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ABSTRACT

This paper considers sampling and reconstruction theory with

application to scatterometer image reconstruction. Backscat-

ter imaging is approached as the inversion of a noisy aperture-

filtered sampling operation. A reconstruction estimator based

on maximum a posteriori probability (MAP) estimation is

proposed to recover the conventional samples from noisy

aperture-filtered samples. Examples from the SeaWinds scat-

terometer and the Advanced Wind Scatterometer (ASCAT)

are presented.

1. INTRODUCTION

A scatterometer is an active microwave radar that measures

the normalized radar cross section (σ0) averaged spatially

over an aperture function. Typically, each radar pulse is par-

titioned into several measurements using range-Doppler pro-

cessing so the spatial aperture function of each measurement

is a combination of the antenna footprint and range-Doppler

processing. The sampling geometry results in irregularly

spaced aperture functions with different shapes. A scatterom-

eter makes several measurements with different azimuth

angles, incidence angles, and possibly polarizations of the

same spatial region.

Since scatterometers make multiple overlapping mea-

surements of the Earth’s surface, these measurements may be

combined to produce σ0 images. Several imaging methods

have been proposed for scatterometer image reconstruction.

Perhaps the most simple is to create a gridded product by

averaging all measurements whose centers fall into a particu-

lar grid element. Gridding produces relatively low resolution

images. Another imaging technique employs a weighted av-

erage on a higher resolution grid. This is the basis of the

averaging (AVE) algorithm [1], which sets each pixel to the

average of all the σ0 measurements, weighted by the value of

the respective aperture functions at each pixel. Some common

methods that further enhance the resolution are based on the

additive algebraic reconstruction technique (AART) or the

multiplicative algebraic reconstruction technique (MART)

[1] [2]. For the noisy scatterometer σ0 imaging problem, the

MART algorithm tends to produce a less noisy estimate of

the conventional samples than the AART algorithm. This

led to the scatterometer image reconstruction (SIR) algo-

rithm, which is a normalized version of MART that tends to

converge faster with less noise [1] [2].

Scatterometer σ0 imaging algorithms proposed in the lit-

erature [1] [2] are based on noise-free reconstruction opera-

tors and do not use knowledge of the noise distribution. Fur-

thermore, the commonly used SIR algorithm is tuned using

ad hoc methods in order to reduce the effects of noise and the

filtering artifacts imposed by the aperture functions. These ad

hoc methods make it difficult to analytically evaluate the qual-

ity of the estimates. An estimator that uses the noise distribu-

tion can be expected to perform better, is theoretically more

appropriate, and allows the quality of the estimates to be an-

alyzed using standard estimation theory tools. Furthermore,

this approach can be extended to handle nonlinearities, such

as those involved in scatterometer ocean vector wind field es-

timation.

This paper treats scatterometer image reconstruction as

the inversion of a noisy aperture-filtered sampling operation.

The sampling model is presented and the appropriate recon-

struction sample spacing is explained. A reconstruction es-

timator based on maximum a posteriori probability (MAP)

estimation is proposed for σ0 imaging from scatterometers.

Examples from the Advanced Wind Scatterometer (ASCAT)

and the SeaWinds scatterometer are illustrated.

2. SAMPLING MODEL

Scatterometers sample a two-dimensional continuous σ0 field

s(x) with distributed aperture functions An(x), which may
have a different functional form (shape) for each sample. This

produces the sampling operation

�g =

⎡
⎢⎣

∫
A1(x)s(x)dx

...∫
AN (x)s(x)dx

⎤
⎥⎦ ≈

⎡
⎢⎣

�AT
1 �s
...

�AT
N�s

⎤
⎥⎦ = A�s

where �g represents the aperture-filtered samples (i.e., the vec-
tor of noise-free σ0 measurements), A is a matrix operator

that operates on the conventional, regularly spaced samples

�s of the bandlimited version of the continuous-index signal
s(x), the �An’s represent conventional sampling of the band-

limited versions of the aperture functions, and T represents
the transpose. It can be shown that if the aperture functions
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are all bandlimited, the approximate equality becomes an ex-

act equality. The same result is obtained if s(x) is bandlimited
even if eachAn(x) is not bandlimited where the rows ofA are
conventional samples of bandlimited versions of the aperture

functions. Moreover, if s(x) or each An(x) is bandlimited
and periodic thenA is a finite-dimensional matrix and can be

analyzed with standard linear algebra.

The optimum regular sample spacing and optimum band-

limit to use when reconstructing the σ0 image have not been

extensively explored in the literature. Nevertheless, a bound

on the frequency recoverability is given in [2]. The bound is

determined by the sampling density, suggesting that the re-

construction grid resolution be a function of the density of

the aperture-filtered samples. In order to avoid aliasing, the

sample spacing must be determined by the bandlimit, or ap-

proximate bandlimit, of the aperture functions rather than by

the density of the aperture-filtered samples. The density of

the samples is related to the condition of the sampling matrix

A (whether it is overdetermined, fully determined, or under-

determined) and does not directly impose a bandlimit on the

signal.

