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ABSTRACT

The QuikSCAT scatterometer infers wind vectors over the

ocean using measurements of the surface backscatter. During

rain events the QuikSCAT observations are subject to rain

contamination. Three separate estimators have been devel-

oped: wind-only, simultaneous wind and rain, and rain-only,

which account for rain contamination in varying degrees.

This paper introduces a Bayes estimator selection technique

to adaptively choose a best estimator from among the three

types of estimators at each measurement location. Bayes

estimator selection is introduced from a general perspective

after which it is applied specifically to QuikSCAT wind and

rain estimation. Bayes estimator selection is demonstrated

in a case study to illustrate improvements in wind and rain

estimation which can be obtained.

Index Terms— QuikSCAT, rain, wind, decision theory,

estimation

1. INTRODUCTION

Wind and rain estimation over the ocean is possible using data

provided by the QuikSCAT scatterometer. The QuikSCAT

scatterometer measures the radar cross section or backscatter

of the ocean and uses a model function to infer the most likely

wind vector to have produced the observedmeasurements [1].

During rainy conditions, estimated to affect 4 to 10% of all

QuikSCAT observations, backscatter measurements are con-

taminated due to additional scattering from rain and the re-

sulting wind estimates are contaminated. To account for these

rain effects three slightly different estimation techniques have

been developed: wind-only [2], simultaneous-wind-rain [3,

4, 5, 6], and rain-only estimation [7]. The performance of

each estimator is dependent on the underlying wind-rain con-

ditions. As such, each estimation technique is best under cer-

tain backscatter conditions and no single technique is suitable

for all conditions. However, by adaptively selecting the es-

timator most appropriate to the true conditions, performance

can surpass that of any individual estimator. In this paper we

introduce Bayes estimator selection, a technique whereby a

single best estimator is selected for each case, and then apply

the technique to QuikSCAT wind and rain estimation.

2. M-ARY ESTIMATOR SELECTION

M-ary Bayes estimator selection is a modification of Bayes

decision theory which attempts to select a single ‘best’ esti-

mate fromM viable candidate estimates. In the ideal case, the
‘best’ estimate is the estimate which has minimum squared

error to the true vector. For most interesting estimation sit-

uations the true vector is unknown and so some approxima-

tion must be used. Bayes estimator selection is based upon

the idea that selecting the estimate with minimum expected
squared-error is a good approximation to the ideal minimum

squared-error estimate.

The Bayes decision theory mechanism [8] is an ideal

framework with which to construct such an estimator se-

lection rule. The Bayes risk function for a true parameter

distribution Fθ and a decision rule φj can be written as

r(Fθ , φj) =

∫
θ

M∑
i=1

L[ϑ, φj(xi)]fX|θ(xi|ϑ)fθ(ϑ)dθ (1)

where θ is a random variable representing the true conditions
which has realizations ϑ and a pdf fθ(ϑ). Xi represents the

observation randomvariable with realizations indicated byxi.

L[ϑ, φj(xi)] is a loss function representing the cost of the jth
decision rule φj based on the observation xi and true condi-

tion ϑ. fXi|θ(xi|ϑ) is the conditional pdf of the observation
random variable X conditioned on the true parameter θ. M
refers to the number of realizations of the observation random

variable which contribute to a single decision.

This framework can be adapted for estimator selection by

appropriately defining each component in Eq. 1. For estima-

tor selection the largest adjustment is that the observations xi

are estimates of the realization of the parameter ϑ. Thus we
exchange the notation of xi for ϑ̂i. This change is a funda-

mental difference from traditional Bayes decision theory and

cannot be made lightly. In traditional Bayes decision theory

the typical approach is to make a decision about what the real-

ization of the underlying parameter θ is, where ϑ is typically
drawn from a discrete space. In this new application, the pur-

pose is to estimate the realization ϑ of the parameter θ which
is a member of a continuous space. In essence, Bayes es-

timator selection fundamentally changes the meaning of the

decision mechanism.
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With this in mind, the decision rule φj(ϑi) can be inter-
preted as the decision to accept the estimate ϑj as the ‘best’

estimate based on the observation of the estimate ϑi. The

interpretation of the conditional pdf must also be defined.

For estimator selection we can interpret the conditional pdf

f
θ̂|θ(ϑ̂j |ϑ)) to represent the probability that the estimate ϑ̂j

has minimum squared-error given the true conditions.

