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Abstract - This paper considers techniques for creat- 
ing enhanced resolution images from irregular sam- 
ples, with specific application to imaging from scat- 
terometers. Using previously established irregular 
sampling theory, and developing the idea of sub-band 
limited Banach space, we show that frequency content 
in attenuated sidelobes can be recovered using reso- 
lution enhancement techniques, thus taking advan- 
tage of the high frequency content of measurements 
made with imperfect low pass aperture filters. We 
briefly compare and contrast the performance of addi- 
tive ART, multiplicative ART and the Scatterometer 
Image Reconstruction (SIR) (a derivative of multi- 
plicative ART) algorithms with and without noise. 

I. INTRODUCTION 
A theory for resolution enhancement from irregular sam- 
ples is resented. The theory and techniques are illus- 
trated &r enhanced resolution ERS-1 scatterometer im- 
agery ,First ,  a theory of image reconstruction from ir- 
regu ar samples and the equivalence of the algebraic re- 
construction technique (ART) and this theory are dis- 
cussed. We demonstrate that  reconstruction can recover 
sidelobe information and consider the practical use of the 
theory with the addition of noise to  the reconstruction. 
We discuss scatterometer image reconstruction (SIR), a 
derivative of multiplicative ART tailored t o  reduce the 
influence of noise on enhanced resolution image recon- 
struction from scatterometer data [SI. 

11. SYSTEM MODEL 
While this theory is develo ed around a model of the 
surface response that descriges the microwave backscat- 
ter from a point, it is generally ap licable. We desire 
to  make images of the backscatter Rom ERS-1 scatter- 
ometer measurements. We model the radar backscatter 
(a' ) from the surface as a function of location with the 
backscatter's incidence angle dependence suppressed. 

Let f ( z ,  y) be the function that gives the backscatter 
from a point ( x , ~ )  on the surface. The measurement 
system can be modeled by 

z = H f  + noise (1) 
where H is an operator that  models the measurement 
system (aperture filtering and sample spacing), f is the 
true surface function] and z represents measurements of 
a' made by the instrument. For resolution enhancement, 
we are interested in the inverse problem: 

where f is an estimate of f from the measurements z. 
The inverse of the operator H, H - ' ,  is exact only if the 
measurements are noise free and H is invertible, in which 

Real-li =r. e sampling usually involves a non-ideal sampler 
with a finite aperture which low-pass filters the data. The 
aperture functions may have frequency nulls that  result 

......... I 
f '  H 

................. 

Figure 1. Block diagram illustrating sampling and signal re- 
covery. T h e  original surface, f ,  i s  filtered by the sys tem aper- 
ture func t ion ,  A(x,y) ,  and sampled t o  obtain the measure- 
m e n t s  z .  I n  (a)> the signal i s  uni formly sampled. T h e  surface 
func t ion  is  recovered using low pass filtering which inverts  only 
the sampling. I n  (b) ,  the operator inverted,  denoted by H and 
the dotted box, includes both the aperture func t ion  and the 
sampling. Sampling is  dense and m a y  be irregular. 

in information which can not be recovered. However if 
suitably sampled and processed, information in the a er 
ture frequency response sidelobes can be recovered i?the 
signal-to-noise ratio (SNR) is sufficiently high. 

The traditional approach to  sampling and reconstruc- 
tion is based on the Nyquist samplin theorem which 
states that  a band limited function can %e com letely re- 
constructed from regularly spaced samples if tge sample 
rate exceeds the Nyquist sample rate of twice the maxi- 
mum frequency in the signal. The reconstruction is done 
with a simple low pass filter consistent with the sampling. 
The filter is equivalent to  using a sine function as an inter- 
polating function (see Fig. 1). When possible, the aper- 
ture function is designed to  act as a prefilter to  eliminate 
high frequency components of the signal that  mi ht oth- 
erwise cause aliasing in the reconstructed signal. fhuk~ an 
approach was used with the ERS-1 scatterometer design: 
A desired sam le spacing of 25 km dictated an aperture 
function that glters wavelengths smaller than 50 km to 
minimize aliasing. 

Because the aperture function is non-ideal, if the data 
is over-sampled at least some of the higher frequency con- 
tent of the original signal can be recovered using a recon- 
struction algorithm which inverts both the sampling and 
aperture functions [see Fig. l (b)] .  

111. IRREGULAR SAMPLING THEORY 
In this section we consider irregular sampling and recon- 
struction. We are interested in irregular sampling be- 
cause we can combine multiple passes of a scatterometer 
to  achieve a closely spaced irregular sample grid [4]. 

