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Abstract – The motion of sea-ice in Antarctica is stud-
ied using QuikSCAT scatterometer imagery using meth-
ods from computer vision and image processing such as
intensity edges and optical flow (OF). Features are com-
puted as differential invariants based on spatial and tem-
poral derivatives various scales. The first estimates of the
motion vector field obtained through optical flow are used
as the starting point for a regularization scheme that im-
poses constraints that bring the estimate closer to feature
tracking results and observed motion. Constraints from
fluid dynamics are brought in by separating the motion
field into its divergence free and rotational free components
with another field obtained through a convex combination
of these components. The advantages of this approach are
that it produces a dense motion field that can be globally
processed and locally adjusted to fit data and a model.
This study complements the analysis of sea ice motion by
application of wavelet theory.

I. Introduction

Sea ice has physical characteristics that make it suit-
able for study with microwave scatterometer and radiome-
ter instrumentation even though these instruments were
originally designed for a very different purpose [1]. Avail-
ability of large amounts of high resolution data obtained
from satellite born scatterometers such as SeaWinds on
QuikSCAT, has made it possible to study motion pat-
terns of large areas of sea ice in parts of the world that
are usually cloud covered or in the dark side of the earth,
such as Antarctica. Among available data it is worthy to
note the importance of QuikSCAT data not only for the
breadth of its coverage, but for its high resolution in space
and time. For these reasons QuikSCAT data are exclu-
sively used in this study. Sea ice motion has been studied
by application of a wavelet implementation of a lapla-
cian filter (“Mexican Hat”) at different scales followed
by template matching [2], [3]. The proposed approach
is independent of and complements wavelet approaches.
As a first step, high order regularized spatial derivatives
of images and time derivatives of sequences are used to
compute differential invariants that define image features
that follow geophysical characteristics of interest, such as
coastlines, melting ice fronts and other phenomena caus-
ing intensity changes in the reconstructed radar images.
These features are tracked from frame to frame with a
very simple method and a sparse approximation to the
motion vector field is obtained. Later, optical flow (OF)
estimation methods produce an initial dense motion field

estimate. Minimization of a regularization functional that
uses the previous dense field as initial state and the sparse
motion field from feature tracking as a constraint, pro-
duces a dense vector field that is closer to the observations.
The additional constraints overcome the limitations of OF
methods. Constraints from fluid dynamics are added at
the final stage to further regularize the vector field. A
convenience of this approach is that any additional infor-
mation (e.g., ground truth from buoy tracking) can be
easily included at any stage to constrain the regularized
solution. Future research calls for a more sophisticated
model based on fluid mechanics of sea ice, to be used in
the last stage.

II. Scale-Space, Regularization and Features

Scale-space is a special type of multi-scale representa-
tion of a signal with a continuous scale parameter (very
clear formal and informal descriptions can be found in
[4]). In practice, a simple linear scale-space of an image
can be generated by convolution with Gaussian kernels of
increasing width. As the scale parameter grows, fine scale
information is suppressed and images are smoothed until
they conceivably reach a completely homogeneous inten-
sity. In this way image information relevant to one scale
is separated from unnecesary detail so the corresponding
patterns can be perceived and manipulated. The amaz-
ing complexity of a huge high resolution image such as
QuikSCAT imagery from Antarctica and its surrounding
sea ice mantle can be conveniently broken down to discern
processes that take place at different scales. Symbolically,
an image represented by its intensity function I : R2 → R
has a scale-space generated by

I(x, y; s) = g(x, y; s) 
 I(x, y; 0)

where s is the scale parameter and g(x, y; s) is a Gaussian
kernel with µ = 0 and σ =

√
2s. Since differentiation

commutes with convolution a scale-space of regularized
derivatives can be generated by convolution with Gaus-
sian derivatives

∂xnI(x, y; s) = ∂xn(g(x, y; s)
I) = g(x, y; s)
∂xnI(x, y; s).

Gaussian derivatives are regular because the Gaussian
kernel is the solution to a standard regularization prob-
lem defined by Tikhonov [5]. The idea of regularization
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can be described using the example of the reconstruction
of a signal corrupted by noise. This is an ill-posed prob-
lem with no unique solution unless a sufficient constraint
can be imposed to produce a useful answer. The standard
constraint is smoothness and thus we look for a signal hav-
ing the desired smoothness characteristics and still fitting
obervations closely enough. This compromise can be ex-
pressed as an optimization problem namely, minimizing a
functional with a form

E[f ] ≡ 1
2

∫ (
(f − g)2 +

∞∑
i=1

λi(
∂i

∂xi
f)2
)

dx (1)

with nonnegative λi, where g ∈ L2(R) is the signal to be
regularized and f is the regularized solution. The first
quadratic term of the right hand side of Eq. (1) codes for
the requirement that the solution be close to the obser-
vations while the second one represents the smoothness
requirement expressed as a weighted sum of squares with
terms corresponding to the order of derivatives we would
like the solution to have (in this case extending to infin-
ity). It can be proved [6], that the solution to the mini-
mization of the energy functional in Eq. (1) is a family of
Gaussian kernels. Many well known differential invariants
can be computed with the regularized derivatives of the
images [4], for example, the Laplacian Iuu+Ivv (expressed
here in gauge coordinates, where v is in the gradient di-
rection and u is orthogonal to it and Iuu ≡ ∂2

∂u2 I). Zero
crossings of the Laplacian (which in terms of Gaussian
derivatives is the “Mexican Hat” filter) can be used to
define edges, although these lines do not always faithfully
follow the contours of the true intensity borders [4]. A
more faithful option is expressed by the conditions Ivv = 0
and Ivvv < 0, which may be interpreted as the maximum
of the gradient in the direction of the gradient. When
computed with derivatives defined at different scales this
invariant results in a scale-space of edges that more faith-
fully follow the contours of geophysical features.

