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Abstract—Although SeaWinds was not originally designed to
observe tropical cyclones, new higher resolution products resolve
much of the horizontal structure of these storms. However, these
higher resolution products (reported at 2.5km) are inherently
noisier than the standard 25km products and the high rain
rates often associated with hurricanes corrupt the wind estimates.
Fortunately, these storms have structure which can be exploited
using a model.

This paper develops a new procedure for hurricane wind
field estimation from the SeaWinds instrument at ultra high
resolution. We develop a simplified hurricane model to provide
prior information to be used in maximum aposteriori probability
(MAP) wind estimation. Using the hurricane model ameliorates
the effects of rain and noise on the scatterometer measurements
and directly provides useful hurricane parameters such as the
eye center location and intensity.

I. INTRODUCTION

In the extreme conditions of hurricanes, direct measure-
ments of wind and rain are difficult to obtain. Direct mea-
surements also lack the spacial coverage necessary to observe
an entire tropical cyclone. The SeaWinds scatterometer re-
motely observes ocean winds over a large region; however,
the relatively course resolution (25km) of the standard wind
product limits its use in resolving small scale features. Tropical
cyclones are apparent in the 25km product, but important
storm parameters such as the eye center may not be well
resolved.

Fortunately, the SeaWinds scatterometer densely samples
the ocean, which makes it possible for the resolution to be
enhanced and reported on a 2.5km grid [1]. At this resolution
the storm structure is more obvious. However, the 2.5km prod-
ucts are inherently noisier than their 25km counterparts and
heavy rain rates associated with tropical cyclones contaminate
the wind estimates.

This paper describes a new method for ultra high resolution
wind field estimation of tropical cyclones from SeaWinds. The
new approach utilizes maximum aposteriori probability (MAP)
wind estimation. Prior information is provided via a low-order
hurricane wind field model. The hurricane model ameliorates
the effects of rain and noise as well as providing estimates of
hurricane parameters such as the eye location. The eye center
estimates of the new method are analyzed and compared to
the hurricane eye locations provided by the National Hurricane
Center (NHC). The quality of the new wind field estimates are
analyzed using simulation.

II. BACKGROUND

SeaWinds measures the radar backscatter, denoted σ0, from
the Earth’s surface. Over the ocean σ0 is related to the
wind speed and direction through the geophysical model
function (GMF). Measurements from multiple azimuth angles
are necessary to estimate the wind direction. SeaWinds makes
four different types of measurements (vertical and horizontal
polarization beams, each with a fore and aft look) which
provide several samples from different azimuth angles for each
resolution cell [2].

Conventionally, the wind is estimated in two steps. First,
maximum likelihood estimation (MLE) is performed for each
resolution cell. Since the MLE objective function is multi-
modal, ML estimation results in multiple wind vector solutions
called ambiguities. The second step requires choosing the
appropriate ambiguity. For the standard 25km product (L2B)
the ambiguities closest to numerical weather prediction (NWP)
winds are selected and then a spatial median filter is used to
select the final ambiguities [3].

High resolution σ0 products can be obtained by applying
image reconstruction to each of the four flavors of σ0 mea-
surements. This provides four separate σ0 fields with regularly
spaced samples. Wind retrieval is then performed for each high
resolution cell, producing high resolution wind ambiguities.
High resolution ambiguity selection is problematic because
the NWP winds used in ambiguity selection poorly represent
small scale features. This is further complicated by rain
contamination in tropical cyclones.

The method presented in this report takes a different ap-
proach. A low-order ‘snap-shot’ model of the horizontal struc-
ture of hurricanes appropriate for scatterometery is developed.
The hurricane model is used to provide the mean of a field-
wise prior distribution of the wind. This prior is used to
augment the ML objective function, producing a field-wise
MAP estimate of the hurricane wind field.

