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Abstract - Model-based scatterometer wind retrieval algorithms are
based on parametric models for the near-surface wind field. Crucial
to these models are the representation of the wind vorticity and diver-
gence fields. As part of an effort to improve the modeling accuracy of
these fields, the spectra of the vorticity and divergence fields has been
computed using ERS-1 scatterometer winds. Over scales of 100 km to
1000 km the vorticity and divergence fields exhibit a power-law depen-
dence on wavenumber k of approximately k=26 and k1%, respectively.
This suggests that low-order numerical models can be used to model
these fields with the level of accuracy required for model-based wind
retrieval. We apply the Karhunen-Loeve (KL) transform to develop
data-derived statistical models for the vorticity and divergence fields
and compare the resulting wind field model to a previous model based
on a polynomial expansion. The KL-based model provides some im-
provement in the model accuracy.

INTRODUCTION

Spaceborne scatterometers provide global measurements of near-surface
oceanic vector winds. The scatterometer measures the normalized
radar backscatter (¢°) of the ocean surface. From multiple measure-
ments of 0° vector winds can be determined using a geophysical model
function relating wind and backscatter and a wind retrieval algorithm.

Traditionally, the retrieval algorithms use only the o° measure-
ments associated with a given sample point to estimate the wind at
that point. This pointwise method produces a set of possible wind vec-
tors at each sample point and so requires an additional “dealiasing”
step to select a unique estimate at each point.

Recently, a parametric model-based approach to estimate the vec-
tor wind field has been developed. By using a model for the wind field,
this approach can avoid point-wise dealiasing. The model is based on
simplified equations of motion of the near-surface wind. Wind vector
components are written in terms of the pressure field boundary condi-
tions and the vorticity and divergence fields which are approximated
by low-order polynomials. The coefficients and boundary conditions
are estimated using maximum-likelihood (ML) techniques from the ¢®
measurements. In an effort to improve models of the wind vorticity
and divergence fields, we have examined the spatial variability of the
vorticity and divergence fields using one dimensional spectra.

In this paper we report recent empirical results describing the one-
dimensional wavenumber spectra of the vorticity and divergence fields.
We also consider data-derived, statistically “optimal” models for these
fields as an alternative to the polynom::ls previously used.

VORTICITY AND DIVERGENCE SPECTRA

The ERS-1 scatterometer provides 50 km resolution winds with a 25
km sample spacing over a 500 km wide swath. While the wind mea-
surements are given on a rectilinear grid, the grid is tilted with respect
to North, complicating the computation of the vorticity and divergence
from the wind vectors. Winds are retrieved from ERS-1 ¢° using both
pointwise and model-based techniques. The C-band model function
of Freilich and Dunbar (1993) is used. The ambiguity selected for
the pointwise result is determined from the JPL value-added product
(Freilich and Dunbar, 1993).

Vorticity and divergence fields are produced as auxiliary products
of model-based estimation. However, for this study the vorticity and
divergence are computed from the estimated wind vector field using
a first difference approximation to the derivative. This permits both
pointwise and model-based winds to be inputs. Similar results were
obtained for both. Using a difference approximation necessitates taking
the differences in the along-track and cross-track directions. A rotation
is applied to the u and v component vectors prior to computing the
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derivative to avoid coordinate system inconsistencies.

The vorticity and divergence fields were extracted from ERS-1
passes over the Pacific Ocean in the five latitude bands shown in Table
1. Data passes with gaps or land were discarded. A total of 40 orbit
passes were used in this preliminary result.

TABLE 1. Study Regions

Region | Latitude (° North) | Longitude (° East)
1 -45° to -25° 160° to 280°
2 -25° to -5° 160° to 280°
3 5° to 25° 140° to 250°
4 25° to 45° 150° to 230°
5 -5° to 5° 150° to 280°

For this paper we consider only one-dimensional spectra in the
along-track direction. The spectra were separately computed for each
study region by first computing the along-track autocorrelation func-
tion for each cross-track bin and pass. The autocorrelation estimates
are then averaged in the cross-track direction and finally over the passes
to provides an estimate of the “expected” autocorrelation function.
The wavenumber spectra are computed as the FFT of the averaged
autocorrelation estimates. Figures 1 and 2 illustrate the observed
wavenumber spectra of the vorticity and divergence for each study
region, respectively. The vertical scale is arbitrary.

