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ABSTRACT

Historically, the unwrapped phase for multidimensional sequences
could ‘only be computed by numerical integration of the phase
derivative which often led to erroneous estimates of the unwrap-
ped phase. In this paper a direct relationship between a mul-
tidimensional time series with finite-support and its unwrapped
phase is shown. This relationship shows that the unwrapped
-phase of a multidimensional sequence is unique in the sense that
once the phase at the origin is specified, the phase everywhere
in the frequency domain follows. Additionally, the uniqueness of
the unwrapped phase for multidimensional sequences which have
a rational Z transform is shown. In either case, the unwrapped
phase at a given point is shown to be computable using a real
. 1-d finite-length phase unwrapping proceedure based on Sturm
*_sequence polynomials.

1. INTRODUCTION

Phase unwrapping is the determination of the continuous
phase function of the complex Z transform of a signal sequence
z(n) [1]. Traditionally, the unwrapped phase of a multidimen-
sional sequence could only be computed by numerical integration
of the phase derivative [2]. In this paper a unique relationship
‘between 'a multi-dimensional sequence with finite-support and its
unwrapped phase is shown. A unique relationship between the
polynomial coefficients of a multi-dimensional sequence with a
rational Z transform and its unwrapped phase is also shown. Us-
ing the techniques presented in [4,5], the number of multiples of
27 which must be added to the principle value of the phase to
obtain the unwrapped phase can be exactly computed in either
case. The proofs provide methods for computing the unwrapped
phase.

2. MULTIDIMENSIONAL SEQUENCES
WITH FINITE SUPPORT
Consider the M-dimensional real sequence z(nq,...,nar) With
a finite region of support, i.e., z(n1, ..., nar) = 0 outside the region
0 <'ng < Ny for k = 1,..., M. On the unit hypersphere, the M-
dimensional Z transform X(z1,...,zp) of z(ny,...,na) can be
expresssed as,

Ny Ny
X(WtyentiM) = 3 00 D 2(n1, .ory mpg )T TAOR)
: n=0 np=0
1)

where 2z = /% for k= 1,..., M.

Assuming that | X (wi,...,war)] # 0 on the unit hypersphere,
the phase of X (wy, ...,wnr) relative to the phase at wy,...,wpr =0
is;

arg[X (w1, -..,wm )] — arg[X (0,...,0)] =

Im[X(wla ey W, )]
arcta.n{ﬁ—e—imi:—)]-} + L(wl, ...,wM)7r

The integer-valued function' L(wy, ...,wps) indicates the num-
ber of multiplies of 7 which must be added to the principle value
of the phase of X (wy;-..,war) to produce a continuous phase func-
tion (the unwrapped phase) [1]. It will be shown that the func-
tion L(wy, ...,wpr), which defines the unwrapped phase, is unique,
within an additive constant, for a given z(n1, ...;npr). This result
will be presented in the form of a theorem.

Theorem 1 Uniqueness of the Unwrapped Phase for a
Sequence with Finite Support Given an M-dimensional,
real-valued sequence z(ny,...;nar) with finite support 0 < ny <
Ny, k= 1,2,...,M that has'a Z transform which is non-zero on
the unit hypersphere; the unwrapped phase defined by L(wy,...,
wpr) is unigue to within an additive multiple of 2r. Furthermore,
when z(n1,...,npr) takes only rational values, L{wy,...,wn) can
be ezactly computed.

Proof . ‘

Uniqueness in the one-dimensional case (M = 1) was first
shown by McGowan: and Kuc [3]. The details of the proof of
uniqueness of L(w) for a one-dimensional finite-length real se-
quence are presented in a companion paper [5} which also demon-
strates that when z(n) is rational-valued, L(w) can be exactly
computed. For multidimensional sequences when M > 1 it
will be shown that the unwrapped phase at a given wy,...,wp
is uniquely determined by 'a one-dimensional finite-length real
phase unwrapping procedure:

Consider the point s7° = (817,...,s7) on the unit hyper-
sphere with ‘

wi=gmyi=1,2,..., M

where s; is a rational number, s; = pi/¢;, ¢; > 0, p; and ¢; inte-
gers. Note that the set of all such points {s7} is dense on the unit
hypersphere. Since the unwrapped phase is continuous, by show-
ing that it is unique on {s7} it follows that the unwrapped phase
is unique everywhere on the unit hypersphere. A parametric line
0§ through the point s7 and the origin can be expressed,

Sw = (S1W, ey SMW)
= (B, M,
a7 am

where w is the line parameter. “Along the line OS on the unit
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hypersphere, equation (1) can be written,

