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ABSTRACT

A Bayesian method for estimating wind and rain in hurricanes from
SeaWinds at ultra-high resolution is developed. We use a hurricane
model to generate prior distributions for the wind speed, wind di-
rection, and rain rate. The rain prior is derived from data from the
Tropical Rainfall Measuring Mission Precipitation Radar (TRMM-
PR). The new method reduces the variability of the standard simul-
taneous wind and rain estimates while preserving meso-scale detail.

1. INTRODUCTION

As an alternative to 25-km wind retrieval, an ultra-high-resolution
(UHR) SeaWinds vector wind product may be used. The UHR prod-
uct is posted on a 2.5-km grid but has an effective resolution of about
5-7 km [1]. In principle, this higher resolution provides the nec-
essary detail to study the meso-scale structure of entire hurricanes.
However, there are four major limitations of using the UHR prod-
ucts for hurricanes. First, the Ku-band geophysical model function
(GMF) which relates wind to backscatter (σ0) is not well understood
for extremely high wind speeds. Second, high rain rates are common
in hurricanes, and rain modifies the Ku-band backscatter signal. Er-
roneous wind vectors are retrieved if the rain is not accounted for.
Third, ambiguity selection using the conventional method (nudging
with numerical weather predictions) often causes the eye center lo-
cations to be misplaced. Fourth, the UHR product has a higher noise
level than the conventional 25-km product, which complicates am-
biguity selection and produces estimates with higher variance.

One method that mitigates these effects uses a hurricane wind
field model as a prior in a Bayesian estimation scheme [2]. Using
a prior reduces the effect of rain on the wind estimates. However,
where rain rates are large, this method tends to deweight the mea-
surements and impose the model more heavily. The rain contami-
nation issue can be ameliorated using a simultaneous wind and rain
retrieval method at ultra-high resolution (UHRSWR) [3]. However,
this further increases the variability of the wind estimates and does
not deal with ambiguity selection issues. A potential solution is to
combine a Bayesian estimation scheme with UHRSWR.

This paper develops a method for estimating wind and rain in
hurricanes at ultra-high resolution from the SeaWinds scatterometer
using a Bayesian approach. A wind and rain prior is employed which
reduces the variability of the wind and rain estimates and simplifies
ambiguity selection. The procedure is based on maximum aposteri-
ori probability (MAP) estimation and uses a simple statistical hur-
ricane wind and rain model to provide prior distributions that are
used to modify the maximum likelihood (ML) objective function in
the simultaneous wind and rain retrieval step. The low-order hurri-
cane wind and rain prior is derived empirically from SeaWinds and
TRMM-PR data.

2. METHOD

This section develops the theory and implementation of the new
method—simultaneous wind and rain retrieval using MAP estima-
tion (SWRMAP). MAP estimation for hurricane wind and rain re-
trieval is derived, the wind/rain field model for hurricanes used to
generate the priors is developed, and the implementation for Sea-
Winds is described.

The new method employs MAP estimation to retrieve the
wind/rain vector, denoted Ū , from the reconstructed σ0 measure-
ment vector, denoted σ̄, at each UHR (2.5 km) pixel within a
hurricane. MAP estimation is a Bayesian approach that incorpo-
rates prior information with the measurements. The MAP estimator
can be expressed as a slight modification of the ML estimator.
For ML estimation we maximize the probability density function
(PDF) of the measurements given the wind/rain vector P (σ̄|Ū).
For UHR wind/rain retrieval, the measurements for each pixel
are the reconstructed σ0 fields for each of the four flavors of σ0

measurements—vertical polarization fore- and aft-looking and hori-
zontal polarization fore- and aft-looking [1]. Each flavor of UHR σ0

is assumed to be statistically independent. Thus, the ML estimate
for each pixel can be written as

ˆ̄UML = argmax
Ū

(Y
i

P (σi|Ū)

)
.

MAP estimation maximizes the PDF of the wind/rain vector given
the measurements P (Ū |σ̄). Using Bayes rule this can be written as

P (σ̄|Ū) =
P (σ̄|Ū)P (Ū)

P (σ̄)
=

1

P (σ̄)

Y
i

P (σi|Ū)P (Ū).

