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ABSTRACT 

The SeaWinds on QuikScat scatterometer is the first in a 
series of new scanning pencil-beam Ku-band scatterome- 
ters. The viewing geometry is significantly different than 
previous fan beam instruments, resulting in different char- 
acteristics in the retrieved winds. In this paper we provide 
an assessment of the reliability of the SeaWinds ambiguity 
selection using a SeaWinds data-only algorithm. An ambi- 
guity selection quality assurance algorithm developed for 
NASA Scatterometer (NSCAT) data is modified for use 
with SeaWinds data. The algorithm uses the selected am- 
biguity field to estimate the parameters of a simple wind 
field model and examines significant differences between 
the fields, enabling detection of possible ambiguity errors. 
Tests against subjectively analyzed selection errors sug- 
gest that the algorithm correctly detects more than 94% 
of all ambiguity errors. Applying the algorithm, we find 
that the ambiguity selection accuracy exceeds 93%. 

INTRODUCTION 

The instrument SeaWinds on QuikScat is a Ku-band pencil- 
beam scatterometer designed to measure ocean winds [3]. 
The ocean wind vectors are estimated using the normal- 
ized radar cross section (0’) measurements of the ocean’s 
surface. A geophysical model function relates the no mea- 
surements to  the wind speed and direction. The 0’ mea- 
surements do not yield a unique wind vector estimate; 
rather, they result in a set of two to four possible :solutions 
known as ambiguities. Generally, the speeds of these esti- 
mates are similar, but the directions vary. To determine a 
consistent estimate across a swath, an ambiguity selection 
algorithm must be used. 

SeaWinds uses a traditional point-wise wind retrieval 
method in which ambiguous solutions are determined for 
each wind vector cell (WVC). Ambiguity removal is then 
performed across the entire swath, selecting one vector 
per wvc. We note that ambiguity selection errors give rise 
to inconsistent wind field estimates. Since errors may be 
introduced by either estimation or ambiguity selection, a 
quality assessment is necessary to  determine the validity 
of the data. 

In this paper, we develop a SeaWinds-only ambiguity 
selection quality assurance algorithm. We discuss how 
the algorithm is optimized for detecting SeaWin.ds ambi- 

guity selection errors and quantify the ambiguity selection 
performance of SeaWinds as a function of swath position 
and wind speed. We note that since the algorithm uses 
strictly SeaWinds data, only the consistency of the esti- 
mated winds can be evaluated. 

SEAWINDS VER!IUS NSCAT 

The basis for the SeaWinds quality assurance evaluation 
is an algorithm developed for the NASA Scatterometer 
(NSCAT) by [l]. The two instruments have significant 
differences necessitating modifications in the quality as- 
sessment algorithm. 

NSCAT employed fixed antenna beams on either side 
of the spacecraft and had a 50 l;m wvc resolution. Due to 
its fixed antenna beams, the azimuth geometry for each 
NSCAT wvc was identical. NSCAT measured winds over 
two 600 km (12 wvc) swaths 011 either side of the space- 
craft, leaving a 350 km gap in the nadir region. 

SeaWinds employs a scanning pencil beam, which ex- 
pands the coverage to 1800 km with 25 km wvc resolution. 
The scanning beam also eliminates the nadir gap. Unlike 
NSCAT, the azimuth measurement geometry varies from 
cell to cell. The differing cell geometries affect estimation 
efficiency across the swath. On either side of the space- 
craft, the wide azimuth distribution creates an area. of op- 
timum performance known as the “sweet spot.” The nadir 
region and swath edges have a narrow azimuth distribu- 
tion, increasing the variance of the wind vector estimate. 

QUALITY ASSESSMENT 

Following [l] , the quality assurance evaluation is accom- 
plished by modeling general wind flow and comparing this 
estimate to the retrieved wind. To do this, the swath 
is divided into smaller overlapping regions. A model fit 
of the retrieved wind fields is created using a truncated 
Karhunen-Loeve (KL) model. This data-driven model 
minimizes the basis restriction error [2]. Large aberrations 
from the fit indicate potential wind retrieval problems in 
the region. These problems may result from noisy wind 
vector estimates, ambiguity selection errors, or wind field 
modeling errors [ 11. 

The width of the NSCAT swaths dictated the 12 by 12 
wvc divisions employed by [l]. The increased width of 
Seawinds’ swath implies no such restriction. A smaller 
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8 by 8 region size was chosen to better pinpoint retrieval 
problems and reduce the computational load. In addition, 
the KL truncation point was chosen at 6 model parame- 
ters rather than a t  22. Due to the the smaller model size 
and Seawinds’ finer wvc resolution, this choice of trunca- 
tion point yields approximately the same effective spatial 
resolution as the model employed by [l]. 

While the overlap of regions for the NSCAT quality as- 
surance algorithm is only possible in the along track direc- 
tion, Seawinds’ larger swath allows overlap in the cross 
track direction as well. Thus for Seawinds, regions over- 
lap by half in both directions. 

After the swath is divided and modeled, each point-wise 
wind vector is individually compared to  the model fit. In 
[l] a 23” angle and 2.7 m/s speed fixed error threshold 
for individual wind vectors was employed. If a vector ex- 
ceeded either of these thresholds, it was flagged as “poor.” 
If the region contained more than 20% poor wvc’s, the 
entire region was considered poor. Other sets of thresh- 
olds were also used; these are neglected for analysis of 
SeaWinds data. In quality assessment for Seawinds, a 
fixed 23” angle error threshold is used to  locate cells that 
are unrealistic. Through observation we concluded that a 
flat speed threshold is biased to flagging realistic vectors 
with a high wind speed where the modeling error is only 
a small percentage of the wind vector’s magnitude. Thus 
the speed threshold was changed to be 1/2 the root mean 
square (RMS) wind speed of the region for region RMS 
wind speeds above 5.4 m/s and 2.7 m/s otherwise. 

