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The Probability Density of Spectral Estimates
Based on Modified Periodogram Averages
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Abstract—Welch’s method for spectral estimation of averaging The window can be applied through multiplication in the
modified periodograms has been widely used for decades. Becausgjme domain (w[n]) or through circular convolution in the

such an estimate relies on random data, the estimate is also a ; ;
random variable with some probability density function. Here, g:g;?;cgé ic;r;? Igggr[fgﬁ};hz]ﬁztlmate of the power spectral

the pdf of a power estimate is derived for an estimate based on an
arbitrary number of frequency bins, overlapping data segments, . 1 . 9
amount of overlap, and type of data window, given a correlated Pli, k] = E|X[% k] = Wk]| 1)

Gaussian input sequence. The pdf's of several cases are plotted . .
and found to be distinctly non-Gaussian (the asymptotic result Where U is a scale factor dependent on the window [1]. To

of averaging frequency bins and/or data segments), using the obtain the power in a particular frequency band, several bins
Kullback—Leibler distance as a measure. For limited numbers of of the modified periodogram may be summed. Further, the
frequency bins_ or de_lta segments, the_ prt_acise pdf is consio_lerably variance of the estimate is reduced by averaging, éyeil
?ke\{ved and will be important in applications such as maximum of the data segments.
ikelihood tests. . L . .
In this paper, the statistical properties of this method of
Index Terms—Power spectrum, probability density functions,  gpectral estimation are explored for the case wheé is
spectral estimation, Welch's modified periodogram estimates. a wide-sense stationary, Gaussian sequence, with distribution
N(0,R). The process is formulated in vector space notation
I. INTRODUCTION from which the resulting power estimate is shown to be a
HIS paper analyzes the statistics of spectral estima@léaqrat'c form_ in the .dat"." veqtcxr. The pdf corresponding
based on averaging modified periodograms, which arr%tms qgadratlc form is given in generallty, and several rep-
sometimes referred to as Welch's technique for spectrJ s_entatlve examples are plotted. _Slmulatlons are reporte_d in
ich sample pdf's of the power estimates based on averaging-

estimation [1]. For almost 30 years, this technique has be¥ dified iod h the th cal . derived
widely applied, but there has been no thorough statisti poditied periodograms match the t eoretlca. uncthns erive
re. Finally, we compute the Kullback-Leibler distance of

analysis of the technique. Indeed, only two papers exte 8 ; . .
beyond the mean and variance of the spectral estimates. TH§ density function from a Gaussian.
first [2] describes the probability distributions for discrete
Fourier spectra based on a single periodogram for data both
smoothed and unsmoothed, but does not describe the correla-
tion between frequency bins. The second [3] derives the jointTo derive the pdf of a spectral estimate of the power in a
density functions for two frequency bins, including windowedrequency band of a data stream, it is useful to consider the
data and averaging over nonoverlapping data periodograector space formulation of the estimate. For the real, length
estimates. Here, the pdf of the sum of frequency bins from &, data vectox = [xg, 1, ...,zy—1]*, distributed Gaussian
average of modified periodogram bins, with nonoverlappingith zero-mean and covariance mati¥ we include a data
and overlapping data, is derived. window matrix Q@ = diagw[n]). Welch’s method segments
For a data streanmx[;], Welch’s modified periodogram x into data segments, possibly overlapping, of lengthFor

averaging provides a technique for estimating the spectrn arbitrary data segment the periodogram estimate of the
[1]. The sequence is segmented iffooverlapping sequences,power in frequency birk can be written as

Il. VECTOR SPACE ANALYSIS OF
WELCH'S SPECTRUM ESTIMATION

each of lengthL, such that theith sequence is defined by Pli,k] = x7Y[i, k]x )
z[i,n] = z[n + i(1 — r)L], where the indices aré = ’ 0’ 0 0
0,....,.K—1landn =0,...,L — 1. r is the percentage of o7 1

overlap. The data is windowed to minimize spectral leakage. =X 8 WQ(C’E)JF Si)S2 8 X 3
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where Z is the length of the zero-padded data vector (i.e., Where @, is the generalized hypergeometric function, ahd
Z = L, each data segment has not been padded). is the total number of nonzero eigenvalues.

