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Abstract-Traditional satellite scatterometer wind retrieval 
algorithms consist of point-wise wind estimation and point- 
wise ambiguity removal. Point-wise estimation yields mul- 
tiple estimates, or ambiguities, for the average near-surface 
ocean wind in each scatterometer resolution element, re- 
quiring subsequent ambiguity removal. Even though some 
point-wise ambiguity removal techniques achieve a high 
skill, they are still subject to  error and usually rely on 
numerical model analysis fields. 

An alternative to point-wise wind retrieval, one that 
does not rely on numerical model analysis fields, is field- 
wise or model-based retrieval. An automated field-wise re- 
trieval algorithm is presented and tested on NSCAT data. 
Results indicate that field-wise retrieval provides a reli- 

Figure 1: Field-wise wand :retrieval is one possible alterna- 
tive to the traditional retrieval method. A field-wise wind 
retrieval algorithm consists of field-wise estimation and 
field-wise ambiguity removal. 

able means of performing wind retrieval without numeri- 
cal model analysis winds. wind field W is X = F t W ,  where Ft is the pseudo-inverse 

of F. 

INTRODUCTION 

Satellite scatterometer wind retrieval is the process of de- 
termining the near-surface ocean wind from scatterome- 
ter measurements. Traditional wind retrieval consists of 
point-wise wind estimation followed by point-wise ambi- 
guity removal. While current point-wise estimation algo- 
rithms are reliable, the subsequent point-wise ambiguity 
removal schemes are subject to  error, even though some 
achieve fairly high skill. Further, the most successful am- 
biguity removal techniques require outside information, 
such as numerical model analysis fields. This report in- 
vestigates field-wise wind retrieval, an alternative to the 
traditional scheme. Field-wise retrieval does not numeri- 
cal weather prediction winds. 

FIELD-WISE WIND RETRIEVAL 

Field-wise wind retrieval consists of field-wise estimation 
and field-wise ambiguity removal (Fig. l), which deter- 
mine a unique wind estimate given a swath of scatterom- 
eter measurements. Field-wise estimation determines the 
wind field for many resolution elements at once using a 
wind field model. The task of field-wise estimation is 
to  determine optimal szts of model parameters, denoted 
by the column vector X, from scatterometer backscatter 
measurements over a rectangular region of the ocean’s sur- 
face. Th_e model-based wind field is the matrix product 
W = FX, where W is a column vector containing the 
rectangular components of the wind in the region. The 
matrix F is the wind field model [l]. The model fit to the 

The model parameters are estimated by locating all the 
local minima of the maximum likelihood objective func- 
tion 

N L.. 

with 

and c; ( k )  = M {(U,, v,) , IC}. N is the number of resolu- 
tion elements in the region of interest in the measurement 
swath, and n is the index of a particular element. L, 
is the number of measure.ments in cell n. The kth pea- 
surement in cell n is denoted zn(k), and p(z,(k) I XI is 
the likelihood of observing z,(k) given that W = FX is 
the parameter vector of the model fit to the true wind. 
M represents the geophysical model function that relates 
(‘IL,,~,), the vector wind in cell n, to  the true value of 
a:(k), which is the noiseless measurement that would be 
observed for the vector wind (u,,v,) [l]. 

As in the point-wise scheme, field-wise estimation pro- 
duces multiple solutions (ambiguities). However, since the 
ambiguities are fields of vectors rather than individual vec- 
tors, and adjacent solutions can be made to overlap, con- 
tinuity considerations can be invoked to greatly simplify 
ambiguity removal. 
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c 0 ALGORITHM 

The field-wise retrieval algorithm used in this paper is % 
E diagrammed in Fig. 2 .  The first step in the algorithm * 

locates the multiple solutions through field-wise estima- 2 
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tion, which is accomplished by two methods: a simple 
multistart algorithm and an algorithm that utilizes me- 
dian filter outputs. Both methods are described below. 
The resulting solutions are then ranked, and the highest 
ranked solutions are pieced together. Discontinuities in 
the estimates are removed by replacing poorly fitting solu- 
tions with lower-ranked solutions that preserve continuity 
from one overlapping region to  another. 

