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CHAPTER 11

RECONSTRUCTION AND RESOLUTION ENHANCEMENT
TECHNIQUES FOR MICROWAVE SENSORS
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Microwave remote sensing instruments such as radiometers and scatterometers
have proven themselves effective in a variety of Earth Science studies. The resolu-
tion of these sensors, while adequate for many applications, is a limiting factor to
their application in other studies. As a result, there is a strong interest in devel-
oping ground processing methods which can enhance the spatial resolution of the
data. A number of resolution enhancement algorithms have been developed based
on inverse filtering and irregular sampling reconstruction. This Chapter discusses
the use of resolution enhancement and reconstruction algorithms in microwave
remote sensing. While the focus is on microwave instruments, the techniques and
algorithms considered are applicable to a variety of sensors, including those not
originally designed for imaging.

1. Introduction

There are many types of remote sensing instruments, including optical, infrared, and
microwave sensors. Microwave remote sensing instruments can be divided into two
broad classes: passive (radiometers) and active (radars)55. Active microwave sensors
can be further divided into four general classes: synthetic aperture radar (SAR)
systems, scatterometers, altimeters, and weather radars. SAR systems are generally
high resolution (100 m and finer) while spaceborne radiometers and scatterometers
tend to be low resolution sensors (12 km to 75 km). The resolution of these latter
sensors is suitable for the oceanic and atmospheric applications for which they were
designed, but there is growing interest in applying such microwave sensor data to
new applications requiring better resolution.

Further, while the next generation of spaceborne microwave sensors may have
somewhat higher resolution, the extensive datasets of radiometer and scatterometer
data offer an important baseline for studies of global change. This has resulted in
interest in enhancing the resolution of historic microwave sensor data to facilitate
comparison with higher resolution sensor data. To meet this need a number of
algorithms for spatial resolution enhancement have been successfully developed and
enhanced resolution microwave data is now being used operationally.
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This Chapter considers the theory and methods of spatial resolution enhance-
ment of microwave remote sensing data. While the focus is on spaceborne radiome-
ters and scatterometers, the general reconstruction and enhancement theory dis-
cussed can be applied to a variety of sensors and applications, including creating
images from sensors not originally designed for imaging. Section 2 provides back-
ground on the sensors considered. Section 3 provides background in resolution en-
hancement, contrasting inverse filtering, extrapolation, and reconstruction methods.
The theory of irregular reconstruction is developed and algorithms for enhanced
resolution reconstruction are considered. Section 4 considers the application of the
technique to data from Earth Resources Satellite (ERS) -1 and -2 Active Microwave
Instrument (AMI) scatterometer mode (hereafter termed ESCAT). Simulations are
used to evaluate the effectiveness of the algorithms, along with actual data. A con-
clusion is provided in Section 5.

2. Spaceborne Microwave Sensors

A variety of active and passive microwave remote sensing instruments have flown
in space. Some of these have collected long time series such as the Special Sensor
Microwave Imager (SSM/I) radiometer18, flown on Defense Meteorological Satellite
Program (DMSP) spacecraft since the early 1980’s, ESCAT2 operating from 1982,
and the SeaWinds instrument50 operating aboard QuikSCAT since 1999. Prior sen-
sors include the NASA Scatterometer (NSCAT)38 which operated in 1996 and 1997,
the Seasat Scatterometer (SASS)23 and Multichannel Microwave Radiometer39 both
in 1978, and the Nimbus radiometer series operating in the late 1970’s, among oth-
ers. Together these instruments have demonstrated the utility of microwave sensors
in the study and monitoring of the Earth’s land, ocean, and atmosphere. The global
coverage, but low resolution, of these sensors complements the high resolution, but
limited coverage, of SAR systems.

Radiometers are passive, receive-only sensors which measure the thermal emis-
sion (brightness temperature) of the target in the microwave band55. The apparent
scene brightness temperature is related to the emissivity and temperature of the
surface and is modified by the intervening atmosphere. By appropriate selection
of operating frequencies in several microwave bands, the temperature and mois-
ture content of the atmosphere22, as well as key surface properties such as land
surface temperature37, soil and plant moisture20,42, sea-ice mapping54, snow cover
classification16, and wind speed (over the ocean)57, can be retrieved. Radiometer
data is being operationally used in weather forecasting and sea-ice monitoring.

Scatterometers are real aperture radars that operate by transmitting a pulse of
microwave energy towards the Earth’s surface and measuring the reflected energy.
The backscattered energy is related to the normalized radar cross-section (σ◦) via
the radar equation55. The spatial response function of the sensor determines the
spatial resolution of the σ◦ observation, with typical resolutions varying from 25
to 50 km. Originally designed for retrieval of near-surface winds over the ocean,
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scatterometer data is also being applied to the study of tropical vegetation, po-
lar ice, and global change26,29,33,34,59. Like radiometer data, scatterometer data is
operationally used in weather forecasting and sea-ice monitoring.

2.1. Radiometers

A radiometer measurement is the integral of the product of the scene brightness and
the antenna pattern. The ith measurement Ta(i) (in K) is obtained by integrating
the product of surface brightness response Tb(x, y) and the antenna gain pattern at
the surface Gi(x, y),13,55

Ta(i) = G
−1

i

∫∫
Gi(x, y)Tb(x, y)dxdy, (1)

where

Gi =
∫∫

Gi(x, y)dxdy. (2)

The integrals are over the surface area corresponding to the non-negligible gain
of the antenna. The dependence of G on i arises from the boresight pointing of
the antenna which changes as the antenna scans the surface. Note that the antenna
pattern acts as a low pass filter of the surface brightness, limiting the effective spatial
resolution of the measurement to approximately the 3 dB beamwidth. Radiometer
measurements are “noisy” due to the limited integration time available for each
measurement.

