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The Probability Density of Spectral Estimates
Based on Modified Periodogram Averages
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Abstract—Welch’s method for spectral estimation of averaging
modified periodograms has been widely used for decades. Because
such an estimate relies on random data, the estimate is also a
random variable with some probability density function. Here,
the pdf of a power estimate is derived for an estimate based on an
arbitrary number of frequency bins, overlapping data segments,
amount of overlap, and type of data window, given a correlated
Gaussian input sequence. The pdf’s of several cases are plotted
and found to be distinctly non-Gaussian (the asymptotic result
of averaging frequency bins and/or data segments), using the
Kullback–Leibler distance as a measure. For limited numbers of
frequency bins or data segments, the precise pdf is considerably
skewed and will be important in applications such as maximum
likelihood tests.

Index Terms—Power spectrum, probability density functions,
spectral estimation, Welch’s modified periodogram estimates.

I. INTRODUCTION

T HIS paper analyzes the statistics of spectral estimates
based on averaging modified periodograms, which are

sometimes referred to as Welch’s technique for spectrum
estimation [1]. For almost 30 years, this technique has been
widely applied, but there has been no thorough statistical
analysis of the technique. Indeed, only two papers extend
beyond the mean and variance of the spectral estimates. The
first [2] describes the probability distributions for discrete
Fourier spectra based on a single periodogram for data both
smoothed and unsmoothed, but does not describe the correla-
tion between frequency bins. The second [3] derives the joint
density functions for two frequency bins, including windowed
data and averaging over nonoverlapping data periodogram
estimates. Here, the pdf of the sum of frequency bins from an
average of modified periodogram bins, with nonoverlapping
and overlapping data, is derived.

For a data stream , Welch’s modified periodogram
averaging provides a technique for estimating the spectrum
[1]. The sequence is segmented intooverlapping sequences,
each of length , such that the th sequence is defined by

, where the indices are
and . is the percentage of

overlap. The data is windowed to minimize spectral leakage.
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The window can be applied through multiplication in the
time domain or through circular convolution in the
frequency domain . The estimate of the power spectral
density of each segment is

(1)

where is a scale factor dependent on the window [1]. To
obtain the power in a particular frequency band, several bins
of the modified periodogram may be summed. Further, the
variance of the estimate is reduced by averaging, over, all
of the data segments.

In this paper, the statistical properties of this method of
spectral estimation are explored for the case where is
a wide-sense stationary, Gaussian sequence, with distribution

. The process is formulated in vector space notation
from which the resulting power estimate is shown to be a
quadratic form in the data vector. The pdf corresponding
to this quadratic form is given in generality, and several rep-
resentative examples are plotted. Simulations are reported in
which sample pdf’s of the power estimates based on averaging-
modified periodograms match the theoretical functions derived
here. Finally, we compute the Kullback–Leibler distance of
this density function from a Gaussian.

II. V ECTOR SPACE ANALYSIS OF

WELCH’S SPECTRUM ESTIMATION

To derive the pdf of a spectral estimate of the power in a
frequency band of a data stream, it is useful to consider the
vector space formulation of the estimate. For the real, length

, data vector , distributed Gaussian
with zero-mean and covariance matrix, we include a data
window matrix diag . Welch’s method segments

into data segments, possibly overlapping, of length. For
an arbitrary data segment, the periodogram estimate of the
power in frequency bin can be written as

(2)

(3)

where the sizes of the matrices are adjusted to pick which
data segment is being used and the matricesand are
from the cosine and sine transform kernels. The th
element of is

(4)
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where is the length of the zero-padded data vector (i.e., if
, each data segment has not been padded).

Averaging the power from the data segments and summing
over several frequency bins yields a quadratic form in the
normal random vector

(5)

(6)

where the matrix depends on the length of the data segment,
the amount of zero-padding, the data window, the frequency
bins of interest, the number of periodograms to average, and
the amount of overlap of the data segments

(7)

Formation of the matrix can be facilitated for arbitrary over-
lap by partitioning the fundamental matrix of (3)

such that overlapping partitions from different data
segments can be added. For example, with nonoverlapping
data , partitioning is unnecessary, and is a block
diagonal matrix that is formed as the Kronecker product

(8)

For 50% overlap , the fundamental matrix can be
partitioned into four submatrices (each ofelements square).

The moment-generating function of a quadratic form in a
zero-mean Gaussian vector, such as (6), can be expressed as
[4, p. 65]

(9)

where the are the distinct, nonzero eigenvalues of .
Each eigenvalue has multiplicity .

