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Abstract- The recently launched NASA Scatterometer 
(NSCAT) estimates the wind speed and direction of near- 
surface ocean wind. This is done by directing microwaves 
toward the earth's surface and measuring the backscat- 
tered radiation. From this, several possible wind vectors 
are identified for each point over the swath. The correct 
wind must be distinguished from these in a step called 
ambiguity removal. 

Unfortunately, ambiguity removal algorithms are sub- 
ject to error. Because the true wind is not known, where 
these errors occur is difficult to  determine, and there is 
little information in the measurements alone to detect the 
errors in this removal step. We have developed a method 
to  assess the accuracy of the ambiguity removal algorithm 
by comparing the point-wise retrieved wind to winds in- 
ferred with a wind field model. 

The performance of the algorithm achieves its goal to 
identify at least 95% of regions containing ambiguity re- 
moval errors. The algorithm provides a very simple tool 
to indicate regions of possible ambiguity removal errors in 
the point-wise retrieved winds for NSCAT data. This pa- 
per describes this algorithm and its performance for real 
NSCAT data. 

INTRODUCTION 

The NASA Scatterometer (NSCAT) is a microwave instru- 
ment capable of accurately measuring vector winds over 
the ocean during all weather conditions [l]. Scatterome- 
ters do not directly measure the wind; rather the speed 
and direction of the wind are inferred from the normal- 
ized radar cross section (0") measurements of the ocean 
surface. The wind is related to  uo via a geophysical model 
function. However, there are several possible wind vectors 
for any particular go. Although the speeds are typically 
the same, the directions exhibit a 180 degree ambiguity. 
An ambiguity removal algorithm must be employed to de- 
termine the correct direction. 

Point-wise wind retrieval is the traditional method for 
estimation of the winds over the ocean. It consists of two 
steps and uses only the U' measurements for a single wind 
vector. The first step is to  find the multiple wind vec- 
tors for each cell of the scatterometer swath. The second 
step, ambiguity removal, selects one unique wind vector 
estimate for each of these cells, though this algorithm is 
prone to  error. A quality assessment of these algorithms 
is essential to  maintain the integrity of the data. 

A second method to  determine wind measurements is 
model based wind retrieval [2]. The wind field model 
provides a description of the near-surface wind field over 
the scatterometer measurement swath and is optimized 
for scatterometer wind retrieval. The swath is sectioned 
into rectangular regions and the wind is extracted over the 
entire region instead of by individual resolution elements. 
The model relates the components of the wind vector field 
over this region to a set of model parameters [2]. The mod- 
els are either data-driven or physics-based and have been 
shown to provide more accurate wind measurements than 
point-wise wind retrieval [3]. 

The wind field models can also be used to  improve the 
point-wise wind product by identifying ambiguity removal 
errors. One way to do this is to fit the estimated point- 
wise wind to a simple wind field model over a small area. 
Large errors in the fit suggest possible ambiguity removal 
errors while small errors suggest a realistic wind field. This 
is exploited in the ambiguity quality assurance algorithm 
which follows. 

WIND FIELD MODELS 

As discussed in [2, 31, a simple wind field model can be 
developed which is expressed as 

W = FX 

where X is an L-element vector containing the model pa- 
rameters and F is a constant model matrix where the 
rows of F form a basis set for possible wind fields. There 
are several different models for which this model matrix 
changes. Two particular twenty-two order models were 
examined for this algorithm: the Parameterized Bound- 
ary Conditions (PBC) model [2] and the Karhunen-Loeve 
(K-L) model [4]. 

To use the model as a quality assurance for the point- 
wise wind retrieval, the model is fit in a least-squares sense 
to  the observed point-wise wind field. The error in the 
fit provides some information about how realistic the ob- 
served wind actually is. 

A least squares estimate of the model parameter vector 
X, X, can be obtained from the observed wind field WO 
using the pseudo-inverse of F, Ft, i.e., &=FtWo. The 
reconstructed wind field W, also known as the model-fit 
field, is W = FX with the reconstruction error field WE 
given by 

wE= w-w0= (FF+-I) w0. 
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If the reconstruction error is small, the model-fit is good 
and the observed wind field is “realistic” for the specific 
model. Large reconstruction errors suggest that the ob- 
served wind field is not realistic due to  either ambiguity 
selection errors or poor modeling. Thresholds for the re- 
constructed error field detect regions with possible ambi- 
guity removal errors. 

Figure 1 is an example of the observed JPL wind field 
and the model-fit field for a particular 12x12 region. No- 
tice the smoothing. As can be seen from the all alias 
plot, the model-fit wind field corrects ambiguity removal 
errors in the observed wind field. Thus, the model-fit is a 
reasonable basis for determining realistic wind fields and 
locating regions with possible errors. 

However, there are several considerations when imple- 
menting this simple algorithm. First, the error in the 
model-fit might be high in regions where the wind esti- 
mates are very noisy even if ambiguity removal is correct. 
Second, the wind field model inherently smoothes the wind 
field over the entire region, and cyclones and sharp fronts 
are not modeled well. The error in these regions will be 
very high due to  the limitations of the model. Third, at 
low wind speeds, the wind is highly variable which is com- 
plicated by the low signal to  noise ratio in these regions. 
As a result, the error in low wind speed regions is larger 
than in high wind speed regions-even for perfect ambigu- 
ity removal. Finally, the model must be fit to the wind 
field over a region. To produce an adequate fit, the in- 
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put wind must be defined over the full region. Thus, for 
this simple algorithm, regions with significant amounts of 
land or missing measurements are not processed. Only 
those regions with fewer than eight cells of land or miss- 
ing measurements are used. The missing measurements 
are replaced with the average of the cells surrounding it 
and then processed. 