2.2. Scatterometers

A radar scatterometer is designed to determine the normalized radar cross section
(σ◦) of the surface. The primary application of spaceborne scatterometers have been
the measurement of near-surface winds over the ocean. By combining σ◦ measure-
ments from different azimuth angles, the near-surface wind vector over the ocean’s
surface can be determined using a geophysical model function23,38 which relates
wind and σ◦. The scatterometer directly measures σ◦ via measuring the backscat-
tered power from a transmitted pulse. Due to thermal noise in the receiver, radio-
metric noise and speckle, the power measurement is corrupted by noise. A separate
measurement of the noise-only power is subtracted from the signal+noise measure-
ment to yield the backscattered power “signal” measurement PS . The observed σ◦ is
then computed using the radar equation55. Ignoring the incidence angle dependence
of σ◦, the radar equation can be approximately expressed as

PS =
∫∫

PT G(x, y)λσ◦(x, y)
(4π)3R4(x, y)

dA =
∫∫

h(x, y)σ◦(x, y)dA (3)

where PT is the transmit power, G(x, y) is the antenna gain pattern on the surface,
dA is the differential area, R(x, y) is the slant range, σ◦(x, y) is the surface σ◦,
h(x, y) is the equivalent spatial response function, and the integrals are over the
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Fig. 1. Scatterometer Comparison

surface area corresponding to the non-negligible gain of the antenna and/or signal
processing filters. Given PS , the observed σ◦ is computed as σ◦ = X−1PS where

X =
∫∫

PT G(x, y)λ
(4π)3R4(x, y)

dA =
∫∫

h(x, y)dA. (4)

A summary comparison of the wind scatterometers that have flown in space is
shown in Fig. 1. SASS, NSCAT and ESCAT used a fan-beam antenna configuration
while SeaWinds employs a dual rotating pencil-beam antenna. In a fan-beam scat-
terometer, along-track resolution is obtained by a combination of a narrow antenna
pattern and the timing of transmit pulses integrated into a single measurement
cell. Cross-track resolution is obtained either by range gate filtering (ESCAT) or by
Doppler filtering (SASS and NSCAT)38. ESCAT is described in greater detail later.

While a scanning scatterometer collects measurements at a constant incidence
angle50, fan-beam scatterometers measure σ◦ at a variety of incidence angles. Since
the target response is varies with incidence angles, a model for the incidence angle
dependence of the target response is used to generate normalized images. Over most
natural surfaces within the incidence angle range 20◦ ≤ θ ≤ 60◦, corresponding to
the range of scatterometer measurements, a linear model for σ◦ (in dB) as a function
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of incidence angle can be useda, i.e. σ◦
dB(θ) = A + B(θ − 40◦) where A is the 40◦

incidence angle-normalized σ◦ and B is the dependence of σ◦ on the incidence angle
θ. The A and B coefficients are functions of the geophysical properties of the surface.
Note that 40◦ is the approximate center incidence angle over the swath and is a
convenient angle for making comparative analyses.

As previously noted, scatterometer measurements are noisy. The measurement
accuracy is frequently expressed in terms of the normalized standard deviation, or
Kp of the measurements36. Kp is sometimes known as the “scatterometer radio-
metric accuracy”. For ERS-1 Kp(k) is approximately 5%. For SASS, NSCAT, and
SeaWinds Kp(k) varies from as low as 1% to 15%, though it is sometimes higher.

Reconstruction and resolution enhancement methods can be applied to other real
aperture radars as well. For example, the Tropical Rain Mapping Mission (TRMM)
Precipitation Radar24, while it employs range resolution to map the vertical profile
of rain, it also makes real-aperture surface backscattering measurements which can
be applied in scientific studies8,30,51.

3. Reconstruction and Resolution Enhancement

The resolution of scatterometers and radiometers is adequate for ocean applica-
tions but is too coarse for many land and ice applications. However, because of
frequent global coverage, they are desirable candidates for resolution enhancement
algorithms. Since the data from these instruments is used in geophysical studies, ac-
curacy is crucial in resolution enhancement. Further, an improvement in the actual
effective resolution of the data is expected from such algorithms. While it is tempting
to interpolate the available data onto a high resolution grid in an attempt to make
the pixel size (sometimes called the pixel resolution) finer, this does not improve
the effective resolution of the resulting image. While various definitions of effective
resolution exist21,25, a common working definition is the resolving capability for two
closely spaced objects. The objects are considered individually “resolved” if there
is a 3 dB change in image value between them against a high contrast background.
The gap between the objects defines the effective resolution.

Algorithms for spatial resolution enhancement can be divided into three broad
categories: extrapolation, ad hoc techniques, and reconstruction. Extrapolation al-
gorithms can be further divided into two classes: pure extrapolation and multi-
channel extrapolation. The former includes algorithms which use maximum entropy
to extrapolate techniques the signal spectrum. Based on our common experience in
polynomial extrapolation, extrapolation must be used with caution since it can

aWhile not applicable for all targets, over the Amazon Rainforest (which exhibits high volume
scattering) a “gamma” normalization may be used with some success, i.e.,

γ(k) = σ◦(k)/ cos θ(k)

where θ(k) is the incidence angle of the kth measurement of σ◦. Over the incidence angle range
[20◦, 60◦], γ(k) is approximately constant.
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produce misleading results.
Multi-channel extrapolation algorithms have been used with success with mi-

crowave data3,48. These algorithms rely on the collection of observations at several
different frequency channels which have differing spatial resolutions. The goal of
the algorithm is to extrapolate the signal characteristics of the coarse resolution
channels to be commensurate with the resolution of the fine resolution channels
based on the correlation in the target response between the channels. As can be
expected, decorrelation from target variability and modeling uncertainty between
the channels is a key limitation of this approach.

A number of image restoration and ad hoc enhancement techniques have been
developed14,47,48,49,58. An example of an ad hoc technique is simple linear inter-
polation to increase the pixel density followed by noise addition. The perceptual
“resolution” of the interpolated image is improved by adding white noise to the
image. This results in the image appearing to have more higher spatial frequency
information than is actually supported by the underlying data.