3. SCATTEROMETER MAP RECONSTRUCTION
ESTIMATOR

Scatterometers are designed for large scale ocean wind vector

measurements rather than σ0 imaging. As a result, scatterom-

eter sampling operators may be underdetermined in imaging

applications. Therefore, some signal structure must be im-

posed in order to estimate the uniform samples of the σ0

image. This can be done with model-based estimation us-

ing a signal model, variational analysis applying additional

cost functions, or Bayes estimation employing a signal prior.

Here, we take a Bayesian approach and apply a prior using a

maximum a posteriori probability (MAP) estimator.

Reconstruction is accomplished by estimating the conven-

tional (uniformly spaced) samples �s of the σ0 field using a

MAP estimator. The MAP estimator searches for the con-

ventional samples �s that maximize the maximum-likelihood
function scaled by the prior. This process is equivalent to

maximizing the linear combination of the log-likelihood func-

tion and the log of the prior. The maximum-likelihood func-

tion is the probability density function (pdf) of the noisy σ0

measurements and the prior is a pdf of the σ0 image.

Noisy scatterometer σ0 measurements can be repre-

sented as Gaussian random variables where the variances are

quadratic functions of the means [3]. This noise distribution

embodies the receiver noise as well as fading. Measurements

are assumed to be statistically independent. The covariance

R of the vector of σ0 measurements is a diagonal matrix and

each diagonal element Ri,i can be expressed as

Ri,i = αi(�gi)
2 + βi�gi + γi

= αi( �AT
i �s)2 + βi

�AT
i �s + γi

where gi = �AT
i �s is the ith noise-free σ0 measurement, and

α, β, and γ are parameters that are a function of the scat-
terometer design and the measured receiver noise power [3].

This noise model results in the MAP log-likelihood objective

function

LMAP = −∑
i

[
(gν,i−

�AT
i �s)2

2Ri,i
+ 1/2 log{2πRi,i}

]

+ log P (�s) (1)

where P (�s) is the prior pdf. We use a log-normal prior with
a mean as the AVE image and a tunable variance. A tunable

variance allows a trade-off between resolution enhancement

and noise amplification.

The local maxima of the MAP objective function can be

found by setting the gradient equal to zero and solving the

corresponding system of equations. However, the resulting

system of equations is somewhat complicated so we use a gra-

dient search method to find a local maximum of Eq. 1 near an

initial guess. The gradient search method begins with an ini-

tial value computed using the AVE algorithm and moves in-

crementally in the direction of the gradient until convergence

to the maxima.

4. SEAWINDS AND ASCAT EXAMPLES

In this section, two-dimensional reconstruction of the σ0 field

from the SeaWinds scatterometer and the Advanced Wind

Scatterometer (ASCAT) is explored. Basic information about

SeaWinds and ASCAT is presented, the optimal regular sam-

ple gridding is derived from the aperture functions, and an

example is provided.

SeaWinds is a Ku-band scatterometer that orbits the Earth

in a sun-synchronous near-polar orbit. The instrument has

a scanning pencil-beam antenna with two beams at different

incidence angles and polarizations. The v-pol beam is at a

nominal incidence angle of 54 degrees with the h-pol beam at
an incidence angle of 46 degrees. This produces a swath with
four ‘flavors’ (v-pol fore- and aft-looking and h-pol fore- and

aft-looking) in the inner portion of the swath and two flavors

in the outer portion of the swath where there is only one beam.

The backscatter return from each pulse from each beam is par-

titioned into several ‘slices’ using range-Doppler processing.

Each slice is considered to be statistically independent and

each has its own aperture function or slice spatial response

function [4].

The ASCAT scatterometer is a C-band v-pol instrument in

near polar orbit that has two sets of three stationary fan-beam

antennas pointed at different azimuth angles. The system ap-

plies a type of pulse compression to obtain range resolution,

producing slice σ0 measurements with a relatively wide range

of incidence angles. This sampling results in a swath in which

each point is sampled by multiple beams with differing az-

imuth angles [5].
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The σ0 measurements represent noisy aperture-filtered

samples of the two-dimensional σ0 field. The σ0 field may

be reconstructed using the various slice measurements of a

similar flavor (i.e., having the same geometry, frequency, and

polarization). Measurements of a given flavor sample the

same σ0 field and can be combined. Furthermore, for land

and ice imaging purposes, all slices of a given polarization

and frequency may be combined by assuming negligible az-

imuthal variation and by adjusting the σ0 values to a common

incidence angle [1]. Depending on the application, multi-

ple passes may be combined to increase the sample density

and reduce noise. For SeaWinds, the incidence angle adjust-

ment is not necessary since the slices of a given polarization

have a similar incidence angle. For ASCAT, incidence angle

normalization to 40◦ is used.

