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Abstract— Yueh [1] proposed a method of using the third
Stokes parameter, TU , to correct brightness temperatures, such
as Tv and Th, for polarization rotation. This paper presents an
extended error analysis of the retrieval of TQ ≡ Tv − Th by
Yueh’s method.

Analytical formulas are derived for the bias, standard de-
viation, and mean-squared error (MSE) of retrieved TQ, as
functions of scene and radiometer parameters. These formulas
are validated through independent calculation via Monte Carlo
simulation.

The formulas predict several interesting effects: (a) MSE is
minimized by rotating the radiometer by 45◦ with respect to
the natural polarization basis defined by the Earth’s surface, (b)
TU from planetary surface radiation (of the magnitude expected
on Earth) has a negligible effect on correction for polarization
rotation, and (c) three-channel polarimetric radiometry (with the
radiometer rotated by 45◦) has lower MSE than conventional
two-channel radiometry that suffers no polarization rotation.

I. INTRODUCTION

The earth’s ionosphere and magnetic field cause Faraday
rotation of the polarization of radiation emanating from the
earth’s surface. This rotation mixes the vertical and horizontal
polarization components of brightness temperatures, Tv and
Th, degrading the measurement of both. For L-band satellite
measurements at 40◦ incidence angle, resulting errors in the
oft-used TQ ≡ Tv −Th can reach 4 to 12 K. Additional polar-
ization rotation occurs if a sensor’s antenna feed polarization
basis is rotated with respect to the natural polarization basis
of the earth’s surface.

SMOS and Aquarius are being designed to measure polar-
ization rotation (especially Faraday rotation) and correct for it
in post-processing. The basic method involves measuring the
third Stokes parameter, TU , in addition to the usual Tv and
Th. The method is introduced by Yueh in [1].

When Yueh presented the technique, he also performed
a first-order error analysis. This paper examines error in
estimated TQ in greater depth. We report the underlying model
and the results, omitting many details for lack of space.

II. FORWARD PROBLEM

Our most basic foundation is a model of the electric fields,[
x(t)
y(t)

]
=

[
cos Ω sin Ω
− sin Ω cos Ω

] [
Ev(t)
Eh(t)

]
+

[
a(t)
b(t)

]
. (1)

(In the sequel, the dependences on t are suppressed.) Ev and
Eh are the components of the total electric field emitted by
the scene in the vertical and horizontal directions, respectively.

Because the number of independent emitters in the scene
is large in spaceborne radiometry, Ev and Eh are normally
distributed, by the central limit theorem, with zero means
[2]. Their correlation defines the third Stokes parameter:
Cov(Ev, Eh) = E(EvEh) − 0 ≡ TU/2 where E(·) denotes
the expected value. (In this and subsequent definitions, we
ignore a proportionality constant which converts the product
of two electric fields to a brightness temperature.)

Ev and Eh are rotated through an angle Ω. Receiver noise is
then added, represented by the electric field amplitudes a and
b. Like Ev and Eh, we assume that a and b are normally
distributed, zero mean, normal random variables. We also
assume they are independent of one another and of Ev and
Eh. This model neglects sidelobe contributions (as they may
undergo different amounts of rotation than the main beam
radiation) and cross-coupling of the polarization components
caused by the antenna and radiometer.

A quantity of high interest to users of radiometry data is
the second Stokes parameter, TQ ≡ Tv − Th ≡ E(E2

v) −
E(E2

h). Three-channel polarimetric radiometers measure the
three quantities

T̂va =
1
τ

∫ τ

0

x2dt, T̂ha =
1
τ

∫ τ

0

y2dt, T̂Ua =
2
τ

∫ τ

0

xy dt.

(2)
As shown in [2], these can be rewritten as sums of independent
samples,

T̂va =
1
N

N∑
i=1

x2
i , T̂ha =

1
N

N∑
i=1

y2
i , T̂Ua =

2
N

N∑
i=1

xiyi, (3)

where N = 2 * sensor bandwidth * integration time ≡ 2Bτ .
In this paper we are concerned only with T̂Ua and T̂Qa ≡
T̂va − T̂ha.

Under the assumption that T̂Ua and T̂Qa are Gaussian
(which is a very good approximation because N is very large),
and using (1), we are able to show that

T̂Qa = TQ cos 2Ω + TU sin 2Ω + TRX,Q + ∆TQa (4)

T̂Ua = −TQ sin 2Ω + TU cos 2Ω + ∆TUa (5)

where TRX,Q ≡ E(a2) − E(b2) and where ∆TQa and ∆TUa

are normally distributed with zero means, known variances,
and known, nonzero covariance.

