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Multilateration Using A Priori Position Estimates
Eric Widdison , Member, IEEE, and David G. Long, Life Fellow, IEEE

Abstract— Existing multilateration algorithms typically do not
account for information that is previously known about the
target’s position. This paper presents a method of using an a
priori estimate of the target’s location and planar approximations
of the spheres to determine the target’s position. This algorithm
meets or exceeds the performance of traditional multilateration
algorithms when the a priori position is accurate enough. It sig-
nificantly out-performs traditional multilateration in wide-area
multilateration scenarios, particularly in the typical case where
the reference points are nearly coplanar.

Index Terms— TDOA, multilateration, localization, algorithm.

I. INTRODUCTION

MULTILATERATION is a process whereby an unknown
position of an object can be determined using the

distance between its location and several known points. The
unknown location lies at the intersection of the spheres cen-
tered at the known points with the corresponding radii.

One application of this is to determine the location of a
transmitter by recording the time that a single transmitted
waveform is received at several different locations. If the
positions of these locations are known and their clocks are
adequately synchronized, then by using the time of arrival
(TOA), the position of the transmitter and the time of its
transmission can be determined [1]. This can work without
the cooperation of the transmitter.

Multilateration algorithms can be broadly grouped into
three categories: iterative, closed-form non-linear, and linear.
Iterative methods [2], [3], [4] often perform well but take
longer to compute than closed-form methods and can converge
to the wrong solution [5]. Closed-form non-linear methods,
such as quadratic methods [6], [7], explicitly give the multiple
solutions produced by iterative methods but are not always
scalable and are not generally compatible with other forms
of information such as AOA [8], [9], [10], [11], [12] and
FDOA [13], [14], [15]. Linear methods are easily expanded
to include additional data [14], [16], but require at least one
extra measurement [17], [18] and can be less stable when the
linear equations are ill-conditioned.1 When there are enough
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1The numerical stability problem can also affect iterative and quadratic

methods. Many iterative and quadratic methods also involve matrix inversion
and become unstable when those matrices are ill-conditioned.

measurements2 the three families of methods have similar
accuracy.

One shortcoming of most closed-form solutions to the
multilateration problem is that they do not have a way of
incorporating or exploiting any a priori information about
the target’s location to calculate its position [19]. From the
perspective of a single sensor, the target can lie anywhere on
a sphere.The motivation for this paper is to incorporate an a
priori position estimate as a constraint on the multilateration
problem. This is done by using linear approximations of
the spherical surfaces, at the a priori estimate position. This
geometry has been employed to determine the maximum
accuracy of a localization algorithm [20], but not as a way
of updating a location estimate.

For the purposes of this paper, the creation and maintenance
of the a priori estimate is not considered a part of the
algorithm. The initial a priori estimate can come from a wide
range of sources. This can include location via surveillance
radar, location via unconstrained multilateration, or using self-
reported position information from transponder systems such
as ADS-B. This method also be used to create improved
positions of objects in a swarm, using an average or group
position as the a priori estimate.

This paper presents the derivation of the algorithm.
Section III analyzes the sources of error, including measure-
ment error and error created because the true position differs
from the estimate. This later error sets a minimum accuracy for
the algorithm which can be iteratively improved. Section IV
compares the new algorithm with linear TDOA multilateration
across a range of wide area multilateration scenarios.

II. DIFFERENTIAL MULTILATERATION ALGORITHM

In this paper, vectors representing a point in space are
written in bold, e.g., a and vectors representing a difference
between two points are written with an overbar, e.g., c̄.

Conventional multilateration uses a set of distances from a
set of known points to a target to determine the position of
the target. The target is located at the intersection of a set of
spheres. If the target is far from the known points then the
spheres can be approximated by planes tangent to the sphere
at or near the location of the target. Choosing the point of
tangency requires some a priori knowledge of the position of
the target.

