
Large-scale Inverse Modeling of Microwave Backscatter from Sea Ice 

0 

.d - 5 -  

I. 
,# 
2 -10- 
m - 
CL - > -15- 

.L :: 

Quinn P. Remund and David G. Long 
Brigham Young University, MERS Laboratory 

459 CB, Provo, UT 84602 

remundq @ ee.by u.edu, long @ ee.by u.edu 
801-378-4383, FAX: 801-378-6586 

(a) r(0)=0.05. 6=0.25. qZO.4 - (a) r(O)=O.O& @=0.15. q=o.1 

...... ( c )  r(0)=0.11. p 0 . 0 5 ,  q=o.2, 
'..__. \ .-.._.- \ 

.'..I 

Abstruct- Many forward electromagnetic scattering models 
have been proposed to predict the normalized radar cross sec- 
tion, &', from sea ice characteristics. In this paper, we apply 
scatterometer data to large scale inverse modeling. Given the 
limited resolution, we adopt a simple geometric optics forward 
scattering model to analyze surface and volume scattering con- 
tributions to observed Ku-band signatures. A model inversion 
technique based on recursive optimization of an objective func- 
tion is developed. Simulations demonstrate the performance of 
the method in the presence of noise. The inverse model is im- 
plemented using Ku-band image reconstructed data collected 
by the NASA scatterometer. The results are used to analyze 
and interpret 0' phenomena occurring in the Arctic. 

INTRODUCTION 

Several satellite instruments have proven the utility of scat- 
terometers in monitoring the polar regions. Among these is 
the NASA scatterometer (NSCAT). Ku-band NSCAT data have 
shown great utility in cryosphere studies [ 11. NSCAT observa- 
tions can be interpreted through accurate backscatter modeling. 
Forward scattering models have been developed to relate key 
surface parameters to these observed signatures. Many criti- 
cal sea ice parameters are of interest to the field of cryosphere 
remote sensing [2]. Among these are thickness, surface rough- 
ness, salinity, snow cover, and age. 

This paper describes the development and implementation 
of a large-scale model inversion methology based on a simple 
forward scattering model. The goal of the study is to provide 
an automated means for the inversion of microwave scattering 
models over vast regions rather than small individual homoge- 
neous regions. 

BACKGROUND 

Data from the NSCAT scatterometer (NSCAT) are used in the 
inversion study. To improve the nominal resolution of NSCAT 
measurements, resolution enhancement algorithms can be ap- 
plied to generate images. These methods rely upon a parame- 
terization of the dependence of (TO on incidence angle. Various 
order models can be used with increasing sensitivity to noise as 
order is increased. In general, CJ" (in dB) can be modeled by 

ao(dB) = A + B(B - 40") + C(B - 40°)2 + . . . (1) 

where B is the incidence angle, A is U' normalized to 40°, B is 
the linear incidence angle dependence of (TO, C is the quadratic 
incidence angle dependence of no, and so forth. 

3 

Figure 1: Model generated composite (volume + surface) v-pol 
scattering responses for sample combinations of r(O), /3, and 
q. The curves show the nonlinear nature of (2' as a function of 
incidence angle. 

Several reconstruction methods can generate scatterometer 
imagery. For this study, polynomial coefficient images are re- 
constructed using the AVE algorithm [3]. The SIRF algorithm 
[3] can also be used, though higher order coefficients become 
very sensitive to noise. 

A simple forward scattering model applicable to NSCAT as- 
sumes that sea ice scattering consists of incoherently summed 
surface and volume scattering responses [4], 

IT; = a,O+o: (2) 

where U& is the modeled oo, a: is the surface scattering o', 
and (T,O is the volume scattering (TO. In the interest of space, 
the reader is referred to [4] for a detailed description of a: and 
a:. However, we note that the model is defined by three basic 
large-scale parameters: the nadir reflectivity, T ( O ) ,  the RMS 
surface slope S, and the volume scattering albedo, q. For con- 
venience, /3 = 2S2 is used in the model inversions discussed 
below. Figure 1 illustrates the total scattering v-pol responses 
for sample r(O), /3, and r]  values. 

MODEL INVERSION METHODOLOGY 

The theoretical scattering model proposed by Swift is defined 
by three basic parameters, r(O), p, and r] .  These values can 
be estimated from observed NSCAT 0' signatures given suffi- 
cient incidence angle sampling. In this section, an automated 
inversion technique is presented for determining the three pa- 
rameters from NSCAT reconstructed imagery. 

The inversion approach consists of the automated steepest 
descent optimization of an objective function. The objective 
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function provides a measure of the error between observed sig- 
natures and estimated model parameters, 
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J(OO, i) = - .;(ei)12 (3) 
ei=40 

where h‘ is a vector containing [r(O), /3, 7IT. The n”(8i) re- 
sponse is computed given the (TO vs. 8 variable order polyno- 
mial fit coefficients for a particular pixel in the reconstructe! 
imagery. Hence, the optimal parameters are found at the h 
yielding minimum J( ( T O ,  h) . 