TRX,Q is operationally estimated and subtracted off as
part of the radiometer data calibration. Imperfection in this
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correction leaves a residual which we call ∆TRX,Q, so a
revised forward model of the T̂Qa measurement is

T̂ ′
Qa = TQ cos 2Ω + TU sin 2Ω + ∆TRX,Q + ∆TQa. (6)

III. ESTIMATION OF TQ BY YUEH’S METHOD

Yueh’s model [1] does not include any of the ∆ terms in
(5) and (6). By noting that TU is much smaller than TQ in
natural earth scenes, he proposes to solve (5) and (6) for TQ

by neglecting the terms with TU , squaring both sides of (5)
and (6), adding the two results, and then solving for TQ. This
yields

T̂Q =
√

T̂ ′2
Qa + T̂ 2

Ua. (7)

IV. ERROR ANALYSIS OF T̂Q

A. Analytical derivation/results

We wish to find analytical formulas for the mean and
variance of (7), given the model developed above. T̂ ′

Qa and
T̂Ua are correlated, but an appropriate rotation forms the
uncorrelated variables Z and W , and T̂Q =

√
Z2 + W 2.

Z and W have known (albeit somewhat complicated) means
and variances in terms of TQ, TU ,Ω, TRX,Q,∆TRX,Q, TI ≡
Tv +Th, and TRX,I ≡ E(a2)+E(b2). If we employ the minor
approximation that the variances of Z and W are equal, the
pdf of T̂Q is simple [3] and the mean and variance are also
known [4], reducing to

E(T̂Q) = σ

√
π

2 1F1

(
−1

2
, 1;− m2

2σ2

)
(8)

V ar(T̂Q) = 2σ2 + m2 − [E(T̂Q)]2 (9)

where 1F1 is the confluent hypergeometric function and

σ2 ≡ (TI + TRX,I)2

N
(10)

m2 ≡ T 2
Q + T 2

U + ∆T 2
RX,Q

+ 2∆TRX,Q(TQ cos 2Ω + TU sin 2Ω). (11)

At least for the range of σ2 and m2 in which we have interest,
we find that (8) and (9) are very well approximated by

E(T̂Q) ≈
√

σ2 + m2 (12)

V ar(T̂Q) ≈ σ2. (13)

Mean squared error (MSE) is a better way to measure the
merit of an estimator than bias (≡ E(T̂Q) − TQ) or standard
deviation (STD ≡ √

V ar) alone because it is a direct measure
of the error in the estimate. It is a combination of bias and
STD, in fact the sum of their squares, that is

MSE(T̂Q) ≡ E
(
[T̂Q − TQ]2

)
= bias2 + STD2

≈ 2σ2 + m2 + T 2
Q − 2TQ

√
σ2 + m2.

(14)

B. Comparison with Monte Carlo results

The mean and variance of T̂Q can also be found by Monte
Carlo simulation. This can be done using (1) and (3) directly,
thus avoiding the subsequent approximations used to derive
(12), (13), and (14).

The precise procedure is to generate N samples of a, b, Ev ,
and Eh, all independent of one another except E(EvEh) =
TU/2. From these, N samples of x and y are formed according
to (1) and then squared and averaged to produce a single
sample of T̂Qa and T̂Ua as in (3). These are used in (7) to form
a single sample of T̂Q. This entire procedure is repeated M
times to form M independent samples of T̂Q. The empirical
mean and variance of T̂Q can then be calculated from these
samples, and they converge to the true mean and variance as
M increases.

These Monte Carlo results are compared with the predic-
tions of (12), (13), and (14) in the figures below, for some of
the most extreme values of the parameters that are expected in
two cases. Fig. 2 is for a very long integration time (12 s) and
other parameters of NASA’s Aquarius mission (for the beam
with smallest incidence angle, θ = 23.3◦). Fig. 2 is the same
but for θ = 41.7◦. Fig. 3 is for a much shorter integration
time (0.016 s), θ = 41.7◦, and other parameters that have
been proposed for sensing soil moisture at L-band. (The bias
in Fig. 2 is approximately the negative of the bias in the other
two figures because we used the opposite sign for ∆TRX,Q.)
Monte Carlo simulations have also been performed for many
other values of TQ, TU ,∆TRX,Q, Ω, and N . The results are
in very close agreement with (12), (13), and (14) in all cases,
thus validating those formulas.

C. Insights

These results lead us to the following conclusions:
1) MSE is a function of Ω when ∆TRX,Q �= 0. It can

be reduced by minimizing ∆TRX,Q and/or by operating near
Ω = 45◦, which can be done by deliberately rotating the sensor
by 45◦ with respect to the natural polarization basis of the
scene.