The mean and variance of the power estimateare,
respectively

(10)

(11)

Defining some convenient variables

(12)

(13)

the pdf corresponding to (9) is (see the Appendix)

(14)

where is the generalized hypergeometric function, and
is the total number of nonzero eigenvalues.

While (14) provides a completely general solution for the
pdf, calculation of the hypergeometric function is computa-
tionally intensive. However, if all of the nonzero eigenvalues
have even multiplicities, can be expanded with a partial
fraction expansion. This yields a simple and practical density
function (see Appendix)

(15)

Even when these eigenvalues are distinct, they are typically
in near pairs for commonly used windows. Clustering the
nonzero eigenvalues into groups with even multiplicities to
use with (15) provides an accurate numerical approximation
for practical computation of the density function.

We note in passing that for complex data,
, with the assumption that the vectors and are

independent and distributed so that is complex
circular , the moment-generating function for the
power estimate is the square of (9)

(16)

This ensures even multiplicities of the eigenvalues; therefore,
the partial fraction expansion always yields the exact pdf
without grouping eigenvalues.

In practice, the cumulative distribution function is frequently
desired; this is easily found by integration of (15), resulting in
a sum of incomplete Gamma functions

(17)

where the incomplete Gamma function is defined as [5]

(18)

III. T HE PDF’S FOR SPECIAL CASES

In this section, (15) is developed for several special cases.
In particular, note that the pdf of the power in a frequency
band based on averaging modified periodograms requires
computation of the eigenvalues of , where is the
covariance matrix of the Gaussian sequence. For simplicity,
in the examples presented throughout most of this section,
the signal will be assumed to be a white ; we
present one example of a colored signal. For white noise,
the eigenvalues of , labeled , are simply times the
eigenvalues of , labeled ; that is, . We also
discuss the distance between a Gaussian density and the
theoretical density we have derived.

We will consider, as examples, two useful and interesting
examples for : the rectangular window and the Hann
window. For a rectangular data window, , so that
the window matrix is the identity and . The
Hann window is defined as and .
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Fig. 1. Probability density function of the power in a frequency bin estimated
through a single periodogram estimate.

First, the well-known result for a single frequency bin based
on a single data segment is developed for rectangular and
Hann data windows. The more complicated case of averaging
nonoverlapping data segments with multiple frequency bins is
then found. The case of 50% overlapping data segments and
multiple bins is considered. We also include an example of
spectral estimation for a colored sequence. The section con-
cludes with an examination of the Kullback–Leibler distance
as a measure of how different the actual densities are from a
Gaussian with the same first and second moments.

A. One Frequency Bin and a Single Data Segment

As a simple example, consider the case of a single frequency
bin and a single data segment . The
examples we present use even data segments with
no zero-padding of the segments, although the theory of the
previous section includes these possibilities.

For the rectangular window, the nonzero eigenvalues of
are easily found to be

for
otherwise.

(19)

The resulting density function is Gamma

for

otherwise.

(20)

Note that for , with , the distribution is a
Chi-square distribution with one degree of freedom; for other
frequency bins, the distribution is exponential, which is a
well-known result.

Similarly, for the Hann window, the nonzero eigenvalues
of are

otherwise.

(21)

The pdf is the same as for the rectangular data window except
at , where the solution is in terms of the modified
Bessel function

for

for

for otherwise.

(22)

Fig. 1 displays the pdf’s of the power in a single frequency
bin, based on a single periodogram using a rectangular data
window and a Hann window. The two data windows yield
identical pdf’s, except at , where the Hann
window uses a Bessel function. For the plot, is used.
For all of the plots, the mean of is 1, i.e., the estimate is an
unbiased estimate of the signal variance.

B. Averaging Nonoverlapping Data Segments

As described in Section II, the case of nonoverlapping
data segments is formed as a Kronecker product. The
eigenvalues of a Kronecker product are all the products of
the eigenvalues of the two matrices. Applied to the problem
at hand, averaging segments increases the multiplicity of
each eigenvalue for a single data segment by a factor of.

For the rectangular data window with no overlap, each com-
bination of bins and data segments can be characterized as
having distinct nonzero eigenvalues with multiplicity

(as long as the frequency bins do not span across
or , where the value of the eigenvalue is different).

