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A bstract-Traditional scatterometer wind estimation in- 
verts the model function relationship between the wind 
and backscatter a t  each resolution element, yielding a 
set of ambiguities due to the many-to-one mapping of 
the model function. Field-wise wind estimation dramati- 
cally reduces the number of ambiguities by estimating the 
wind for many resolution elements, simultaneously, using 
a wind field model that constrains the spatial variability 
of the wind. 

In this paper several wind field models are presented 
for use in field-wise wind estimation. Model accuracy, as 
a function of the number of model parameters, is reported 
for each model. This accuracy is evaluated using NSCAT 
JPL nudged L2.0 data. 

In order to reduce the computational load, automated 
classification schemes are developed to select the optimal 
number of model parameters necessary for a given wind 
field. Classification is performed through hypothesis test- 
ing on raw NSCAT data and point-wise estimates. 

INTRODUCTION 

Radar backscatter data from NSCAT (NASA Scatteroni- 
eter) are related to the near-surface ocean wind through 
a geophysical model function. However, due to  the nature 
of the geophysical model function, each set of measure- 
ments yields an ambiguous set of estimates of the cor- 
responding near-surface ocean wind in traditional point- 
wise estimation. An additional step is required to  identify 
a unique solution from the very large nurnber of possi- 
ble fields. Field-wise estimation provides wind estimates 
for many resolution elements simultaneously by estimat- 
ing the parameters of a wind field model, involving local 
or global optimizations on the model parameters. The ac- 
curacy of field-wise estimation increases with the number 
of model parameters. However, as the nurnber of model 
parameters increases so does the computational expense 
of the optimizations. 

In this paper we present several simple wind field models 
and evaluate the average accuracy of each model as a func- 
tion of the number of model parameters. We also present 
two wind field classification algorithms. The first is based 
on radar backscatter data (ao), while the second uses the 
ambiguous point-wise estimates. The algorithms are used 
to classify which wind fields can be modeled by low-order 
models and which fields require higher-order models. This 
approach decreases the average number of rnodel parame- 

ters without significantly increasing the aver4age modeling 
error. Throughout this work model accuracy is evaluated 
relative to  NSCAT JPL nudged data, though we recognize 
the occasional failure of nudged data to identify the cor- 
rect wind ambiguity. Thlese failures can adversely affect 
the performance of our algorithm beyond that expected 
from simulated wind. 

WIND FIELD MODELS 

We consider linear wind field models applied to  square re- 
gions, 600 km on each side. They are described by a ma- 
trix F in the equation W M  = F X ,  where X; is a column 
vector of model parameters and WM = (UT V T )  , with 
U and V defined as column vectors containing the rect- 
angular components of the wind vector cells. The model 
order is determined by the number of parameters in X or, 
equivalently, the number of columns of F that are used. 
We evaluate several models in this section: Fourier and 
Legendre basis models [I], an orthogonal basis model de- 
rived using the Karhunen-Loeve transform [2], and the 
parameterized boundary conditions (PBC) model [3]. 

The matrix F of the Fourier model is constructed by 
sampling two-dimensional Fourier basis functions, while 
that of the Legendre model is created by sampling two- 
dimensional Legendre polynomials. The Karhunen-Loeve 
(KL) model, in contrast is data driven. ‘To create F ,  
NSCAT JPL nudged L2.0 data was used to estimate the 
autocorrelation matrix for 600 km square regions, and 
the orthonormalized eigenvectors of the autocorrelation 
matrix were column-scanned to form the columns of the 
model matrix F .  Finally, the columns of F were sorted in 
descending order according to the corresponding eigenval- 
ues. The PBC model describes the field in terms of the 
divergence and vorticity of the pressure field along the 
region boundary [3]. 

In order to evaluate each of the models and compare 
their performance, the models were fit to regions of NSCAT 
JPL nudged data under a least-squared error constraint 
for each of the four models and for a range of model or- 
ders. The model based wind, W is computed according to 
the equation W = F F t W ,  where Ft  is the p,seudo-inverse 
of F ,  and W is the nudged wind field. The amerage errors 
for fits with the four models are displayed in Fig. 1 as func- 
tions of the number of model parameters used. The speed, 
direction, vector and normalized RMS errors between the 
model fit field fl and the nudged field W show similar 

T 

0-7803-3836-7/97/$10.00 0 1997 IEEE 1847 

mailto:browncg@@salt.ee.blyu.edu


2.21 I 

1 8  

4 1.6 

8 1 4  
r 
8 1.2 
y1 

1 

0.8 

o in 20 30 40 so 0 6  

Nurnbcr of Model Parameters 

IO in 2n 30 40 SO 
Number of Model Parameters 

22 

B :: 
$ I6 

2 14 
12 

in 

8 n in 20 3n 40 sn 
Number of MdC Paramelem 

n io 20 30 40 so 
Number of Model Paramefeir 

Figure 1: Average speed, direction, vector, and normal- 
ized r m s  error as a func t ion  of number  o f  model param- 
eters. These  errors represent t he  difference between the  
nudged wind  field, W, and the  least-squares model fit ,  W. 

trends. Specifically that increasing the model order im- 
proves model accuracy, and that in general the choice of 
a particular model is not critical. Unfortunately, as the 
model order increases so does the computation required to 
estimate the wind using the model. The compromise for 
each field-wise estimate, then, is to minimize the number 
of model parameters while minimizing the model error. 
We propose to use different model orders for each opti- 
mization depending on the wind in the region. 