The proposed new algorithm takes an estimated target
position b and uses it to produce planar approximations of

2Three dimensional TDOA multilateration requires at least 5 measurements,
corresponding to the 3 spatial dimensions, the unknown clock offset, and one
extra degree of freedom to help linearize the equations.
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Fig. 1. The multilateration scenario. Points in space are shown as dots while
vectors representing the difference between two points are shown as arrows.
The solid lines are the planar approximations of the spheres passing through
a, shown as dotted lines. This method places the target at the incircle of the
triangle they form, marked as a′.

the spheres used in conventional multilateration. The planar
approximations of the spheres are perpendicular to the vectors
from the known points pi to the estimated position b, which is
adjusted based on the measured pseudodistance and estimated
transmitter pseudodistance, as shown in Fig. 1.

Let a = b + c̄ be the unknown position of a transmitter
relative to the known estimate b and let pi , i = 1, . . . , N
be the positions of N receivers. The transmitter emits a
signal at unknown time ta which is received at pi at time
ti . Pseudodistances

da = taν

di = tiν (1)

are calculated, where ν is the propagation speed of the signal,
which is typically the speed of light, c. The distance between
transmitter and receiver is then |a − pi | = di − da .

For each point pi , let r̄ i = b − pi be the radial vector for
that point. The planar approximation of a sphere of radius
(di − da) = d

∣∣r̄ i
∣∣ centered at pi , perpendicular to r̄ i , is the set

of points orthogonal to r̄ i at pi + dr̄ i such that〈
(a − pi ) − dr̄ i , r̄ i

〉
= 0. (2)

This is equivalent to〈
a, r̄ i

〉
+ da

∣∣r̄ i
∣∣ = di

∣∣r̄ i
∣∣+ 〈pi , r̄ i

〉
, (3)

which can be normalized by dividing by |r̄ i | to produce〈
a, r̂ i

〉
+ da = di +

〈
pi , r̂ i

〉
(4)

where r̂ i = r̄ i/|r̄ i | is the unit vector in the direction of r̄ i . In
3-dimensional space this is a linear equation of four unknowns.

These equations, taken across four or more points, can be
expressed as a matrix equation of the form

A =

 r̂T
1 1
...

...

r̂T
N 1


x =

[
a′

d ′
a

]

y =

 d1 +
〈
p1, r̂1

〉
...

dN +
〈
pN , r̂ N

〉


Ax = y (5)

where a′ is the calculated position and d ′
a is the calculated

pseudodistance associated with the signal transmission time.
The unknowns can be calculated directly as x = A−1y if A is
square or via least squares as x =

(
ATA

)−1ATy.
This method produces estimates of the target position that

are at least as accurate as those from traditional multilateration
as long as the measurement error is small enough relative
to the error due to using a planar approximation of the
multilateration spheres. The general stability of this method
is analyzed in Sec. III and the errors due to approximating the
spheres as planes is analyzed in Sec. III-B.

A. Two Dimensional Algorithm

This algorithm, as written, can be used in an D-dimensional
space, but here is only used for D = 2, 3. For a target and
reference points in 3 dimensions, at least four reference points
are required to determine the location of the target. The D = 2
case requires only 3 reference points, along with some care to
implement correctly.

In a 2-dimensional implementation the assumption is that
the target lies on a 2-dimensional plane. Since 2-dimensional
scenarios typically constrain the solution space and not the
locations of receivers, the positions of the reference points
may be somewhere other than directly on that plane. The
algorithm uses the propagation speed in the plane, which in
this case needs to account for the difference between the
slant range between the transmitter and receiver, and the
projection of that range onto the plane. If r̄ i =

[
xi yi zi

]T and
the target is assumed to lie in the xy plane then the projected
pseudodistance

di = tiνi = tiν cos φi (6)

where

tan φi =
zi√

x2
i + y2

i

. (7)

Alternately, this is

di = tiν


√

x2
i + y2

i∣∣r̄ i
∣∣

. (8)

With this adjustment of the pseudodistance, compared to
Eq. 1, the 2 dimensional algorithm can be implemented using
Eq. 5 with A of size N × 3.
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Fig. 2. A depiction of numerically unstable scenarios, with the estimate
position marked as a square and the receiver positions marked as circles.
In (a), the coplanar equidistant case, the receivers all lie on a circle and the
estimate lies on the axis of symmetry of that circle. In (b) the receivers all lie
on the same plane as the estimate. The points marked by stars are included
to show that the receiver positions are equivalent to non-coplanar points that
have been projected onto a single plane.

