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ABSTRACT 

Inherent in all empirical estimates of the geophysical model 
function (which relates the wind t o  the normalized radar 
cross section, NRCS, of the ocean surface) is  uncertainty 
caused by parameters not included in the empirical model. 
This can be thought of as variability in the NRCS for given 
wind conditions. W h e n  the estimated variability is in- 
cluded in the max imum likelihood wind retrieval algorithm, 
complicated interdependencies arise between the estimated 
wind and the estimated variability. 

Techniques fo r  simplifying these interdependencies re- 
sults in sub-optimal wind estimates. The  model function 
variability can be ignored, or the log-variance t e rm in the 
maximum likelihood estimation could be eliminated. In 
this paper, we consider the impact of these suggestions o n  
NSCAT compass simulations. As expected, each method 
results in biased wind estimates. However, the biases are 
small, particularly when compared t o  the added complexity 
of the f i l l  solution. 

INTRODUCTION 

Scatterometry is based on a geophysical model function 
which relates the vector wind to the backscatter measure- 
ment [l]. A thorough understanding of the parameters 
affecting the backscatter is beyond the current state of sci- 
ence and empirical models have been developed as useful 
approximations [2]. Empirical estimates of this function 
are based on aircraft scatterometer missions, refined with 
the growing body of satellite-borne scatterometer data [3]. 
These empirical models are believed to be accurate on av- 
erage, but the variability and sensitivity to non-wind fac- 
tors are not known. 

A simple model which describes the basic measurement 
process is depicted in Fig. 1 [4]. The geophysical model 
function is modeled as the combination of an empirical 
model function, perturbed by a random, multiplicative 
term. The empirical model function, M ,  maps the sur- 
face wind, along with the parameters of the scatterom- 
eter, to the model function backscatter. This value is 
perturbed by unmodeled parameters, along with a zero- 
mean unit-variance random variable, v, to yield the true 
backscatter coefficient of the surface (NRCS). The scat- 
terometer, in attempting to measure the true backscatter, 
introduces communications, or radiometric, noise based 
on the temperature of the antenna. This term is quite well 
understood from first principles and is typically included 

l+KPMv I 
Figure 1: The model f o r  scatterometer measurements of 
the normalized radar cross section. The  wind is mapped 
to  the scatterometer measurement with uncertainty in the 
measurement caused by communcation noise (Kpc term)  
and variability in the model function (KPM term). 

in radar systems as a multiplicative term, where Kpc is 
the normalized standard deviation of the measurements 
from NRCS and p is a zero-mean, unit-variance gaus- 
sian random variable [5]. A simple technique has been 
developed to estimate KPM directly from scatterometer 
measurements [4]. In this paper, the effect of geophysical 
modeling error on wind estimation is explored. 

WIND RETRIEVAL AND MEASUREMENT NOISE 

To estimate the wind, multiple measurements must be 
made of each wind cell with different measurement condi- 
tions and estimation theory employed to identify the wind 
most likely to have produced all of the measurements. 

Wind retrieval, as employed in NSCAT processing, is 
based on the techniques of maximum likelihood estima- 
tion (MLE). The wind estimate, 6, is selected as the 
most probable wind, given the measurements; this can 
be inverted with Bayes’ rule to be interpreted as the wind 
which maximizes the probability of the measurements: 

The probability of the measurements, p ( 4 ,  does not change 
the maximization over the wind, and probability of the 
wind, p(w) ,  is typically taken to be uniform, leaving just 
p(4w) .  Because of the large amount of averaging involved 
in each measurement, the Central Limit Theorem is in- 
voked to assume a Gaussian distribution for the measure- 
ments given the wind. It is further assumed, with strained 
credibility, that the measurements of a wind cell are inde- 
pendent; the communication noise (Kpc) ,  is reasonably 
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independent, but model variability ( KPM) probably in- 
troduces some correlation between the measurements. For 
simplicity, we ignore this dependence and express the pdf 
as 

where Mk is the empirical model function value based on 
the given wind and the kth measurement conditions, and 
the variance of the measurements is 6; = K$M + K& + 
GMK& 

The independent Gaussian density is commonly em- 
ployed in MLE because the natural log of the pdf can 
be equivalently maximized; defining L(w, z )  as the log of 
the likelihood function, 

+ 5 log [2n] } (3) 

results in a simple function to be maximized. Obviously 
the final term, ilog(2n), will not modify the maximiza- 
tion. The first term is the weighted-least squares method. 