MODEL ORDER SELECTION 

Wind field classification algorithms can be used to select 
models with a minimal number of parameters while keep- 
ing the error in an acceptable range. The result increases 
the computational efficiency of field-wise estimation with- 
out significantly increasing the modeling error. In this 
section we describe two simple wind field classification al- 
gorithms that test the hypothesis that a field is poorly 
modeled by a low-order model. Lacking a clearly superior 
model using few parameters, the two algorithms described 
here are developed using the KL model, though adapta- 
tion to other models is straightforward. 

Both classification algorithms divide wind fields into 
two disjoint classes based on some computable statistic 
of the data. Either the region is well modeled by a low- 
order model (designated &), or it is poorly modeled by 
the low-order model (81). Comparing a statistic, y ,  to a 
threshold, v, provides the basis for the binary hypothesis 
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Figure 2: In general a field tha t  i s  poorly f i t  by a 2 pa- 
rameter  KL model has  a large value of t he  statistic, y ,  
defined f o r  the  BC algorithm as the  standard deviation o f  
the  normalized backscatter. 

The Backscatter Classification Algorithm 

The backscatter classification (BC) algorithm relates the 
variability in the wind field to  the variability in the cor- 
responding U' data, that is, the statistic for BC is com- 
puted directly from the U' measurements. Selecting only 
smooth wind fields, so the dominant backscatter depen- 
dence is due to incidence angle, an average backscatter is 
computed for each beam as a function of the cross track 
cell. In the BC algorithm the U' measurements are first 
normalized with respect to these averages. The statistic, 
y, for the BC algorithm is defined as the standard devia- 
tion of the U' values of all the beams normalized by the 
average backscatter values. 

Fig. 2 displays the relationship between the standard 
deviation of the normalized backscatter, y ,  and the vector 
rms (VRMS) error of the 2 parameter KL model fit to 
over 5000 NSCAT JPL nudged fields. The strong corre- 
lation between the statistic and the VRMS error of the 2 
parameter KL model fit can be exploited to  estimate the 
range of the VRMS error given y .  

The choice of a threshold for the VRMS error of model 
fit identifies a field as being either well (00) or poorly (01) 
modeled by a 2 parameter KL model. The definition of 
"well" modeled, and the choice of the threshold, depends 
on the particular application. If, for example, the wind 
field class 00 is defined as wind fields that have a 2 param- 
eter KL model fit VRMS error less than 3.4 m/s (below 
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the horizontal line of Fig. 2), then a threshold v is selected 
from the normalized backscatter standard deviation. This 
selection requires a compromise between the probabilities 
of correctly classifying a wind field and the probabilities 
of misclassifying it. With the choice of v = 0.52 (selected 
to declare half the wind fields in 80 and half in el), for 
example, the probability of correctly classifying a 81 wind 
field is 86% and the probability of incorrectly classifying 
a 80 wind field is 32%. With these thresholds (rather ar- 
bitrarily chosen) 50% of the wind fields are declared to  be 
well modeled by just 2 parameters-in fact, the average 
VRMS error of these fits is 2.2 m/s, a modest increase 
from the 1.2 m/s error when 40 parameters are used (see 
Fig. 1). 

The Point-wise Classification Algorithm 

The point-wise (PC) algorithm classifies wind fields ac- 
cording to patterns in the point-wise ambiguity field, and 
relies on the statistics of the field directions only, regard- 
less of the wind speed. The point-wise ambiguities are 
pre-processed to  remove spurious ambiguities according to 
[4] with a probability of removing the correct ambiguity 
of The statistic, y ,  is defined for the PC algorithm 
as the minimum DRMS error between a mean wind field 
and the closest point-wise ambiguity field (minimized over 
all possible directions of the mean wind fields). 

Fig. 3 reveals the correlation between y and the DRMS 
error in the 2 parameter KL model fit to  over 3500 nudged 
wind fields. The correlation allows estimation of the range 
of model fit DRMS error given y. If the wind field class 
80 is defined as wind fields that have a 2 ]parameter KL 
model fit DRMS error less than 20”, then the probability 
of correctly classifying a 81 wind field is 93‘% for U = 14”. 
The probability of incorrectly classifying a 60 wind field is 
about 26%. Again, the choice of thresholds would depend 
on the application. The choice of v = 14” divides the 
declared regions in two nearly equal sized classes, and the 
average DRMS error of the 80 fields is 12”. This is a very 
modest increase from the 8” DRMS error iresulting from 
the use of 40 model parameters. 

CONCLUSIONS 

Field-wise wind estimation profoundly reduces the num- 
ber of ambiguities and reduces the computational load 
of scatterometer wind estimation. Examination of mod- 
eling error with four typical models reveals only minor 
differences. However, the average quality of the model 
fit is strongly influenced by the number of model param- 
eters used. Increasing the number of model parameters 
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Figure 3: T h e  DRMS error in a 2 parameter  KL model 
fit to  NSCAT JPL nudged wind fields is  highly correlated 
with the PC algorithm statistic, y. 

increases modeling accuracy; however, it also increases 
computational expense. Classification algorithms, such as 
the BC and PC algorithms presented here, can be used to 
decrease the average number of model parameters without 
significantly increasing the average modeling error. Iden- 
tifying, a priori, fields that will be well modeled by a low- 
order model conserves computing resources for more diffi- 
cult fields. 
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