Like the NSCAT algorithm, the SeaWinds algorithm 
identifies a region as “poor” if the number of wvc’s flagged 
is above 20%. The region is considered “good” if less than 
5% of the cells are flagged as poor, and “fair” for regions in 
between. This flagging only identifies possible ambiguity 
selection errors. Noisy vectors are also included in the 
identification. 

Table 1: Quality Assessment  Results f o r  Sea Winds  

“fair” 

Over six months of SeaWinds data, ranging from July 
22,1999 to February 15,2000 of the QuikScat mission, was 
evaluated using this algorithm. Table 1 summarizes the 
results. Of the vectors flagged as “poor,” a large portion 
were located the nadir region and in slow wind regions as 
illustrated in Figures 1 and 2. 

DETECTING AMBIGUITY SELECTION ERRORS 

While the quality assurance algorithm accurately flags re- 
gions with potential retrieval problems, retrieval errors 

0 1 4  1 

Figure 1: A histogram of the R M S  wind speeds of  regions 
examined (top l ine) and regions flagged as '$oar" (bottom 
line) f o r  6 1/2 months of Sea Winds  data. No te  the high 
percentage of ‘$00~”  regions with low wind speed. 
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Figure 2: Distribution of '$oar" wind vectors according 
t o  cross track position. Nadir  i s  at  wvc 36. Note the large 
percentage of poor vectors an the nadir region. ( B u m p s  in 
the curve are due to  poor modeling on  region edges.) 

result either from poor wind vector estimates or ambi- 
guity selection errors. Using a point-wise approach, im- 
proving wind vector estimates is not possible; however, 
regions with ambiguity selection errors can potentially be 
improved if identified. Thus, it is valuable to  differentiate 
between regions with ambiguity selection errors and those 
with noisy wind vector estimates. 

Noisy wind estimates are mainly found in the nadir re- 
gion or regions of low RMS wind speed. Lack of azimuth 
variation for colocated measurements in the nadir region 
reduces the wind estimate accuracy. Also, the weak return 
from low wind speed wvc’s decreases the signal to  noise 
ratio, creating unreliable estimates. In these regions, a 
fixed angle threshold for all wind speeds and cross track 
positions flags many regions as “poor” due only to  noisy 
wind estimates. In order to  detect regions of ambiguity 
selection error while minimizing the effect of noise near 
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nadir and in slow wind regions, a variable angle threshold 
can be used. 

Fifteen random revs were subjectively inspected for am- 
biguity selection errors. Each 8x8 region was catiegorized 
according to cross track position and region RMS wind 
speed. The angle threshold was then adjusted for each 
wind speed/ swath location bin to reduce the probabil- 
ity of false alarm to under 3%. On the tuning set, the 
resulting probability of detection was greater than 94%, 
while false alarm rate of ambiguity selection errors was 
less than 3%. Thus the revised algorithm is very effective 
in identifying ambiguity selection errors. Figure 3 shows 
the numerically obtained angle thresholds for cross track 
position and wind speed. It is informative to  note that the 
thresholds are higher for the nadir region and low RMS 
wind speeds. 

Figure 3: T h e  angle thresholds versus cross track and 
RMS wind speed that minimizes  the probability of false 
alarm to  beneath 3%. 

Using the variable angle thresholds for locating ambigu- 
ity selection errors, the QuikScat mission was reprocessed. 
It was determined that only 7% of all 8 by 8 regions ex- 
amined exhibited possible ambiguity selection errors. 
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Figure 4: A histogram of the RMS wind speeds ojf all wind 
regions (top line) and regions flagged as “poor” using vari- 
able angle thresholds (bottom line). Note  that the distri- 
bution of ambiguity selection errors closely par,allels the 
overall distribution of wind vectors. 

Figure 4 shows the distribution of wind regions accord- 
ing to  RMS wind speed. Using variable angle thresholds, 
the distribution of regions flagged as L c p ~ ~ r ”  is nearly iden- 
tical to  that of all wind regions. Figure 5 compares the re- 
sults from fixed angle thresholds and variable angle thresh- 
olds for each cross track position. The distribution of re- 
gions with potential ambiguity selection errors is much 
less dependent on swath position. These suggest that the 
variable angle thresholds are eflective in separating noisy 
wind estimates from ambiguity selection errors. 
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Figure 5: Fraction of regions Bagged as poor with fixed an-  
gle thresholds (top line) and variable angle threshold (bot- 
t o m  line) per  cross track. N o t e  that the variable threshold 
suppresses location dependence of flagged regions. 

CONCLUSION 

The Seawinds-only quality assessment algorithm is capa- 
ble of identifying wind retrieval errors using fixed angle 
thresholds. Based on the analysis of over 6 months’ data 
we find that approximately 80% of regions are classified 
as “good” or “fair.” In addition, over 93% of regions did 
not exhibit ambiguity selection errors. We note that due 
to the false alarm rate, the actual ambiguity selection ac- 
curacy is higher than this. Further work is underway to 
correct regions identified as possible ambiguity selection 
errors. 
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