Reconstruction algorithms rely on reconstructing the original signal based on
sampled observations. A classic reconstruction algorithm is the well-known Nyquist
uniform sampling theorem. Given uniformly-spaced ideal samples of a band-limited
signal, the original signal can be exactly reconstructed by ideal low pass filtering of
the samples so long as the sample spacing is at least twice the highest frequency
present in the signal. Reconstruction algorithms become more complicated with the
introduction of irregular sampling and variable apertures, a common problem in
microwave remote sensing9.

We note that in the signal and image processing literature, the term “image en-
hancement” generally refers to inverse filtering techniques: to enhance a pre-existing
image, an inverse filter is applied by convolution. This approach generally requires
a constant (over the image to be processed) aperture function and a pre-existing,
uniformly sampled image. The general theory for this approach is well-known21,25

and the literature is replete with examples of variations of this method, including
techniques to estimate the aperture function from the image. The approach has
been successfully applied in remote sensing3,4. As noted, many microwave sensors
do not produce data on a uniform grid, and the data must be converted to an im-
age prior to applying such methods. Simple gridded images can be generated with
the widely used “drop-in-the-bucket” technique by assigning each measurement to
a grid element in which its center falls, or some variation thereof. However, the
effective resolution of such images is dictated by the aperture response rather than
the grid spacing.

In effect, using reconstruction techniques creates optimal images and performs
the function of “image enhancement” at the same time; hence our interest in
reconstruction-based techniques. As a result, the remainder of this Chapter focuses
exclusively on reconstruction based techniques. Irregular sampling and reconstruc-
tion theory are emphasized to support the often non-rectilinear grid sampling of
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microwave sensors.

3.1. Microwave Sensor Sampling and Resolution Enhancement

Typical microwave sensor observations can be modeled as an array of samples of
spatially filtered surface data. The aperture function for each measurement is de-
fined by the sensor antenna pattern and/or the signal processing techniques used to
resolve the antenna illumination pattern into smaller spatial elements, e.g. Doppler
filtering or range gating. Spatial sampling is typically obtained via pulsed opera-
tion and antenna scanning. While ideally such sampling is on a regular sampling
grid, this is not the case for past and present sensors which generally have irregular
or varying sampling grids and spatially varying aperture functions. Some sensors
(e.g., SASS) can not even be considered ‘imaging sensors’ since the aperture filtered
samples do not completely cover the surface for a single pass.

Resolution enhancement algorithms provide improved resolution images by tak-
ing advantage of oversampling and the response characteristics of the aperture func-
tion to reconstruct the underlying surface function sampled by the sensor. The goal
of the algorithm is to generate images from the observations at an effective spatial
resolution better than the 3 dB resolution of the sensor; hence the term “resolution
enhancement”. When single-pass sampling has inadequate sampling density, multi-
ple observation passes can be combined to improve the sampling density, producing
the required oversampled observations for spatial resolution enhancement at the
cost of reduced temporal resolution3,9,35.

3.2. Irregular Sampling and Reconstruction

Let f(x, y) represent the true surface image (e.g., σ◦ or brightness temperature) at
a location (x, y). The measurement system is modeled by

z = Hf + noise (5)

where H models the measurement system (including the sample spacing and the
system’s spatial response function, hereafter termed the aperture response function)
and z is the vector of observations made by the sensor. The measurements z are a
discrete sampling of f convolved with the aperture function (which may be different
for each measurement). An individual measurement zi can be written as

zi =
∫∫

hi(x, y)f(x, y)dxdy + noise (6)

where hi(x, y) is the aperture response function of the ith measurement. The aper-
ture response is also called the point-spread function. hi(x, y) is a function of the
the antenna pattern and the effective signal processing filter response for the ith

measurement, see Eqs. (1) and (3).
Reconstruction and resolution enhancement involves inverting Eq. (5)

f̂ = Ĥ−1z (7)
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where f̂ is the estimate of f derived from the measurements z. The inverse of H,
Ĥ−1, is exact if H is invertible. If H is not invertible, an approximate solution
must be used. The low-pass nature of typical aperture functions passes low spa-
tial frequencies, but attenuates and may even null out higher spatial frequencies.
Full reconstruction from sufficiently dense sampling can be considered resolution
enhancement since high frequency information suppressed (but not nulled out) by
the aperture function is recovered.

Because the sensor measurements are noisy, a tradeoff between resolution en-
hancement and the noise level in the reconstructed signal exists since high frequency
noise tends to be amplified along with the signal in the reconstruction process.

3.3. Sampling and Reconstruction

The traditional approach to sampling and reconstruction is founded on uniform
sampling and the well-known Nyquist sampling theorem: a low pass (band limited)
function can be completely reconstructed from regularly spaced samples if the sam-
ple rate exceeds twice the maximum frequency present in the signal41. In typical
application, signal reconstruction from the samples is accomplished with only a low
pass filter and the aperture function is treated as an ideal low pass filter ignored in
the reconstruction. For this case, the recovered frequencies are deemed limited to
1/2 the sampling frequency or the cutoff frequency (e.g. the 3 dB rolloff point) of
the aperture function, depending on which is lower. The aperture function filters
out high frequency components of the signal that might otherwise cause aliasing in
the reconstructed signal.

Since the aperture function of a microwave sensor is the result of the antenna
pattern and signal processing, it has side lobes. The resulting measurements thus
contain information regarding higher frequency components of the original signal.
If the (possibly irregular) sampling is sufficiently dense, this information can be
recovered by inverting the effects of both the aperture function and the sampling.
The reconstruction compensates for the aperture filtering by amplifying attenuated
frequencies, though the aperture function may limit the reconstruction due to nulls
in its spectrum.

If the sampling is regular (uniform) with a fixed aperture function, reconstruc-
tion can be accomplished with low pass filtering and Wiener filtering, a well-known
inverse filtering technique that also accounts for noise in the measurements41 (see,
for example, Alvarez-Perez et al.1 for an application of such a technique to ERS
scatterometer data). However, inverse filter methods are difficult to apply when the
sample spacing is irregular or when the aperture functions vary between different
observations. Instead, irregular reconstruction methods must be applied.

While the theory of uniform sampling and reconstruction is well-known, irregular
sampling and reconstruction theory is much less familiar. Here we review the general
theory for irregular sample reconstruction.

