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Abstract: We extend Grochenig’s solution for the irregular sampling problem for bandlimited
functions. We show that the algorithm can be extended to functions on a n-dimensional domain

when only local averages of the function are known.
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1 Introduction

In 1992, K. Gréchenig published a constructive solution to the so-called “irregular sampling problem” (cf.
[1]) which appears to be of utmost importance for the applied sciences, in particular for the signal process-
ing community. The algorithms presented require sampling densities close to the Nyquist rate, require no
separation conditions, converge reasonably fast and allow easy estimates for the relative approximation error.

While Grochenig focuses his attention on the 1-dimensional case and only briefly considers irregular sam-
pling in higher dimensions, we would like to study this case and consider the more general situation of
reconstruction of bandlimited functions with n-dimensional domain R™ from local averages on a “5-dense”
subset X contained in R™. Such local averages correspond to aperture filtered sampling. Grichenig’s proof
can be extended to this situation. These results will be of use in many settings in image reconstruction.

2 The Reconstruction Algorithm

The core of the reconstruction algorithm discussed here is the following lemma concerning the existence and
nature of inverse operators presenting the so-called “Neumann expansion” for an invertible operator:

Lemma 2.1 Suppose B = (B, || - |) is a Banach space. Let B(B) := (B(B),|| - ||) denote the associated
Banach algebra of all bounded linear operators on B, where || - || denotes the operator norm on B. Then if
A € B(B) is a bounded linear operator on B such that ||1d — A’ < 1, where Id denotes the identity operator
on B, then A is invertible on B and A™' € B(B) and A~! has the expansion

[e ]

AP =) "(1d-4)"

n=0

Corollary 2.1 With the same assumptions as in the previous lemma, every f € B can be reconstructed by
the following iteration procedure

$o = A(f)
Prnt1 = n — A(¢n)
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and
o0
f = Z &n-
n=0
Moreover, with f, := > ¢_, ¢k, the approzimation error can be estimated by

11+ 1d A

T ia-apil

If = fall < (11d —4)")™*

We will now apply these techniques in the setting of image reconstruction and chose here the continuous
model of the square-integrable functions on the n-dimensional space R™. In a future paper we will study the
discrete case.

Let L?(R™) denote the Hilbert space of all square-integrable functions on R™ with scalar product and norm

1

o= [ sesteae 1= ([ 1sera)

respectively. Moreover, let @ C R™ be a compact set and w := (wy, . . ., wn) its extension with w; := sup,cq |t
where s; denotes the i-th coordinates of s € R” as usual. Let

B*(9) := {f € L*(R") | supp(f) C O}

denote the closed subspace of all bandlimited functions in L?(R"™) whose spectrum is contained in 2, where
the Fourier transform f is defined by

& =] fl@)e?=9dz
]Rn

Note that B%(2) as a closed subspace of L2(R") is also a Hilbert space, and in particular, a Banach space.

Finally, let P denote the orthogonal projection from L?(R") onto B?(9), defined by 1?(?) = xa - f, where
Xq is the characteristic function of the set §2. The following lemma is due to S. Bernstein:

Lemma 2.2 If f € Ly(R") is bandlimited and supp(f) C [T [—wi,w;] then f is an entire function and
ID*fIF < w*|I ]l

forall a =(oq,...,a,) € (Ny)", where Ny := {0,1,2,...} denotes the set of all nonegative integers.

Suppose § := (01,...,0,) € R® with §; > 0 for i = 1,...,n. Following Grochenig, we define a family
X = (z;)iecs of points in R" to be §-dense if

| Bs(z:) = R™.
icl

Bjs(x) denotes the cube [T, [; - 6:/2,&; + 6;/2] centered at the point & = (¢1,...,£,) € R™. Let (%i)icr be
a family of functions ¢; : R® — R such that 0 < 9;(z) < 1, > icr Yi(z) =1 and supp(v;) C Bs(z;) for all
¢ € I and z € R™. Finally, let (u;)ic; denote an arbitrary family of functions u; : R® — R satisfying the
conditions supp(u;) C Bs(z;) , 0 < u;(z) <1 and Jgn wi(z)dz =1 for alli € I and z € R”. Given a function
f € L3(R™) we define

f(@)ui(z) dz = (u;, f)
&

to be the local average of f at x; with respect to the average function u;. Then we have the following
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Theorem 2.1 If § = (d1,...,0n), & > 0 is chosen such that § - w < In2 and if X = (x;)ics1 15 a 6-dense
family of points z; in R, then every bandlimited function f € B2%() can be reconstructed from its local
averages (u;, f) at z; for i € I using the following iteration procedure

o = P(Z("h f>¢i>

iel
¢n+1 =p — P(Z(uu ¢n)1/}i>a
el
forn e Ny, and
f = Z b
n=0

Moreover, for f, := Z;=0 &;j, we have the following estimate for the approrimation error and the rate of
convergence of the reconstruction algorithm:

n+1 w-§
If = Fall < (8 = 1) 55— 115

3 Conclusion

Theorem 2.1 suggests that a signal can be completely recovered from sampled averages for §-dense samples
so long as the signal is bandlimited such that w - § < In2 and the aperture function is narrow enough. The
result is applicable for both irregular and regular sampling but is of most interest in the irregular sampling
case since it suggests that if the sampling is adequate, the averaging function has minimal impact on the
signal recovery.
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