III. NUMERICAL STABILITY

A. Unstable Cases

There are two cases where the A matrix is singular. When
the receivers are all coplanar3 and equidistant from the esti-
mate point (the coplanar equidistant case, i.e. the receivers
lie on a circle and the estimate point is on the line that is
equidistant from all points on the circle, Fig. 2a), or when the
receivers are coplanar with the estimate point (the coplanar
case, Fig. 2b). In both of these cases, the A matrix is not full
rank and cannot be inverted. It is possible for a scenario to
experience both instability conditions at the same time.

Multilateration algorithms cannot generally work when the
receivers are all coplanar. The proposed algorithm is numeri-
cally stable when the receivers are coplanar as long as the a
priori estimate point is not also coplanar with them and the
receivers are not all equidistant from the estimate point.

The coplanar equidistant case is equivalent to all the
receivers lying on a circle with the estimate point on the line
perpendicular to the circle and passing through the center.
To see why this case does not produce a full rank matrix,
consider the case where the radial unit vectors are all of the
form r̂ i =

[
r cos θi r sin θi z

]T, where θi is the bearing from
the estimate point to the i th receiver. This produces the matrix

A =

 r cos θ1 r sin θ1 z 1
...

...
...

...

r cos θN r sin θN z 1

. (9)

The right two columns of A have the same value in each row,
so the columns are multiples of each other. This means the
matrix A has, at most, rank 3, when it needs to be rank 4 to
be inverted and produce a valid estimate of a′.

If the receivers lie on any plane other than one parallel to
the xy plane then the A matrix can be converted into this
form by a coordinate transformation, which means that the
matrix is rank deficient for any set of coplanar receivers that
are equidistant from the transmitter.

3In this section, the term “coplanar” is based on a 3 dimensional algorithm.
More generally, these instability cases require that D + 1 receivers lie in a
D − 1 dimensional subspace of a D dimensional space. In the 2 dimensional
case this condition only applies when at least three points are colinear and
equidistant from the reference point. However, three points cannot be colinear
and all equidistant from a fourth point. Therefore the coplanar equidistant
condition cannot apply in 2 dimensions.

In the second unstable case, the receivers and estimate
points are all coplanar. This can be examined by considering
the case where the radial vectors all lie on the xy plane and
are of the form r̂ i =

[
xi yi 0

]T. This produces the A matrix

A =

 x1 y1 0 1
...

...
...

...

xN yN 0 1

. (10)

With one column equal to zero, this matrix is also deficient.
As with the coplanar equidistant receiver case, any set of
receivers that are coplanar with the estimate can, with a
coordinate transformation, be put in this form and is rank
deficient.

These instability cases depend only on the receiver locations
and the estimate point. One way to ensure that these conditions
are never met is to ensure that the receivers are not coplanar.
If the target’s position can be assumed to be out of the
plane containing the receivers, for example, if the target is
an airplane with some minimum altitude, then it is sufficient
to ensure that the receivers do not lie in a circle. With a large
number of receivers this is unlikely to occur accidentally, but
when only 4 receivers are used some care should be taken in
choosing suitable locations for the receivers.

B. Planar Approximation Error

In this algorithm, the use of planes to approximate spheres
introduces some error into the results. When radii of the
spheres are large then this estimate is relatively accurate
locally around b. The approximation is less accurate when
the target is farther from the radial line passing through the a
priori estimate. This section quantifies that error.

Using this algorithm, the correct position is calculated when
the measured pseudodistance4 di is adjusted to match the
projection of the target’s true position onto the radial vector.
The measured pseudodistance represents the slant range to the
target, which is the hypotenuse of a right triangle with the
projected distance as one of its legs. The difference between
these two distances is the planar approximation error, or planar
error ei , as shown in Fig. 3.