Recall that the objective is to select a ‘best’ estimate,

i.e. the estimate which has minimum expected-squared-error.

This can be achieved by defining an appropriate loss function

L[ϑ, φj(ϑ̂i)] = (ϑ − ϑ̂i)
T N(ϑ − ϑ̂i)(κjδij + τj(1 − δij)) (2)

Here N is a diagonal normalization matrix to appropriately
weight the components of the vector ϑ. κj and τj are also

weighting terms to weight the loss function based on which

estimate and which decision rule are used. κj determines the

weight of the loss when the estimate is that selected by the

decision rule φj and τj gives the weight of the loss when the

estimate is not selected by the decision rule.

With the appropriately defined loss function the Bayes

risk can be written after some simplification as

r(Fθ , φj) =

∫
θ

(ϑ − ϑ̂j)
T N(ϑ − ϑ̂j)

(
τj(1 − f

θ̂|θ(ϑ̂j |ϑ)) + κjfθ̂|θ(ϑ̂j |ϑ)
)

fθ(ϑ)dϑ. (3)

Defining the probability that the estimate ϑ̂j is not best given

the parameter realization ϑ as

f
ϑ̂|θ(∼ ϑ̂j |ϑ) = 1 − f

ϑ̂|θ(ϑ̂j |ϑ), (4)

the Bayes risk can be written in terms of the expectations over

the random variable θ after simplifying as

r(Fθ , φj) = τjEθ|∼ϑ̂
[(ϑ − ϑ̂j)

T N(ϑ − ϑ̂j)]fϑ̂
(∼ ϑ̂j)

+κjEθ|ϑ̂[(ϑ − ϑ̂j)
T N(ϑ − ϑ̂j)]fϑ̂

(ϑ̂j).(5)

In this notation the Bayes risk is a linear combination of the

conditional posterior expected squared error given that the es-

timate is best and given that the estimate is not best, where

the weights are τjfϑ̂
(∼ ϑ̂j) and κjfϑ̂

(ϑ̂j). The dependence
of the weights on the estimate type, as indexed by j, can be
removed by redefining τj and κj with a normalization factor

as

τj =
τ

f
ϑ̂
(∼ ϑ̂j)

(6)

κj =
κ

f
θ̂
(ϑ̂j)

(7)

with the additional constraint that τ + κ = 1.
The normalized weighting coefficients reduce the Bayes

risk for estimator selection to

r(Fθ , φj) = τE
θ|∼ϑ̂

[(ϑ − ϑ̂j)
T N(ϑ − ϑ̂j)]

+κE
θ|ϑ̂[(ϑ − ϑ̂j)

T N(ϑ − ϑ̂j)]. (8)

When τ = 1 and κ = 0 the Bayes risk is the posterior ex-
pected squared error for the estimate given that the estimate is

not best. This in turn implies that choosing the estimate with

minimum Bayes risk when τ = 1 is equivalent to minimizing
the estimation error associated with incorrect estimator selec-

tions.

On the other hand, when κ = 1 and τ = 0 the Bayes risk
is the posterior expected squared error for the estimate given

that the estimate is best. Choosing the estimate with the min-

imum Bayes risk when κ = 1 is equivalent to minimizing the
estimation error associated with correct estimator selections.

With this interpretation, the choice of τ and κ for Bayes
estimator selection can be related to the estimation noise. If

estimation noise is high, i.e. the error associated with each

estimator is comparable, then minimizing the error associated

with incorrect decisions is a good approach to estimator se-

lection. If estimation noise is low, i.e. the best estimate has

significantly lower error than the other estimates, then mini-

mizing the cost associated with the correct decision is a good

approach to estimator selection. The optimal choice for the

weighting coefficients τ and κ is not pursued in this paper.
After choosing the weights τ and κ, selecting the estimate

with minimum expected-squared-error is by definition select-

ing the estimate which minimizes Eq. 8. Thus selecting one

ofM candidate estimates as the ‘best’ estimate is reduced to

choosing the estimate which has the minimum Bayes risk.