Grochenig analyzed the irregular sampling problem [ 11. 
He presented a lemma which can be stated as follows: Let 
A be a bounded operator on a Banach space B such that 
111 - All' < 1 (I is the Identity Operator), where / /  . 1 1 '  
denotes the operator norm on B. Then A is invertible on 
B and A-' = ~ ~ = o ( l - A ) " .  Moreover, every f E B can 
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be reconstructed by the iteration 

4 0  = A f  
&+l = 4 ,  - -44, 

M 

n=O 

with convergence in B. The operator A .which includes 
thc sampling and aperture functions must be bounded 
with 111 - All’ < 1. 

Grochenig showed that if f is band limited on a Ba- 
nach space and sampling is &dense with 6 . w < ln(2) 
where w represents the highest frequencies present in f ,  
f can be reconstructed from its samples using this algo- 
rithm [l]. Experimental results for the ER.S-1 scattero- 
meter when several days of data are considered show that 
in the polar regions, the sampling sets arle 6-dense with 
6 = 10 km to 13 km [4]. The best resolution recovery is 
thus approximately 30 km, a value consistent with exper- 
imental results [4]. 

It can be shown that Grochenig’s Algorithm is func- 
tionally equivalent to  the additive algebraic reconstruc- 
tion technique (ART), a well-established image recon- 
struction technique [3]. Block additive ART can be writ- 
ten as [a] 

where a represents the image to  be estimated, a, is the 
nth iterative estimate of a,  j is the pixel index and i is 
the measurement index. The essence of this equation is 
that all measurements that  touch a pixel d are summed 
and nornialized to  create the per pixel update value. Eq. 
(3) can be written as 

an+l = a, +3-1(a-a,) (4) 
where the a’s are now vectors with a being the ‘true’ 
image, a, the nth iterative estimate of a and 3-1 = H’H 
is an N x N matrix operator equivalent to  IGrochenig’s A 
[ 3 ] .  H incorporates both the sampling and the aperture 
function. 

While Grochenig was primarily interested in low-pa:js 
function, we are interested in signals sar i  led by an aper- 
ture function with side lobes and nulls. &e thus consider 
the sub-band limiting scheme illustrated in Fig. 2. It can 
be shown that such a sub-band limited space defined in 
Fig. 2(a) is a Banach space [3]. 
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Figure 2. (a )  A band limiting scheme that delimits nulls in 
the filter response in (b). (b) Frequency response of the ERS-I 
scatterometer. 
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In the following discussion we assume that the sam- 
ple spacing is adequate (&dense) for recovering the de- 
sired original and deal strictly with aperture function af- 
fects on invertibility. We define the domain of H to be 
U E B2(Q’) which consists of all functions with a sub- 
band limited frequency response as illustrated in Figure 
2(a). The low pass characteristics of the aperture func- 
tion built into the operator H indicate that certain fre- 

uencies of an arbitrar,y input are nulled out and there- 
?ore unrecoverable in any reconstruction. By setting the 
domain B2(Q’) to be exclusively functions without those 
frequencies, no information is lost for v = HPL,  though 
v may have attenuated frequency components. Then, 
‘11,’ = H’v = H’Hu C: B2((R’) is also in the original 
Banach space. Thus, IFt = H’H is a bounded opera- 
tor on the sub-band limited Banach space, meeting the 
first requirement of Griichenig’s Lemma. Ekrther 7-t will 
be invertible on this Banach space. It follows t h t  Eq. 
(4) represents a valid algorithm for the complete recov- 
ery of the original vector a within Banach space B2((n’). 
Note, however, that complete recovery is only possible if 
the original function is contained in the Banach space 
spanned by the operator inverse 3-1-’, i.e., B2(Q’). Qth- 
erwise, as discussed below, the result is an approximation 
of the original function. 

IV. PRACTICAL APPLICATION 
While 3-1 is a valid o (’rator for Grochenic’s a1 orithrn 
for function which is Rind-limited or sub-kand-yimited, 
in a,pplication the surfasce function ma not bc sub-band 
limited. The original function can on& b e  recovered in 
the sub-bands over which 3-1 is invertible. Ideally, we 
would modify or reduce the space to  coirrespond to a 
band-limited form. However, it is frequently im racti 
cal, from an algorithmi,:. and computational st a n t  point 
to reduce the problem to such a form. Instead, for prac- 
tical a plication we use regularization of 7i to  insure its 
invertiiility over the full space. The ART algorithms im- 
plicitly include regularircation. Block additive ART is a 
least squares solution to  the inverse problem in Eq. (2) 
while multiplicative Al3T with damping is a niaximum 
entrow estimate in the limit 121151. Thus. even if the 
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complete oriminal function is unrecoverable, ART algo- 
rithms pro& good estimates of the origirial function. 