The image grid pixel size is determined by the bandlimit

of the slice spatial response functions. Figure 1 illustrates

typical 6dB contours of the slice spatial response functions
for a given pulse from SeaWinds and from ASCAT [6] [7].

For SeaWinds, the 6dB slice contours are approximately 6km
in the narrow direction and 25km in the long direction. For
ASCAT, the contours are about 4.2km in the narrow direction
and 20-35km in the long direction. In the following, each of
the slice response functions is approximated by a sinc-squared

function that has the same 6dB width as the slices in the nar-
row and long directions. The sinc-squared functions can be

represented by regular samples with spacing corresponding

to about half the narrow 6dB beam-width. This sample spac-
ing is scaled by a factor of 1/

√
2 to allow for the worst-case

slice orientation with respect to the gridding axes (i.e., 45◦).

For SeaWinds, this results in a conventional sample spacing

of about 6km/2
√

2 ≈ 2.12km [8]. For ASCAT, the conven-
tional sample spacing is about 4.2km/2

√
2 ≈ 1.5km. Note

that the range filtering of the σ0 values done onboard the AS-

CAT spacecraft degrades the effective reconstruction resolu-

tion. Thus for ASCAT, a coarser conventional sample spacing

may be appropriate.

Figure 2 shows multi-orbit gridded, SIR, and MAP im-

ages of the Amazon made from SeaWinds and ASCAT data.

For ASCAT, the incidence-angle-normalized images are plot-

ted. As expected, the ASCAT effective resolution is lower

due to the onboard spatial filtering. The results of the recon-

struction algorithms, represented by the bottom two rows of

images in Fig. 2, enhance the resolution compared to the grid-

ded product (top row). The MAP images (bottom row) con-

tain more detail than the SIR images (middle row), although

the MAP images seem to be noisier. The noise in the MAP

images can be attenuated by filtering the images or by tun-

ing the variance of the log-normal prior, which can produce

images of comparable quality to the SIR images.

Figure 3 shows a false color MAP image of the Weddell

Sea in Antarctica using four days worth of data from Sea-

Winds and ASCAT. The differences in polarization and fre-

quencies between the different data sets allow discrimination
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Fig. 1. Typical slice spatial response functions from Sea-
Winds and ASCAT for one pulse. The 6dB contours are
shown. The boxes with the circles in them are ASCAT slices;

the contours on the left are SeaWinds slices.

between different types of surfaces. The blue region in the

top left corner is open ocean, the purple regions of the image

are newly formed sea ice, whereas the tinted yellow regions

are older, thicker sea ice. The brighter yellow region in the

lower left is the Ronne ice shelf. The bright white regions are

glacial ice on the Antarctic peninsula and large icebergs em-

bedded in the sea ice. Combined, the two scatterometers offer

more discrimination capability than either alone.

5. CONCLUSION

This paper considers signal reconstruction from aperture-

filtered samples, focusing on scatterometer σ0 imaging. A

new reconstruction algorithm is proposed based on MAP esti-

mation, which deals appropriately with noise. Examples from

SeaWinds and ASCAT are presented. Posing the problem as

the inverse of a discrete aperture-filtered sampling operation

allows for a bound on the resolution enhancement. Thus, the

optimal pixel resolution corresponds to the highest bandlimit

of the aperture functions. The new MAP method enhances

the resolution without introducing ad hoc processing steps.

The quality of the MAP estimates may be analyzed with stan-

dard estimation theory. The MAP reconstruction approach

can be extended to handle nonlinearities, allowing for ocean

wind vector field reconstruction.
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Fig. 2. Reconstructed σ0 images (in dB) from SeaWinds and ASCAT over the Amazon using four days worth of data (JD 201-

204) in 2008. Images a), b), and c) are gridded images of SeaWinds h-pol, SeaWinds v-pol, and ASCAT, respectively. Images

d), e), and f) are SIR images of SeaWinds h-pol, SeaWinds v-pol, and ASCAT, respectively. Images g), h), and i) are MAP

images of SeaWinds h-pol, SeaWinds v-pol, and ASCAT, respectively. The diagonal streaks in the river are actual features.

Fig. 3. False color MAP reconstructed σ0 image from Sea-

Winds and ASCAT over the Weddell Sea in Antarctica using

four days worth of data (JD 201-214) in 2008. Red corre-

sponds to the SeaWinds h-pol image, green corresponds to

the SeaWinds v-pol image, and blue corresponds to the AS-

CAT image.
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