The model-fit error locates the boundaries of the re- 
gions that have possible ambiguity removal errors. The 
algorithm is very successful at identifying these regions, 
but so far does not correct the errors. It is designed only 
as a check of the consistency of the unique wind field. 

ALGORITHM DESCRIPTION 

A general procedural description of the algorithm follows: 

1. Segment the swath into 12x12 overlapping regions 
(50% along track overlap). 

2. For each valid region (regions with fewer than eight 
cells of land or missing measurements), compute the 
model-fit field W, the reconstruction error field WE, 
the model parameter vector &, and the statistics of 
WE.  These statistics include the rms error, the nor- 
malized rms error, the maximum component error, 
and the maximum angle error for each region. 

3. For each region, determine if the statistics, including 
those for the model parameter vector X, are larger 
than the thresholds. If so, the region is identified as 
containing possible ambiguity selection errors. 

IDENTIFYING THRESHOLDS 

The reconstruction error field provides much information 
about the difference between the unique wind field and 
the reconstructed wind field. The value of the model pa- 
rameter vector is also useful for identifying regions with 
ambiguity removal errors. 

Model Parameter Statistics 

To determine the thresholds for the model parameters, a 
histogram of the these parameters is examined for each 
model. Figure 2 shows the histograms of four of the pa- 
rameters for the K-L model using 5488 regions of valid 
NSCAT data. As can be seen, while the X parameters are 
not Gaussian, they exhibit a Gaussian-like shape. 

It has been found that large values for any of the pa- 
rameters correspond to regions with possible errors. After 
some examination of the values for the parameters, the 
thresholds are subjectively set at twice the standard de- 

4-4- k\ /4 -.I-/ ++++* \Lnx 
viation for each of them. This provides an initial starting 
place for altering these numbers as needed to  correctly 
identify error-prone regions. 

Only a few of the model parameters are necessary for 
this algorithm. In the case of the K-L model, choosing 

Figure 1: The region on  the upper left is the JpL Product 
while the region o n  the upper right is the model-fit to  this 
field. The lower figure Plots all the alliases fo r  this region. 
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Figure 2: The histograms for parameters three through six 
for  the K-L model. Overlaid is  a Gaussian distribution 
with the same mean and variance. 

them is an easy task. The columns of F are basis vec- 
tors in decreasing order, and only the first few parame- 
ters need be used. However, the PBC model is ordered 
quite differently, and the fewest number of model parame- 
ter thresholds are subjectively chosen that will accurately 
identify as many regions with ambiguity removal errors as 
possible. 

Error Matrix Statistics 

The other thresholds for locating ambiguity removal errors 
are determined from the reconstruction error field. These 
include the rms error, the normalized rms error, the max- 
imum component error, and the maximum direction error 
for each region. The rms error is found by squaring the re- 
construction error field, dividing by the number of terms, 
and taking the square root. The normalized rms error is 
found by squaring the reconstruction error field, dividing 
by the observed wind field, and taking the square root. 
The first two are useful for locating regions of obvious er- 
ror. Both of these error measurements are calculated for 
the entire region and thus provide information about the 
region as a whole. The second two error measurements 
are useful for locating regions in which only a couple of 
the wind vectors are incorrect. These measurements are 
calculated by individual components. They locate regions 
with at least one individual wind vector error. The in- 
dividual errors are easily identified by finding those that 
exceed the thresholds. 

Selecting Thresholds 

To select the threshold values for this algorithm, 527 re- 
gions (10 revs) of NSCAT data were inspected by hand, a 

small subset of the original 5488 regions. The regions were 
subjectively grouped into three categories: perfect, mod- 
erate (those with only a few isolated ambiguity removal 
error) and poor regions. The statistics of each of the re- 
gions were then calculated and compared to  the initial two 
sigma thresholds. The thresholds are adjusted such that 
the maximum number of poor and moderate regions are 
identified with a minimum number of false alarms. 

For this small set, the algorithm correctly identifies 100% 
of the poor regions and over 95% of the moderate regions 
with a false alarm rate of less than 5%. It should be 
understood that the thresholds can be altered to adjust 
the detection and false alarm probabilities. For example, 
if all regions with possible errors are to be detected, the 
number of false alarms will increase. The thresholds are 
determined for a specific trade-off between detection and 
false alarms. 

CONCLUSIONS 

The thresholds chosen above were tested on a withheld 
data set of 274 regions ( 5  revs) and achieved a similar 
level of performance. The algorithm correctly identified 
100% of the poor regions and over 98% of the moderate 
regions with a false alarm rate of less than 5%. 

The algorithm works very well in identifying regions 
with possible selection errors. Although the algorithm 
only detects ambiguity removal errors, ongoing research is 
being done to  correct those regions with only a few indi- 
vidual vector errors. In this case, choosing the point-wise 
ambiguity closest to the model-based wind will correct 
the problem. How to correct the other regions with pos- 
sible ambiguity selection errors is the focus of upcoming 
research. 
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