The most important observation seen in these figures is that over
spatial scales of about 100 to 1000 km the vorticity and divergence
fields each exhibit a power-law dependence on wavenumber k of the
form kP. The value of p is determined over a wavenumber range
corresponding to 100 to 1000 km using linear regression in log-log
space. For the vorticity field, —2.66 < p < —2.5, depending on the
region. The power-law fit for the divergence field is somewhat depen-
dent on the spatial range of the regression; however, for 100 to 1000
km, —1.64 < p < —1.4. These power-law coefficients for the vorticity
and divergence fields may be compared to the p = 2 power-law depen-
dence of the wind component fields over the same scale range (Freilich
and Chelton, 1986).

The low-pass nature of the vorticity and divergence fields suggests
that low-order coefficients of a series expansion model will dominate
the other terms in the series. This can be exploited to develop low-
order models which provide suitable accuracy for model-based wind
retrieval.

VORTICITY AND DIVERGENCE MODELLING
The vorticity and divergence fields of the near surface oceanic vector
wind U = [u,v]T are defined by,

{ = k-VxU Vorticity (1)
6 = V-U. Divergence

Using the vector Helmholtz theorem, the wind U may be decomposed
into a nondivergent and a curl-free vector field,

U= kxVy + Vx. @
Nt A
nondivergent curl-free
Taking the divergence and curl of Eq. (2) two Poisson equations result,
vy = ¢ ®
Vi = 6. (4)

Assuming that x = 0 on the boundary and that over the region of
interest 1 corresponds to the geostrophic pressure field, the wind field
components can be expressed as
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To develop a simple wind field model Long (1993) approximated
the vorticity and divergence fields as low-order bivariate polynomial
fields of the form,
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where M, and Mj are the vorticity and divergence model orders. In
model-based wind retrieval Egs. (3)-(8) are discretized and solved
over a rectangular region, typically 250 km x 250 km. The wind
field is a function of the model parameters: the pressure field along
the region boundary and the the coefficients vm,n and dmn. These
model parameters are estimated directly from the scatterometer o
measurements. The resulting wind field model accuracy is dependent
on the model order for the vorticity and divergence fields.

The model for the vorticity and divergence need not be exact since
noise in the ¢° measurements is a primary source of error in the re-
trieved winds and a tradeoff between model accuracy (order) and the
measurement noise level can be made. A low-order model is desired
to minimize computation. Model orders of 2 or 3 have been found to
be adequate for wind retrieval from Seasat scatterometer data (Long,
1993).

We may view the operation of approximating a field by a series of
polynomials as reconstructing a field from a projection on to a subspace
spanned by the polynomials in the series. Finding the series coefficients
is analogous to finding the subspace coordinates. Viewed this way,
the question of an optimal basis for representing the vorticity and
divergence fields arises. One criteria of optimality is the mean-squared
reconstruction error. Of all series expansions, the Karhunen-Loeve
(KL) transform minimizes the average mean-squared error. Since many
readers are not familiar with this transform, we provide a brief overview
of the KL transform.

KARHUNEN-LOEVE EXPANSION

The Karhunen-Loeve (KL) transform of a wide-sense stationary (WSS)
finite-support, discrete random field z is given by (Jain, 1989):

y=uHx 9)

where X = vec(z) and superscript H represents Hermitian transpose
(complex conjugate transpose). The KL transform is a projection onto
the KL basis set. The KL estimate of a field is reconstructed from the
projection by,

X =vHy, (10)
where the KL transform matrix ¥ is the solution of the eigenequation
R, ¥ = VWA (11)

where R, = E(XX*H) is the autocorrelation matrix of the random field
z. Since z is WSS, R, is also doubly block Toeplitz (Jain, 1989).

