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ABSTRACT

The loss of the active sensor channels limits the spatial
resolution capability of the Soil Moisture Active Passive
(SMAP) mission in measuring soil moisture. Image recon-
struction techniques can provide an enhanced resolution prod-
uct. Using such processing techniques and code developed for
the NASA MEaSUREs Calibrated Passive Microwave Daily
Equal-Area Scalable Earth (EASE) Grid 2.0 Brightness Tem-
perature (CETB) Earth System Data Record (ESDR) project,
we are generating enhanced-resolution SMAP TB products
on both 3 km SMAP project grids and 3.125 km CETB-
compatible grids. The intrinsic tradeoff between resolution
and noise is explored using multiple resolution enhancement
algorithms, and the spatial response functions for each are
presented.

Index Terms— SMAP, radiometer, reconstruction, reso-
lution enhancement, Backus-Gilbert, passive microwave re-
mote sensing

1. INTRODUCTION

The L-band SMAP radiometer retrieves brightness tempera-
ture (TB) measurements of the Earth’s surface [5]. For each
of the four Stokes polarizations measured (vertical [V], hori-
zontal [H], and the cross-polarizations 3 and 4), multiple TB

measurements of each point in the 900 km wide swath are col-
lected from several different azimuth angles from which TB

images can be generated. From these, the surface soil mois-
ture is estimated. The 47 km by 36 km footprint limits the
effective spatial resolution in conventional processing. How-
ever, a number of resolution enhancement techniques have
been developed that can improve the effective resolution of
the TB images [6]. Soil moisture is then estimated at finer
resolution from the TB images.

This paper focuses on the generation of enhanced-
resolution TB images. Several resolution enhancement algo-
rithms are compared, and the tradeoffs between spatial reso-
lution and noise are considered with the aid of simulation. Fi-
nally, the spatial response function (SRF) for each technique
is presented.

2. RESOLUTION ENHANCEMENT THEORY

For all the algorithms considered, the effective spatial mea-
surement response function (MRF) for each measurement is
used to estimate the surface TB on a fine-scale grid. The
MRF is determined by the antenna gain pattern, the scan ge-
ometry (notably the antenna scan angle), and the integration
period that ‘smears’ the antenna gain pattern due to antenna
rotation over the measurement integration period [6]. The
MRF for a particular polarization is denoted by R(φ, θ;φi),
where φ and θ are particular azimuth and elevation angles
relative to the antenna boresite at azimuth scan angle φi.
Then, assuming the surface emission and atmospheric contri-
butions are azimuthally isotropic, the atmospheric-corrected
measurement Ti is the weighted average of the surface TB

where the weighting function is the MRF

Ti =
∫∫

R(x, y;φi)TB(x, y)dxdy + noise, (1)

where TB(x, y) is the nominal TB in the direction of point
x, y on the surface as observed from the scan angle φi. The
goal in resolution enhancement is to estimate TB(x, y) on a
fine grid from the measurements Ti.

In this paper, two resolution enhancement algorithms are
considered: Backus-Gilbert interpolation (BGI) [1] and the
radiometer form of the scatterometer image reconstruction al-
gorithm (rSIR) [6, 7]. The latter is a particular example of a
signal reconstruction algorithm (SRA). While in practice the
results are broadly similar, BGI and SRAs are based on fun-
damentally different approaches and assumptions about the
signals (the surface TB and its measurements) involved.

BGI is a least-squares approach that explicitly trades noise
and solution smoothness using a subjectively selected param-
eter [1]. Making no assumptions about the signal or the sam-
pling, BGI attempts to minimize the squared difference be-
tween the measurements and the forward projection of the
signal. An SRA such as rSIR is based on signal processing.
SRAs exploit oversampling of the surface to reconstruct im-
ages at fine spatial resolution, and hence they can be consid-
ered resolution enhancement algorithms, though technically
they just recover existing information. SRAs assume that the
signal to be reconstructed is bandlimited and the sampling



(measurement locations) meets generalized Nyquist require-
ments for the signal bandwidth. An additional requirement
is that the frequency response of the MRF is non-zero over
the signal bandwidth [4]. This reconstructs the original sig-
nal from the samples (measurements), and can exactly esti-
mate the original bandlimited signal in the noise-free case. In
contrast, BGI cannot guarantee an exact estimate even in the
noise-free case unless the sampling and MRF also meet the
SRA requirements.

