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Abstract -- Wind velocities over the ocean can be estimated
using measurements from spaceborne scatterometers by in-
verting the Geophysical Model Function (GMF) which relates
normalized backscatter to wind velocity. Current estimation
procedures employ maximum-likelihood techniques. Unfor-
tunately, there are several local maxima of the maximum-
likelihood function. As a result, several (2-6) wind estimates
are returned as possible solutions at each wind vector cell. An
ambiguity-removal step is required to determine a wind field.
In this paper, we develop a statistical test to distinguish among
the maxima of a maximum likelihood equation, and apply it to
wind estimation. An upper bound is derived on the probability
of error if a lower likelihood wind estimate is discarded. This
bound is used to eliminate improbable wind solutions. Using
this procedure we show that for most ERS-1 wind vector cells
the number of wind estimates can be reduced to two. This
reduces the complexity of the ambiguity-removal step while at
the same time increasing the confidence in the entire retrieved
wind field.

INTRODUCTION

Spaceborne scatterometers are a proven method of estimating
wind velocities over the earth’s oceans. A wind scatterometer
makes indirect measurements of the normalized radar backscat-
ter coefficient, o, of the ocean’s surface. The backscatter is
then related to the wind velocity over the surface by inverting an
empirical relationship called the Geophysical Model Function
(GMF). Wind retrieval algorithms are based on the optimiza-
tion of a maximum-likelihood (ML) objective function which
is based on a statistical model of the 0° measurements.

Unfortunately, in general there are multiple wind velocities,
or ambiguities, which give maxima of the likelihood function.
Current techniques keep all of the local maxima of the likeli-
hood function for further processing by an ambiguity-removal
algorithm which uses correlation in adjacent cells or other
techniques to determine a wind field.

However, keeping all the wind vectors which give local
maxima of the likelihood function does not adhere to the
general philosophy of a maximum likelihood estimate: pick
the wind velocity which gives the largest probability that
the measurements would have been observed. It is hard to
statistically justify retaining a wind velocity estimate that has a
distinctly lower likelihood value than the maximum value. The
problem is determining how much lower the likelihood value
should be before the wind velocity solution is eliminated as a
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possible wind vector. A solution to this problem is to formulate
a probabilistic question, and then place a probability threshold
for eliminating wind vectors at a statistically satisfying level.

It is important to note that the technique developed below for
resolving maxima in a ML equation with multiple maxima can
be employed in any ML estimation procedure. The notation
given in developing the technique is convenient for wind
estimation but the technique is general.

STATISTICAL TEST

To establish notation, let z be a vector of ¢° measurements,
and let w be the wind vector. Let zy be a particular vector
of measurements and wy and w; particular wind vectors
associated with the maxima of the log-likelihood function, i.e.,
wo and w; are two ambiguities, where w; is the most-likely
ambiguity of the set of ambiguities resulting from point-wise
wind retrieval. In addition, let M} ; be the value of the
Geophysical Model Function (GMF) when the wind is w; and
the measurement is taken with the incidence and azimuth angles
corresponding to the o° measurement zj. Furthermore, a,%yi is
the variance of the measurement z; assuming a wind of w;.

We want to develop a statistical test to determine if we
should retain ambiguity wo for further processing. To do this
we evaluate the probability that the observed ratio of likelihood
values would be as large if wg is the true wind. In other
words we want to evaluate the probability that p,(z|w;) >
Kp.(z|wg) given that wy is the true wind. The constant X is
the observed likelihood ratio, X = p,(zo|w1)/pz(2o|wo). In
other words, define

ag(K) = Problp,(z|w1) > Kpa(z|wo)|wol, ¢))

a is then the probability that the likelihood ratio, K, would be
observed if the lower-ranked ambiguity (wy) is the true wind.
A small value of oy suggests that wg is not a reasonable wind
estimate and can thus be discarded.

To simplify the calculation of g we use the log-likelihood
ratio log £(z) where

log £(z) = log[ps(a|w1)/pa(2|Wo)]

and calculate the probability that log £(z) > log K given wy
is the true wind. This ratio can be written as

log £(z) =
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where again M} ; denotes the value of M}, assuming a windiof
w; and oy ; is the value of o) assuming a wind of w;. Note
that in this paper the CMOD-FDP GMF is used [1]. !

We define several variables useful in simplifying this ex-
pression and obtaining the probability density function in orcfler
to evaluate the probability.

N (Mx,0—My 1)?
a= Ek 1105(0“>7 b= Zk—l(—‘%
- 1 g —_ Ok , 1
o= (1-%2), = et
o = (zx) — Mk,o’
Tk,0
and the random variable [,
N
I = logl(z)—a+b=>Y (azi—drzs). (3)
k=1

Note, that assuming wo is the true wind implies that each
zj is a zero-mean, unit-variance, Gaussian random variable.
Now, ayg can be computed as the probability that /, a randgm
variable which is a function of the measurements, is greater
than or equal to y = logK — a + b given that wy is the true
wind. Thus,

ao(K) = / p(llwo)dl. (4)
Y |
Calculating the probability function of [ is a difficult task
in general. However, the moment-generating function can \be
obtained in a fairly straightforward manner since the measuﬂ‘e-
ments are 1ndependent The result is

By(s) =

H ! ex dis é’S)
L 00 7P\ 2= 4cis

The central limit theorem guarantees that as N gets 1a11‘ge
(corresponding to more measurements) the distribution of [
approaches a normal distribution with mean 7 = Z k=1 Ck ade

variance o2 Zk (d% + 2c¢%). For large N this ma.ktes
calculation of o a trivial task. For small NV the distribution of
1 is more complicated but can be expressed asymptotically as a
normal density plus an error term. The error term can be wdtﬁen
in terms Hermite polynomials and moments of the density
function [2]. These moments can be obtained, in princig‘le,
from the moment-generating function of {. Thus, a series
solution for g can be found. Defining v = (y — 1)/(v/20) we
obtain.

nd Ch _y? L
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Figure 1: Plot of oy estimated from simulation versus o
estimated from four terms of series in (6). Also a plot of the
best Chernoff bound versus the series calculation of ay.