Averaging the power from the data segments and summingWhile (14) provides a completely general solution for the
over several frequency bins yields a quadratic form in th@lf, calculation of the hypergeometric function is computa-

normal random vectox tionally intensive. However, if all of the nonzero eigenvalues
K—1 ks have even multiplicities)/ (s) can be expanded with a partial
P=_ Z Z P[i k] (5) fraction expansion. This yields a simple and practical density
K~ i function (see Appendix)
=xT'rx (6) I

D
fr)=9> > Ay ﬁpj “tetU(p).  (15)

where the matriX{’ depends on the length of the data segment, Pt

the amount of zero-padding, the data window, the frequency

bins of interest, the number of periodograms to average, da¥en when these eigenvalues are distinct, they are typically
the amount of overlap of the data segments in near pairs for commonly used windows. Clustering the

nonzero eigenvalues into groups with even multiplicities to
1 ) use with (15) provides an accurate numerical approximation
T= K Z Z Te, k). () for practical computation of the density function.
=0 k=hy We note in passing that for complex date, = xp +
Formation of the matrifC can be facilitated for arbitrary over- jx;, with the assumption that the vectors; and x; are
lap by partitioning the fundamental matrix of (%Q(Ck + independent and distributet¥ (0, R) so thatx is complex
S:)Q such that overlapping partitions from different dataircular N(0,2R), the moment-generating function for the
segments can be added. For example, with nonoverlapppmwver estimate is the square of (9)

K—1 ko

data(» = 0), partitioning is unnecessary, arfl is a block D
diagonal matrix that is formed as the Kronecker product M(t) = H(l — )" (16)
ko =1
1
T=Ixo Q(KLU Z Cr+ Sk) . () This ensures even multiplicities of the eigenvalues; therefore,
k=k1

the partial fraction expansion always yields the exact pdf

For 50% overlap(r = 0.5), the fundamental matrix can bewithout grouping eigenvalues.

partitioned into four submatrices (each @fe|ements Square)_ In practice, the cumulative distribution function is frequently
The moment-generating function of a quadratic form in @esired; this is easily found by integration of (15), resulting in

zero-mean Gaussian vector, such as (6), can be expressed 8¢m of incomplete Gamma functions

[41 p. 65] D h; (—d‘)_j
D y Fp(p) :gZZAijﬁv<j,—dip>U(p> (17)
Mty = [ -t2m) ) EFEE
=1 where the incomplete Gamma function is defined as [5]
where then; are theD distinct, nonzero eigenvalues &Y. z
Each eigenvalue has multiplicity;. v(a,z) =/ e ot dt. (18)
The mean and variance of the power estim#teare, 0
respectively lll. THE PDFs FOR SPECIAL CASES
_ & In this section, (15) is developed for several special cases.
re = me 10, particular, note that the pdf of the power in a frequency
Zle band based on averaging modified periodograms requires
o2 2227721/i. (11) computation of the eigenvalues &Y, where R is the
— ! covariance matrix of the Gaussian sequerc€or simplicity,
o ) ) in the examples presented throughout most of this section,
Defining some convenient variables the signalx will be assumed to be a whitR = o%I; we
1 present one example of a colored signal. For white noise,
di = _Qm (12) the eigenvalues oR Y, labeleds, are simplyo? times the
D eigenvalues ofY, labeled X; that is,n; = o2\, We also
g:H(zm)—’% (13) discuss the distance between a Gaussian density and the
im1 theoretical density we have derived.

We will consider, as examples, two useful and interesting
examples forw[n]: the rectangular window and the Hann
fly) = 9 v o <V_1 V_D_Z.d d d ) window. For a rectangular data windows[n] = 1, so that

r(%) 2\ gy MY RY 8D | the window matrix is the identity? = T and U = 1. The
(14) Hann window is defined ag[n] = sin®(7 %) andU = £.

the pdf corresponding to (9) is (see the Appendix)




JOHNSON AND LONG: PROBABILITY DENSITY OF SPECTRAL ESTIMATES BASED ON MODIFIED PERIODOGRAM AVERAGES

[e]
o o k=0, for Rect and Hann Windows
L6f 4 < k=t1, for Hann Window
a o otherwise
141
1.2f o
— 1 7D
=3 o
08t 8, ]
ODEI
UD
0.6r OOO Pos,
aqg o o
04f %94 Pooy,
oquqqggga
Qo
0.2 00000, 999d99qqqq 1
OOooooooogggg885;;;;;;;;;;;223232
0 . . ) . !
0 0.5 1 1.5 2 2.5 3

p

Fig. 1. Probability density function of the power in a frequency bin estimatddientical pdf's, except ak =

through a single periodogram estimate.
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The pdf is the same as for the rectangular data window except
atk = +1, %il, where the solution is in terms of the modified
Bessel function

fr(p)

