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Abstract- A simple wind field model can be used to  evalu- 
ate the accuracy of pointwise ambiguity removal for NASA 
Scatterometer (NSCAT) data. Errors in pointwise ambi- 
guity removal result in large model-fit errors when the 
pointwise wind estimates are assimilated into the model. 
By thresholding the error, regions containing ambiguity 
removal error can be identified. For many of these re- 
gions, the ambiguity selection can be improved using the 
model-fit field. We have developed a new automated algo- 
rithm for evaluating the quality of the pointwise ambiguity 
selection and for correcting the ambiguity selection. This 
paper presents this correction algorithm, which is gener- 
ally applicable to  other scatterometers, and the results for 
NSCAT data. 

INTRODUCTION 

Scatterometers do not directly measure the wind; rather 
the speed and direction of the wind are inferred from the 
normalized radar cross section (6") measurements of the 
ocean surface. The wind is related to uo via a geophysical 
model function. However, there is a continuum of possible 
wind vectors for any particular g o  measurement. Several 
measurements reduce the set of possible wind vectors to 
between two and six, each with similar speeds but widely 
varying directions. An ambiguity removal algorithm must 
be employed to  determine the correct direction. 

Another method to determine wind measurements is 
model based wind retrieval [l]. The wind field model 
provides a description of the near-surface wind field over 
the scatterometer measurement swath and is optimized 
for scatterometer wind retrieval. Wind field models are 
based on the spatial correlation between wind vectors. 
The swath is sectioned into rectangular regions and the 
wind is extracted over the entire region instead of by in- 
dividual resolution elements. The model relates the com- 
ponents of the wind vector field over this region to a set 
of model parameters [l] [2]. The models may be either 
data-driven or dynamics-based. 

While [l] used a simple dynamics-driven model, in this 
paper we adopt a data driven model. We use the Karhunen- 
Loeve (KL) model since it is known to minimize the basis 
restriction error [3]. The KL model is derived from the 
eigenvectors of the autocorrelation matrix of the sampled 
wind field. Using standard eigenvalue/eigenvector decom- 
position methods, the KL model is formed as the lower 
subset of the sorted eigenvectors of the sample autocorre- 
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lation matrix. In this paper, the model matrix was sub- 
jectively chosen as the first 22 eigenvectors for the tradeoff 
between modeling error and the ability to  locate regions 
with ambiguity removal errors. We note, however, that 
there is little performance difference in the algorithm when 
using between 20 and 30 eigenvectors. 

IDENTIFYING AND CORRECTING POSSIBLE 
AMBIGUITY REMOVAL ERRORS 

The wind field model can be used to  improve the point- 
wise wind product by identifying and correcting ambiguity 
removal errors. The quality of the fit of the estimated 
point-wise wind to a simple wind field model over a small 
area provides a measure of possible ambiguity errors; large 
errors in the fit suggest possible ambiguity removal errors 
while small errors suggest a realistic wind field. Areas 
with errors can be corrected by choosing the alias closest 
in direction to the model-fit. 

A number of wind fields were manually examined to 
identify ambiguity removal errors. After segmenting the 
data into small regions, the model was fit in the least- 
squares sense to the wind fields over each region. Several 
statistics were calculated for each of these regions. When 
any of these values are large, the wind field is not realistic 
and is flagged as containing possible ambiguity removal 
errors [4]. 

There are several considerations for the model-fit and 
the data produced by NSCAT for the implementation of 
this algorithm. First, noisy scatterometer CTO measure- 
ments produce noisy retrieved winds at times. The error 
in the model-fit can be high even though the ambiguity 
removal has been done correctly. Second, a t  low wind 
speeds, the wind is highly variable which is complicated 
by the low signal to noise ratio. As a result, the estimate 
error in low wind speed regions is larger than in high wind 
speed regions-even for perfect ambiguity removal. These 
errors can be larger than the thresholds and will cause 
these regions to be incorrectly identified. 

This method locates the boundaries of the regions that 
have possible ambiguity removal errors. Once the regions 
with possible ambiguity removal errors are identified, it is 
natural to  try to find a means of correcting these errors. 
To this end, a technique for correcting the errors has been 
developed. 

An important consideration in making the corrections 
is that some regions are poorly modeled by the wind field 
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Figure 1: The plots for a corrected wind field. The cir- 
cled vectors are those that were changed according to  the 
algorithm . 

model resulting in a poor model-fit for the reasons given 
above. So, regions with considerable numbers of possible 
ambiguity removal errors are not considered candidates for 
the correction algorithm. Large numbers of possible ambi- 
guity removal errors are typically low wind speed regions 
or regions with significant areas of ambiguity removal er- 
rors in which the model-fit should not be used as a means 
of correction. 