The field-wise estimation is performed on individual 

ements long, corresponding to  the low resolution cross- 

into such regions overlapping by 50%. The first field-wise 
estimation algorithm uses a simple multi-start global o p  
timization technique to identify multiple estimates. In the 

a 12 parameter Karhunen-Loeve (KL) model [2] are ran- 
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square regions whose sides are twelve 50km resolution el- 

track width of NSCAT. Each NSCAT swath is divided 
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first stage of the algorithm, 50 model parameter sets for 

domly chosen, and the field-wise objective function J is 
locally optimized using each model parameter set as an 
initial value. Next, the negative of each of the resulting 
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estimates initializes local optimizations of J .  
The second field-wise estimation algorithm takes advan- 

tage of ambiguity removal performed by the median filter 
after point-wise estimation [3]. The median filter pro- 
duces two estimates, one when it is initialized with the 
first-ranked point-wise ambiguities and another when it is 
initialized with the second-ranked point-wise ambiguities. 
A 40 parameter KL model is fit to both outputs of the 
median filter. Each of the model fits initializes a local 
optimization of J .  Finally, the closest point-wise ambigu- 
ity field is constructed for each optimized field and a 22 
parameter KL model is fit to the closest ambiguity fields. 
These fits and the estimates from the first algorithm are 
pooled into a single collection of solutions. 

In order to rank the likelihood of each solution, the cor- 
responding field of closest point-wise ambiguities is con- 
structed for each of the multiple solutions. Each of the 
estimates is assigned a statistical ranking based on the 
sum of all the point-wise likelihood values in their corre- 
sponding closest-ambiguity fields. 

Finally, field-wise ambiguity removal is performed by as- 
sembling the highest ranked solutions. This simple process 
yields remarkably good results, since the highest ranked 
field-wise estimate is the closest estimate to the true wind 
a much higher percentage of the time than the first-ranked 
point-wise ambiguity is the closest point-wise estimate to 
the true wind. In other words, the first field-wise ambigu- 
ity skill is dramatically higher than the first point-wise am- 
biguity skill. Thus, ambiguity removal can be performed 
simply by assembling the first ranked field-wise ambigui- 

Figure 2: Block diagram of field-wise retrieval algorithm 
used in this paper 

ties, invoking continuity considerations to  identify where 
a particular highest ranked solution does not fit and us- 
ing lower-ranked solutions where needed. Areas where all 
combinations of possible solutions exhibit discontinuities 
are flagged as problematic, and the highest ranked solu- 
tions are retained as the selected estimates. 

A simple justification of the observation that the first 
field-wise ambiguity skill is substantially higher than the 
first point-wise ambiguity skill may be obtained from the 
following analysis. Several simplifying assumptions are 
made: first, that modeling error is sufficiently low so that 
at least one of the closest ambiguity fields (to the multiple 
solutions) is the closest point-wise ambiguity field to the 
true wind, and second that the point-wise first ambiguity 
skill is approximately constant over any given region. 

Under these assumptions, the probability that the clos- 
est ambiguity field to the first ranked field-wise estimate is 
the ambiguity field closest to the true wind (the first field- 
wise ambiguity skill) may be evaluated using the normal 
approximation to  the binomial distribution [4]: 
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Figure 3: This figure is a graph of field-wise ambiguity 
skill f o r  two values of the first point-wise ambiguity skill, 0, 
and over a range of even values of N .  Field-wise estimates 
display high first ambiguity skill, and the skill tends t o  
increase with N .  

where N is the number of cells in the region and e is the 
first point-wise ambiguity skill. Figure 3 i s  a graph of the 
above equation for two values of 0 and over a range of even 
values of N .  It is clear that the first field-wise ambiguity 
skill is dramatically higher than that of the first-ranked 
point-wise ambiguity. Further, the first field-wise ambi- 
guity skill tends to  increase with N .  

RESULTS 

The algorithm described in the previous section was tested 
on a small set of NSCAT revolutions, selected so that the 
JPL ambiguity removal product was subjectively consid- 
ered to be reliable. The test set represented a range of 
wind features, such as uniform winds, fronts, cyclones, and 
low wind speed regions. The JPL product is derived from 
a median filter initialized using model analysis winds. The 
field-wise algorithm yields consistent results comparable 
to the JPL product, except in isolated regions. Many of 
the erroneous regions, however, are automatically flagged 
as problematic by the algorithm, and it is expected that 
further modifications will eliminate the unflagged regions. 
Comparison of the results to  those of obtained from the 
median filter without model analysis winds suggests that 
the algorithm is clearly more accurate. 

An example of the output of the field-wise retrieval al- 
gorithm is given in Fig. 4. In this section of the ascending 
NSCAT revolution 2456, the median filter without nu- 
merical model wind initialization suffers from severe am- 
biguity removal failures, while the field-wise output closely 
matches the JPL product. 

Figure 4: Plot of closest point-wise ambaguaties to  out- 
pu t  of field-wise wind retrieval algorithm for  ascending 
NSCAT revolution 2456 
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