The distance to the target is di = |a − pi | =
∣∣r̄ i + c̄

∣∣ and
the length of the projection of a − pi = r̄ i + c̄ onto r̄ i is

d̃ i =

〈
r̄ i + c̄, r̄ i

〉∣∣r̄ i
∣∣ . (11)

The planar error is

ei = di − d̃ i =
∣∣r̄ i + c̄

∣∣− 〈
r̄ i + c̄, r̄ i

〉∣∣r̄ i
∣∣

ei =

√〈
r̄ i + c̄, r̄ i + c̄

〉
−

〈
r̄ i + c̄, r̄ i

〉∣∣r̄ i
∣∣

ei =

√∣∣r̄ i
∣∣2 + 2

〈
r̄ i , c̄

〉
+
∣∣c̄∣∣2 −

∣∣r̄ i
∣∣− 〈

r̄ i , c̄
〉∣∣r̄ i
∣∣ . (12)

4To improve the readability of the derivations in this section, we ignore
the transmitter pseudodistance, and assume that the pseudodistance di is a
true distance, with da = 0. This does not affect the results of the derivation.
If da ̸= 0 then the first line in Eq. 12 starts ei = di −da−(d̃ i −da) = di −d̃ i . . .,
with the rest of the derivation following identically.
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Fig. 3. The planar error and pseudodistance for a single receiver. The planar
error ei in this figure is exaggerated by the small value of |r̄ i | and relatively
large displacement between the target a and the radial vector r̄ i .

The radical term can be approximated by factoring out∣∣r̄ i
∣∣2 and using the binomial expansion

(1 + a)n
= 1 + na +

1
2!

n(n − 1)a2

+
1
3!

n(n − 1)(n − 2)a3
+ · · · . (13)

Because
∣∣r̄ i
∣∣ ≫

∣∣c̄∣∣, the first order terms and the first half of
the second order terms are sufficient to estimate the error.5

ei ≈
∣∣r̄ i
∣∣(1 +

〈
r̄ i , c̄

〉∣∣r̄ i
∣∣2 +

∣∣c̄∣∣2
2
∣∣r̄ i
∣∣2 −

〈
r̄ i , c̄

〉2

2
∣∣r̄ i
∣∣4
)

−
∣∣r̄ i
∣∣− 〈

r̄ i , c̄
〉∣∣r̄ i
∣∣

ei ≈

∣∣c̄∣∣2 −
〈
r̂ i , c̄

〉2

2
∣∣r̄ i
∣∣ . (14)

This is equal to the square of the length of the component of c̄
that is orthogonal to r̄ i . Since

∣∣c̄∣∣ ≥ ∣∣〈r̂ i , c̄
〉∣∣, the planar error

is within the range

0 ≤ ei ≤

∣∣c̄∣∣2
2
∣∣r̄ i
∣∣ (15)

If c̄ follows a D-dimensional multivariate normal distribu-
tion with variance σ 2

c , i.e., each element of c̄ follows a normal
distribution with zero mean and variance σ 2

c , then the expected
value of ei is

E(ei ) = E

(∣∣c̄∣∣2 −
〈
r̂ i , c̄

〉2

2
∣∣r̄ i
∣∣

)
=

1
2
∣∣r̄ i
∣∣[E

(∣∣c̄∣∣2)− E
(〈

r̂ i , c̄
〉2
)]

=
1

2
∣∣r̄ i
∣∣ [Dσ 2

c − σ 2
c

]
=

(D − 1)σ 2
c

2
∣∣r̄ i
∣∣ . (16)

5The algorithm is not suitable when
∣∣r̄ i

∣∣ ≫

∣∣c̄∣∣ is not true. The worst
case considered in this paper is shown in Fig. 6 where the average value of
|r̄ i |/|c̄| is 10/

√
3. In that scenario, the algorithm in Eq. 5 is unable to reduce

the standard deviation of the error in the calculated position below 100 m.

Fig. 4. Simulations of planar noise with 4 receivers and different levels of
σc . The theoretical minimum measurement error is marked by the horizontal
dotted lines. The receivers are located in a tetrahedron, centered on the
transmitter, with each receiver 7.5 km from the transmitter.