III. METHOD

This section delineates the theory behind the new method
for hurricane wind field estimation from SeaWinds data. The
development is based on MAP estimation. The prior probabil-
ities needed for this type of estimation are found using a low-
order hurricane model whose parameters are simultaneously
estimated along with the wind vector field. For each resolution
element the prior distributions of the wind speed and direction
are assumed to be Gaussian with means given by the hurricane
model and arbitrary variances (the Gaussian approximation
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is verified empirically in Section IV and nominal values for
the variances are obtained). For a particular hurricane model
instantiation, the prior distribution for the entire field is given
by the model. The best prior is found by using the hurricane
model parameters that maximize the field-wise MAP value.

Point-wise MAP estimation maximizes the probability
of the wind given the σ0 measurements (P (S,D|σ0)).
This probability distribution can be found using Bayes’
rule P (S,D|σ0) = P (σ0|S,D)P (S,D)/P (σ0) where
P (σ0|S,D) is the conventional MLE objective function and
P (S,D) is the prior distribution of the wind (the term P (σ0)
is constant for all wind vectors and can be neglected). The
MAP objective function, P (S,D|σ0), is essentially a weighted
version of the ML objective function, P (σ0|S,D). The point-
wise ML objective function represents a joint distribution of
independent Gaussian random variables and has the form [4]

P (σ0|S,D) =
∏

i
1√
2πξi

e
− (σ0

i
−Mi(S,D,...))2

2ξ2
i where σ0

i repre-

sents the ith σ0 measurement, Mi(S,D, ...) represents the σ0

value resulting from projecting the given wind vector through
the GMF with the same measurement geometry as the ith

measurement, and ξi is a variance term that is a function of
the measurement noise and the modeling uncertainty of the
GMF. Therefore, if the point-wise prior distribution is known,
the point-wise MAP estimate can be found by scaling the ML
objective function by P (S,D) and searching for the maxima.

The field-wise prior distribution, P (S̄, D̄), is found as
follows. For each resolution cell, the speed and direction are
assumed to be independent Gaussian random variables with
means given by the field-wise hurricane model and some
variance. Using this construction the prior distribution at a
particular location has the form

P (S,D) =
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where S and D are the speed and direction of the hurricane
model winds for the point of interest. This construction
provides prior distributions for each resolution cell. Each
resolution cell is also assumed to be independent from each
other. The notion of correlation between adjacent cells is cap-
tured by the similarity of the means of the prior distributions
rather than imposing correlation between the distributions.
This allows for small scale variability and preservation of
high frequency information. Independence between resolution
cells causes the field-wise prior (P (S̄, D̄)) to be equal to the
product of the point-wise priors (

∏
m,n P (S,D)). Assuming

that the resolution cells are independent from each other also
enables the field-wise ML objective function to be written as
the product of the point-wise objective functions. Thus, the
field-wise MAP objective function has the form

P (σ̄0|S̄, D̄) = 1
P (σ̄0)
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where σ̄0, S̄, and D̄ represent the σ0 fields, the wind speed
field, and the wind direction field of the study region, respec-
tively. σ0

i , S, and D represent the ith σ0 measurement, the
wind speed, and the wind direction for a particular resolution
cell at index (m,n) of the fields. S(ᾱ) and D(ᾱ) represent the
hurricane model speed and direction for a cell at index (m,n)
where ᾱ is the vector of hurricane model parameters.

Note that the field-wise MAP objective function in Equation
1 is a scaled product of the point-wise objective functions of
each cell in the field-wise grid. Likewise, it can be shown
that with this construction the field-wise MAP value is a
scaled product of the point-wise MAP values for a particular
model instance, MAPfw = 1

P (σ̄0)

∏
m,n MAPpw. The best

model instance is the one that maximizes the field-wise MAP
value. Thus, the field-wise MAP value becomes the hurricane
model objective function l = maxᾱ{MAPfw(ᾱ)}, where ᾱ
represents the hurricane model parameters.

The field-wise MAP estimation approach can be viewed as
point-wise MAP estimation with priors given by a field-wise
model. Note that as the variance terms ξS and ξD approach
∞, the field-wise MAP objective function converges to the
point-wise MLE objective function. Furthermore, as ξS and
ξD approach zero, only solutions that are in the space spanned
by the hurricane model produce a non-zero MAP value and
the field-wise MAP problem statement essentially becomes
equivalent to model-based MLE. Thus the variance terms
control how much the hurricane model is imposed. The relative
values between ξS , ξD and ξi are a measure of the importance
of the model speed error, the model direction error, and the
actual measured σ0 error respectively.

