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ABSTRACT

The minimization of an objective function is a common
requirement in signal processing. Minimization can be espe-
cially difficult in the presence of local minima and/or mul-
tiple global minima. This paper addresses the problem of
finding all of the global minima of a real-valued objective

function f which can be expressed as a polynomial over a-

finite interval. The approach used is based on generating a
modified Sturm sequence from f — z where z is the value of
f at the global minima. The technique provides the number
of the global minima of f, the value of z, and the locations of
the global minima of f. A simple numerical example is given.
While the paper concentrates on the one-dimensional case,
the extension of the method to multidimensional objective
functions is also discussed.

1. Introduction

Finding the global minima of an objective function in the
presence of multiple global and/or local minima can be a very
difficult task. In this paper a minimization technique based
on modified Sturm sequences is proposed. The minimization
problem to be solved may be stated as: given a real-valued
objective function f(z) defined on an interval [a, b} where a
and b are arbitrary, determine the set Y of z € [a, ] values
for which f(z) is minimized, i.e.,

Y ={y: f(y) < f(z) V= € [a,8]}. (1)

f(z) is assumed to be one-dimensional polynomial. Note
that f(z) may be a Chebychev polynomial in cos z.

To minimize f(z), the value of f(z) for z € Y is first de-
termined. This is done by determining the smallest value of
z for which g(z) = f(z) — z has at least one zero. The num-
ber of zeros of g(z) is determined using a modified Sturm
sequence (described later). Once z is determined, the Sturm
sequence provides a count of the number of global minima

of f(z). The global minima of f(z) are then isolated by

partitioning the interval [a,}] into subintervals and count-

ing the number of zeros of g(z). If there are no zeros in
a subinterval, the subinterval is discarded. Otherwise the
subinterval is further divided and the process repeated until
each subinterval contains a single zero of g(z). By further
subdividing these subintervals, the precise location of each
zero (and, hence, the location of the global minimum of f)
may be determined.

This paper first discusses some of the properties of Sturm
sequences and then provides a description of the method.
Computational considerations and extensions to multidimen-
sional objective functions are then discussed.

2. Sturm Sequences

This section is provided to acquaint the reader with Sturm
polynomial sequences (see also [1] and [2]). We begin with
some useful concepts. An nth degree real polynomial over
the field of real numbers is defined (z real),

N

P(z)=_ paz” 2
n=0
where the coefficients p, n = 0,1,..., N are real and p, # 0.
The derivative of P(z) with respect to = (z real) is,

d N-1
P'(z)= EP(Z) = Z(" + 1)ppaz”

n=0
From the fundamental theorem of algebra we know that
the polynomial P(z) evaluated at a and at b, (b > a) must
have the same sign over the entire interval if P(z) has no
real roots in the closed interval [a,}]. Further, between two
real roots of P(x) must be at least one real root of P'(z) [2}.

We will need the following definition:

Definition 1. Variations in Sign. Let {P} = {Po(z),
Pi(z), ..., P.(z)} be an ordered set of real polynomials. The
variations in sign of the sequence of polynomials evaluated at
the point z = a (a is a real number) is denoted as V, and is
the number of sign changes in the sequence Po(a), Pi(a), ...,
P.(a). Note that zeros do not count as a sign change. For
example, there are four variations in sign in the sequence,
5 -3,20,2, -1,0, 3.

A Sturm sequences is a sequence of polynomials {P},
corresponding to a given polynomial Py(z), from which 1t
is possible to compute the exact number of roots of Po(z)
between z =a and z = b (b>a) as V, -V, [2].

For the real polynomial defined in Eq. (2), a Sturm se-
quence {P} may be constructed starting with Po(z} = P(z).
This is the 0** polynomial in the Sturm sequence. The 1%
polynomial is the derivative with respect to z of the 0% poly-
nomial, i.e., N
Poa) £P(z) =) po(n)a"

n=0
N-1
Py(z) £P(@) = ¥ m(nje”
n=0
where po(n) = p, and p1(n) = (n +1) ppy1. )
The remainder of the Sturm polynomial sequence is gen-
erated using the “negative remainder” relationship,
Pep1(z) = Qu(z) Pu(z) — Pr-s(2) 3)
where Q(z) is a polynomial chosen such that the order of
the (k 4 1)* element of the Sturm sequence is less than the
order of the k* element. Methods for choosing Q(z) will

" be discussed later. Eq. (3) is iterated until the S* polyno-

mial does not change sign over the interval of interest (e.g., '
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Ps(z} = comstant). The resulting sequence of polynomials
are called the Sturm: functions for the polynomial P(z). The
Sturm theorem permits calculation of the number of roots
(if any) in P(z) using the Sturm sequence generated from
Pf:z; ).

