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Abstract - This paper considers techniques for creat-
ing enhanced resolution images from irregular sam-
ples, with specific application to imaging from scat-
terometers. Using previously established irregular
sampling theory, and developing the idea of sub-band
limited Banach space, we show that frequency content
in attenuated sidelobes can be recovered using reso-
lution enhancement techniques, thus taking advan-
tage of the high frequency content of measurements
made with imperfect low pass aperture filters. We
briefly compare and contrast the performance of addi-
tive ART, multiplicative ART and the Scatterometer
Image Reconstruction (SIR) (a derivative of multi-

plicative ART') algorithms with and without noise.

I. INTRODUCTION

A theory for resolution enhancement from irregular sam-
ples is presented. The theory and techniques are illus-
trated for enhanced resolution ERS-1 scatterometer im-
agery. First, a theory of image reconstruction from ir-
regular samples and the equivalence of the algebraic re-
construction technique (ART) and this theory are dis-
cussed. We demonstrate that reconstruction can recover
sidelobe information and consider the practical use of the
theory with the addition of noise to the reconstruction.
We discuss scatterometer image reconstruction (SIR), a
derivative of multiplicative ART tailored to reduce the
influence of noise on enhanced resolution image recon-
struction from scatterometer data [6].

II. SYSTEM MODEL

While this theory is developed around a model of the
surface response that describes the microwave backscat-
ter from a point, it is generally applicable. We desire
to make images of the backscatter fliom ERS-1 scatter-
ometer measurements. We model the radar backscatter
(0° ) from the surface as a function of location with the
backscatter’s incidence angle dependence suppressed.

Let f(z,y) be the function that gives the backscatter
from a point (x,y) on the surface. The measurement
system can be modeled by

z = Hf + noise (1)

where H is an operator that models the measurement
system (aperture filtering and sample spacing), f is the
true surface function, and z represents measurements of
0° made by the instrument. For resolution enhancement,
we are interested in the inverse problem:

f=Ez (2)

where f is an estimate of f from the measurements z.
The inverse of the operator H, H~!, is exact only if the
measurements are noise free and H is invertible, in which
case f = ff .

Real-life sampling usually involves a non-ideal sampler
with a finite aperture which low-pass filters the data. The
aperture functions may have frequency nulls that result
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Figure 1. Block diagram illustrating sampling and signal re-
covery. The original surface, f, is filtered by the system aper-
ture function, A(z,y), and sampled to obtain the measure-
ments z. In (a), the signal is uniformly sampled. The surface
function is recovered using low pass filtering which inverts only
the sampling. In (b), the operator inverted, denoted by H and
the dotted boz, includes both the aperture function and the
sampling. Sampling is dense and may be irregular.

in information which can not be recovered. However if
suitably sampled and processed, information in the aper-
ture frequency response sidelobes can be recovered if the
signal-to-noise ratio (SNR) is sufficiently high.

The traditional approach to sampling and reconstruc-
tion is based on the Nyquist sampling theorem which
states that a band limited function can be completely re-
constructed from regularly spaced samples if tﬁe sample
rate exceeds the Nyquist sample rate of twice the maxi-
mum frequency in the signal. The reconstruction is done
with a simple low pass filter consistent with the sampling.
The filter is equivalent to using a sinc function as an inter-
polating function (see Fig. 1). When possible, the aper-
ture function is designed to act as a prefilter to eliminate
high frequency components of the signal that might oth-
erwise cause aliasing in the reconstructed signal. Such an
approach was used with the ERS-1 scatterometer design:
A desired sample spacing of 25 km dictated an aperture
function that glters wavelengths smaller than 50 km to
minimize aliasing.

Because the aperture function is non-ideal, if the data
is over-sampled at least some of the higher frequency con-
tent of the original signal can be recovered using a recon-
struction algorithm which inverts both the sampling and
aperture functions [see Fig. 1(b)].