The new approach diverges from conventional model-based
methods. Conventional model-based methods force the wind
estimate to be in the space spanned by the model. For a
practical low-order model, forcing the wind field estimate to
be in the space spanned by the model restricts the wind field
estimates to low resolution and to contain only information
captured by the model. The new construction allows for the
preservation of the information obtainable by a non-model-
based approach (point-wise MLE), but weights winds that are
consistent with the model more heavily.

Imposing a prior on the wind has positive consequences,
and shortcomings. The new method ameliorates the cross-
track pinning of the winds caused by rain and simplifies, or
even eliminates, the issue of ambiguity removal. However, the
priors modify the MLE objective function so that the resulting
estimates are no longer ’pure’ measurements. Nevertheless, the
MAP estimation method for imposing the hurricane model is
less severe in this respect than true model-based estimation.

IV. IMPLEMENTATION

This section describes an implementation of field-wise MAP
estimation of hurricane wind fields. First we develop a low-
order hurricane model. Then we describe a simplification of
the method by using field-wise MAP ambiguity selection.

The hurricane model is derived based on real SeaWinds
data. We align a large number of conventional high resolution
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wind fields of northern hemisphere hurricanes so that their
centers are in the same location and then generate empirical
probability density functions (pdfs) for the wind speed and
direction as a function of distance from the eye center. The
resulting pdfs are approximately Gaussian. We thus formulate
a simplified model for the means and use nominal values for
the variances.

The hurricane model is very simplistic. We assume that a
hurricane is composed of a symmetric cyclonic wind field with
a superimposed mean wind flow. The simplistic model has
three parameters: the eye center location, the size (maximum
wind speed), and the mean flow. A simple curve is fit to the
means of the wind speed pdfs as a function of distance from
the eye. We assume that the wind speed ramps up linearly
from about half of the maximum speed to the maximum speed,
and then falls off exponentially to 7 m/s (which is the mean
wind speed over the ocean). Fitting this curve to the mean
of the empirical distributions provides nominal values for the
radius of the eye, and the decay rate (time constant) of the
exponential portion. The mean direction relative to the eye
center is constant as a function of distance from the eye.

Since the estimation procedure must search a non-linear
objective function of several variables in order to obtain a
wind field estimate, it is computationally taxing. This can
be a deterrent for using such a method in near real time
processing. We consider a simplification of the new approach
by constraining the solution space to that spanned by the point-
wise ambiguities. This reduces the search space considerably,
as well as producing an estimate of the wind that is not biased
by the model.

This new field-wise MAP ambiguity selection procedure
begins with conventional high resolution point-wise estima-
tion. The ambiguities are then chosen to maximize the log
of the field-wise MAP objective function. This field-wise
MAP ambiguity selection procedure produces estimates of the
hurricane model parameters as well as choosing appropriate
ambiguities. However, because the hurricane model is sim-
plistic, the estimate of the eye center may differ from the
true eye center location. Therefore, it is more accurate to first
estimate the eye center location and then apply field-wise MAP
ambiguity removal to estimate the remaining parameters. An
automated method for finding the eye center based on the
circular Hough transform (CHT) is developed.

The CHT is used to find circles in a binary image (an
image composed of ones and zeros). The CHT is calculated
by drawing a circle of radius R from each pixel that has a
value of 1 in the binary image and accumulating the number
of these circles that hit each pixel. Thus, if there is a circle
in the image with radius R the maximum value of the CHT
will be at the same index as the center point of the circle.
For finding the hurricane eye we convert the speed field to
a binary image and compute the CHT for a radius similar to
that of an average hurricane. Then we weight the CHT by
the inverse of the speed field. This suppresses circle centers
in high wind speed regions and emphasizes those centered
in low wind speed regions (like the eye center). Then we

search for the maximum of the weighted CHT and report the
index as the hurricane eye center. We note that there may
be several local maxima in the weighted CHT which could
produce eye center ‘ambiguities’. For simplicity we choose
only the absolute maxima.