As in uniform sampling, the sample spacing, or sampling density, limits the
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Fig. 2. Graphical illustration of δ-dense in 2-D. A box of size ∆ is centered at each sample point.
(a) With δ = (∆1, ∆1), the union of the boxes around each sample point is too small to cover the
image space. (b) δ = (∆2, ∆2) is sufficiently large. δ-dense corresponds to the smallest δ which
covers the full image [from Early and Long (2000)].

signal reconstruction. A simple method for parameterizing the sampling density for
an arbitrary irregular grid is based on δ, the maximum sample spacing. A formal
definition and discussion of δ-dense sampling is provided in Early and Long9; here a
less formal approach is adopted. In one dimension, δ specifies the maximal spacing
of the samples. In two dimensions δ-dense is defined as the minimum sized rectangle
centered at each sample point such that the union of the boxes completely fills the
image space (see Fig. 2).

Gröchenig15 derives a relationship between the sample grid parameter δ and the
recoverable frequencies (a band limited frequency range denoted by Ω = [ω1, ω2])
of the original signal, showing that the signal can be completely reconstructed if

δ · ω =
2∑

i=1

δiωi < ln(2). (8)

If the spectrum of the original signal has a region of support Ω = [−ω0, ω0]2, and
the δ-dense sampling grid has δ1 = δ2, the sampling density must satisfy

δ1 <
ln(2)
2ω0

. (9)

This requires that the minimum irregular sampling density must be higher than the
Nyquist uniform sampling density, i.e., 1/ ln(2) ≈ 1.44 times the Nyquist rate for
uniformly spaced samples. This ‘oversampling’ is required to ensure reconstruction
from the irregular sampling grid.

Thus, for irregular sampling, Gröchenig’s theory is equivalent to the well-known
Nyquist theory of sampling and reconstruction for uniform sampling: for complete
reconstruction (1) the original signal must be bandlimited or aliasing and informa-
tion loss results and (2) the sampling must be sufficiently dense. While the original
signal can be recovered only if the maximum frequency is less than sampling den-
sity, the aperture function used to create the samples can introduce information
loss, restricting the frequencies which can be reconstructed.
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3.4. Reconstruction Algorithms

Gröchenig’s proof is constructive, with an algorithm for reconstructing the orig-
inal signal from the samples (in effect, inverting H). As demonstrated by Early
and Long9 Gröchenig’s algorithm is equivalent to block additive Algebraic Recon-
struction Technique (ART) when used with a suitably defined operator H based on
the sampling, the aperture function and the signal bandwidth. ART methods have
been extensively studied6,12,17 and a number of practical numerical algorithms have
been developed. Such methods thus form a basis for the practical reconstruction of
irregularly sampled signals in remote sensing.

As previously noted, the sensor observations or measurements can be viewed
as ideal samples of an aperture filtered image where the aperture filtered image
is the true image convolved with an aperture function. In general, each observa-
tion can use a different aperture function. For a given aperture function, nulls in
the frequency response of the aperture function result in lost information. For a
single aperture, this information is permanently lost and cannot be recovered via
reconstruction. However, when multiple aperture functions are used, a net effec-
tive aperture function can be defined from the appropriately averaged individual
measurement aperture functions9. Nulls in the effective aperture function corre-
spond to the intersection of the nulls of individual aperture functions. So long as
the sampling density requirements are met for the remaining frequencies, only the
frequencies corresponding to the nulls in the net effective aperture function are lost.
All other frequencies can be recovered in the reconstruction, subject to the sam-
pling considerations. Though information in spectral nulls of the aperture function
is permanently lost, some ART-based reconstruction algorithms can “fill-in” data
for missing frequencies based on particular mathematical criteria.

Here we develop the ART algorithm. For convenience the original signal is
treated as discrete with uniformly-sized pixels, but at a very fine scale (much smaller
than the sample spacing). Each measurement or observation si covers a number of
these small pixels [compare Eq. (6)]

si =
∑

j

hija
j (10)

where aj are elements of the vector a of row-scanned image pixels of the true signal
image and hij is the effective aperture response function for the ith measurement on
the jth pixel. The sum is computed over the pixels for which hij is non-negligible.

Block additive ART (AART) can be written as17

aj
n+1 = aj

n +
∑

i(si − pi)hij∑
i hij

(11)

where an is the nth iterative estimate of a, and pi is the back projection

pi =
∑

j

hija
j
n (12)
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corresponding to the ith measurement at the nth iteration. In effect, all measure-
ments that cover the pixel of interest are summed and normalized to create the
per-pixel update.

The update on the right side of Eq. (11) is a function of the measurement vector
s and the back projection vector p computed from the nth iterative estimate. The
vector s is the sampled convolution of the true image and the aperture function(s),
expressed in matrix form as s = Ha where H (with elements hij) is the sampled
aperture function for each measurement. Then, Eq. (11) becomes (noting p = Han)

an+1 = an + H ′(s − p)

= an + H ′(Ha − Han)

= an + H(a − an) (13)

where the a’s are row-scanned image vectors, H ′ is the row-normalized transpose
of H with elements hji/

∑
k hkj . To perform reconstruction consistent with the δ-

dense sampling, a low pass filter is applied to the rows of H. The resulting H is
invertible over the frequency range defined by the aperture function and sampling9.

As previously noted, noise in the measurements tends to be amplified along with
the desired signal. In Wiener filtering, the reconstruction filter response is modified
so that when a specified noise-to-signal ratio threshold is exceeded, the response is
set to zero to minimize noise amplification25. A similar approach can also be used
to modify the rows of H in the reconstruction.

Since the reconstruction algorithm is iterative, computational considerations
may limit the number of iterations, resulting in a less-than-optimal reconstruction.
Thus, there is a tradeoff between the reconstruction accuracy and resolution and
the number of iterations. Increasing iterations improves the resolution. Truncation
of the iterations can also be considered a method of regularization25.