Theorem 1. The Sturm theorem for real polynomi-
als. For a real number z let V, be the number of variations
in: the sign of the Sturm functions Po(x), Pi(z), .. ., Ps(z) for
the real polynomial P@} f a and b are real number such
that a < b, then V, —Vj is the ezact number of roots of P(z)
in the interval [a, 8] if Pa}P (b} # 0.

Proof of this theorem: is found in [2].

3. Sturm Sequences for Function Minimization

To locate the global minima of f(z} we assume that Y is
a finite set and that the order of f(z) be at least 1, i.e., f(z}
is not merely a constant. We further assume that flz) is
not minimized at either a or b. The interval [a,b] is problem
dependent. Since f(z) is a polynomial, f(z} will be finite
everywhere in the interval [a,§

Consider the function g{z) = f(z)} — z where z is arbi-

trary. If we choose z snch that

z= ‘é‘[‘ﬂ] fz) 4}
then g{z} > 0 for all z. Equality occurs only for z € ¥,
iie., at the global minima of f(z). Note that since f(z)is a
polynomial that g{(z} will also be a polynomial.

To determine the value of z for which Eq. (4} holds, we
use a Sturm sequence generated from g(z). Set.Pa(z) = g{z)
and Pz} = ¢'(z) with the rest of the Sturm sequence { P}
genemted using the negative remainder relatlonshxp given
in Eq. (3). Let V.(z) be the number of sign changes in
the Sturm sequence evaluated at a for a particular value
of z and let Vy(z} be the number of sign changes in the
Sturm sequenice evaluated at b for a particular value of z.
For convenience, we will define V(z} = Vi(z} — Vo(z). V(z)
gives the number of zeros in the function oz)=f (:r:j —zin
the interval [a, 8].

For z < 0, V(z)} will be 0 since g(z} will be positive for
all 7 (refer to Fxgure )- I we plot V(z) versus z, we see that
as 2 is increased, at some z¢ where

o=, 1)

4 i
two. Dependmg on the s%ructure f(z), V(z) may increase
further or decrease. For sufﬁmently large z, V(z) will be zere
(see Figure 2).

The value of V(2] at 2 gives the number of global minima
while is the minimum value of f(z). To determine zy, we
must locate the smallest value of z which gives a non-zero
value for the discrete function V(z). One approach is to
use either a binary or golden section search. Sta.rtmg with
an initial value of z, say z, for which V(z ) is zero and

g{z} > 0 for all z € [e,b], and a second value of z, say
zz > zy, for which V(z;) > I, we choose a new test z value
= (z; + 22)/2 (for a bmary search}, and evaluate V(z).
Iff V(zti > I then z; is set to be z; otherwise z; is set to 2.
This process is repeated until z; — 2y < T where T is a user-
defined threshold. The threshold defines a range of values of
f(z) considered to be essentially identical. The value of z
is then z;.
' After zg Is determined, W(zo) gives the number of global
nuinima. The locations of these global minima can be de-
termined using the Sturm sequence generated from g{z) =

f(z)} — 2. The interval [o,8] is partitioned into subintervals
{a,y] and [y,8]. The number of sign reversals in the Sturm
sequence evaluated at a, b, and y are then cemputed and the
number of zeros of g{z) in each interval determined using
the Sturm theorem. If there are no zeros in the subinter-
val, the subinterval is discarded. Otherwise the subinterval
is further divided and the process repeated until subinter-
vals are determined which contain a single zero of g{z). By
further subdividing these subintervals, the location of all oi
the zeros of g(z) may be determined to any desired accuracy.
Since the locations of the zeros of g(z} are the global minima
of f(z), this procedure will find all of the global minima of
fz).