Summing several frequency bins yields the single nonzero
eigenvalue with multiplicity ; averaging over
independent data segments increases the multiplicity of this
eigenvalue to . Further, the value of this eigenvalue
is . The pdf of a power estimate based on
frequency bins, averaging nonoverlapping periodograms,
with a rectangular data window is a Gamma distribution with

and :

(23)

The Hann window with no overlap introduces some distinc-
tions. Specifically, while the Kronecker product increases all
the multiplicities by a factor of , the window introduces
correlation between the frequency bins such that summing
multiple frequency bins yields more distinct nonzero eigenval-
ues. Again, avoiding frequency bins and ,
the number of distinct nonzero eigenvalues is , each
with multiplicity , that is, of (15) is . Note that
for a single bin, this is identical to the case of the rectangular
data window.

Some examples of the density function for rectangular and
Hann windows are displayed in Fig. 2 for nonoverlapping data
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(a) (b)

(c) (d)

Fig. 2. Probability density functions for nonoverlapping data segments based on the sum of two and five frequency bins (adjacent frequency bins were chosen
well away fromk = 0; L

2
). The solid lines plot the theoretical pdf’s based on one and seven data segments, the dashed lines indicate the corresponding

Gaussian densities with identical first and second moments, and the circles and asterisks are the results of Monte Carlo simulations.

segments. Here, we have assumed that the data streamis
white Gaussian noise, with variance and summed two
and five frequency bins. The solid lines display the theoretical
density, whereas the broken lines are the corresponding Gauss-
ian densities with the same mean and variance, and the circles
and asterisks display the results of a Monte Carlo simulation
in which Welch’s method was applied to over 13 000 random
data segments of length to estimate the pdf of
the power spectrum for each case. Although this is not an
exhaustive set, these plots demonstrate the general behavior of
the pdf of the power. In every case, the Monte Carlo simulation
corresponds well to the theoretical distribution. Further, the
mode of the distribution occurs at a value ofconsiderably
less than the mean—the tail on the left side of the distribution
is much lower than that on the right side. As the number of
frequency bins added together increases, and/or as the number
of data segments increases, the density becomes less skewed
and closer to a Gaussian.

C. PDF for 50% Overlapping Data Segments

Having considered the cases of a single data segment and
nonoverlapping segments, we now consider the case of over-

lapping segments. In Section II, we described how overlapping
data segments can be readily analyzed by partitioning the
matrix for each periodogram and summing the corresponding
submatrices. With this method, it is straightforward to con-
struct such a matrix for any overlap and numerically evaluate
the eigenvalues.

Examples of the densities based on 50% overlapping data
segments, summing two and five frequency bins, are displayed
in Fig. 3. As before, the data stream is white Gaussian
noise, with variance . The dashed lines, indicating the
corresponding Gaussian density, are quite different from the
theoretical pdf. The general form of the pdf of the power is
shown to include considerable skew, with the right tail being
much higher. The plot also shows the agreement of Monte
Carlo simulation results with the theoretical density function
as circles and asterisks.

D. A Correlated Data Segment

While the previous examples described the pdf of power
estimates from Gaussian, white data sequences, the derivation
allowed a more general, correlated sequence with arbitrary
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(a) (b)

(c) (d)

Fig. 3. Probability density functions for 50% overlapping data segments based on the sum of two and five frequency bins (adjacent frequency bins were
chosen well away fromk = 0; L

2
). The solid lines indicate the theoretical pdf’s, the dashed lines indicate the corresponding Gaussian densities, and

the circles and asterisks are the results of Monte Carlo simulations.

autocorrelation matrix . Here, we consider an example of
this more general case.

One constraint on the autocorrelation matrix, due to the
fact that the data sequence is assumed stationary, is that
is Toeplitz; further, a common type of sequence results from
a first-order Markov process with covariance function [6]

(24)

For an element data segment, this results in a symmetric
autocorrelation matrix with a value for theth subdiagonal as

.
Equation (15) provides the pdf of the power in a frequency

bin based on the eigenvalues of . The basic form of the pdf
will be the same for correlated sequences as it was for white
sequences; the only difference will be that sequence correlation
may modify the eigenvalues, changing the details of the pdf.