Since the TB measurements are quite noisy, a full recon-
struction can produce excessively noisy estimates of the sur-
face TB [6]. To reduce noise enhancement and resulting arti-
facts, regularization is employed. Regularization is a smooth-
ing constraint introduced to an inverse problem to prevent ex-
treme values or overfitting, but it has the side effect of re-
ducing resolution because the image estimate is only a partial
reconstruction. The regularization in rSIR enables a tradeoff
between signal reconstruction accuracy and noise enhance-
ment and is imposed by limiting the number of iterations of
the algorithm.

Our interest in this paper is with an Earth-based grid
(map) rather than swath coordinates. In some cases (notably
in the polar regions), multiple passes over the same area at
the same local time of day can be averaged together. This im-
proves the sampling density, and hence the reconstruction ca-
pability. The measurement locations are not aligned with the
grid and the measurements form an irregular sampling pattern
for TB . To address this, the well-defined theory of signal re-
construction based on irregular sampling [2, 3] is employed to
understand the recoverable signal given the sampling density
[6].

To briefly describe the reconstruction theory, the two-
dimensional TB over an Nx × Ny pixel grid is written as
a single dimensional variable aj = TB(xj , yj), where j =
l +Nxk. The measurement equation, Eq. 1, becomes

Ti =
∑

j∈image

hijaj (2)

where hij = R(xl, yk;φi) is the discretely sampled MRF for
the i-th measurement evaluated at the j-th pixel center, and
the summation is over the image with

∑
j hij = 1. Written

as a matrix equation for the collection of measurements, this
is

~T = H~a (3)

where H contains the sampled MRF for each measurement
and ~T and ~a are vectors composed of the measurements Ti

and the sampled surface TB aj , respectively. The matrix H
is very large, sparse, and may be overdetermined or under-
determined depending on the sampling density. Estimating
the brightness temperature at high resolution is equivalent to
inverting Eq. 3 (with bandlimit constraints in the SRA case).

rSIR is a particular implementation of an iterative solu-
tion to Eq. 3 that has proven effective in generating high-
resolution brightness temperature images [6, 7]. It can handle

single or multiple pass cases. The rSIR estimate approximates
a maximum-entropy solution to an underdetermined equation
and a least-squares solution to an overdetermined system. The
first iteration of rSIR is termed ‘AVE’ (for weighted AVEr-
age). The AVE estimate of the j-th pixel is given by

aj =
∑

i hijTi∑
i hij

(4)

where the sums are over all measurements that have non-
negligible MRF at the pixel. Later iterations update the image
using the ratio of the forward projections and the measure-
ments [6].

The Backus and Gilbert approach to inverting Eq. 3 is
based on writing the estimated TB value at the j-th pixel as
the weighted linear sum of nearby TB measurements,

âj =
∑

i∈nearby

wijTi (5)

where the weights wij are selected so that
∑

i wij = 1. With
no unique solution for the weights, regularization enables a
subjective tradeoff between noise level and resolution [7]. For
a particular pixel j the total squared signal reconstruction er-
ror term QR is

QR =

 ∑
j∈nearby

wijhij − 1

2

(6)

with the error due to noise QN given by

QN = ~wT E~w (7)

where E is the noise covariance matrix. A parameter γ
weights the reconstruction error and the noise error in the total
error Q:

Q = QR cos γ + ωQN sin γ (8)

where ω is an arbitrary dimensional tuning parameter. When
the noise realization is independent from measurement to
measurement, E is a diagonal matrix with diagonal entries
∆T/2 where ∆T is the radiometer channel noise standard
deviation. Minimizing the total error Q, the weight vector is

~w = Z−1

(
~v cos γ +

1− ~uT Z−1~v cos γ
~uT Z−1~u

~u

)
(9)

where

~ui =
∑

j

hij = ~vi

Z = Gj cos γ + ωE sin γ
(Gj)i,k = hijhkj .



Fig. 1. Simulated SMAP TB measurement locations on swath
grid. (top) Single pass. (bottom) Two passes.

Fig. 2. Comparison of different reconstructions.