In general, iterative reconstruction suffers from two forms of error: reconstruc-
tion error and noise amplification. The former is the difference between the iterative
image estimate and the noiseless true image. Noise amplification results from the
inverse filtering since the reconstruction algorithm acts as a high pass filter. Excess
measurements (due to over sampling or repeated observations) contribute to an im-
provement in the signal to noise ratio of the estimated image due to averaging in the
reconstruction algorithm. Thus, increasing the number of measurements improves
the noise level, even if the effective sampling density is not increased.

To avoid having to solve for and explicitly compute within the space delin-
eated by the aperture function, regularization techniques can be used to compute a
unique solution on the full space. The AART algorithm includes least squares reg-
ularization, though a variety of regularization schemes can be applied to generate
an estimate of the signal.

As noted by Early and Long9 AART and multiplicative ART (MART) solutions
differ only by regularization implicit in the algorithms. AART is equivalent to a least
squares estimate in the limit based on the minimization of ‖x2‖ subject to y = Hx
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while MART with damping maximizes the signal entropy −
∑n

j=1 xj lnxj with the
same constraint. The AART estimate is strictly contained within the band limited
space defined by the aperture function and sampling, while the MART estimate
is not confined to this space – additional frequency content in the null space may
be added by the algorithm to create a sharper image21, subject to the constraint
y = Hx. The difference between the AART and MART solutions (in the iteration
limit) is contained in the null space of H.

Alternate variations of these reconstruction algorithms can also be used effec-
tively. The Scatterometer Image Reconstruction (SIR) algorithm is a derivative
of MART developed for scatterometer image reconstruction35. It includes a non-
linearity in the update to minimize the effects of noise on the reconstruction and
is preferred over MART9,58. The SIR algorithm has been widely applied to both
scatterometer and radiometer data29,31,35. When applied to scatterometer data,
the multivariate form of SIR estimates the incidence angle dependence of the scat-
terometer data35 and is used below. Another reconstruction approach is based on
the Backus-Gilbert technique13,46,52,53, contrasted with SIR by Long et al.31.

While the overall performance of AART, MART and SIR algorithms are similar,
at lower reconstruction errors MART and SIR have lower noise amplification than
AART, and at the lowest reconstruction errors, SIR has the lowest noise. Thus, SIR
is more robust in the presence of noise, particularly at low signal to noise ratios9.
Further, the subjective image quality for SIR at a given reconstruction error level is
better than corresponding MART or AART products when used with scatterometer
data. The ultimate limits to resolution enhancement are the sampling density, nulls
introduced by the aperture function(s), the acceptable noise level, and the temporal
stability of the study area9,35. Inverse filtering of the reconstructed SIR image can
further improve the quality of the image7.

4. Application Example: ESCAT Resolution Enhancement

As has been noted, reconstruction-based resolution enhancement is based on restor-
ing attenuated information in the sidelobes of the spatial response function within
the support of the sampling. High side lobes in the spatial response make this eas-
ier, though information can be recovered even from sensors with low sidelobes. To
illustrate this we consider a particular application example: ESCAT, which uses a
processing window designed to minimize sidelobes. ESCAT also has a much narrower
swath than other sensors and thus requires many more passes over the target to
achieve a similar high sampling density. Application of resolution enhancement tech-
niques to ESCAT is thus more demanding than for other scatterometers9,10,29,35.

For ESCAT, ground processing is used to spatially filter and resample the raw
instrument measurements. Several pulses corresponding to each along-track cell are
integrated into a single “50 km” resolution measurement. Nominally 50 km σ◦ mea-
surements are reported on a 25 km grid for each antenna. A spatial smoothing filter
(Hamming window) is applied when integrating the pulses. This filter smoothes the
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Fig. 4. a) Locations of the σ◦ measurement centers for a single pass over a small study area. b)
Locations of the σ◦ measurement centers over a 6 day period.

σ◦ response so that it corresponds to the average σ◦ response for a 50 km circle (see
Fig. 3)b. This weighting function, chosen to minimize sidelobes and aliasing, is the
primary factor in determining the effective measurement response or aperture func-
tion. The windowed spatial resampling has the desirable dual effects of 1) reducing
the noise level (i.e., decreasing KP and improving the radiometric resolution) and 2)
compensating for the varying areas and resolutions of the individual measurements.
For each 25 km grid element there are three measurements of σ◦, one from each
antenna beam. In many land and ice applications these may be combined; however,
care must be used for surfaces exhibiting azimuthal variation in σ◦.

bE. Attema, Personal communication.
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Based on the Nyquist theorem, frequencies up to 0.02 km−1 (1/50) can be recon-
structed from uniform 25 km sampling. If multiple passes over a given study region
are combined, the effective sampling density can be improved. Combining multiple
passes results in a dense, but irregular sampling grid. For example, Fig. 4a illus-
trates the ESCAT measurement locations for a single pass over a particular study
area. These are on a 25 km uniformly spaced sampling grid. Figure 4b shows the
locations of all measurements collected over the study area in a 6 day period. Note
that NSCAT and SeaWinds achieve significantly denser sampling during a simi-
lar period9 (see also Fig. 1). Of course, in order to usefully combine the multiple
passes to achieve the dense sampling the following assumptions must be made: 1)
the instrument calibration is stable, 2) the surface σ◦ remains essentially constant
for the combination period, 3) the surface σ◦ does not vary with azimuth angle
since different passes may observe the surface at different azimuth angles, and 4)
the location and response function(s) of the measurements are accurately known35.

To address these considerations we note that both ERS-1 and ERS-2 scatterom-
eters have demonstrated excellent calibration stability32, satisfying assumption 1.
Applying assumption 2 limits the multiple pass combination technique to station-
ary or very slowly evolving targets such as land10; ocean or rapidly moving sea ice
regions are unsuited for combining multiple passes. Assumption 3 can be applied for
much of the Earth’s surface, although there are known regions of Antarctic glacial
ice which exhibit significant azimuth dependence in C-band σ◦ 11,19,26,27,28,45 and
caution must be exercised in such cases. Given care in the implementation of the
ground processing of the ESCAT data, assumption 4 is reasonable.