Because P (σ̄) is not a function of the wind/rain vector, the MAP
estimator can be written as

ˆ̄UMAP = argmax
Ū

(Y
i

P (σi|Ū)P (Ū)

)
.

Note that P (σ̄|Ū) may be a multi-modal function of the
wind/rain vector, which gives rise to wind/rain ambiguities. How-
ever, the prior term tends to emphasize one particular maximum
and suppress the others—generally resulting in a unique wind/rain
vector estimate corresponding to the dominant mode.

There are many schemes for obtaining appropriate prior distri-
butions. For example, one may choose a non-informative prior (con-
stant or uniform distribution), which would cause the MAP estima-
tion problem to reduce to maximum likelihood estimation. Alter-
natively, one may apply a maximum entropy prior subject to some
constraint. Both the uniform prior and the maximum entropy prior

II - 664978-1-4244-2808-3/08/$25.00 ©2008 IEEE IGARSS 2008

Authorized licensed use limited to: Brigham Young University. Downloaded on February 19, 2009 at 19:08 from IEEE Xplore.  Restrictions apply.



are useful when it is desirable to minimize the amount of information
that the prior imposes on the estimates. Empirical priors may also be
applied. These can be derived from wind/rain data from any source
or sensor. Empirical priors may be global or specific to certain types
of storms. For example, in [2] a prior for winds in hurricanes is
derived.

The question to be addressed is which prior is the best. Accord-
ing to convex Bayes theory, the set of prior distributions is a convex
set. That is, if we have multiple viable priors, any convex combi-
nation of the priors is also a reasonable prior [4]. Thus we may
combine any two priors that are optimum according to two different
criteria to obtain a new prior that represents a trade-off between the
criteria. For example, we may combine an empirical prior with a
uniform prior in order to reduce the influence that the prior has on
the estimate.

In this paper we use a convex combination of an empirical prior
with a non-informative prior for wind and rain in hurricanes. For
the wind prior, we use the prior developed in [2]. This prior varies
with certain hurricane parameters: the eye center location, maximum
speed, and mean flow vector. We also develop a rain prior to add to
this model that is a function of the distance between the pixel and
the eye center.

Since the empirical prior is a function of the hurricane model
parameters, we estimate the hurricane model parameters using the
spatial model that relates the parameters of the priors between pix-
els. We call this relationship between the parameters of the priors the
field-wise wind/rain model. We estimate the parameters of the model
using model-based ML estimation based on the actual slice σ0 mea-
surements (not the reconstructed σ̄ field). Once the model param-
eters are estimated, the wind/rain field is produced. The wind/rain
vector at each pixel is directly related to the parameters of the prior
for each pixel. Thus, we can generate the priors for each pixel.

2.1. Wind/rain Model

We derive the model for the two-dimensional wind/rain field in a
hurricane by using the same wind model developed in [2] and by de-
riving a simple model for the rain from TRMM-PR data. We restrict
the rain model prior to be only a function of the distance from the
eye center. Based on several different hurricanes we generate a his-
togram of all TRMM-PR rain rates greater than zero as a function of
distance from the eye center. This produces a general prior for the
rain rate given that it is raining P (10 log10(R)|R > 0) as a function
of the distance from the eye center.

Figure 1 shows the plots of the rain histogram for a particular
distance from the eye, as well as the mean and standard deviation as
a function of the distance from the eye. The histogram is similar to a
Gaussian when the rain rate is expressed in dB. Thus, we assume that
the prior is Gaussian in the log of the rain rate. We fit a line to the
mean of the rain rate as a function of the distance from the eye and
assume that the standard deviation is constant at 6 dB km-mm/hr.
The form of the rain prior (given that it is raining) is thus

P (RdB) =
1

ξR

√
2π

exp

¡
− (RdB − μR)2

2ξ2
R

¿

where μR and ξR correspond to the mean and standard deviation of
the distribution of the rain rate in dB.