Thus, for regions identified as having ambiguity removal 
errors, the correction technique proceeds as follows: deter- 
mine the number of possible ambiguity removal errors by 
identifying those that exceed the thresholds; if this num- 
ber is greater than a given threshold, do not correct any 
of the vectors for this region; otherwise, choose the alias 
closest in direction to  the model-fit as the corrected wind. 

Fig. 1 demonstrates the use of the correction algorithm. 
As can be seen, the observed wind product contains sev- 
eral ambiguity removal errors. The algorithm chooses the 
alias that is closest in direction to the model-fit field, pro- 
ducing a subjectively better wind field. 

RESULTS FOR NSCAT 

This algorithm was tested on the full nine month NSCAT 
data set. To be considered candidates for the correction 
technique in this implementation, 20% or fewer of the vec- 
tors in the region can be identified as possible errors. Re- 
gions not considered candidates are classified as “poor”. 
Of the 408,069 regions examined, approximately 82% were 
considered candidates for the correction algorithm. How- 
ever, only 4% of the individual vectors for these regions 

Figure 2: (left) Histogram of the rms speed for all regions 
classified as “poor” in tho nine month NSCAT mission. 
(right) the percent of the total regions which are classified 
as “poor” at each rms windl speed bin. The vertical dashed 
line is at 4 m/s. 

were identified as possible errors. Only 10% of these were 
corrected using this model-based algorithm. For the re- 
maining, the alias closest in direction to  the model-fit was 
the original vector. This implies that only 0.4% of the 
vectors for these regions were actually correctable. Thus, 
NSCAT ambiguity removaJ is almost completely effective 
for non-poor regions. 

Much can be said about the remaining poor regions 
(18% of the data for the NSCAT mission). Fig. 2 sum- 
marizes key statistics for this portion of the data. The 
majority of these regions (approximately 74%) have rms 
speeds lower than 4 m/s. The scatterometer does not per- 
form well a t  such low wind speeds and ambiguity removal 
algorithms have difficulty distinguishing the correct wind 
vector a t  these speeds. 

“Poor” regions with rms winds speeds in excess of 4 
m/s all contain significant ambiguity removal errors. This 
represents only 5% of the total data for the NSCAT mis- 
sion. However, not every wind vector in these regions is 
in error, a fact verified by a subjective analysis of these 
regions. Combining this result with the effectiveness of 
NSCAT for non-poor regions, we conclude that the skill 
of NSCAT is 95% or better for regions with rms winds 
speeds greater than 4 m/s. 

The performance of NSCAT was also evaluated as a 
function of time. From Fig. 3, it is clear that the accu- 
racy of NSCAT declines towards the end of the mission. 
This is most likely a seasonal effect. To see this more 
clearly, the performance s f  NSCAT was evaluated over 
several latitude bands in the Pacific Ocean as described in 
Fig. 4. The statistics are these bands are described in Fig. 
5. The expected variation of wind speed with latitude is 
clearly evident. There is a strong correlation between the 
ambiguity removal performance and the rms wind speed, 
with reduced overall ambiguity removal performance (i.e., 
more poor regions) a t  lower wind speeds. Thus, the wind 
speed distribution in each band affects the ambiguity re- 
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Figure 3: The percent of non-poor regions versus time 
over the nine month NSCAT mission. Each point repre- 
sents the average computed over approximately two days. 
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Figure 4: Geographical latitude bands in the Pacific. 

moval performance and seasonal changes in the wind speed 
distribution results in temporal variations in the ambigu- 
ity removal performance. In particular, increased storm 
activity in the Northern Hemisphere results in increased 
wind speed with improved ambiguity removal during the 
winter months in Bands 4 and 5. Similarly, the number 
of poor regions increases during the Southern Hemisphere 
summer due to  a decrease in the rms wind speed. Because 
of its low rms wind speed, Equatorial Band 3 is the most 
sensitive to changes in the mean rms wind speed with a 
significant drop in the percent of non-poor regions corre- 
sponding to  a small drop in the rms wind speed at the 
start of 1997. 

CONCLUSIONS 

The detection algorithm works very well in identifying re- 
gions with possible selection errors. Once the errors are 
detected, they can be corrected by choosing the point-wise 
alias closest the the model-fit. The correction algorithm 

Figure 5: (left) Percentage of non-poor regions as a func- 
tion of time over the NSCAT mission. (left, middle) Per- 
centage of poor regions with an rms wind speed greater 
than (solid) and less than (dotted) 4 m/s. (right, middle) 
Average regional rms wind speed as a function of time. 
(right) Normalized histograms of (bold) all regions and 
(light) those classified as poor by the QA algorithm. The 
vertical dashed line is at 4 m/s. 

consistently produces a subjectively more realistic wind 
field. This technique provides a quick way in which to 
measure the accuracy of NSCAT ambiguity removal using 
only NSCAT data. Further research to optimize this tech- 
nique, such as finding a theoretical basis for determining 
when the regions are modeled well, is in progress. 
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