Proper reconstruction involves inverting the effects of the sampling and aper-
ture function (i.e. the resampling window for ESCAT) over the frequency range
supported by the sampling. Windowing introduces nulls in the measurement spec-
tra (see Fig. 3) and at such frequencies the original signal cannot be recovered.
However, over frequencies supported by the sampling at which the signal spectra is
merely attenuated, the original signal can be completely recovered: the reconstruc-
tion algorithm can compensate for the attenuation introduced by the resampling
filter–even in the highly attenuated sidelobe regions. Simulations demonstrate that
sidelobe compensations of over 60 dB are possible using SIR with this aperture,
sufficient sampling, and long enough iteration.

We note that the original SIR algorithm was developed for SASS where the
aperture function could be approximated by a boxcar or rect function, simplifying
the algorithm35. However, for the SSM/I and ESCAT it is appropriate to use the
actual response function in the SIR algorithm. As a general rule, the lower sidelobes
of the ESCAT aperture function require more iterations to achieve the same level
of resolution enhancement compared to more rect-like aperture functions.

The noise performance of SIR can optionally be improved via use of a median
filter, a modification known as SIRF (SIR with Filtering)35; however, this has the
side effect of reducing the effective resolution. SIRF was used with SASS measure-
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Fig. 5. a) Plot of δ-dense versus time for two study areas. b) Average number of σ◦ measurements
per square km as a function of time for two locations. In both plots the solid line is for a polar
location while the dotted line corresponds to an arbitrary mid-latitude location.

ments due to their high noise level. ESCAT measurements are much less noisy than
SASS measurements due to the better SNR and so the median filter is not used with
ESCAT. A previous author56 erroneously stated that resolution enhancement can
not be applied to ESCAT data due to the windowing applied in the measurement
process. However, as we have shown the windowing primarily only degrades the
signal to noise ratio and information in even very low sidelobes can be recovered if
desired and the noise enhancement can be tolerated. The same author attributed
the resolution enhancement of SIR to the use of a median filter; however, SIR does
not include a median filter. The primary limitations of ESCAT resolution enhance-
ment are the degradation of the signal to noise ratio and the computational time,
which limits the number of iterations.

4.1. Sampling Density

We now consider the sampling density achievable for ESCAT. Combining multi-
ple passes increases the sampling density, quantified by δ. However, due to the
ERS orbit and swath geometry, the number of passes in a given time period and
their relative orientation and spacing varies considerably over different regions of
the Earth. Further, since the scatterometer mode can not be used when SAR data
is being collected, there are gaps and missing data. In any case, the multi-orbit
sampling is suboptimum. Nevertheless, as the number of overpasses is increased,
δ decreases in a location-dependent manner. To illustrate the relationship between
the δ parameter and time, Fig. 5 plots δ computed over two study regions, one at
mid latitudes in the Northern Hemisphere and the other in the polar region, which
gets more frequent coverage. The value of δ and the average number of measure-
ments per square km are both shown. A tradeoff between δ and time is apparent.
There is a general linear trend in the number of measurements while δ exhibits an
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exponential decay with time. We note that the reconstruction resolution limit is
approximately 2.9× δ (see Eq. 9). Because of concerns about temporal variations in
the surface, we desire to minimize the temporal period of the measurements to be
combined. However, to achieve a given sampling density (and therefore resolution
in the resulting reconstructed image), a minimum time interval is required, termed
the ‘imaging period.’

It should be clear that the selection of the imaging period depends on the in-
tended application. However, the point of inflection in the δ versus time curve
provides a good tradeoff between length of the imaging period and sampling den-
sity. Examining Fig. 5 we see that six days provides a δ of 10 km (corresponding to
an effective reconstruction resolution of approximately 29 km) for the polar region
while nearly a month is required for the particular mid latitude region evaluated.
For the same period a δ of approximately 6 km near the poles is achieved. Higher
density sampling is possible but requires longer time periods.

We note that δ is dependent on the worst-case sample spacing over the study
area, which may occur at only one point; the sample density elsewhere is higher.
While δ-dense defines the sample spacing required to guarantee the reconstruction
resolution everywhere, regions of the image with denser sampling can yield higher
enhancement in practice due to locally denser sampling. For example, the area
covered by a single pass has a δ of 25 km, even if the remainder of the image area is
not covered at all. (This explains the high starting value of δ in Fig. 5.) Thus, the
reconstructed resolution can vary over the image.

4.2. Simulated Performance

To illustrate the application of SIR to ESCAT measurements, simulation is initially
used. In the simulation, the geometry and response function from actual ESCAT
measurements over a small study region in Antarctica are used with synthetic A and
B “truth” images (see Fig. 6) to generate simulated σ◦ measurements. Monte Carlo
noise with the expected ESCAT Kp is added to the measurements. The synthetic
images include a number of features to aid in evaluating the resolution enhance-
ment including various width lines, a pyramid feature and two small, closely spaced
squares. The squares are approximately 25 km in size and spaced 25 km apart. We
note that the synthetic images are not bandlimited (as is required by reconstruc-
tion theory). This enables us to evaluate the effects of attempting to reconstruct a
non-bandlimited image.

The result of applying the SIR algorithm is shown in Fig. 6. The pixel resolution
used in these images is 4.45 km. The effective resolution is, of course, less than the
pixel resolution. The results after 30 and 100 iterations of the SIR algorithm are
shown when 6 days and 30 days of data are used. For comparison, nonenhanced
ESCAT images with a pixel resolution of approximately 25 km (5×4.45 km) are also
shown. To generate the nonenhanced images, all measurements whose center falls
within a given pixel are used to estimate A and B using linear (in dB) regression.
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Fig. 6. ESCAT resolution enhancement simulation results. The pixel resolution is 4.45 km. The
upper panel contains A images while the lower panel contains B images. The subimages in each
panel are: a) true synthetic image, b) simulated NSCAT SIR result, c) simulated ESCAT result
for 30 iterations with 6 days of data, d) simulated ESCAT result for 1000 iterations with 6 days
of data, e) nonenhanced (see text) results for 6 days, f) non-enhanced for 30 days of data, g)
simulated ESCAT result for 30 iterations with 30 days of data, and h) simulated ESCAT result
for 1000 iterations with 30 days of data.

