figure 4 illustrates the regions
of support in the frequency domain for each case. Note that
significantly more frequency movement in the Stolt mapping
is required at extreme azimuth frequencies for case two.

The ideal point target impulse responses for each case are
shown in Fig. 5. For both cases, the simulated data is processed
by the Omega-k algorithm, and the residual frequency domain
phase of the signal is removed. The resulting point spread
function is compared to the output of a modified version of
the matched filter (MF) which is obtained by canceling out
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the frequency domain phase of the raw SAR signal.
Note that in case two, where more frequency shift is done

in the Stolt mapping, the sidelobes are more distorted, which
could impact target interference. Note, however, that when
we examine the mainlobe (see Fig. 6) a surprising result is
observed for case two. Typically, the 3dB contour of the point
spread function defines the system resolution. For case two, the
3dB contour is compressed in range into more of a rectangular
shape as shown in Fig. 6. While the 3dB width in azimuth is
largely unaffected by the Stolt mapping, the 3dB width in
range is reduced by about factor of two. Thus, the increased
azimuth bandwidth results in improved range resolution. The
improvement does not come without cost. While the 3dB
contour can be improved in one direction (i.e., slant range), the
main lobe is stretched in the other direction (i.e., in azimuth).
As a result, more interference is expected for targets which
are closely spaced diagonally or closely spaced in azimuth for
data processed with Omega-k than for the ideal matched filter
case.

IV. CONCLUSION

The Omega-k algorithm, with modification, can achieve
the same peak SNR as an ideal matched filter. However, the
frequency domain shift (Stolt mapping) used by the Omega-
k algorithm to focus the data alters the point target impulse
response function. The differences decrease the potential in-
terference between targets separated in range but increase the
potential interference between targets separated in azimuth
or diagonally. In addition, the Stolt mapping introduces a
phase modulation across the main lobe which may affect the
accuracy of interferometric SAR systems.
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Fig. 4. An illustration of the frequency domain support of the two simulated
SAR signals before and after the Stolt mapping (see text). Case one is a SAR
system with a large range bandwidth compared to the radar carrier frequency.
Case two is a SAR system with a large azimuth bandwidth to emphasize the
effect of the Stolt mapping.
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(d) Omega-k, Case two
Fig. 5. Contour plots of the focused SAR signal for each case for an ideal point target with contours from -5dB to -55dB at 5dB intervals for the (left
column) modified matched filter (MF) and (right column) Omega-k processing algorithms. A zoom-in of the central peak for case two is shown in Fig. 6.
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Fig. 6. Close up contour plots of the main lobe for case two in Fig. 5 with contours from -3dB to -15dB at 3dB intervals. While the main lobe is quite
distorted by the Stolt mapping, the 3db contour (the innermost contour) is smaller for Omega-k, resulting in improved range resolution. This improvement
comes at the cost of increased interference between scatterers separated in azimuth or separated diagonally.
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