III. Estimation of sea ice motion

An initial sparse estimate of sea ice motion is derived
by tracking observed ice features. This can be achieved
in many ways such as template matching, but we follow
a very simple method we denote as “centroid displace-
ment vector”. It consists in defining fixed sized circular
neighborhoods around every pixel containing a minimum
number of feature points. The centroids of feature pixels
inside the neighborhood corresponding to succesive obser-
vations define a vector pointing in the general direction of
the motion of pixels in the neighborhood and with a mag-
nitude proportional to the velocity. With a proper choice
of neighborhood size and minimum feature points require-
ment a reasonable (though sparse) motion field is obtained
very rapidly. A dense first estimate of sea ice motion is
derived through application of OF methods (see Fig. 1).

Fig. 1.
Initial OF estimation, overlaying a v-pol σo image of the

Weddell Sea. Contour lines are feature edges.

The key relationship in these methods, usually referred
to as Horn’s restrictive equation [7], can be derived from
the assumption that the intensity and shape of a moving
neighborhood on the observed object remain invariant in
a short interval.

Horn’s restrictive equation can be written as a total
derivative of an intensity function

DI

dt
=

∂I

∂x

dx

dt
+

∂I

∂y

dy

dt
+

dI

dt
= ∇sI · u + It = 0 (2)

where u ≡
(

dx
dt , dy

dt

)T

, It ≡ d
dtI and s is the scale parame-

ter. Observe that if D
dtI vanishes, then higher order total

derivatives must also vanish. In particular d2

dt2 I = 0 which
implies that ∂

∂t∇I · u + ∇I · ∂
∂tu + ∂2

∂t2 I = 0.

When ∂
∂tu → 0 and ∂2

∂t2 I → 0 these relations yield a sys-
tem of equations whose least squares solution yields the
OF (see [8]). OF is not a very accurate estimation of the
real motion field but it can be a starting point for a better
estimation. Its main limitation, usually referred to as the
“aperture problem” is that only the motion component
in the direction of the gradient can be determined with-
out ambiguity (see [7] and [9]). The previously computed
sparse estimation from feature tracking and the dense op-
tical flow estimation are used, respectively, to constrain
and initialize an iterative procedure to minimize the fol-
lowing energy functional

E(u) =
∑
p∈L

[‖∇I · up + It‖2 (3)

+
λ

|Np|
∑
q∈p

‖up − uq‖2

+ λcS(p)‖up − cp‖2]
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Fig. 2.
OF estimation after minimization of energy functional

(3).

Fig. 3.
Reconstructed estimate flow.

where L is a lattice, λ and λc are weighting constants, Np

denotes the neighborhood of p and S(p) is an indicator
function taking the value 1 on lattice sites with a centroid
displacement vector and 0 elsewhere. An example of the
output of this stage is shown in Fig. 2 This functional can
be minimized in a variety of ways. By setting the first vari-
ation with respect to u equal to zero, an iterative relation
equivalent to Newton’s method is reached. The result is
a vector field that is smooth and closer to the observa-
tions. If any external information such as ground truth is
available it can be included in the energy functional (3)
in manner similar to data from the sparse data tracking
motion field. Constraints relevant to fluid dynamics are
now included via the Helmholtz decomposition

up = κp + Ψp + Φp (4)

where p refers to a particular lattice location, Ψp is the
divergence free component, Φp is the irrotational compo-

nent and κp is a remainder harmonic component (DC).
This decomposition is easily achieved in the Fourier do-
main, since the zero divergence flow is orthogonal to the
wave number, while the irrotational flow is parallel to the
wave number [10]. It is known that sea-ice motion admits
a certain amount of divergent flow since ice sheets may
overlap. Once the flow has been separated, a new vec-
tor field can be synthesized from a convex combination of
its components, where the coefficients weigh how much of
each we wish to include in the final estimation

ũp = α0κp + α1Ψp + α2Φp (5)

where α0 +α1 +α2 = 1. Fig. 3 illustrates a sample result.

IV. Further research

Better ways to obtain the initial OF estimation are
worth studying since they would yield a better initial es-
timation of the motion field. There have been some pro-
posals that could improve on known OF limitations [9].
A sea ice flow model based on fluid dynamics can be fit-
ted to the data using this methodology and then used for
prediction and refinement of estimates.

V. Conclusion

A novel technique for sea ice motion estimation has
been described. Derived from computer vision and image
processing, it provides a dense estimate. It complements
the study of ice motion based on wavelet analysis, allows
easy inclusion of additional information as it is available,
includes constraints from fluid dynamics and can lead to
model based estimation, where the model would be based
on fluid dynamics principles.
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