3. APPLICATION TOWIND AND RAIN
ESTIMATION

Adopting the proposed Bayes estimator selection mechanism

to QuikSCAT wind and rain estimation is relatively straight-

forward once the parts of Eq. 3 have been appropriately de-

fined in the context of wind and rain estimation. For this case

the parameter θ represents the wind and rain vector random
variable. Each realization ϑ corresponds to a realization of a
true wind and rain vector. The estimates of ϑ, ϑ̂i, correspond

to the wind-only, simultaneous wind-rain, and rain-only esti-

mates indexed by i = 1, 2, 3 respectively.
For this short paper we omit a thorough treatment of the

prior distributions f
θ̂|θ(ϑ̂j |ϑ)) and fθ(ϑ) for space consider-

ations. The estimator selection technique is not particularly

sensitive to a specific prior modeling technique as the priors

generally represent the observed wind and rain distribution

and the estimator performance.

The wind and rain prior, fθ(ϑ), can be defined using a
histogram of observed wind and rains. The definition of the

estimator performance prior, f
θ̂|θ(ϑ̂j |ϑ)), is somewhat more

complicated. For wind and rain estimation there is no closed

form for the conditional density of the estimates given the true

wind vector. However, the estimator performance prior can be

approximated using Monte-Carlo simulations.

We similarly omit a formal derivation of the normalization

matrix N and the weighting coefficients τ and κ for space
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Fig. 1. Estimator selection results for a single case. Upper left: WO estimates. Upper center: SWR wind estimates. Upper
right: Bayes selected wind estimates. Middle left: RO estimates. Middle center: SWR rain estimates. Middle right: Bayes

selected rain estimates. Lower left: TRMM PR measured rain with NCEP wind vectors overlaid. Lower center: TRMM PR

measured rain v. Bayes selected rain estimates. Lower right: Bayes estimator selections. Wind estimates are in m/s and rain

estimates in dB km-mm/hr.
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considerations in this paper. For reference these values are

τ = 0.26, κ = 0.74, and N is a 3 × 3 diagonal matrix with
[1/502, 0, 1/2502] as the diagonal elements. The weighting
coefficients are defined to weight the wind and rain error by

the relative importance of each type of error. With the spec-

ified weighting coefficients the wind error has a relatively

greater contribution to the objective function error than the

rain error. The normalization matrix N is defined such that
the wind error is weighted by the inverse of the square of

the maximum retrievable wind speed (50 m/s), direction er-

ror is ignored to simplify ambiguity selection, and rain error

is weighted by the inverse of the square of an upper bound on

retrievable rain rate (250 km-mm/hr).

4. CASE STUDY

To demonstrate the potential utility for Bayes estimator selec-

tion in the context of QuikSCAT wind and rain estimation, we

consider the following case study. Figure 1 shows the results

of the estimator selection process for a single case study. First

note that the rain contamination of the wind-only estimates is

visible as high wind estimates corresponding to high TRMM

PR measured rain rates. There is a similar effect in the rain-

only estimates due to wind contamination in places where

there is no rain. The simultaneous wind and rain estimates

have more reasonable wind and rain estimates in raining con-

ditions but have no wind estimates in many locations where

there is no rain. The Bayes estimator selected wind and rain

estimates demonstrate the strengths of each of the estimators

while ameliorating their limitations. Thus the Bayes selected

wind estimates have little rain contamination and have good

performance in non-raining areas. Additionally, the Bayes se-

lected rain estimates correlate well with the measured TRMM

PR rain rates and have relatively few missed detections of sig-

nificant rain events.

The principle advantage of Bayes estimator selection is

that it selects the estimator which has minimum error for the

true conditions thereby taking advantage of the each type of

estimator when it is most appropriate. When the wind-only

estimator is best, for non-raining and low rain conditions,

Bayes estimator selection consistently selects the wind-only

estimate. When the rain is moderate to high and the simulta-

neous wind and rain estimator is best, Bayes estimator selec-

tion chooses the simultaneous wind and rain estimates. When

the rain is so strong that the wind signal is not observable,

Bayes estimator selection chooses the rain-only estimate.

5. CONCLUSIONS

In summary, Bayes estimator selection has the potential to im-

prove scatterometer wind estimation by selectively choosing

wind and rain estimation techniques such that the estimators

are used in conditions for which they are most appropriate.

Bayes estimator selection can successfully identify and esti-

mate rain contamination and identify areas where wind es-

timation is not possible due to dominating rain contamina-

tion. This leads to improved wind and rain estimation per-

formance on a global scale and simultaneously gives insights

into the limitations of and possible improvements for future

scatterometers.
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