Field-wise MAP ambiguity removal is not equivalent to
field-wise MAP estimation. Mere ambiguity selection cannot
provide the same immunity to rain and noise that is possible
with MAP wind retrieval because the MLE ambiguities may be
rain contaminated. Nevertheless, MAP ambiguity selection is
useful in two ways. First, it can provide an estimate of the wind
that is not biased by the model. Second, performing field-wise
MAP ambiguity selection provides estimates of the hurricane
model parameters which can be used in MAP wind retrieval.
Performing MAP estimation with these hurricane model pa-
rameters is more computationally efficient than simultaneously
estimating the wind and the hurricane model parameters. Thus,
field-wise MAP estimation (or wind retrieval) can also be done
in near real time and the field-wise MAP ambiguity selection
is produced as a side product.

V. ANALYSIS

It is difficult to validate the results of the new method
because truth data is limited. The best track hurricane eye
locations provided by the NHC are used as ground truth for
hurricane eye locations for real data while simulation is used
to test the quality and integrity of the estimated winds.

The eye center location from the new method is compared
to the best track locations provided by the NHC. A number of
SeaWinds observations (213) of named tropical storms from
the North Atlantic basin from 1999 to 2005 are processed with
the new method. Figure 1 shows the histogram of the distance
from the best track eye center for the new method. The mean
and standard deviation are also reported. Most of the cases are
in the low distance bins suggesting that the new method finds
the eye close to the best track location with high probability.
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Fig. 1. Histogram of distance from best track location for circular Hough
transform eye finding method.

Simulation is used to analyze the effectiveness of the new
approach. H*WINDS [5] are used as a truth data set of
wind fields that represent true storms. Synthetic σ0 values
are generated by projecting H*WINDS and synthetic rain
rates through the simultaneous wind and rain model described
by Draper [6] and adding noise. Conventional ultra high
resolution wind retrieval and the new method are applied and
the results are compared.

We simulate σ0 fields for various rain rates and calculate
the error of the resulting wind fields. Ideal ambiguity selection
(the conventional high resolution ambiguity closest to the
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H*WINDS), MAP ambiguity selection and MAP estimation
are compared. For simulation the MAP ambiguity selection
and MAP estimation eye center is fixed to the true eye
center. Figure 2 shows the RMS error versus rain rate av-
eraged over several H*WIND fields. On average the MAP
estimation procedure reduces the RMS error lower than even
ideal ambiguity selection (and thus does much better than
the conventional ambiguity selection). Also, MAP ambiguity
selection approaches ideal ambiguity selection in the RMS
error sense.
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Fig. 2. RMS error versus rain rate for ideal ambiguity selection, MAP
ambiguity selection, and MAP estimation.

Figure 3 shows an example of a real storm. Conventional
wind retrieval, field-wise MAP ambiguity selection, and field-
wise MAP wind retrieval are all depicted. The new approach
finds the eye center better than the conventional method
(conventional eye is based on the curl of the vector field) and
improves the ambiguity selection in rain contaminated regions
(such as in the lower left quadrant of the storm). The field-wise
MAP wind retrieval method produces a more smooth and less
squared off storm than even the field-wise MAP ambiguity
selection.

VI. CONCLUSION

The new wind retrieval method can be used to augment
scatterometer hurricane analysis. It provides an automated
method to find the eye center location as well as improves
wind direction estimates–especially in the rain contaminated
portions of the storm. Furthermore, the method can be adapted
for near real time analysis.

In simulation, MAP estimation of hurricane winds produces
a lower RMS error than even ideal ambiguity selection of
conventional high resolution winds. Also, MAP ambiguity
selection produces a result similar to ideal ambiguity selection.
This suggests that where an eye center can be found in
the data, the MAP estimation and MAP ambiguity selection
approaches are superior to the conventional high resolution
approach.

MAP estimation using a hurricane model may also ame-
liorate some of the issues with simultaneous wind and rain
retrieval in hurricanes. Future work will consider a wind and
rain model for simultaneous wind and rain MAP estimation.
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