For ease of display and comparison, each pixel of the nonenhanced images was
replicated five times in each direction to expand its size to match the equivalent
area of the other images. Also shown are NSCAT comparison images, the result of
SIRF processing 6 days of synthetic NSCAT measurements generated in a manner
similar to the synthetic ESCAT measurements. The NSCAT images use 50 iterations
of SIRF44.

Examining Fig. 6 we note that the NSCAT image has better resolution than
the ESCAT image. Due to the lower sidelobes of ESCAT data, the improvement in
the ESCAT resolution is lower than NSCAT for the same number of iterations. The
effective resolution of the ESCAT images improves for both increasing iterations
and also when more measurements are incorporated. As more measurements are
included, the noise level in the images drops. Also, the SIR-processed images are
subjectively better than the nonenhanced images both in terms of resolution and
noise level. Careful examination reveals low amplitude artifacts due to low pass
filtering of the true image in all of the enhanced resolution images. This effect will
be discussed in greater detail later. We note that the B images exhibit somewhat
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lower resolution than the A images, an effect previously noted35.
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Fig. 7. a) Plot of the standard deviation of the difference between the images versus iteration
number. b) Plot of the correlation coefficients of the images version iteration number. In both plots
the solid line is the true-ESCAT 6 day image, the long dash line is the true-ESCAT 30 day image,
the short dash line is the 6 day ESCAT-NSCAT, and the dotted line is the 30 day ESCAT-NSCAT.
In a) the latter two lines lie nearly on top of each other and can not be distinguished in this plot.

To objectively quantify the resolution enhancement, we compare the error be-
tween the ESCAT and true images and, to gain insight with later comparisons of
actual data, with NSCAT images. As a metric, we compute the standard deviation of
the difference of the respective images. We also compute the correlation coefficients.
These metrics are computed for the A images as a function of the iteration number
in Fig. 7. After an initially steep decrease, the ESCAT-true standard deviation of
the 6 day measurement set bottoms out at about 75 iterations and begins a slow
rise. The ESCAT-true 30 day set is similar, with a much slower rise and a minimum
at about 200 iterations. The ESCAT-NSCAT standard deviation for both the 6 day
and 30 day cases, look similar, though lower and with a minima at approximately
500 iterations. The correlation coefficient exhibits a behavior consistent with the
standard deviation, with a rapid initial increase in correlation, a peak and then a
gradual decrease in the correlation. The minima for the ESCAT-true correlation
is at approximately 100 and 150 for the 6 day and 30 day cases, respectively. For
ESCAT-NSCAT, the peak is at 500 iterations.

Detailed examinations of the images and their spectra at each iteration (not
shown) suggest that the initial standard deviation decrease and correlation increase
are due primarily to the recovery of the signal in the main lobe of the aperture
function response. As the iterations continue, the difference between the reference
signal and the image decreases. The image component due to the noise begins small
and gradually increases with iteration. Eventually, the increasing noise begins to
dominate over the decreasing signal error, leading to the increase in standard devi-
ation and decrease in correlation. Consideration of the sensitivity of the particular
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Fig. 8. A image comparison using six days of data. Actual measurement locations over a small
polar region are used to create noisy synthetic σ◦ measurements of the true image. a) True synthetic
A image containing variously sized targets. b) True image low pass filtered to 25 km resolution.
Note ringing artifacts due to the low pass filter. c) Non-enhanced resolution image (see text). d)
Result after 30 iterations of SIR. e) Result after 100 iterations of SIR. f) Result after 840 iterations
of SIR.

application of the image data dictates the level of noise enhancement that can be
tolerated and hence the resolution enhancement. The available computational re-
sources may also be a factor, particularly for large images. While more iteration
leads to better resolution, it also increases the noise level which is the primary
limitation for ESCAT enhancement.

To better understand the tradeoff between resolution and the number of iter-
ations, the results of a second simulation are shown in Fig. 8. Only the A images
are shown. The simulation procedure is identical to the previous one but with a
different synthetic image. Six days of data are used (though as could be expected,
better results are obtained with 30 days of data). The synthetic image (Fig. 8a)
contains a set of different sized boxes to aid in the evaluation of the resolution of
the resulting images. The boxes range in size from 8.9 to 71 km. Along the top row
the boxes increase from 17.8 km to 35.6 km. The simulated σ◦ measurements are
generated from this image. A lowpass filtered version of the true image is shown in
Fig. 8b. This reflects an ideally reconstructed image using an ideal lowpass filter
with a cutoff at 25 km. For reference Fig. 8c shows the corresponding nonenhanced
A image. Figures 8d-f show the results of SIR after 30, 100, and 840 iterations. The
bright edge around the SIR images is a simulation artifact. The increasing sharpness
of the SIR images with increasing iteration is apparent.

While the larger diameter of the dark rings for the SIR images initially suggests
that the resolution is not as good as the lowpass filtered true image, examination
of the 3 dB widths of the boxes in the image estimates suggests otherwise. Figure 9
plots the A values in the images in Fig. 8 along a line through the top row of boxes.
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Fig. 9. Plot of A values extracted from the images in the previous figure across the top row of
spots. The light solid line is the true image. The dark solid line is the SIR estimate. The dotted
line is the 25 km low-pass filtered true image. The dashed line is the nonenhanced image data. a)
30 iterations. b) 100 iterations. c) 840 iterations.
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Fig. 10. Plot of the peak A value in the SIR image over each of the top row of squares as a
function of the number of iterations. The dotted line is at -7.5 dB, the 3 dB point.