Estimation of KPM from scatterometer measurements 
requires, in place of the true wind, the estimated wind. 
This likelihood function displays a dependence of the wind 
retrieval on KPM, resulting in a complex relationship be- 
tween the two; setting KPM = 0 in the retrieval simplifies 
the estimator, but reduces the optimality. Removing the 
log variance term from the log-likelihood function (reduc- 
ing the problem to weighted least squares) dramatically 
reduces the impact of KPM, but also changes the opti- 
mality conditions of the estimator. 

Compass simulations were performed in which a wind 
vector generated a simulated ocean surface via the empir- 
ical model function; this surface was corrupted by random 
noise of a simulated KPM value, and the resulting NRCS 
was measured with a noisy (Kpc)  scatterometer and the 
wind estimated from such measurements. Figs. 2 and 3 
display the average results of 100 000 simulations by plot- 
ting the retrieved speed and direction errors (simulated 
minus retrieved) for three scenarios. The solid line (la- 
belled 'a') is for simulation and retrieval with KPM = 0. 
The dashed line (labelled 'b') uses KPM = 0.2 in the sim- 
ulation, but KPM = 0 in the retrieval. That is, 'b' is 
comparable to real-world estimation where there is uncer- 
tainty in the model function, but it is not accounted for in 
the retrieval process. Finally, the dash-dot line (labelled 
c ) simulates surfaces with modeling error, and uses it in 

the retrieval process (assuming that it is known exactly 
rather than having to estimate it). The plots show that 
with the unrealistic case of KPM = 0 (there are always 
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Figure 2: Impact of KPM o n  simulated wind estimation 
at near swath. See text  for legend definition. 

unknown and unmeasured parameters that are not incor- 
porated in empirical model functions) the wind speed es- 
timate is asymptotically unbiased (essentially); while in- 
cluding the model uncertainty yields biased wind speed 
estimates. Even if KPM is known exactly and accounted 
for in the estimation, the retrieved speed is biased high. 
The result is similar for wind simulated at 10 m/s. The 
retrieved direction errors are modified by KPM, but in 
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Figure 3: Impact of KPM o n  simulated wind estimation 
at f a r  swath. See text f o r  legend definition. 
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Figure 4: Impact of removing the log variance t e rm on  
simulated wind estimation at near swath. 

non-predictable ways. Also note that the same behavior 
is evident at far swath, though is less pronounced. 

Similar compass simulations were performed with the 
log variance term removed from the estimator, with the 
results displayed in Figs. 4 and 5 for near and far swath 
locations, respectively. Again, if KPM is non-zero, there 
is a small bias in the speed estimates (on the order of 2%). 
Note that there is now much less dependence on whether 
or not KPM is included in the wind retrieval. 
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Figure 5:  Impact of removing the log variance t e rm on  
simulated wand estimation at f a r  swath. 

CONCLUSIONS 

All parameters affecting the backscatter are not known 
at the current state of science, and are certainly not all 
measured with scatterometers; thus all empirical model 
functions will inherently have model variability. Having 
previously developed a technique to estimate this variabil- 
ity, in this paper we examine the effect on wind retrieval 
of K ~ M  and, in particular, the bias caused by suboptimal 
ways of estimating the wind without KPM. 

Simulations demonstrate that non-zero values of KPM 
cause a slight bias in the wind speed retrieval, on the 
order of 2%, compared to scattering ‘from surfaces with 
K ~ M  = 0. If KPM is known exactly and incorporated in 
the retrieval process, the speed is still biased. Considering 
the very small bias caused by model variability, and noting 
the inability of the MLE to reduce that bias even if KPM 
is known exactly, it seems an unnecessary complication to 
the wind retrieval process to assume anything other than 

Removing the log variance term, to reduce the estimate 
to a weighted least squares estimate, similarly introduces 
a small bias in the wind speed estimation, which is slightly 
amplified by model variability. Because of the small mag- 
nitude of the bias, this term can be dropped for compu- 
tational simplicity, despite the very slight bias caused by 
removing the term. We note that removing the log vari- 
ance term also greatly reduces bias caused by an incorrect 
value of KPM in the retrieval. 

KPM = 0. 
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