2) TU is not a significant error source in polarization rotation
correction, at least at L-band. Its only effect is through m.
From (11) we see that its effects run parallel to those of TQ.
Because TQ is so much larger than TU (at least at L-band
and for natural earth scenes), the effect of TU is somewhat
negligible. Nonzero TU does cause the peaks in bias and MSE
to be larger at Ω = ±90◦ than at Ω = 0◦, 180◦. This effect is
largest for small incidence angles, since this makes TQ smaller.

3) Superiority over conventional radiometry: in conventional
two-channel radiometry, T̂Ua is not measured and Ω originat-
ing from the ionosphere is small enough at high frequencies
that it can be neglected. Under these circumstances, we have,
from (7) and (6), T̂Q = T̂ ′

Qa = TQ + ∆TRX,Q + ∆TQa. If
∆TRX,Q is slowly varying then T̂Q has a bias of ∆TRX,Q

and a variance equal to the variance of ∆TQa. This variance
has been derived analytically using the same assumptions that
gave (6). At Ω = 0 it reduces to σ2+[(TQ+TRX,Q)2−T 2

U ]/N .
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The bias, STD, and MSE from these expressions are plotted
as asterisks in the figures, at Ω = 0. From these and from
similar plots using the analytic formulas, we see that three-
channel polarimetric radiometry, operated near Ω = 45◦,
outperforms (in terms of MSE) conventional two-channel
radiometry operating near Ω = 0◦. In fact, the advantage
of three-channel radiometry is approximately (∆TRX,Q)2 in
MSE, whose square root is |∆TRX,Q| K. (One exception:
in the Aquarius case, 2-channel radiometry can be slightly
superior (at most 0.0015 in MSE, whose square root is 0.04
K) when |∆TRX,Q| is very small, e.g. less than 0.04 K for
−1 ≤ TU ≤ 1 K.)

REFERENCES

[1] S. H. Yueh, “Estimates of Faraday rotation with passive microwave
polarimetry for microwave remote sensing of earth surfaces,” IEEE Trans.
Geosci. Rem. Sens., vol. 38, no. 5, pp. 2434–2438, Sep 2000.

[2] F. T. Ulaby, R. K. Moore, and A. K. Fung, Microwave Remote Sensing:
Active and Passive. Artech House, 1986, vol. 2, ch. 7, pp. 478-488.

[3] A. Papoulis, Probability, Random Variables, and Stochastic Processes,
3rd ed. New York: McGraw-Hill, 1991, exercise 6-16.

[4] K. S. Miller, Multidimensional Gaussian Distributions, ser. SIAM Series
in Applied Mathematics. New York: Wiley, 1964, p. 28, 72.

0 45 90
−0.6

−0.4

−0.2

0

0.2

0.4

0.6

B
ia

s
 o

f 
e
s
ti
m

a
te

d
 T

Q
  
 (

K
)

T
Q

=12.8,    T
I
+T

RX,I
=810.2,    T

U
=−1,    ∆ T

RX,Q
=−0.5,    τ=12,    M=350,    T

RX,Q
=31

 

 

Monte Carlo bias
Analytic bias = sqrt(m.2 + σ2) − T

Q

Bias of two−channel radiometry

0 45 90
0.033

0.034

0.035

0.036

0.037

0.038

0.039

0.04
S

T
D

 o
f 
e
s
ti
m

a
te

d
 T

Q
  
 (

K
)

 

 

Monte Carlo STD
Analytic STD = σ
STD of two−channel radiometry

0 45 90
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

Ω

M
S

E
 o

f 
e
s
ti
m

a
te

d
 T

Q
  
 (

K
2
)

 

 

Monte Carlo MSE
Analytic MSE = (sqrt(m.2 + σ2) − T

Q
)2 + σ2

MSE of two−channel radiometry

Fig. 1. Bias (top), STD (center), and MSE (bottom) of the estimated second
Stokes parameter, T̂Q, as a function of Ω, with typical Aquarius parameters
(sea, τ = 12 s) and θ = 23.3◦).
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Fig. 2. Bias (top), STD (center), and MSE (bottom) of the estimated second
Stokes parameter, T̂Q, as a function of Ω, with typical Aquarius parameters
(sea, τ = 12 s) and θ = 41.7◦).
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Fig. 3. Bias (top), STD (center), and MSE (bottom) of the estimated second
Stokes parameter, T̂Q, as a function of Ω, with parameters typical of those
proposed for soil moisture sensing at L-band (land, τ = 0.016 s, θ = 41.7◦).

0-7803-9510-7/06/$20.00 © 2006 IEEE                                                                                 2308