B a2 —0.L
o0 ()” Fo (5,3 ) UG, fork=0.%

_ 1 36 18 3
=98 ) TP U for k=41, £+1
202\ 35 ° 0<3502p) (): T2

Sen(- L))

for otherwise.
(22)

Fig. 1 displays the pdf's of the power in a single frequency
bin, based on a single periodogram using a rectangular data
window and a Hann window. The two data windows yield
+1, £ £ 1, where the Hann
window uses a Bessel function. For the plet,= 1 is used.

For all of the plots, the mean a@? is 1, i.e., the estimate is an

First, the well-known result for a single frequency bin baseghpjased estimate of the signal variance

on a single data segment is developed for rectangular and
Hann data windows. The more complicated case of averaging . _
nonoverlapping data segments with multiple frequency binsBs Averaging Nonoverlapping Data Segments

then found. The case of 50% overlapping data segments anfs described in Section II, the case of nonoverlapping
multiple bins is considered. We also include an example ghta segment&r is formed as a Kronecker product. The

spectral estimation for a colored sequence. The section C@fyenvalues of a Kronecker product are all the products of
cludes with an examination of the Kullback—Leibler diStanC@]e eigenva'ues Of the two matrices_ App“ed to the prob'em

as a measure of how different the actual densities are fronéta.hand, averaging{ Segments increases the mu|t|p||c|ty of

Gaussian with the same first and second moments.

A. One Frequency Bin and a Single Data Segment

each eigenvalue for a single data segment by a factdf.of
For the rectangular data window with no overlap, each com-
bination ofb bins andK data segments can be characterized as

As a simple example, consider the case of a single frequertving D = 1 distinct nonzero eigenvalues with multiplicity

bin (k; = ko = k) and a single data segmef® = 1). The

examples we present use even data segménts 2q¢ with

v = 2Kb (as long as the frequency bins do not span across
k=0or g where the value of the eigenvalue is different).

no zero-padding of the segments, although the theory of thgmming several frequency bins yields the single nonzero

previous section includes these possibilities.

eigenvalueD = 1 with multiplicity » = 2b; averaging over

For the rectangular window, the nonzero eigenvalues gfdependent data segments increases the multiplicity of this

T = A Q(Cy + Si)Q2 are easily found to be

1, for k=0,L/2

M) = {%, 1, otherwise.

(19)

The resulting density function is Gamma

1 _1 D
2 T fi — L
@2o2)ir(3)” exp (=53 V). for k=0,
fr(p) 1 2p
-2 &XP (— ?) U(p), otherwise.
(20)

Note that fork = 0, %,

well-known result.

Similarly, for the Hann window, the nonzero eigenvalue

of Y are
1, k=0,L/2
5 T k=4+1,L/2+1
AY) = iz PR / (21)
1 .
=, =, otherwise.
2°2

with 02 = 1, the distribution is a
Chi-square distribution with one degree of freedom; for oth
frequency bins, the distribution is exponential, which is )

eigenvalue tar = 2Kb. Further, the value of this eigenvalue
is A = % = i The pdf of a power estimate based bn
frequency bins, averagingd nonoverlapping periodograms,
with a rectangular data window is a Gamma distribution with

a=Kbandjg = ‘;—f

TR UR). (23

o= (5)" o

The Hann window with no overlap introduces some distinc-
tions. Specifically, while the Kronecker product increases all

gpe multiplicities by a factor ofK, the window introduces

orrelation between the frequency bins such that summing
multiple frequency bins yields more distinct nonzero eigenval-
es. Again, avoiding frequency biks=0,+1,% and £ + 1,
the number of distinct nonzero eigenvalueslis= b, each
with multiplicity » = 2K, that is, h; of (15) is K. Note that
for a single bin, this is identical to the case of the rectangular
data window.
Some examples of the density function for rectangular and
Hann windows are displayed in Fig. 2 for nonoverlapping data
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Fig. 2. Probability density functions for nonoverlapping data segments based on the sum of two and five frequency bins (adjacent frequency bsenwere ch
well away fromk = 0, ’7) The solid lines plot the theoretical pdf's based on one and seven data segments, the dashed lines indicate the corresponding
Gaussian densities with identical first and second moments, and the circles and asterisks are the results of Monte Carlo simulations.