In Fig. 4, the pdf of the estimated power spectrum is plotted.
The axis is the normalized frequency, plotted from 0 to

(the spectrum is symmetric). The pdf is displayed at four
frequencies, with the mean of each estimate (indicated by
small circles) corresponding well with the assumed spectrum
of a first-order Markov process with correlation coefficient,

. For this plot, each pdf was based on a single

Fig. 4. For a correlated data sequence, the power spectrum (the Fourier
transform of the autocorrelation function) varies with frequency. The solid
line represents the spectrum of a first-order Markov process with correlation
coefficient � = 0:3. The filled figures describe the pdf of the estimated
spectrum at the four selected frequencies. Note that each pdf is skewed toward
low power, whereas the mean of the pdf (indicated by the small circles)
corresponds to the spectrum established by the Markov process.

frequency bin estimated with data segments, each of
length , with 50% overlap (the data window choice
makes no effect for a single frequency bin).
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E. Relative Entropy

The plots of probability density functions presented to
this point suggest a wide range of behavior, depending on
the particular parameters of how many frequency bins, data
segments, amount of overlap, and type of data window used.
The pdf asymptotically approaches a Gaussian in the limit as
more frequency bins and/or data segments are used.

The “distance” between two probability density functions
and can be quantified with the concept of relative entropy
or Kullback–Leibler distance [7]

(25)

Because the asymptotic behavior of the pdf is Gaussian and
because it is not uncommon to compute the first two moments
of the density and assume a Gaussian, we consider the distance
between the theoretical pdf and a Gaussian with the same mean
and variance.

For the special case where has only a single nonzero
eigenvalue with multiplicity , the resulting pdf is Gamma
with parameters and . This case corresponds to
an uncorrelated data stream for which the power is estimated
using a rectangular data window and nonoverlapping data; this
is a useful case because the relative entropy between Gamma
and Gaussian densities with mean and variance can
be written in closed form as

(26)

In more general cases, the relative entropy can be computed
numerically. For several situations, is plotted in
Fig. 5. Data points are calculated for and data
segments (with linear interpolation between the data points).
In every case, there is a nearly exponential decay as the
pdf’s asymptotically approach Gaussian as the number of data
segments and/or frequency bins increases.

IV. CONCLUSION

Welch’s modified periodogram averaging has served as a
simple, common technique for spectral estimation for three
decades. However, the statistical structure of the estimate has
never been fully reported; in this paper, we present the pdf
of a spectral estimate of a frequency band based on Welch’s
method with Gaussian input. The pdf of an estimate will be
useful in many situations. For example, maximum-likelihood
estimations approximating the distribution as Gaussian overes-
timate the mode because of the skewed structure of the correct
pdf.

The critical component of the analysis requires the eigen-
values of a matrix, , which can be computed numerically.
Several examples of the pdf have been plotted for illustration
purposes. Simulations were presented in which the sample
pdf’s of the spectral estimates were compared with the the-
oretical functions derived here. Finally, the Kullback–Leibler

Fig. 5. Relative entropy, or Kullback–Leibler distance, between a Gamma
distribution and a Gaussian distribution with the same mean and variance as a
function ofK, which is the number of data segments used in the periodogram
estimate. (a) One bin, nonoverlapping segments, rect window. (b) One bin,
overlapping segments, rect window. (c) One bin, overlapping segments, Hann
window. (d) Three bins, nonoverlapping segments, rect window. (e) Three
bins, overlapping segments, rect window. (f) Three bins, nonoverlapping
segments, Hann window.

distance between the correct pdf and the corresponding Gauss-
ian density was plotted for several representative cases, dis-
playing the monotonically converging behavior of the pdf to
a Gaussian as the frequency bins and/or the number of data
segments is increased.

APPENDIX A
THE PDF FROM THE MOMENT-GENERATING FUNCTION

The pdf is the inverse Laplace transform of the moment-
generating function with the negative of the argument, that is,
the kernel of the moment-generating function is, whereas
that of the Laplace transform is [8]. In this section, the
pdf is found from the moment-generating function in general-
ity and in the simpler case when all eigenvalue multiplicities
are even.

Defining , the Laplace transform of the pdf of the
random variable , which is a central quadratic
form in , where is distributed , can be written as
(with and defined in the text)

(27)

The inverse Laplace transform of (27) is [9]

(28)
The generalized hypergeometric function is defined with a
sum over -dimensional space

(29)
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where the summation is a -fold summation with
through each running from 0 to , and the Pochhammer
symbol is defined as

(30)

Although (28) provides a general solution, calculation of
the generalized hypergeometric function is computationally
restrictive. We therefore seek special cases to provide more
practical solutions.

If all of the nonzero eigenvalues have an even number of
multiplicities, the pdf can be developed as a partial fraction
expansion [10]; this approach was demonstrated by [11].
Defining , (27) can be written as

(31)

where

(32)

The derivatives required in can be be written as

(33)

where the higher order derivatives can be computed recur-
sively from

(34)

Thus, the coefficient can be written as

(35)

Taking the inverse Laplace transform of (31), the pdf of a
power estimate is

(36)
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