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Abstract:
Monte Carlo simulation is used to compare additive and multiplicative algebraic reconstruc-

tion technique (ART), and the Scatterometer Image Reconstruction (SIR) algorithms to recon-
struct images from noisy irregular samples. SIR is the most robust in the presence of noise.
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It has been shown that additive algebraic reconstruction technique (AART) can completely recover an
arbitrary band limited function for the noiseless case if the sampling is sufficiently dense: given adequate
sampling, the reconstruction is essentially independent of the aperture function [2]. This result follows from
the equivalence of AART and Gröchenig’s irregular sampling reconstruction algorithm [2]. Following [2] we
consider the relationship of several forms of the algebraic reconstruction technique (ART). Simulation is used
to compare the performance of additive and multiplicative ART algorithms with the scatterometer image
reconstruction (SIR) algorithm [6], a row-normalized derivative of multiplicative ART tailored to reduce the
influence of noise on enhanced resolution image reconstruction.

Additive Versus Multiplicative ART

Gröchenig’s reconstruction algorithm [3] is a general algorithm for reconstructing an image from irregular
samples: assuming an appropriately dense sampling, Gröchenig’s reconstruction algorithm states that the
original bandlimited image can be perfectly reconstructed from irregularly distributed samples. It can be
shown that block AART is equivalent to Gröchenig’s algorithm [2]. AART, however, is only one example of
algebraic reconstruction. Another ART algorithm is multiplicative ART (MART). Both algorithms attempt
to reconstruct an image x from the observations or samples y. y consists of a (possibly irregular) sampling
of the aperture filtered image which we can write as y = Hx + noise where the operator H describes the
aperture sampling. The image x is required to be band-limited. We assume the δ-dense sampling is sufficient
for proper reconstruction of x from y according to Gröchenig’s Lemma [2].

In this case, the essential difference between AART and MART is the regularization implicit in the algorithms.
AART is equivalent to a least squares estimate in the limit of infinite iterations [1] based on the minimization
problem:

Minimize ‖x2‖ Subject to y = Hx.

MART with damping is a maximum entropy estimate in the limit of infinite iterations [1] based on the
maximization problem:

Maximize −
n∑

j = 1
xj lnxj Subject to y = Hx.

In effect, AART makes no a priori assumptions about the data and fits the estimate strictly on the measure-
ments available by minimizing the error of the back projection of the measurement onto the H space in
the mean-squared error sense subject to y = Hx. Thus the reconstruction is strictly contained within the
band-limited signal spectrum space defined by H.
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On the other hand, MART effectively assumes a maximum entropy model for the data. In the frequency
domain, the reconstruction is not strictly restricted to the band limited frequency domain spanned by the
measurement space. Additional frequency content in the null space may be added by the algorithm to create
a sharper image. However, the constraint y = Hx remains, and the reconstruction is based on a projection
of measurements onto the H space just as in AART.

The choice of least-squares versus maximum entropy over is debatable; however, we can, in principle, select
any regularization to use in the reconstruction if the regularization fits with a priori knowledge. As discussed
in [1], this decision may be based on the nature of the sampling mechanism and the nature of the solution the
algorithm produces for under-determined systems. Thus, the selection is dependent on which regularization
provides the best results for a given application. Least squares estimates produce a maximally smooth
estimate where edges tend to be softened and blurred while a maximum entropy estimate produces a generally
“sharper” image than least squares.

Since both forms of ART have the same constraint equation, the resulting solutions x are of the general form
x = U + Q where U is an element of the row space of H, or equivalently, the range space of the transpose of
H, H ′, denoted U ∈ R(H ′); and Q is an element of the null space of H, denoted Q ∈ N (H). Any solution
derived from either additive or multiplicative ART contains a component U . However, the solution derived
by using AART results in Q = 0, while the solution from MART can have a non-zero Q component [5].
Since the constraint y = Hx is the same for both algorithms, the solutions for both AART and MART are
the same in the range space of H ′ in the limit of infinite iterations. The only difference between the AART
and MART solutions is the Q component from the null space of H, which is defined by the nulls in the
aperture function (assuming adequate sampling). If the aperture function does not have spectral nulls, the
solutions are identical in the noise-free case. Thus both AART and MART can be used for reconstruction,
with the understanding that in the null space, they may produce slightly different results based on the
different regularizations.

Algorithm Performance Comparison

There are two key issues for reconstruction with iterative algorithms: finite number of iterations and noise.
The former is a practical limitation since no iterative process can proceed indefinitely. While a particular
algorithm converges to a particular solution in the limit, the limit may not be reached when the iteration
is terminated. The result is an approximation to the optimal reconstruction, but may not be a complete
reconstruction [1]. Truncation of the iterations is another form of regularization [5].

While Gröchenig’s Lemma demonstrates that complete reconstruction of an irregularly sampled signal is
possible, it does not consider the effects of noise. Although steps can be taken to minimize noise, noise limits
the number of iterations that can be executed before the noise overtakes the reconstruction. Measurement
noise changes the problem because noise is amplified along with the desired signal during the reconstruction.
In effect, the reconstruction process acts as a high pass filter which removes the effects of the aperture and
sampling functions. The high-pass nature of the reconstruction filter increases the noise power. In Wiener
filtering, the reconstruction filter response is modified so that when a specified noise-to-signal ratio threshold
is exceeded, the response is set to zero to minimize noise amplification [5].

Lacking a suitable theoretical analysis of the effects of noise, a Monte Carlo approach is employed to examine
the behavior of the signal and noise power in the reconstruction. While a variety of other related reconstruc-
tion algorithms exist, we consider only one additional algorithm, the Scatterometer Image Reconstruction
(SIR) algorithm. The algorithm is a derivative of MART developed for multivariate scatterometer image
reconstruction with noisy measurements [6]. Although similar in performance to MART, SIR is more robust
in the presence of noise, particularly at low signal to noise ratios, and is thus a useful alternative to AART
and MART.

With noise, the performance of AART is significantly degraded, an observation originally motivated the
development of SIR [6]. For both MART and SIR, the multiplicative update factors are damped which tends
to reduce their sensitivity to noise. SIR further incorporates a non-linear damping which can further reduce
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the noise (at the expense of slower reconstruction).

Reconstruction Error

In general, iterative reconstruction suffers from two forms of error: reconstruction error and noise amplifica-
tion. The reconstruction error is the difference between the iterative image estimate and the noiseless true
image. Noise amplification results from the inverse filtering of the noise as previously noted [1, 5]. Based on
our simulation results, at any given iteration, the reconstruction error is smaller and the noise amplification
is greater for ARRT than for MART and SIR. The total error for AART reaches a minimum after just a few
iterations, but grows rapidly as the iteration continues. SIR and MART reach minima in the total error more
slowly but eventually achieve lower levels of total error. While the overall performance of the algorithms are
similar, at lower reconstruction errors MART and SIR have lower noise amplification than AART. At the
lowest reconstruction errors, SIR has the smallest noise. In all cases there is a tradeoff between reconstruction
error and noise amplification controlled by the number of iterations. The differences become more apparent
at lower signal to noise ratios.

It should be noted that while the rms error is an indicator of the accuracy of the reconstruction, the size
and location of the error changes over the course of the iteration, depending on the regularization [5]. Also,
the quality of the resulting imagery may not always be a direct function of total error [4]. The image quality
for SIR at a given reconstruction error level is subjectively somewhat better than corresponding MART or
AART products when used with scatterometer data [6].
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