segments. Here, we have assumed that the data stteism lapping segments. In Section Il, we described how overlapping
white Gaussian noise, with varianeé = 1 and summed two data segments can be readily analyzed by partitioning the
and five frequency bins. The solid lines display the theoreticalatrix for each periodogram and summing the corresponding
density, whereas the broken lines are the corresponding Gawsssymatrices. With this method, it is straightforward to con-
ian densities with the same mean and variance, and the cir@dasict such a matrix for any overlap and numerically evaluate
and asterisks display the results of a Monte Carlo simulatitime eigenvalues.
in which Welch’s method was applied to over 13 000 random Examples of the densities based on 50% overlapping data
data segments of lengtlh = 2'7 to estimate the pdf of segments, summing two and five frequency bins, are displayed
the power spectrum for each case. Although this is not &m Fig. 3. As before, the data stream is white Gaussian
exhaustive set, these plots demonstrate the general behaviara$e, with variances> = 1. The dashed lines, indicating the
the pdf of the power. In every case, the Monte Carlo simulati@orresponding Gaussian density, are quite different from the
corresponds well to the theoretical distribution. Further, tritBeoretical pdf. The general form of the pdf of the power is
mode of the distribution occurs at a value witonsiderably shown to include considerable skew, with the right tail being
less than the mean—the tail on the left side of the distributionuch higher. The plot also shows the agreement of Monte
is much lower than that on the right side. As the number &arlo simulation results with the theoretical density function
frequency bins added together increases, and/or as the nundsecircles and asterisks.
of data segments increases, the density becomes less skewed
and closer to a Gaussian.
D. A Correlated Data Segment

While the previous examples described the pdf of power

Having considered the cases of a single data segmenkanastimates from Gaussian, white data sequences, the derivation
nonoverlapping segments, we now consider the case of ovaltewed a more general, correlated sequence with arbitrary

C. PDF for 50% Overlapping Data Segments
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Fig. 3. Probability density functions for 50% overlapping data segments based on the sum of two and five frequency bins (adjacent frequency bins were

chosen well away fromk = 0, %). The solid lines indicate the theoretical pdf's, the dashed lines indicate the corresponding Gaussian densities, and
the circles and asterisks are the results of Monte Carlo simulations.

autocorrelation matrixR. Here, we consider an example of 3
this more general case.

One constraint on the autocorrelation matrix, due to the 55
fact that the data sequence is assumed stationary, isRthat
is Toeplitz; further, a common type of sequence results from
a first-order Markov process with covariance function [6]

b
T

r(n)=p", Jpl <1, V. (24)

Power Spectrum
n

T

For anL element data segmest this results in a symmetric
autocorrelation matrix with a value for thgh subdiagonal as
0. 0.5
Equation (15) provides the pdf of the power in a frequency
bin based on the eigenvaluesRfY'. The basic form of the pdf %
will be the same for correlated sequences as it was for white
sequences; the only difference will be that sequence correlatigf 4. For a correlated data sequence, the power spectrum (the Fourier
may modify the eigenvalues, changing the details of the pdfansform of the autocorrelation function) varies with frequency. The solid

- : : ine represents the spectrum of a first-order Markov process with correlation
InFig. 4, the pdf of the estimated power spectrum is ploneﬁ;efﬁcientp = 0.3. The filled figures describe the pdf of the estimated

The ¢ axis is the normalized frequency, plotted from O t@pectrum at the four selected frequencies. Note that each pdf is skewed toward
T (the spectrum is symmetric). The pdf is displayed at folgw power, whereas the mean of the pdf (indicated by the small circles)

frequencies with the mean of each estimate (indicated Bcg;responds to the spectrum established by the Markov process.

small circles) corresponding well with the assumed spectrimequency bin estimated witk = 5 data segments, each of
of a first-order Markov process with correlation coefficieniength L = 64, with 50% overlap (the data window choice
p = 0.3. For this plot, each pdf was based on a singlmakes no effect for a single frequency bin).