The KL transform has several useful properties that are exploited
in our results. These are: (Jain, 1989)

1. The columns of ¥ are orthonormal (i.e., ¥ is unitary with WH® =
Y¥H = J or ¥~ = ¥H) and the columns of ¥ form a complete
basis. This property makes possible computing the KL series
coefficients by one matrix-vector multiplication. In contrast, the
polynomials used by Long (1993) are non-orthogonal.

2. The KL transform represents the observed data A" in a space

952

where it is spatially uncorrelated. The columns of ¥ are a com-
plete orthonormal basis for this special space.

3. On average, over all possible series approximations, the KL trans-
form has the minimum mean-square (MS) error.

KL-BASED MODELS

Since the KL expansion has the smallest MS error on average among
all series expansions, replacing the polynomial series in the wind field
model by the KL series should give more accurate wind field models
and therefore more accurate model-based wind estimates.

Recall that the KL basis (columns of ¥) depend upon having knowl-
edge of the true autocorrelation matrix R. In practice, however, this
matrix is unavailable and is replaced by an estimate of the autocorre-
lation matrix.

In computing R., we only need to look at only small subregions,
e.g., 250 km x 250 km (10x10), for which the model will be applied
in model-based estimation. Using the same passes as in the previous
study, 10x 10 subregions are extracted and the two-dimensional sample
autocorrelation function computed. The subregions overlap in both the
along-track and cross-track dimensions. The sample autocorrelation
matrix is constructed from the sample autocorrelation function using
a block Toeplitz extension. This sample autocorrelation matrix is then
used to derive the KL basis set using Eq. (11).

Using the complete KL basis set results in exact field reconstruc-
tion. However, since an exact model is not required in model-based
estimation we choose a subset of the basis set to reconstruct the field.
The subset is a truncated series of the KL basis vectors sorted by their
corresponding eigenvalues.

To compare the KL series model of the vorticity and divergence
fields to the polynomial series, models of various order and type were
each incorporated into a wind field model. Each wind field model is
fit directly to a series of test wind fields using least-squares and the
root-mean-squared reconstruction error computed.

The results are summarized in Figures 3 and 4. To generate Fig.
3, the order of the vorticity model was varied while the order of the di-
vergence model was held fixed. Similarly, to generate Fig. 4 the order
of the divergence model was varied while the order of the divergence
model was held fixed. In both models we see a rapid decrease in mod-
eling error with model order. This is the result of the low-pass nature
of the vorticity and divergence fields. We note that although the KL
model has uniformly lower error in the range shown, the difference is
small. This result is initially surprising given the theoretic optimality
of the KL expansion. However, the polynomials bear a remarkable re-
semblance to the KL basis functions. Even so, the KL basis models do
result in improved accuracy in model-based wind retrieval.

SUMMARY

In this paper, we have presented one-dimensional spectral plots of the
mesoscale wind vorticity and divergence. These exhibit a power-law
dependence on wavenumber similar to k™2 and k=15, respectively,
over spatial scales from 100 km to 1000 km. We have also used the
KL transform to develop an “optimal” statistical model for the vor-
ticity and divergence fields based on the eigenstructure of estimated
autocorrelation functions. This model is a small improvement over a
low-order polynomial model in terms of mean-squared reconstruction
error but does result in more accurate wind field estimates.
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Figure 1.

Observed one-dimensional spectra of the wind vorticity field for each
study region. The vertical scale is arbitrary.
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Figure 3.

The rms wind field fit error

(in m/s) as a function of the number of

coefficients in the KL and polynomial vorticity models for each study
region. The divergence field model is a 16 coefficient polynomial.
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Figure 2.

Observed one-dimensional spectra of the wind divergence field for
each study region. The vertical scale is arbitrary.
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Figure 4.

The rms wind field fit error (in m/s) as a function of the number of
coefficients in the KL and polynomial divergence models for each
study region. The vorticity field model is a 16 coefficient polynomial.
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