X(wly-nawM)JOS =

Ny Ny
z Z z(nl’m’nM)e—J'(n151+"'+nM5M)""
n1=0 np=0
Ny Ny
— E Z l»(nl’_..’nM)e_j('"-lPIQI+"'+T’-MPMQM)’~'/Q
=0  np=0
Ny N
= Z E Z(R1y ey pg ) H (M A martg ) (2)
n1=0 npr=0

where

M
=TIl &, ti=p
k=0
ki

M
Q= H %, Qi
k=0

are integers and ' = w/Q. Any integer factors common to all
of the #;’s and to @ can be removed from the ¢;’s and Q without
affecting the result.

When one (or more) of the s;’s are less than zero, say s; < 0
for ¢ = iy, ...,%2, then equation (2) can be written as,

X(wi, ---,WM)‘oS = eI (Nigltiy [+ +Nig [tiy )’ |

3)

N Ny Ni Nar
I SEED I SR DRI
ny1=0 ni; =0 niy =0 np=0

Niy = Ry ooy ipg) et tnig iy oty Jtig [ tnagtar)
Note that equation (3) has the general form,
X (@i, el g = e Ky (1) (4)

where
K L,
V(W)=Y y(k)e i,
k=0

K= Nlltll +ot NMltMl, K, = Nilltill toee Nizlti2|7 and
y(k) is the one-dimensional, finite-length, real sequence,

Ny Npp
y(BY= > - 3 Y (kynaynar)
ny=0 np=0

where

(N1, ey Niyp = Ny y ey
Niy —niyyonm) =k

otherwise

¥'(k,n1yynpy) = {
0
with & = (n|t1] + - -+ + npr|tar]).
The multiplicative e=7K>%' term in equation (4) produces an
additive linear phase term in the unwrapped phase. Hence, the
unwrapped phase of X (wy,...,war) along the line O is the un-
wrapped phase of ¥ (w') plus the linear phase term Ky ie.,

arg[X (wy, '"’wM)”OS — arg[X(0,...,0)]
arctan{lm[y(w’)]

Re[Y (w)]
where L(w') defines the unique unwrapped phase for the one-
dimensional finite-length sequence y(k). Computation of the un-
wrapped phase of y(k) plus the linear phase term Ky’ at the
value of w' corresponding to the point s7, gives the value of the

} + L(w)r — KW'
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unwrapped phase of z(ny,...,nar) at the point s7.

Thus, determining the unwrapped phase of the multidimen-
sional sequence 2(ny,...,n3r) at the point s7 on the unit hyper-
sphere, is equivalent to determining the unwrapped phase along
the line 0§ at o' of the one-dimensional finite-length sequence
y(k). Since the unwrapped phase for the one-dimensional finite
length sequence y(k) is unique, it follows that the unwrapped
phase of z(ny,...,nar) along the line OS and at the point sr is
unique. Furthermore, since the unwrapped phase in continuous
and the set of points {s7} is dense on the unit hypersphere, it
follows that the unwrapped phase is unique everywhere on the
unit hypersphere.

Note that when z(ny, ..., nar) is rational-valued, y(k) will also
be rational-valued. Hence, the techniques of [5] for exactly com-
puting the unwrapped phase of a real, rational-valued, finite-
length, one-dimensional sequence can be applied to exactly com-
pute L(wi, ...,war) for any point of the set {s7}.

3. RATIONAL Z TRANSFORMS
Let us now examine the computation of the unwrapped phase
of a infinite-length sequence with a rational Z transform. Con-
sider a general M-dimensional sequence z(ny,...,np) with a ra-
tional Z transform,

N(Zl, ...,ZM)
D(Zl.,...,ZM)

where the numerator N(zy, ..., zar) and denominator D(zi, ..., zpr)
are of finite order,

(5)

H(Zl,...,ZM) =

Ny Ny

N(z1yeyzp) = Z Z a(ny, .y npr)zy ™ 2y
n1=0 na=0
D, Dy

D(zl,...,zM) = Z Z b(nl,...,nM)zfﬂl ,..ZXI"M
n =0 np=0

where a(ny,...,nar) and b(nq,...,npr) are real. It will be shown
that the unwrapped phase of z(ny,...,npr) is uniquely speci-
fied by the a and b coefficients. Note that in the previous sec-
tion, I started with the values of the time domain sequence
z(ny,...,npr). For the case of a rational Z transform I begin with
the values of the coefficients of the numerator and denominator
of the Z transform, a(ny,...,npr) and b(nq, o). N(z1, .0, 201)
and D(zy,...,zp) must be non-zero everywhere on the unit hy-
persphere.