0.7854 1.5708 2.3562 3.1416
Frequency, O<f<z



1260 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 47, NO. 5, MAY 1999

E. Relative Entropy 1°

The plots of probability density functions presented to
this point suggest a wide range of behavior, depending on
the particular parameters of how many frequency bins, data
segments, amount of overlap, and type of data window used.
The pdf asymptotically approaches a Gaussian in the limit as £
more frequency bins and/or data segments are used.

The “distance” between two probability density functigfs
and g can be quantified with the concept of relative entropy
or Kullback—Leibler distance [7]

107'F

Relative Entro

D(flla) = [ re)ios T2 25)

Because the asymptotic behavior of the pdf is Gaussian and 107
because it is not uncommon to compute the first two moments ~ '° K 10
of the denSIty and assume a Gaussian, We cqn&der the dist g(;_?s Relative entropy, or Kullback-Leibler distance, between a Gamma
between the theoretical pdf and a Gaussian with the same mg&pution and a Gaussian distribution with the same mean and variance as a
and variance. function of K, which is the number of data segments used in the periodogram

For the special case wheRRY has onIy a single nonzero estimate._ (a) One bin, nonov_erlapping segments, rect Wi_ndow. (b) One bin,
overlapping segments, rect window. (c) One bin, overlapping segments, Hann

eigenvaluen with multiplicity v, the resulting pdf is Gamma yindow. (d) Three bins, nonoverlapping segments, rect window. (e) Three
with parametersy = % and B =mn. This case Corresponds tobins, overlapping segments, rect window. (f) Three bins, nonoverlapping

an uncorrelated data stream for which the power is estimafggments. Hann window.
using a rectangular data window and nonoverlapping data; this

's a useful case because the relative entropy between Gangigance between the correct pdf and the corresponding Gauss-
and Gaussian densities with meaf¥ and variancex3~ can jan density was plotted for several representative cases, dis-

be written in closed form as playing the monotonically converging behavior of the pdf to
V2ra 1 a Gaussian as the frequency bins and/or the number of data
D(f|lg) =log T ) @ +tg5- (@ —1)y segments is increased.
a—1
1
+(a—1) Z Z. (26) APPENDIX A
=1 THE PDF FROM THE MOMENT-GENERATING FUNCTION

In more general cases, the relative entropy can be computea—he pdf IS thg Inverse Laplace_transform of the momen_t-
numerically. For several situations)(f||¢) is plotted in generating function with the negative of the argument, that is,

Fig. 5. Data points are calculated f&f — 1, 4,7, and 10 data the kernel of the moment-generating function:i§, whereas

segments (with linear interpolation between the data point at_of the Laplace transform is** [8]Z In this _sect_lon, the
In every case, there is a nearly exponential decay as %f IS fqund fro_m the moment-generatl_ng function in ge_n_e_ral-
pdf's asymptotically approach Gaussian as the number of dgyaand in the simpler case when all eigenvalue multiplicities

segments and/or frequency bins increases. are even.
g d y Defining s = —t, the Laplace transform of the pdf of the

random variableP = x7Yx, which is a central quadratic

form in x, wherex is distributedN (0, R), can be written as
Welch's modified periodogram averaging has served ag(with ¢ and d; defined in the text)

simple, common technique for spectral estimation for three 5

decades. However, the statistical structure of the estimate has g D d; Bl

never been fully reported; in this paper, we present the pdf M(s) = ey <1 N ?) : (27)

of a spectral estimate of a frequency band based on Welch’s =t

method with Gaussian input. The pdf of an estimate will be The inverse Laplace transform of (27) is [9]

useful in many situations. For example, maximume-likelihood

IV. CONCLUSION

gstimations approximating the distribution as Gaussian overes-,y — QJ y%—l% <”_17 . ”_D; Z; dvy, day, . . ., dD?J)
timate the mode because of the skewed structure of the correct”  I'(3) 2 22 &9
pdf. 28

The critical component of the analysis requires the eigehbe generalized hypergeometric functidp is defined with a
values of a matrixRY, which can be computed numerically.Sum overD-dimensional space
Several examples of the pdf have been plotted for illustration
purposes. Simulations were presented in which the sample
pdf's of the spectral estimates were compared with the the- — Z (b1)my - (b)), 2B (29)
oretical functions derived here. Finally, the Kullback—Leibler (c) ! ! b