4. Computational Considerations
The objective function f(z} may be a polynomial in =

or a Chebychev polynomial in cosz 3] In either case, f(z)
may be expressed as,

f@y= z auz™.

We: compute the Sturm sequence of the polynomdal g(z) =
fz) — z where z will be treated as a constant independent
of z. We define the first polynomial in the Sturm sequence
Pg(l) as,,

Po(z) £ g(z) =
z, W= @,’\

s % —-—
Po(n) = {an, n>0
The second polynomial in the sequence is the derivative of
Pys(z) with respect to z,

Pifa)= 2 Pifa) =

where pi(n) = (n + Upoln + 1)

Note that Pi(z) does not depend on the value of z. The
remainder of the Sturm sequence is computed using Eq. (3).
In general Qy(z)} may be any polynomial with order I or
greater so that Pi,y(z) has order less than Pi(z). For sim-
plicity let us assume that Qg(z) is first order polynomial of

the form,
€ 1orm, Q]; (z) @z $rp

By writing the equations for the coefficients the powers
of z, it can be easily shown that ¢; and rg must be

flay—z = }_‘,p@cn)x )

where

Z pfn)e™ (6)

n=0

- N - k‘+ 1) . .
QG = pi—(———:—k—)‘—z (7)
I kY — qepe(N — k1)
* (N — K]
= — I
G ]
Pﬁ(N k) :
in order for Pygy(x) to have order less than Pi(z). Then,
repr(0) — pr-1(0), n =40, Q)"

Pesa(n) = {mm»(n +
L gmn— L ~peifn), 1<n<N-k-2

A consideration when directly implementing these equa-
tions is the case when pe(N — k] 0. This can occur when
Pi_x = (grz + re}Pi(z) exactly in the previous stage. When
this occurs the remainder of the Sturm sequence is zero and
no additional Sturm functions need be computed.

Note that the divisions in Eqs. (7} and (8) can lead to
significant errors in computing the Sturm polynomial coeffi-
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cients due to arithmetic truncation and rounding errors. To
improve the accuracy of the procedure we modify the Sturm
sequence to avoid the division in Egs. (7) and (8) by scaling
these equations by p}(N — k). This is equivalent to multi-
plying Pit1(z) by a positive constant. This does not effect
the number of sign changes in the Sturm sequenge. This
modification of the Sturm sequence also avoids the need to
detect the special case when px(IV — k) = 0 discussed above.
Instead, the iteration is repeated for 1 < k < N -1 with
zero polynomials occurring if pe(N — k) = 0. This mod-
ified Sturm sequence has been used successfully for phase
unwrapping [4].
After scaling, Eqgs. (7) through (9) become

g = pea(N —k+1)pe(N = k) (10)
Ty = Pk—l(N - k)Pk(N‘ k) - :
(N =k — D)peay(N -k +1) (11)
7px(0) — Pi-1(0), n=0,
peri(n) = < repe(n) + qeor{n — 1) (12)
—pia(n)pi(N —k), 1<n<N—-k-2

While scaling eliminates the truncation and rounding er-
rors occurring due division, the Sturm sequence polynomial

coefficients may grow extremely large for large N. Careful
numerical implementation using extensible number represen-

tation may be required (see [4]). Note that when the coeffi-
cients of g(z) are integers that gk, 7 and all of the coefficients
of the Sturm sequence polynomials will be integers.

During the determination of zo each new z value requires
recomputation of the Sturm sequence. However, once zo is
determined, the Sturm sequence does not need to be recom-
puted for the subinterval searches. Only the evaluation of
the Sturm sequence at the interval end points is required to
count the sign changes.

5. A Numerical Example

In this section a simple numerical example illustrating the
proposed minimization technique is provided. While this ex-
ample is somewhat contrived (to give two global minima) it
illustrates the technique. The technique will work for any ar-
bitrary finite-order real polynomial. The example objective
function is

= 1+(z*—z-1)? = 242 —2% -2z =t
Tfh(: )term in ;(yarenthesis )has two real roots, 1/2?-1 + /5B);

hence, f(z) has two global minima at these roots with a’

minimum value of 1. A plot of f(z) is shown in Figure 3.
Let us consider the interval [—2,3].