This agrees with the mean of a chi-squared distribution with
D − 1 degrees of freedom [21, pp.62-63], scaled by σei , and
agrees with the way that Eq.14 subtracts one degree of freedom
from the D-dimensional normal distribution of c̄. The variance
of the planar error is given by scaling the chi-squared variance
of 2(D − 1) by σ 2

ei
to get

σ 2
ei

=
(D − 1)σ 4

c

2
∣∣r̄ i
∣∣2 . (17)

When D = 3, this gives σei = σ 2
c /
∣∣r̄ i
∣∣.

When solving the equations, the d ′
a term should account for

any bias due to the mean value of ei . The degradation of the
calculated position is due to the variance of the error terms, σ 2

ei
.

This combines with the variance of the measurement error,
σ 2

di
, to produce the total error in the calculated position. This

means that the position error is dominated by the planar error
when σ 2

di
< σ 2

ei
, which creates a performance floor which

can be seen in Figs. 4-9. The floor occurs at the level where
the planar error limits the accuracy of the measured position,
which corresponding to σd ≥ σei , as seen in Fig. 4.

C. Statistical Optimization

To improve the performance of this algorithm, we consider
the statistical effects of measurement noise and planar error
on the computations.

Let the noisy measurements be d̃ i = di +ni +ei where ni is
a Gaussian random variable representing the noise, and let n =

[n1, . . . , nN ]
T be a vector of the measurement noise. The noisy

measurement also includes the planar error term, which can be
concatenated to form the planar error vector e = [e1, . . . , eN ]

T.
We can assume that the measurement noise is zero mean and
uncorrelated with the planar error, with covariance

E(nnT) = Qn. (18)

The mean of e is

µe = E(e) =


(D−1)σ 2

c
2|r̄1|

...
(D−1)σ 2

c
2|r̄ N |

 =
D − 1

2
σ 2

c r′, (19)
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where r′
= [|r̄1|

−1, . . . , |r̄ N |
−1

]
T. Because the planar error has

a non-zero mean we need the correlation matrix Re = E[eeT
]

rather than the covariance matrix Qe = E[(e −µe)(e −µe)
T
].

The elements of Re are6

Re,i j = E[ei e j ] = E

[∣∣c̄∣∣2 −
〈
r̂ i , c̄

〉2

2
∣∣r̄ i
∣∣

∣∣c̄∣∣2 −
〈
r̂ j , c̄

〉2

2
∣∣r̄ j
∣∣

]
=

1
4|r̄ i ||r̄ j |

E
[
|c̄|4 − |c̄|2

(〈
r̂ i , c̄

〉2
+
〈
r̂ j , c̄

〉2
)

+
〈
r̂ i , c̄

〉2〈
r̂ j , c̄

〉2
]

=
σ 4

c

4|r̄ i ||r̄ j |

(
2D + D2

− 2(D + 2) + 2
〈
r̂ i , r̂ j

〉2
+ 1
)

=
D2

− 3 + 2
〈
r̂ i , r̂ j

〉2

4|r̄ i ||r̄ j |
σ 4

c . (20)

This noise model changes Eq. 5 to

A =

 r̂T
1 1
...

...

r̂T
N 1


x̃ =

[
ã′

d̃ ′
a

]

ỹ =

 d1 +
〈
p1, r̂1

〉
...

dN +
〈
pN , r̂ N

〉
+ n + e

Ax̃ = ỹ (21)

where x̃, ã, d̃a, ỹ are the noisy versions of x, a, da, y
respectively.

The position error is therefore equal to

ψ = x̃ − x = x + A†(n + e) − x = A†(n + e) (22)

where A† is the inverse or pseudoinverse of A. The expected
value of this error is

E(ψ) = A†
[E(n) + E(e)]

= A†µe. (23)

The variance of the position error can be expressed as

E(ψψT) = E
[
A†(n + e)(n + e)TA†T

]
= A†QnA†T

+ A†QeA†T
. (24)

Using weighted least squares (WLS), this is

E(ψψT) = (ATWA)−1ATW(Qn + Qe)WA(ATWA)−1. (25)

This suggests that the total error can be minimized by applying
WLS with

W = (Qn + Re)
−1 (26)

and

x =
(
ATWA

)−1ATWy. (27)

In practice, incorporating the Re planar error correlation
does not significantly improve the calculated position estimate,

6E(|c̄|4) = (2D+ D2)σ 4
c = D(D+2)σ 4

c , E(|c̄|2
〈

r̂ i , c̄
〉2

) = (D+2)σ 4
c , and

E(
〈

r̂ i , c̄
〉2〈

r̂ j , c̄
〉2

) = (2
〈

r̂ i , r̂ j
〉2

+1)σ 4
c . The first value is derived from the

variance and mean of the chi square distribution. The others are determined
experimentally.