III. TRREGULAR SAMPLING THEORY

In this section we consider irregular sampling and recon-
struction. We are interested in irregular sampling be-
cause we can combine multiple passes of a scatterometer
to achieve a closely spaced irregular sample grid [4].
Groéchenig analyzed the irregular sampling problem [1].
He presented a lemma which can be stated as follows: Let
A be a bounded operator on a Banach space B such that
I — A|" < 1 (I is the Identity Operator), where || - ||’
denotes the operator norm on B. Then A is invertible on
Band A7 =327 (I — A)™. Moreover, every f € B can
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be reconstructed by the iteration

o = Af
(rf)n—l—l = ¢n - A¢n

n=0

with convergence in B. The operator A which includes
the sampling and aperture functions must be bounded
with |1 — 4]’ < 1.

Gréchenig showed that if f is band limited on a Ba-
nach space and sampling is 6-dense with § - w < In(2)
where w represents the highest frequencies present in f,
f can be reconstructed from its samples using this algo-

rithm [1]. Experimental results for the ERS-1 scattero-
meter when several days of data are considered show that
in the polar regions, the sampling sets are 6-dense with
6 =10 km to13 km [4]. The best resolution recovery is
thus approximately 30 km, a value consistent with exper-
imental results [4].

It can be shown that Grochenig’s Algorithm is func-
tionally equivalent to the additive algebraic reconstruc-
tion technique (ART), a well-established image recon-
struction technique [3]. Block additive ART can be writ-
ten as [2]

2.i(si = pi)hij
> hig

where o represents the image to be estimated, a, is the
nt" iterative estimate of a, j is the pixel index and i is
the measurement index. The essence of this equation is
that all measurements that touch a pixel @/ are summed
and normalized to create the per pixel update value. Eq.
(3) can be written as

(3)

J _ J
an+1 = ay +

py1 = an+Hia—a,) (4)
where the a’s are now vectors with a being the ‘true’
image, a,, the nth iterative estimate of ¢ and H = H'H
is an N x N matrix operator equivalent to Grochenig’s A
[3]. H incorporates both the sampling and the aperture
function.

While Grochenig was primarily interested in low-pass
function, we are interested in signals sampled by an aper-
ture function with side lobes and nulls. We thus consider
the sub-band limiting scheme illustrated in Fig. 2. It can
be shown that such a sub-band limited space defined in
Fig. 2(a) is a Banach space [3].
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Figure 2. (a) A band limiting scheme that delimits nulls in
the filter response in (b). (b) Frequency response of the ERS-1
scatterometer.

In the following discussion we assume that the sam-
ple spacing is adequate (6-dense) for recovering the de-
sired original and deal strictly with aperture function af-
fects on invertibility. We define the domain of H to be
u € B?(§)) which consists of all functions with a sub-
band limited frequency response as illustrated in Figure
2(a). The low pass characteristics of the aperture func-
tion built into the operator H indicate that certain fre-

uencies of an arbitrary input are nulled out and there-
ore unrecoverable in any reconstruction. By setting the

domain B?(Q') to be exclusively functions without those
frequencies, no information is lost for v = Hu, though
v may have attenuated frequency components. Then,
v = H'v = H'Hu € B?*(QY) is also in the original
Banach space. Thus, H = H'H is a bounded opera-
tor on the sub-band limited Banach space, meeting the
first requirement of Gréchenig’s Lemma. Further, H will
be invertible on this Banach space. It follows that Eq.
(4) represents a valid algorithm for the complete recov-
ery of the original vector a within Banach space B?(£').
Note, however, that complete recovery is cnly possible if
the original function is contained in the Banach space

spanned by the operator inverse H™!, i.e., B2(Q'). Oth-
erwise, as discussed below, the result is an approximation
of the original function.

1V. PRACTICAL APPLICATION

While H is a valid operator for Grochenig’s algorithm
for function which is I})aand—limited or sub-band- umnited,
in application the surface function may not be sub-band
limited. The original function can only be recovered in
the sub-bands over which H is invertible. Ideally, we
would modify or reduce the space to correspond to a
band-limited form. However, it is frequently impracti-
cal, from an algorithmic and computational standpoint,
to reduce the problem to such a form. Instead, for prac-
tical application we use regularization of H to insure its
invertill))ility over the full space. The ART algorithms im-
plicitly include regularization. Block additive ART is a
least squares solution to the inverse problem in Eq. (2)
while multiplicative ART with damping is a maximum
entropy estimate in the limit [2][5]. Thus, even if the
complete original function is unrecoverable, ART algo-
rithms provige good estimates of the original function.
The Scatterometer Irnage Reconstruction (SIR) algo-
rithm is a modified multiplicative ART algorithm specif-
ically designed for scatterometer data reconstruction [4].