Three plots are shown, one for each SIR iteration count considered. In these plots
the dark solid line is the SIR image estimate while the dotted line is the lowpass
filtered true image. Comparing the three plots, the adaptation of the SIR image
with iteration is apparent. Examining the SIR plot and the lowpass filtered plot,
it can be seen that the box peaks for SIR are above the lowpass peaks for small
objects and somewhat below for large objects. The closest overall match occurs
for 100 iterations. Figure 10 plots the heights of each of the boxes as a function
of iteration. The dotted line corresponds to the 3 dB point. Thus, using a 3 dB
effective resolution criterion, we conclude that the smallest resolvable box for 6
days of data and 100 iterations is approximately 25 km. However, smaller features
are more readily apparent (as a larger peak) than predicted by the lowpass filtered
image suggesting that there is, in fact, information at higher frequencies than this.
Further, as the algorithm is iterated longer, the effective resolution continues to
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Fig. 11. A image resolution enhancement results for actual data over a small study region in
Antarctica. The pixel resolution is 4.45 km. a) ESCAT A result for 35 iterations, b) ESCAT A
result for 1000 iterations. c) NSCAT A result. d) ESCAT B result for 35 iterations, e) ESCAT B
result for 1000 iterations. f) NSCAT B result.

improve, albeit slowly. Based on these simulations, it is possible to obtain enhanced
resolution images from ESCAT measurements even for short imaging periods.

4.3. Actual Data

Having used simulation to evaluate the resolution enhancement of ESCAT data,
actual data is now considered. One of the difficulties with using actual data is that
the true values of A and B are not known, making a quantitative evaluation of the
resolution enhancement very difficult. Instead, we compare the enhanced resolution
images to data from other sensors. This comparison is complicated by the fact that
sensors operate at different frequencies and so the surface response characteristics
vary. Nevertheless with this limitation in mind, the correlation between the sen-
sors can provide a measure of the resolution enhancement. Two study regions are
considered: polar (Antarctica) and mid-latitude (Amazon).

In the polar region example, 6 days of data are used to generate A and B images
of Wilkes land in Antarctica. The results are shown in Fig. 11 for two different SIR
iterations. An NSCAT-derived image of the same location and time is shown. Plots
of the ESCAT-NSCAT standard deviation and correlation are shown in Fig. 12.
We note that ESCAT and NSCAT operate at different frequencies (5.6 GHz versus
14.0 GHz) which can be expected to have somewhat different responses to surface
features. Nevertheless, similar features are observed in the A images from both sen-
sors, with the ESCAT images appearing like lowpass versions of the NSCAT images.
Greater differences are evident in the B images. While this is not well-understood, it
may be due to the differences in scattering at different frequencies from interannual
layers in the Antarctic firn or azimuth modulation of the backscatter with azimuth
angle. Careful examination of the ESCAT A images reveals somewhat sharper edges
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Fig. 12. a) Plot of the standard deviation of the difference between the ESCAT and NSCAT A
image results versus iteration number. b) Plot of the correlation coefficient between the ESCAT
and NSCAT A image results versus iteration number.

on the features in the image resulting from more iterations, suggesting higher effec-
tive resolution. As in the simulations, the ESCAT-NSCAT standard deviations and
correlations show rapid initial improvement, more gradual improvement, a minimum
and then very gradual degradation with iteration due to noise enhancement.

For the Amazon region, a small study region covering part of the Amazon river is
considered. Non-enhanced and resolution enhanced images from ESCAT, NSCAT,
and SeaWinds data are compared in Fig. 13. This image compares the output of both
the SIR and AVE algorithms. The AVE algorithm35 is defined as the first iteration
of SIR. In this example, images from both types of SeaWinds measurements are
shown. SIR with the actual antenna response was used with SeaWinds 25 km ‘egg
measurements’ while SIRF was used on SeaWinds 6 × 25 km ‘slice measurements’.
SIRF was also used for NSCAT. For this comparison the number of iterations was
limited to 30 for SIR and 50 for SIRF. Again, note that additional iteration improves
the resolution, but also increase the noise. However, this comparison restricts the
number of iterations to a small number. The imaging period varies from 4 days
for SeaWinds to 6 days for ESCAT and NSCAT. The pixel resolution is 4.45 km.
Examining these images it is apparent that SIR yields improved resolution images
compared to both AVE and non-enhanced. While the resolution improvement for
ESCAT is less than the other sensors, ESCAT resolution enhancement is effective.

5. Conclusion

This Chapter has considered spatial resolution enhancement by reconstruction from
irregularly sampled microwave sensor observations. Given sufficiently dense sam-
pling, an enhanced resolution image of the surface can be generated using recon-
struction from the sensor observations. In the resulting image the attenuation re-
sulting from effective aperture function is compensated for, exclusive of the spectral
nulls in the effective aperture function. The aperture function arises from the net
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Fig. 13. Comparison of enhancement results over the Amazon. Columns are, left to right, SIR-
enhanced, AVE-enhanced, and non-enhanced. Rows are, top to bottom, ESCAT, NSCAT, Sea-
Winds Eggs, and SeaWinds Slices. ESCAT is at C-band, while the others are Ku-band. SeaWinds
images are H-pol, 46◦ incidence angles. All other images are V-pol, 40◦ incidence angle. SIR
iteration is limited to 30 while SIRF iteration is limited to 50 in these images.

effect of the antenna pattern and any signal processing involved in generating the
measurements, and may be different for different measurements. Reconstruction
inverts both the aperture and sampling. Resolution enhancement relies on retriev-
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ing high frequency information attenuated by the aperture function in oversampled
data. The enhancement is limited by nulls in the aperture function and the sam-
pling density. Noise enhancement in the reconstruction can also be a limiting factor.
When required, the sample density can be increased by combining data from multi-
ple passes, at the expense of temporal averaging and reduced temporal resolution.
The reconstructed images have “enhanced resolution” since the effective resolution
can be much finer than the nominal 3 dB sensor resolution. Additive and multi-
plicative ART can be used as reconstruction algorithms, though the derivative SIR
algorithm is more robust in the presence of noise. SIR has been successfully applied
to scatterometer and radiometer data9,29,31,35.

As an illustration, the technique is applied to ESCAT data, which is a very
demanding application due to the windowed aperture function in the data. Tradeoffs
for ESCAT are considered and SIR is shown to improve the resolution of the ESCAT
data when multiple orbits are combined. ESCAT results are compared to NSCAT
and Seawinds.
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