The Scatterometer Irnage Reconstruction (SIR) algo- 
rithm is a modified multiplicative ART algorithm specif- 
ically designed for scatterometer data recoinstruction [4]. 
The SIR update has square root damping and includes a 
non-linearity to  minimize the effects of noise and reaches 
the maximum entropy solution in the limit [SI. 

The results of addithe ART, multiplicative ART and 
SIR are similar in the noiseless case. However, because 
of noise in the measurements, none of th.e reconstruc- 
tion algorithms can be run for more than a few dozen 
iterations so the t1ieorei;ical limits ma no’t be reached. 
Nevertheless, as will be shown the a5orithms ,yovide 
good resolution enhancement with on y limite itera- 
tions. The limited iteration results are appr-ozimation,s 
of the least squares or maximum entropy solution. Ex- 
perimental data demonstrates that  even highly attenu- 
ated frequency components are effectively r’ecovered with 
finite iterations. 

In order to illustrate and compare the AFW and the SIR 
algorithm each are appliled to  a simple 1-D signal. A sine 
function was chosen since it readily shows the frequency 
domain reconstruction from the various methods. ‘The 
test signal is sampled with an irrewlar sampling grid. A 
rectangular aperture was chosen f%r convenience and its 
utilit for demonstrating: sidelobe recovery. The rela,tion- 
ship Zetween the s ectrum of the aperture function arid 
the test signal is il7ustrated in Fig. 3 .  The rectangular 
aperture for this study was chosen so that the first side 
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Figure 3 .  Illustration of the overlay of the test  signal spectrum 
(light) with the frequency response of the aperture func t ion  
(bold). 

lobe of the aperture is inside the spectrum of the test sig- 
nal as illustrated in Fig. 3, allowing the reconstruction 
of the attenuated and nulled frequencies within the side 
lobe to be easily evaluated. For each algorithm, a noisy 
case is also considered. Following the scatterometer noise 
model, multiplicative Gaussian noise with a K p  of 5% is 
added to  the test signal. 

Figure 4 illustrates the spectra of the output from Mul- 
tiplicative ART and SIR at  25 and 100 iterations for both 
noiseless and noisy cases. (Both additive and multiplica- 
tive ART produce similar results for these cases.) While 
the noiseless case shows very good spectral recovery for 
just a few iterations, the performance of the ART algo- 
rithms in the presence of noise is si nificantly degraded. 
After 100 iterations the energ in &e noise outside the 
desired band is increasing r ap i Jy  for the ART algorithm. 
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Figure 4. Spectra of multiplicative ART and SIR with noise- 
less and noisy measurements in the simulation. 

In the noiseless case the signal is completely recovered 
with sufficient iterations for all of the algorithms. The 
poor performance of ART in the presence of noise orig- 
inally motivated the development of SIR 161. For SIR, 
the multiplicative scale factor is damped so that large 
scale factors do not overly magnify the noise at any one 
iteration, slowing the reconstruction but minimizin the 
effects of the noise. This is evident in the first sidelo%e of 
the SIR estimate which, while enhanced, is not as noisy 
as it is for ART. 

Figure 5 com ares the error performance of the three 

squared error shown, the output at  each iteration is sub- 
tracted from the original test function and the difference 
squared and summed. The noisy cases for multiplicative 
and additive ART show greater error with increasing it- 

algorithms in t R e simulation. To compute the total 
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Figure 5. Cumulative squared error between the output of the 
algorithms for  various iterations and noise.  

erations after a brief initial decrease. Even thouch the 
total squared error is low in the initial iterations For the 
ART algorithms, a minimum number of iterations (about 
30) is required to generate acceptable resolution enhance- 
ment, in which case SIR begins to perform better than 
the ART a1 orithms. SIR is also convergent to  a lower 
total error &an the ART algorithms which are noncon- 
vergent for noisy measurements. The curves in Fig. 5 do 
not conver e to zero because of the nulls in the aperture 
function. Fhe corresponding frequencies are unrecover- 
able and result in some minimum error level between the 
original si nal and the algorithm outputs. Based on Fig. 
5 we conckde that SIR erforms better when noise is 
present. Noting that the &R algorithm also recovers the 
incidence angle response 161, we conclude that it is better 
suited for application to scatterometer data than an ART 
algorithm. 

V. SUMMARY 
Grochenig’s results suugest that a sub-bandlimited sig- 
nal can be recovered &om irregular Sam les. By using 

lar &dense sampling grid of measurements is roduced. 

permits resolution enhancement in excess of the Ny uist 

single pass. 

multiple passes of ERS-1 scatterometer c r  ata, an irregu- 

Using a reconstruction algorithm such as AR % or SIR 

rate and the aperture function frequency response 9 or a 
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