Theorem 2 Uniqueness of the Unwrapped Phase for a
Rational Z Transform Given an M -dimensional, rational Z
transform of the form given in equation (5) with real-valued co-
efficients a(n,...,np) and b(ny, ...,npr) that is analytic on the
unit hypersphere with both the numerator and denominator non-
zero on the unit hypersphere, the unwrapped phase defined by
L(wy,...,wn) is unique within an additive multiple of 2w. Fur-
thermore, when  a(ny,..,np)  and - b(my, . TpM)  are
rational-valued, L(wy,...,wpr) can be exactly computed.

Proof
Since H(z1,...,zar) is analytic on the unit hypersphere, it has
a continuous phase function and can be written,

W(z1, . 2m)

Bz o) = (e F

where



W(z1,2m) = N(z1, .y 20) D" (21, -y 201)

" and where * indicate complex conjugation. On the unit hyper-
sphere, the real and imaginary parts of H(wy,...,war) ate,

1
[D{wy, ..., wnr)]?
1

[D(w1, --mswm)|?

Re[H (w1, ... wp)] Re[W (w1, ...,wnr)]

CIm[H (wry .y wnr)] Im[W(wy,...,wn))-

Note that the phase of H(wy, ...,war) is a function of the ratio
of the real and imaginary parts of H(wy,...,wp); hence, only the
" the ratio of the real and imaginary parts of W(w, ...,was) are of
concern.

Note that W(wy,...,wpr) can be expressed as,

; kW(wl,...,wM)

JA N _
= [E DY a(nx,...,nM)e'J("l“’”"""MWM)] .

ny =0 np=0
D, Dy .
I
n1—0 ny=0
Ny Dy
3 S 3
ny1=0 npy=0m;=0 mpar=0
eillma=n1)wi+- (mM""M)WM])

nM)b(mh ) mM) !

N Dy

‘ _e—J(N1w1+ ~+Npwar) E Z Z Z

ny=0 npy=0m1=0 mp=0
a(Ny—ny1, .y Nt = na)b(me, .., mar) -
- pdllmtny Jws b (mm+nar)wrd) (6)
'In the one-dimensional case, M = 1 and equation (6) be-
comes,

X N D .
, W(w) = e—JNw Z Z a(N _ n)b(m)e](m+")“’ (7)

K n=0m=0
which is of the form,
' W(w) = e Ny (w)
where
K .
Y(w) =Y y(k)e*,
k=0

and K = N.+ D where y(k) is a one-dimensional, finite-length
sequence,

min(N,k)

yky= Y. a(N—n)b(k~1).

i=max(0,k-D)

Hence, computation of the unwrapped phase of a 1-dimensional
rational Z transform H(w) is equivalent to computation of the
unwrapped phase of the finite-length, real-valued sequence y(k)
“where y(k) is a simple function coefficients of the rational polyno-
mial Z transform of z(n). The additional exponential term e~ iNw
“in equation (7) adds a linear phase term to the unwrapped phase
"of y(k). The unwrapped phase of y(k) is computed using the
procedure described in [5]. The phase of H(w) relative to the

phase of H(0) is,

Re[Y ()]
Y (w)]} + L(w)r — Nw

where L(w) defines the unwrapped phase of y(k). It follows that
the unwrapped phase corresponding to z(n) is unique to within
an additive multiple of 7. Note'that when a(n) and b(n) are
rational-valued, y(k) will also be rational-valued. Hence, the
techniques of [5] can be applied:to exactly compute L(w).

To determine the unwrapped phase of the rational Z trans-
form for the case when M > 1, define the point st and the line
OS§ as in Theorem 1. W(wl,...,wM) along the line OS is then,

W(wl, ...,LUM)IOS

arg[H (w)] — arg[H (0)] = arctan {

a(nl,...,nM)b(ml,...,mM)-
ej[(m1—’n1)t1+-~-(mm4nM)tM]w’
(N1 4N ) Ny D
= e J (N1t Nzt +NMWZ E E E
; ny=0 npy=0mi=0 mp=0
a(Ny — 1,y Nag = npp)b(my, ...,ma) -
ej[(mﬁ-"l)t1+"“(mm+ﬂM)tM]w' (8) .

which, again, is of the form,

W(et, o)l g = e iKYy (1)

with

K, = Ni+Nz+-::+Nu,

K = (Ny+ Dl)fl + -+ (¥um + Dum)inm,
and :

Y(w) =‘§ y(k)e™
. k=0

where y(k) is a real-valued one-dimensional finite-length sequence
uniquely defined by the @ and b coefficients of the rational Z
transform polynomial.