A recursive steepest descent algorithm for computing the 
model parameters, and thus searching for the minimum of the 
objective function is given by, 

h’(m + 1) = L(m) + ~ ( m )  o ~ ( m ) ,  m =, 0, i , 2 , .  . . (4) 
where A is a vector of step sizes for each_model parameter, 0 
is the Schur vector product, and G(n“, h) is the steepest de- 
scent direction vector. For this study, a fixed step size is used, 
A = [0.001, 0.002, 0.002IT. The algorithm is initialized with 
arbitrary h’(0). For a given image set of polynomial fit coeffi- 
cients, the algorithm is run for each pixel. The resulting prod- 
ucts are images of r(O), p, and 7. 

INVERSE MODEL SIMULATIONS 

To evaluate the capability of the inversion technique, simula- 
tions are designed and implemented. “Ground truth” model 
parameters r(O), p, and 7 are forward modeled, sampled in in- 
cidence angle, and noise is added using the model, n;(&) = 
no(8i)(l+N(0, IC , ) )  where n;(ei) is thenoise-added&‘, no(&) 
is the original noiseless d‘and N(0,  I C , )  is a zero-mean Gaus- 
sian random variable. Polynomial fit coefficients are computed 
and used as inputs to the inverse model. For the simulations, 
10 random incidence angle samples from a uniform distribu- 
tion are used. Also, the simulations use I C p  in the range 0 to 
0.1. 

To offer near-comprehensive simulations which consider a 
broad range of (r(O), p, 7 )  combinations, synthetic “ground 
truth” images (shown in Figure 2) are constructed of each pa- 
rameter that represent all possible sample combinations of the 
parameters within the ranges, r(0)  E [0.01,0.3], p E [0.05,0.4], 
and 77 E [0.05,0.4]. The images are generated using 25 evenly 
spaced samples of each parameter. 

The simulations are run using the 10 random incidence angle 
samples. Noise levels ( I C , )  are considered at 0.02 increments 
from 0 to 0.1. The results are summarized graphically in Fig- 
ure 3. For r(0)  the image frames demonstrate the algorithm’s 
ability to accurately represent the left-to-right increasing gra- 
dient as model order increases. Nearly all images show that 
the algorithm has difficulty in areas corresponding with very 
low values. The images also exhibit that higher order models 
are increasingly sensitive to noise evident as speckling in the 
estimate frames. For ,f?, the first-order frames are nearly con- 
stant in value. In contrast, the second to fourth-order models 
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Figure 2: “Truth” parameter images, r(O), p, and 7, used in the 
model simulations. 

are much more successful in reproducing the upward ,f3 gradi- 
ents in the truth image. Similar trends with order value exist 
for 7 estimates as with the previous two. The first-order model 
has difficulty generating the constant frames in the truth im- 
age. However, all of the higher order models appear to perform 
relatively well. 

In order to provide a quantitative measure of algorithm per- 
formance over all the possible parameter combinations, the me- 
dian absolute error is used. In the interest of space, the corre- 
sponding error plots are not included. However, all of the plots 
indicate that parameter estimate error is lower for higher or- 
der models in the absence of noise. As IC, rises, the second 
or third-order estimates have the lowest error. The curves also 
show that higher order models are increasingly sensitive to lep 
evident in steeper slopes in the error plots. From these results, 
we conclude that the second or third order 6’’ vs. 8 polynomial 
coefficients provide the best inputs to the inverse model in the 
presence of noise. Since both offer similar error characteristics, 
the second order model will be used in the implementations 
with actual NSCAT data presented in the following section. 

RESULTS 

The inversion method is applied to second-order NSCAT re- 
constructed v-pol AVE imagery (A,,, B,,, and C,,) to study 
the behavior of the technique and to interpret phenomenon ob- 
served in the reconstructed d‘ images. A set of three Arctic 
AVE images representing the onset of Arctic summer is used 
as inverse model inputs. The ice masked image series is il- 
lustrated in Figure 4 along with model estimates discussed be- 
low. In general, multiyear ice exhibits high A, values near the 
centers of the images. Younger forms of ice have lower A,, 
signatures. The phenomenon examined in this sequence is the 
annual drop in no observations over the ice pack. 

Figure 4 also contains the image estimates of Arctic r(O), /3 
and 7). We note that the noisy values near the pole are due to 
insufficient incidence angle sampling caused by satellite orbit 
geometry and the NSCAT measurement collection configura- 
tion. The general trend in the r (0 )  imagery consists of rela- 
tively high and low values for multiyear and first year sea ice, 
respectively. The melt event causes r (0)  to drop quickly over 
the entire multiyear area. Multiyear ice has typically high /3 
levels in contrast to lower observations over first year ice. In 
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Figure 3: Top group: inverse model r(0) parameter estimates at 
various (TO vs. f3 model orders and noise levels. Middle group: 
7 estimates. Bottom group: 7 estimates. Columns contain in- 
creasing model orders. For each group, rows contain increasing 
ICp from 0 to .08 at .04 increments. 

the second image, /3 values drop until nearly the entire mul- 
tiyear region appears similar to the first year /3 observations. 
Areas of younger ice have much lower 7 due to higher salinity 
and dielectric loss. In the last image frame, volume scattering 
has been almost completely masked by increased water content 
which reduces penetration depth. 

Figure 4: Top row: ice masked Arctic image series. Second 
row: inverse model estimates of r(O)€[O,O.l]. Third row: es- 
timates of /3€[0.1,0.45]. Bottom row: estimates of r]E[0,0.45]. 
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