2.2. Convex Bayes Priors

We combine a uniform prior with the empirical priors to enable con-
trol of the impact of the priors on the estimates. We introduce convex
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Fig. 1. TRMM-PR rain rate histogram with Gaussian fit superim-
posed (top), mean rain rate as a function of distance from the eye
(middle), and standard deviation of the rain rate as a function of dis-
tance from the eye (bottom).

combination parameters for the wind speed prior αs, the wind direc-
tion prior αd, and the rain prior αr . The convex combination param-
eters determine how much we impose the empirical priors. Thus,
we can increase the convex parameters to obtain a low variability at
the expense of suppressing the small scale features or decrease the
convex parameters to achieve the opposite. The convex rain prior is
of the form

Pc(RdB) = αrPEmp(RdB) + (1 − αr)PU (RdB)

where PEmp is the empirical prior, PU is the uniform prior, and Pc

is the convex prior. Similarly, the wind speed and direction priors
can also be combined with a uniform prior. Note that the uniform
prior is only constant over the search space (wind speed between 0
m/s and 50 m/s, wind direction between 0o and 360o, and rain rates
between -10 dB km-mm/hr and 22 dB km-mm/hr).

An information theoretic approach to choosing the convex pa-
rameters is considered. We may choose a prior that minimizes the
Kullback-Leibler distance or the relative entropy between the ML
and MAP probability density functions (PDFs) subject to a con-
straint on the variability of the estimates. The relative entropy be-
tween the MAP and ML PDFs is [5]

D(P (σ̄0|Ū)||P (Ū |σ̄0)) = −
Z

P (σ̄0|Ū) log(P (Ū))dŪ

and represents the information added by imposing the prior. The
variability of the estimate (first ambiguity) is related to the variance
around the dominant peak of the MAP objective function. Thus,
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we may adjust the convex parameters closer to one to narrow the
dominant peak due to adding more information from the prior. This
method for determining the convex parameters is a function of the
measurement geometry and the noise in the measurements, and is
complicated to implement. For simplicity, in this paper we set the
convex parameters to constants. We arbitrarily set the convex pa-
rameters αs, αd, and αr to 0.2, 0.3, and 0.1, respectively.

2.3. Implementation

The first step in the newmethod is field-wise model-based estimation
of the wind/rain field using the hurricane wind/rain field model. This
produces estimates of the hurricane model parameters. Model-based
maximum likelihood estimation searches for the model instance that
maximizes the joint probability of observing the σ0 slice measure-
ments given that the model instance is the true wind/rain field. Thus,
the estimate of the wind/rain field ˆ̄U(x, y) is given by

ˆ̄U(x, y) = argmax
Ū(x,y)=g(ā)

(Y
s

P (σ0
s |Ū(x, y))

)

where Ū(x, y) = g(ā) is the wind/rain field on an (x, y) grid pro-
duced by the model g(ā) where ā represents the model parameters.
P (σ0

s |Ū(x, y)) is the PDF of a slice measurement σ0
s given the wind,

which has the form

P (σ0
s |Ū(x, y)) =

1√
2πξs

exp

¡ −(σ0
s − gmfs(Ū(x, y)))2

2ξ2
s

¿

where ξ2
s is the variance and

gmfs(Ū(x, y)) =P
x

P
y As(x, y)gmft(Ū(x, y), θs(x, y), ψs(x, y), pol, f)

where gmft is the true (high resolution) geophysical model function,
As(x, y) is the antenna gain pattern for the slice projected onto the
Earth, θs is the incidence angle, ψs is the azimuth angle, pol is the
polarity, and f is the center frequency of the slice.

Once the hurricane model parameters are estimated, the priors
for each pixel are computed and MAP estimation using the priors on
the wind speed, wind direction, and rain rate is employed to estimate
the wind/rain vector for each pixel using the UHR σ̄ field. This
produces multiple ambiguities similar to ML estimation. However,
due to the inclusion of the prior, the first ambiguity (corresponding to
the highest maximum) tends to have a likelihood value that is much
higher than the others. Thus, we merely choose the first ambiguity as
the final estimate and perform no further ambiguity selection. This
provides an estimate of the wind/rain vector for each pixel given that
it is raining.

