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Abstract-Field-wise scatterometer wind estimation de- 
termines the vector wind at many resolution elements si- 
multaneously by estimating the parameters of a wind field 
model. According to simulations, it results in more ac- 
curate estimates than traditional point-wise estimation, 
which estimates the vector wind one resolution element 
at a time. Further, field-wise estimation produces fewer 
ambiguities than point-wise estimation. 

Field-wise estimation necessitates locating the local min- 
ima of a high-dimensional, non-linear objective function. 
Conventional optimization techniques can be employed if 
initial search points within the capture regions of the lo- 
cal minima can be found. We develop and evaluate two 
novel approaches for determining initial search points for 
field-wise estimation. The accuracy of each algorithm is 
evaluated using simulated NASA Scatterometer (NSCAT) 
data. 

INTRODUCTION 

Field-wise scatterometer wind estimation involves inden- 
tifying the local minima of the high-dimensional and non- 
linear field-wise objective function. The local minima cor- 
respond to the optimized model-based estimates of the 
true wind field, and the goal of field-wise estimation is to  
locate the local minimum closest to  the true wind. 

Conventional optimization techniques may be used for 
field-wise estimation if initial values close to  the true wind 
can be found. Previous approaches have used point-wise 
retrieved wind fields as initial values for gradient-search 
algorithms. When the retrieved field has few ambiguity 
removal errors, local optimization using its model fit as 
the initial value converges to  the closest local minimum to 
the true wind. However, if the retrieved field has excessive 
errors, then it might yield a minimum far from the true 
wind. Consequently, we investigate global optimization 
algorithms that do not rely on pre-processing by point- 
wise ambiguity removal schemes in their search for initial 
values. 

We develop algorithms to  locate all of the local min- 
ima of the field-wise objective function, or at least a sub- 
set of the local minima that contains the closest to the 
true wind. Due to  the computational expense of evaluat- 
ing the objective function, traditional global optimization 
schemes prove intractable. In this paper we present two 
problem-specific algorithms that seek to identify initial 
values close to  the true wind. First, a brief definition of 

field-wise wind estimation is provided, and descriptions 
of the pseudo-objective function and cluster-based algo- 
rithms follow. The performance of the two algorithms is 
evaluated using simulated NSCAT data. 

FIELD-WISE WIND ESTIMATION 

Field-wise wind estimation is the process of estimating 
wind field model parameters, denoted by the column vec- 
tor X, from scatterometer backscatter measurements. The 
model-based wind field is the matrix product W = F X ,  
where W is a column vector containing the rectangular 
components of the wind vector cells. The matrix F is the 
wind field model, and the model fit to the wind field W 
is X = F t W ,  where Ft is the pseudo-inverse of F [3]. 

Estimates of the model parameters are all the local min- 
ima of the field-wise objective function 

n=l k = l  

with 

N is the number of cells on each side of the square region, 
and n is the wind vector cell index [3]. L, is the number 
of measurements in cell n. The kth measurement in cell 
n is denoted zn(k), and p(z,(k) I X) is the likelihood of 
observing zn(k) given that W = F X  is the parameter 
vector of the model fit to the true wind. M represents 
the geophysical model function that relates (un, wn), the 
vector wind in cell n, to the true value of ai(k), which 
is the noiseless measurement that would be observed for 
the vector wind (un, wn>,. Note that J may be expressed 
either as a function of W or X. 

In the following sections, we present two algorithms for 
globally optimizing the field-wise objective function. They 
are designed to locate a subset of the local minima of J(X) 
that contains the minimum closest to the true wind. 
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PSEUDO-OB JECTIVE FUNCTION ALGORITHM 

The pseudo-objective function (POF) algorithm locates 
the local minima of a simplified objective function, called 
the pseudo-objective function, and the local minima of the 
POF are then used as initial values in local optimizations 
of the full objective function J .  

The model used in the POF describes the wind direction 
field by the polynomial modelp(cl,c2, c3) = c1 + c z z + c ~ ~ ,  
where x and y are the rectangular coordinates of the wind 
vector cell, and the origin of the coordinate system is such 
that c1 is the mean direction of the wind field. The POF 
value of the model parameter set (q,c2,c3) is found by 
combining the direction field described by p ( q  , 1 2 2 ,  cg) with 
point-wise speed estimates, which are taken from the true 
simulated wind in this paper. Then, the resulting vector 
wind field is converted into the rectangular form W, and 
J ( W )  is the POF value of the parameter set (c1,c2,c3). 

The POF algorithm searches the reduced parameter 
space (cl, c2, c3) for all local minima. The wind fields W 
corresponding to  local minima are constructed according 
to  the POF model, and their wind field model parameter 
vectors X are calculated from X = F t W ,  with F defined 
by the KL model [l]. The model vectors X then are used 
as initial values in local optimizations of the full objective 
function J with a higher-order model. For simplicity the 
6 parameter KL model is used in this paper. 

CLUSTER-BASED ALGORITHM 

The cluster-based (CB) algorithm (refer to  Fig. 1) identi- 
fies initial values for local optimization by examining com- 
binations of point-wise ambiguities. Before the CB algo- 
rithm is executed on a region, spurious ambiguities are 
removed according to [4] with a threshold of Q = 

Examination of all possible ambiguity combinations for 
a given region is computationally intractable, even after 
removing improbable ambiguities, so the CB algorithm 
limits the search to typical wind fields. For each region a 
random set of 20 000 typical wind fields, represented by 
6 parameter KL model parameter vectors, is generated. 
The model parameter vector for each typical wind field is 
drawn from a multi-variate normal population. Parameter 
means are assumed to'be zero and variances are dictated 
by the eigenvalues of the autocorrelation matrix used to  
generate the KL model [l], [a] .  