3. ALGORITHM COMPARISON

To evaluate and compare the performance of BGI and rSIR,
simulation is employed. A 5 km bandlimited synthetic “truth”
image is defined and simulated noisy TB measurements com-
puted using the SMAP MRF and sampling geometry. The
noise standard deviation is set to ∆T = 1 K. The SMAP
measurement locations for the 250 km × 500 km study area
are shown in Fig. 1. An example of the simulation results are
shown in Fig. 2, which compares the truth image, drop-in-the-
bucket (DIB) gridding on a 25 km grid (grd), AVE, rSIR, and
BGI using a fine pixel resolution of 3.125 km. Note the finer
details evident in the rSIR and BGI images compared to AVE
and grd. Also note the higher noise level in the BGI image
and the coarse resolution of the grd image.

To determine the “optimum” γ value, images for various
γ values are computed. The total error versus γ is shown in
Fig. 3. There is a particular value of γ that minimizes the
total RMS error. This value is used in Fig. 2. For rSIR, the
error is computed for each iteration and plotted in Fig. 4. The
RMS signal reconstruction error reduces with iteration, while
the noise error increases, see Fig. 5. The minimum total er-
ror occurs at rSIR iteration 85 (which is off the plot). Since
rSIR has smaller error than the optimum BGI when more than
18 iterations are used, any value larger than 18 can be used.

Fig. 3. BGI error versus γ′ = 2γ/π. The red (upper) curves
are for noisy measurements while the blue (lower) curves are
for noise-free measurements. (E is the same in both cases.)

Fig. 4. rSIR error versus iteration. Red is signal+noise case,
blue is signal-only. (left) Mean TB . (Right) RMS TB . Green
is noise-only. The horizontal black line shows the grd error
for comparison, while the dotted horizontal line shows the
BGI error. The vertical dashed line is at 20 iterations.

However, if rSIR is iterated too long, beyond ∼150, the noise
error begins to dominate the signal error.

Of critical importance in comparing the algorithms is the
spatial response function (SRF), effectively the impulse re-
sponse. The more “delta” function-like the SRF, the finer
the effective resolution. The estimated SRFs for each case
in Fig. 2 are shown in Fig. 6 for the 25 km gridded GRD
product, AVE, BGI, and rSIR SRF estimates. These have
been normalized to a peak of one for comparison. The ef-
fective 3 dB resolution of the non-enhanced, and AVE SRFs
are similar, though the roll-off of AVE is faster. rSIR has a
somewhat finer 3 dB resolution but significantly faster roll-
off than AVE or the GRD SRFs. Both BGI and rSIR include
negative-valued rings around the center peak. This is not sur-
prising since the sampling limits the bandwidth of the SRF.
While the BGI SRF is more localized than grd or AVE, the
BGI 3 dB contour is larger than rSIR, implying that rSIR pro-
vides somewhat finer resolution than rSIR. The finer resolu-
tion is confirmed by examining the spectra of the SRFs (not
shown) for which rSIR has the largest region of support in the
spatial frequency domain.



Fig. 6. Images of SRF estimates compared to a single measurement response function. The GRD and AVE SRFs are computed
as weighted sums of the measurement response functions, while the BGI and rSIR SRFs are numerically determined by sim-
ulating measurements of a bandlimited delta function image. Contours are at (black) -3 dB, (red) -10 dB, and (white) -20 dB.

Fig. 5. RMS signal versus noise as a function of rSIR iteration
number. Iterations increase from right to left. 25 km DIB is
the box at the right, while BGI is the triangle. The red star on
the curve is rSIR at 20 iterations, the value used in Fig. 2.

4. SUMMARY

Both BGI and rSIR are effective at improving the resolution
of SMAP TB images, though rSIR requires significantly less
computation [6] and, based on simulations, provides slightly
better performance. To support the SMAP project, EASE-
Grid 2.0 TB images will be produced at 3 km, nested in the
36 km SMAP grids. SMAP TB images will also be produced
at 25 km and 3.125 km resolution on CETB grids.

5. REFERENCES

[1] G.E. Backus and J.F. Gilbert, Numerical applications
of a formalism for geophysical inverse problems, Geo-

phys. J. R. Astron. Soc., vol. 13, pp. 247–276, 1967.

[2] H. Feichtinger and K. Gröchenig, Iterative reconstruc-
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