Simulation suggests that more than four terms are required
to get an accurate value of «p when there is large variance
in the measurements due to large modeling error. Since the
moments of [ become increasingly cumbersome to calculate,
an alternative approach may be used which involves only an
easily computable upper bound on the value of ayg.

By establishing an upper bound on «g, a conservative deci-
sion can be based on the value of the upper bound rather than
the exact value. A relatively tight upper bound is the Chernoff
bound which states that for arbitrary s > 0,

g < e7VP(s) ®

where ®;(s) is the moment generating function of /.

The tightest Chernoff bound is obtained by finding the value
of s that minimizes e~*Y®,;(s), or —sy + log(®;(s)). Such
a value is a positive real root of a polynomial of order 2N,
restricted to ensure a real value of ®;(s). Thus, the minimum
value of the bound can be found in a computationally tractable
way. However, to speed computation a single value of s for
global use is often used. Testing using ERS-1 orbit parameters
shows that e~*¥®;(s) is extremely flat around the minimum
value near s = 1. Thus, s = 1 is a satisfactory choice for
obtaining a useful upper bound. Numerically evaluating this
bound provides a value to be used in the probability test given
in (1). Remembering that ¢ is the probability of discarding an
ambiguity whichis the true wind, a threshold for this probability
is selected. The Chernoff bound (s = 1) is then computed. Any
ambiguities with probability bounds less than the threshold
can be discarded with confidence since the probability that the
discarded ambiguity is the true wind is less than the chosen
threshold.

Since it is desirable to throw out as many aliases as possible
without removing the true wind, it is advantageous to evaluate
how tightly the Chernoff bound approaches « for various wind
vector cells and wind estimates. Fig. 1 shows the relationship
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between Monte-Carlo calculation of «g and a four-term series
calculation using (6) for all of the aliases in 500 wind vector
cells. Actual measurements are used.

Two distinct relationships are shown in Fig. 1. The first
is a plot of simulation-calculated «g versus series-calculated
ap which shows excellent agreement between simulation and
series calculations. The second is a plot of the best Chernoff
upper bound versus the series calculation of «. Note that for
a given upper bound the actual value of «q for that likelihood
ratio is consistently a factor of 10 lower. This implies that
the upper bound selected for thresholding can be about 10
times larger than the acceptable probability of throwing out the
correct wind. Thus if a 10~* probability of throwing out the
correct wind is desired, a threshold of 102 can be selected.

PERFORMANCE

The utility and performance of the method of eliminating wind
aliases described in this paper can be illustrated with the aid
of Fig. 2. In part (a), all wind aliases returned by a ML wind
retrieval algorithm for a particular region within an ERS-1
swath are kept. In part (b) only the ambiguities greater than a
threshold of 10~3 are shown. Note how the resulting ‘‘most
probable ambiguities’’ field clearly enables determination of
the wind streamline.

To further analyze the performance of upper-bound thresh-
olding on removing wind aliases, we use simulated measure-
ments based on known wind fields and ERS-1 orbit parameters.
For this simulation only communication noise is added. The
results are in summarized in Fig. 3 where a comparison is made
between using the thresholding scheme and not using it. When
all wind aliases are kept, there is an average of 3.4 aliases per
cell. Applying an upper-bound- probability threshold of 0.001
reduces this number to 2.3 aliases per cell with a large majority
of the cells having only 2 aliases. This reduction is obtained
without ever erroneously discarding the alias closest to the true
wind.

As a final demonstration, actual o°measurements are used
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Figure 2: Comparison plot suggesting that eliminating improb-
able wind aliases can aid ambiguity removal. Data taken
ascending part of revolution 7220.
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Figure 3: Histograms of the number of cells with a given
number of aliases when thresholding is applied versus when it
is not applied using simulated measurements.
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Figure 4: Histograms of the number of cells with a given
number of aliases when thresholding is applied versus when it
is not applied using real measurements from ERS-1 revolution
7220 ascending.

from the ascending portion of ERS-1 revolution 7220. A graph
similar to Fig. 3 is shown in Fig. 4. As in the simulations, the
scheme eliminates all but two aliases for nearly all of the wind
vector cells. Since the true wind is unavailable, a count is made
of how many times the alias closest to the wind selected by the
European Space Agency (ESA) for that cell is discarded.

CONCLUSION

We have developed a statistical test which can be used to
effectively to distinguish between solutions in inverse problems
in which maximum likelihood estimation results in multiple
maxima. The technique is applied to eliminating improbable
wind solutions arising in point-wise wind estimation using
scatterometer data. Evaluation of the technique suggests that
it can be used effectively to support ambiguity removal by
eliminating all but two wind aliases for nearly all of the wind
vector cells in a swath.
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