In order to include non-raining cases, we perform wind-only re-
trieval using the MAP estimation scheme with priors on the speed
and direction. The first ambiguity provides the best estimate (in
the MAP objective function sense) of the wind given that it is not
raining. To choose whether the wind-only or the SWR estimate is
best, we compare the probabilities (MAP objective function values)
weighted by the probability that it is raining. That is, we combine
the wind-only and SWR ambiguities to a single set of ambiguities
according to

Pnew(Ūi) =

¡
p(R = 0)PUHR(Ūi) if i < 4

p(R > 0)PSWR(Ūi−4) if i > 4

where p(R = 0) is the probability that it is raining and p(R > 0) =
1 − p(R = 0), and the subscript i indexes the ambiguity. Then we

sort the new list of ambiguities by Pnew. The final wind/rain es-
timate for each pixel becomes the first ambiguity of the combined
ambiguity list. For this paper we set p(R = 0) to 0.43 based on the
probability of false alarm Pfa and the probability of missed detec-
tion Pmd of the rain.

3. ANALYSIS

We analyze the MAP estimates of the wind and rain by comparing
them to co-located data from other sources. We compare the rain
estimates from the new MAP method and the UHRSWR method to
TRMM-PR data and the wind estimates to H*WIND fields.

To investigate the quality of the rain estimates we compare the
SWR and SWRMAP rain rates to co-located TRMM-PR rain rates
of several storms. Figure 2 shows a log-density plot of the log of
the SWR and SWRMAP rain rates versus the log of TRMM-PR rain
rates. There are many low SWR rain rates where the TRMM-PR
rain rates are relatively large. This underestimation is corrected in
the SWRMAP estimates; however, there is a slight bias of the low
rain rates. Although the variability of the rain estimates is improved
with the SWRMAP method, they may be improved further with bias
correction.
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Fig. 2. Density plots of SWRMAP rain rate versus TRMM-PR rain
rate (top) and SWR rain rate versus TRMM-PR rain rate (bottom).

It is difficult to validate the wind estimates since truth data is
limited—we lack co-located wind data of similar temporal and spa-
tial resolution to the UHR products. Nevertheless we compare the
wind speed estimates to H*WIND products. Figure 3 shows the log-
density plot of the SWRMAP and SWR wind speed estimates for
a particular storm (Daniel 2000) in the Eastern Pacific basin. For
H*WIND speeds less than about 15 m/s both methods produce sim-
ilar speed estimates. However, the SWRMAP method reduces the
variance of the estimates over the SWRmethod for H*WIND speeds
higher than 15 m/s.
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H*WIND Speed (m/s)

S
W

R
M

A
P

 W
in

d 
S

pe
ed

 (m
/s

)

10 20 30 40 50

10

20

30

40

50

0

10

20

30

H*WIND Speed (m/s)

S
W

R
 W

in
d 

S
pe

ed
 (m

/s
)

10 20 30 40 50

10

20

30

40

50

0

10

20

30

Fig. 3. Density plots of SWRMAP wind speed versus H*WIND
speed (top) and SWR wind speed versus H*WIND speed (bottom).

Figure 4 displays the SWRMAP wind field, the SWR wind field,
the SWRMAP rain field and a co-located TRMM-PR rain field for
Hurricane Isaac on Sept. 29, 2000. The SWRMAP wind field is
much less noisy than the SWR field and the SWRMAP winds in
the rain-dominated regime (lower left quadrant) are closer to what is
expected in a hurricane. Though noisy, the SWRMAP rain field has
a similar spatial structure to the TRMM-PR rain field.

4. CONCLUSION

MAP estimation of hurricane wind and rain fields from the Sea-
Winds scatterometer is developed. The rain prior is derived from
TRMM-PR data as a function of distance from the eye. The
SWRMAP estimation method reduces the variability of the rain
estimates and corrects the underestimation of low rain rates com-
pared to the ML-based SWR method. The variability of the wind
estimates is also reduced with the SWRMAP method.
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Fig. 4. SWRMAP wind field (top), SWR wind field (second),
SWRMAP rain field (third), and co-located TRMM-PR rain rate
(bottom). The colorbar is in m/s for the wind fields and km-mm/hr
for the rain fields.
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