Using the equations given in the previous section (Eqs.
(5), (6), and (10) through (12)) the modified Sturm sequence
for g(z) = f(z) — z for z=01s,

Py(z) 2 + 2z — ¢ — 22° + 2

—~

Pz) = 2-2z—62%+4z°
Py(z) = ~36—-20z+202> @ =41 =-2
Pi(z) = 640 —1280z g2 =80 ry=—40
48:0 = 67174400 g3 = —25600 r3 = 12800.
Table'1 shows this Sturm sequence evaluated at a = —2
Table 1: Modified Sturm sequence generated from
g(z) = f(z) at z = -2,3
k Pz =-2)[ Pz =3)
0 26 26
1 -50 50
2 84 84
3 3200 -3200
4 67174400 | 67174400
V(z=0) 2 2

and b = 3. In each case the number of sign changes is 2.
Hence, since V(z = 0) = V,(0) — V,4(0) = 0, there are no
zeros of g(z) for z = 0in [—2,3]. A plot of V(z) versus z for
z € [0,3] is shown in Figure 4. Note that V(z) for z < 1 s
zero but is 2 at z = 1. Hence, there are 2 global minima of
f(z) and the minimum value of f(z) is 2 = 1.
The modified Sturm sequence of g(z) = f(z) — 2 is,
4

Poz) = 1422 -2 -2+

P(z) = 2-2z—62% +42°

Pyz) = —20-20z+202°® ¢ =4 r=-2
Py(z) = 0 2 =80 r; =—40

Py(z) = 0 ga=0 r3=0. .

Note that Ps(z) = Py(z) = 0 does not affect the number o
sign changes for any z. Using the binary search technique
described above, we determine the zeros of g(z) to be at
z = 1.618034 ~ (1+v/5)/2 and z = —0.618034 =~ (1—/5)/2

as desired.

6. Multidimensional Objective Functions

The method described above is a 1-d minimization pro-
cedure for finding the global minima of an arbitrarily com-
plex real-valued polynomial objective function. While it is
not possible to directly extend the technique to multiple di-
mensions due to the lack of a multidimensional extension
of Sturm sequences, we can use a suboptimial approach in
which the multidimensional space is mapped to a single di-
mensional space.

To minimize a multidimensional objective function f(Z)
over a finite space ¥ € §, we define a parametric path

.# = ¥(w) which is dense in Q. This permits expressing

f(&) as a one dimensional function of w, f(w) which can be
minimized with respect to w. The minima of f(Z) are the
points along the path at which f(1(w)) is minimized. Selec-
tion of the path and its density is crucial to the success of
this approach. Note that the objective function evaluated on
the path function ¥(w) must be a 1-d polynomial in w. The
Chebychev polynomials can be easily used as path functions.

To illustrate, consider minimizing a two dimension func-
tion f(z,y) over the region 2% + y* < 1. Define the vector-
valued function ¥(w) as,

P(w) = (w cos aw,w sin aw),

where @ 3> 1 is a constant which determines the density of
the path in the search space and w € [0,1]. Note that y(w)
traces out a spiral path from the origin out to the unit cir-
cle. By choosing a sufficiently large c, the path will pass
very close or through all of the minima of f(z,y). In this
two-dimensional example, o parameter determines the final
polynomial order of f(w). If the a is large, then f(w) will be
a very high order polynomial, requiring careful numerical im-
plementation. The approach can be extended for additional
dimensions.

The primary disadvantage of the parametric path ap-
proach is that if the path does not go through all of the
global minima, some of the global minima may not be iden-
tified. This can be remedied by locating the near-global min-
ima along the path using the modified Sturm sequence and
using a gradient search routine to perform the final optimiza-
tion, i.e., use the parametric path minimization to initialize
a more conventional search algorithm.

7. Conclusion

A minimization technique for locating the global minima
of a real-valued polynomial objective function has been de-
scribed. While this modified Sturm sequence minimization
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technique: is computationally intensive, it may be a useful
technique when locating all of the global minima. is required.
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Figure I: Multi-global minima f(z) plotted versus z.
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Figure 2: ¥(z) versus z for the example in Fig. 1.
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Figure 3: f(z) over the interval [-2,3].
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V(z) versus z corresponding to Fig. 3.