The SIR update has square root damping and includes a
non-linearity to minimize the effects of noise and reaches
the maximum entropy solution in the limit [6].

The results of additive ART, multiplicative ART and
SIR are similar in the noiseless case. However, because
of noise in the measurements, none of the reconstruc-
tion algorithms can be run for more than a few dozen
iterations so the theoretical limits may not be reached.
Nevertheless, as will be shown the aff orithms provide
good resolution enhancement with only limited itera-
tions. The limited iteration results are approzimations
of the least squares or maximum entropy solution. Ex-
perimental data demonstrates that even highly attenu-
ated frequency components are effectively recovered with
finite iterations.

In order to illustrate and compare the ART and the SIR
algorithm each are applied to a simple 1-D signal. A sinc
function was chosen since it readily shows the frequency
domain reconstruction from the various methods. The
test signal is sampled with an irregular sampling grid. A
rectangular aperture was chosen for convenience and its
utility for demonstrating sidelobe recovery. The relation-
ship between the spectrum of the aperture function and
the test signal is ilyl)ustrated in Fig. 3. The rectangular
aperture for this study was chosen so that the first side
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Figure 3. [llustration of the overlay of the test signal spectrum
(light) with the frequency response of the aperture function
(bold).

lobe of the aperture is inside the spectrum of the test sig-
nal as illustrated in Fig. 3, allowing the reconstruction
of the attenuated and nulled frequencies within the side
lobe to be easily evaluated. For each algorithm, a noisy
case is also considered. Following the scatterometer noise
model, multiplicative Gaussian noise with a K, of 5% is
added to the test signal.

Figure 4 illustrates the spectra of the output from Mul-
tiplicative ART and SIR af 25 and 100 iterations for both
noiseless and noisy cases. (Both additive and multiplica-
tive ART produce similar results for these cases.) While
the noiseless case shows very good spectral recovery for
just a few iterations, the performance of the ART algo-
rithms in the presence of noise is significantly degraded.
After 100 iterations the energy in ghe noise outside the
desired band is increasing rapidly for the ART algorithm.
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Figure 4. Spectra of multiplicative ART and SIR with noise-
less and notsy measurements in the simulation.

In the noiseless case the signal is completely recovered
with sufficient iterations for all of the algorithms. The
poor performance of ART in the presence of noise orig-
inally motivated the development of SIR [6]. For SIR,
the multiplicative scale factor is damped so that large
scale factors do not overly magnify the noise at any one
iteration, slowing the reconstruction but minimizing the
effects of the noise. This is evident in the first sidelobe of
the SIR estimate which, while enhanced, is not as noisy
as it is for ART.

Figure 5 compares the error performance of the three
algorithms in the simulation. To compute the total
squared error shown, the output at each iteration is sub-
tracted from the original test function and the difference
squared and summed. The noisy cases for multiplicative
and additive ART show greater error with increasing it-
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Figure 5. Cumulative squared error between the output of the
algorithms for various iterations and noise.

erations after a brief initial decrease. Even though the
total squared error is low in the initial iterations for the
ART algorithms, a minimum number of iterations (about
30) is required to generate acceptable resolution enhance-
ment, in which case SIR begins to perform better than
the ART algorithms. SIR is also convergent to a lower
total error than the ART algorithms which are noncon-
vergent for noisy measurements. The curves in Fig. 5 do
not converge to zero because of the nulls in the aperture
function. The corresponding frequencies are unrecover-
able and result in some minimum error level between the
original signal and the algorithm outputs. Based on Fig.
5 we conclude that SIR performs better when noise is
present. Noting that the SIR algorithm also recovers the
incidence angle response [6], we conclude that it is better
suited for application to scatterometer data than an ART
algorithm.

V. SUMMARY

Grochenig’s results suggest that a sub-bandlimited sig-
nal can be recovered from irregular samples. By using
multiple passes of ERS-1 scatterometer J;ta, an irregu-
lar §-dense sampling grid of measurements is produced.
Using a reconstruction algorithm such as ART or SIR
permits resolution enhancement in excess of the Nyquist
rate and the aperture function frequency response for a
single pass.
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