Hence, computing the unwrapped phase for the multidimen-
sional rational Z transform is’equivalent to computing the un-
wrapped phase along the line OS at the point s7 of the one-
dimenional, finite-length, real sequence y(k). The unwrapped
phase of H(wy,... wM) where the pomt (w1, .eywar) lies on the
line defined by sw', is,

arg[H(w1,...,wM) ~ arg[H(0,...,0)] =

arctan{ M
o ImlY (@)

where L(w') defines the unwrapped phase of the one-dimensional
sequence y(k). Since the phase of y(k) is unique, it follows that
the phase of H(z1,...,2a) along the line OS and at the point s7
is unique. As before, since the unwrapped phase is continuous
and the set {s7} is dense on the unit hypersphere, it follows that
the unwrapped phase of H(wi,...,war) is unique on the entire
hypersphere. :

Note that when a(ny,...;np) and b(ny,...,np) are rational-
valued that y(k) is rational-valued so that the modified Sturm
sequence computations in 5] can' be used to exactly compute
L(wy,...,wpr) at any point of the set {s7}.

}+L(u’)~K,w'
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4. COMPUTATIONAL CONSIDERATIONS

Computation of the unwrapped phase at a given point of {sr}
requires: 1) computation of the coefficients of the Sturm sequence
and 2) evaluation of the Sturm sequence at w' = 0 and the value
of w' corresponding to the desired point and 3) counting the num-
ber of sign changes in the Sturm sequence at each w'. For many
applications, the unwrapped phase at equally-spaced points on
the unit hypersphere is desired. Repeating the process outlined
above for each point can be computationally intensive. A signifi-
cant computational savings can be realized by noting that many
of the points of an equally-spaced lattice lie along the same lines
through the origin (refer to Figure 1). For lattice points along
these lines, the Sturm sequence need only be computed once.
The Sturm sequence can be evaluated at w’ = 0 and at each «’
corresponding to a lattice point on the line. The number of sign
changes in the Sturm sequence between the origin and each point
of the lattice along the line gives L(w') at each of these points.
In addition, the inherent symmetry in the phase function of a
real sequence can also be used to minimize the number of points
on the hypersphere at which the unwrapped phase needs to be
computed from the Sturm sequence. For example, when M = 2
only the unwrapped phase in the first two quadrants need be
computed. The unwrapped phase in the second two quadrants
can be computed by symmetry considerations from the first two
quadrants.

6. CONCLUSIONS

This paper has demonstrated that the unwrapped phase of a
real multidimensional sequence with finite support is unique to
within an additive multiple of 2. In addition, the unwrapped
phase for an infinite-support multidimensional sequence with a
rational Z transform is shown to be a unique function of the Z
transform coefficients. Using the numerical approach discussed in
a companion paper [5], the integer-valued function L(wy, ...,war)
which defines the unwrapped phase can be exactly computed
when the sequence is rational-valued in the finite-support case
or when the Z transform coefficients are rational-valued in the
infinite-support case.

References

[1] A. Oppenheim and R. Schafer, Digital Signal Processing,
Prentice Hall, Englewood Cliffs, New Jersey, 1975.

[2] J. Tribolet, “A New Phase Unwrapping Algorithm”, IEEE
Trans. Acoust., Speech, Signal Processing., Vol. ASSP-25, pp.
170-197, Apr. 1977.

[3] R. McGowan and R. Kuc, “A Direct Relation Between a Sig-

nal Time Series and Its Unwrapped Phase”, IEEE Trans.

Acoust., Speech, and Signal Processing, vol. ASSP-30, pp.

719-726, Oct. 1982.

D. G. Long, “An Exact Phase Unwrapping Algorithm for
Rational-valued Time Sequences”, Submitted for publication
in IEEE Trans. on Acoust., Speech, and Signal Processing.

D. G. Long, “An Exact Numerical Algorithm for Computing
the Unwrapped Phase of a Finite-Length Sequence”, to be
published in ICASSP’88.

728

Figure 1: Lines passing through origin and (1,1), (1,2), (1,3),
(2,1), (2,3), (3,1), and (3,2) pass through through several points
of an 8 x 8 equally-spaced lattice in the first quadrant for M = 2.
The points (41,4;) and (¢}, %) lie along the same line if 41 = /4.