In the next stage of the algorithm, the typical wind 
fields are used to  select combinations of point-wise ambi- 
guities. For each typical wind field, each of its vectors is 
compared with the point-wise ambiguity set in the same 
wind vector cell, and the closest ambiguity is selected. The 
field of point-wise ambiguities closest to the vectors of a 
typical wind field is its closest ambiguity field. The direc- 
tion rms error between the 20 000 typical wind fields and 
their closest ambiguity fields is used to  rank the typical 

winds in ascending order of error, and the model param- 
eter vectors X corresponding to  the 500 highest ranked 
typical winds are clustered. 

Finally, each cluster center is optimized to  minimize di- 
rection rms error between the cluster center and its closest 
ambiguity field (the closest ambiguity field changes as the 
cluster center parameters are optimized). Note that this 
optimization step reduces direction rms error only. A more 
accurate speed field can be obtained by taking speeds from 
the closest point-wise ambiguities. The optimized cluster 
centers are the CB estimates of the wind field. 

TEST RESULTS 

The POF and CB algorithms were tested on simulated 
NSCAT data generated from wind fields obtained from the 
European Center for Medium-Range Weather Forecasting 
(ECMWF). From the simulated wind set, 80 NSCAT half- 
revolutions were simulated, and ambiguous point-wise es- 
timates were made for each of the half-revolutions [3]. 

In order to  evaluate the performance of the POF and 
CW algorithms, we define the skill of a field-wise estima- 
tion algorithm as its ability to model the direction of each 
individual vector of the true wind. For each region, the 
POF and CB algorithms produce a set of estimates of the 
true wind field. The estimate closest to the true wind, in 
a direction rms sense, is compared with the true wind. If 
a vector in the closest to true field is more than 20" off the 
corresponding vector in the true field, then it is counted 
as a single error, otherwise it is a success. The error and 
success rates are calculated by summing the numbers of 
single errors and successes per region and dividing by the 
total number of vectors in all of the regions combined. 

The POF algorithm was run on 13 simulated NSCAT 
half-revolutions. Each half-revolution was divided into 
square regions, 12 NSCAT 50 km wind vector cells to a 
side. The regions overlapped by 50%. Regions missing 
data were rejected. The total number of regions in the 
test set was 566. The POF algorithm generated a set of 
estimates for each region, and the closest to  the true wind 
was selected. The success and error rates for the closest 
to  true estimates are recorded in Table 1. One possible 
source of error in the POF algorithm is the 6 parameter 
KL model used in the final optimization stage. Table 2 
displays the mean direction rms error, relative to  the true 
wind, of the 6 parameter KL model fit and the closest to  
true estimate. Since the KL model error is close to that of 
the closest estimate, the POF algorithm introduces only 
a little more average error than the model fit. 

The CB algorithm was tested on 19 simulated NSCAT 
revolutions. The revolutions were divided into regions in 
the same manner as for the POF test. Regions missing 
data were rejected. The total number of regions in the test 
set was 911. For each region the CB algorithm generated 
a set of wind field estimates, and out of this set the closest 
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Skill Statistics 

Algorithm 

POF 
CB 

Mean DRMS Error 
of Closest Estimate 

Mean DRMS Error 
of KL Model Fit 

15.5” ‘ 9.9” 
13.1” 10.5” 

I I 1  I I 

Table 1: The skill of the pseudo-objective function (POF) 
and cluster-based (CB) algorithms is evaluated by compar- 
ing the closest to true estimate with the true wand. The 
success rate represents the probability that any given vector 
of the closest estimate will be within 20” of its correspond- 
ing vector in the true wand field. 

Mean Direction RMS Error Statistics 

Table 2: This table compares the mean direction rms  
(DRMS) error of the pseudo-objective function (POF) and 
cluster-based (CB) algorithms to that of the 6 parameter 
KL model fit t o  the true wind. The closest to true es- 
timate of the P O F  and CB algorithms introduces only a 
little more average error than the 6 parameter KL model 
fit alone. 

estimate to  the true wind was selected. The success and 
error rates for the closest to  true estimates are recorded 
in Table 1. Since the CB algorithm also uses the 6 pa- 
rameter KL model, one possible reason for inaccuracy in 
the estimates is modeling error due to the simplistic wind 
field model. Table 2 displays the mean direction rms error, 
relative to  the true wind, of the 6 parameter KL model 
fit and the closest to  true estimate. The average error for 
the closest estimate is not much different than that of the 
KL model fit, so the closest estimate of the CB performs 
almost as well, on average, as the KL model fit to  the true 
wind. 

CONCLUSION 

The POF and CB algorithms locate a set of local min- 
ima of the field-wise objective function without relying 
on pre-processing by point-wise ambiguity removal algo- 
rithms. Both algorithms identify local minima that are 
close to  the true wind a high percentage of the time, and 
some of the errors in the closest to true estimates can be 
attributed to modeling error in the 6 parameter KL model. 
Subsequent local optimizations using higher-order models 

random wind fields 
according to KL model 

statistics 

Remove spurious 
ambiguities 

I I between each random 
wind field and its closest 

ambiguity field * 
Rank in ascending 

Cluster parameter vectors of 
the 500 random wind fields 

with least DRMS error 

Figure 1: Cluster-Based Algorithm 

can be expected to make the estimates more accurate. 
Further improvements in accuracy might be obtained by 
using POF and CB estimates as initial values for median 
filter processing. 
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