‘Pg(bl,...,bD;C;.’El,...,.ID)

mi+te4mpTl - Mp.
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where the summatior is a D-fold summation withm [4] L. L. Scharf, Statistical Signal Processing: Detection, Estimation and

i Time Series Analysis Reading, MA: Addison-Wesley, 1991.
throthmD each running from O teo, and the Pochhammer [5] I. S. Gradshteyn and I. M. RyzhikTable of Integrals, Series, and

symbol is defined as Products New York: Academic, 1994.
[6] A. K. Jain, Fundamentals of Digital Image ProcessingEnglewood
(a)n = I'(a+n) (30) Cliffs, NJ: Prentice-Hall, 1989. _
" F(a) [7]1 T. M. Cover and J. A. Thomaglements of Information Theary New

York: Wiley, 1991.

Although (28) prowdes a genera| solution, calculation ofl8] A. Papoulis,Probability, Random Variables, and Stochastic Processes
th lized h t f ti tati Il New York: McGraw-Hill, 1991.

€ generalized hypergeome ric unction is compu alionallyg) G. E. Roberts and H. Kaufmafiable of Laplace Transforms Philadel-
restrictive. We therefore seek special cases to provide more phia, PA and London, U.K.: W. B. Saunders, 1966.
practical solutions. [10] A. V. Oppenheim and A. S. WillskySignals and Systems Englewood

. Cliffs, NJ: Prentice-Hall, 1983.
If all of the nonzero eigenvalues have an even number @fi] J. p. Imhof, “Computing the distribution of quadratic forms in normal

multiplicities, the pdf can be developed as a partial fraction variables,"Biometrika vol. 48, nos. 3 and 4, pp. 419-426, 1961.
expansion [10]; this approach was demonstrated by [11].
Defining h; = %, (27) can be written as

:gzz 3_“ , (31)

=1 j= 1
where Paul E. Johnson(S'96) received the B.S. and M.S.
hi—j degrees in electrical and computer engineering in
A = 1 d (s _ d<)hf M(S) (32) 1993 and 1994, respectively, from Brigham Young
O (h —J) dshi—i ¢ g 4 University (BYU), Provo, UT. He is pursuing the
s=d;

Ph.D. degree in electrical engineering from BYU,
with emphases in estimation theory, electromagnet-

The derivatives required id;; can be be written as ! > - -
ics, signal processing, and remote sensing.

g D He is currently working at Ball Aerospace &
(m) _ _ —hy Technologies Corporation, Boulder, CO, in antenna
Di (3) T dsm H (3 d’“) ;, mz0 (33) system design and algorithm development.
k=1,k#i

where the higher order derivatives can be computed recur-
sively from D{”(s)

m D
(m+1), \ _ m\ ~m) (m —n)!
D (@—E:QJDi@)E:hﬁatgﬁiﬁ
n=0 David G. Long (SM'98) received the Ph.D. degree
in electrical engineering from the University of
Southern California, Los Angeles, in 1989.

From 1983 to 1990, he worked for NASA's
Jet Propulsion Laboratory (JPL), Pasadena, CA,

Thus, the coefficientd;; can be written as

1 Mizitt D(")(d) p R, as a Radar Systems Engineer. He was the Project
Aij = . Z d e Z - - Engineer (senior Technical Manager) for the NASA
hi—3j "0 n! k=1, ki (dk - di) ‘ Scatterometer (NSCAT) project and was responsible

for the high-level design, analysis, and technical
management of the overall NSCAT Project. His
- “  responsibilities included developing and overseeing
Taking the inverse Laplace transform of (31), the pdf of #e instrument deS|gn and fabrication, algorithm development and coding for
the ground processing system, mission operations, and data analysis. As a
power estimate is G . S
roup Leader, he was responsible for system performance analysis, high-level
hs design, development and maintenance of system requirements, and supervision
1 d; of system engineers working on several JPL flight projects. He was the
=9 Z Z AU P et U (p). (36) Experiment Manager and Project Engineer for the SCANSCAT scatterometer
=1 j=1 : (now known as SeaWinds), which was part of NASA’s Mission to Planet
Earth. Since 1990, he has been a faculty member with the Electrical and
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