Fig. 5. Demonstration of weighted least squares solution accuracy, with
10 receivers randomly distributed as shown and σc = 10 m. Note that
the weighted solutions are identical when the measurement error dominates
(σd > 0.01 m), and that including Re in the weighting only makes rela-
tively small gains except in cases with extremely low measurement errors
(σd < 1 mm).

as shown in Fig. 5. In some cases, where σ 2
d is small

and σ 2
c /|r̄ i | is large, the Qn + Re matrix is ill-conditioned.

Therefore, we suggest using W = Q−1
n rather than the value

from Eq. 26, and address the effects of planar error by the
iterative approach presented in Sec. III-D.

The equations in this algorithm are nearly identical to those
used by Lee [20] to determine the geometric dilution of preci-
sion (GDOP) of a multilateration scenario. The only difference
is that Lee used the true position of the target while this uses an
approximation. This means that when the estimate error σ 2

c is
small the measurement error asymptotically approaches the
GDOP. For multilateration where the pseudodistance errors are
zero mean Gaussian variables, the Cramér-Rao lower bound
(CRLB) is equal to the GDOP [22].

D. Multi-Pass Algorithm

The planar bias error can be reduced by using the calculated
position to adjust the pseudodistances and then recalculate.
This can be done using the direct calculation in Eq. 12 or the
approximation in Eq. 14, using a′ to determine an estimate of
c̄, which in turn is used to estimate the errors. The updated
pseudodistances are d ′

i = di − ei and the updated position a′′

is given by

x′
=

[
a′′

d ′′
a

]
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Fig. 6. Improvements in position from iterating the algorithm. The receivers
are located in a regular tetrahedron centered on and 10 km away from the
estimate point. The position accuracy is σc = 1 km.

Fig. 7. Comparison of the differential multilateration algorithm with tradi-
tional multilateration with spherically uniform receivers. The new algorithm
matches or exceeds performance except when planar error exceeds the
measurement error.

y′
=

 d ′

1 +
〈
p1, r̂1

〉
...

d ′
N +

〈
pN , r̂ N

〉


Ax′
= y′ (28)

Because A is unchanged from the original algorithm, the
second pass can reuse the same A† from the first pass, which
reduces the computational cost of performing multiple passes.

Fig. 8. Comparison of the differential multilateration algorithm with tradi-
tional multilateration with receivers in a nearly planar circular arrangement.
This scenario is ill-conditioned for both methods, with only the small vertical
deviations in receiver locations preventing both algorithms from producing
singular matrices. The conventional multilateration algorithm became unstable
with σd > 100 m.

The second pass reduces the minimum measurement error by
a factor of roughly σc/

∣∣r̄ i
∣∣.

This step can be iterated more than once. Each time the orig-
inal distances are updated using the new calculated position.

d(n+1)
i = di −

(∣∣a(n)
− pi

∣∣− 〈a(n)
− pi , r̂ i

〉)
. (29)

As the algorithm is iterated, the average error is reduced. Fig. 6
shows the algorithm’s performance against a target with σc =

1 km and four receivers in a tetrahedral formation at a distance
of 10 km from the reference point. The results are shown for
1 through 10 passes of the algorithm. After eight iterations
(the first pass and seven update passes) the average planar
error is less than the level for σc = 10 m with one pass under
the same conditions. If the multi-pass algorithm is used then
it should be stopped when |a(n+1)

− a(n)
| < ϵ for some value

of ϵ, or after some number of iterations, whichever comes
first. The multi-pass algorithm should only be used when the
variance of the measurement error is very small.

IV. PERFORMANCE VERIFICATION

To evaluate the performance of this algorithm we compare
it to the linear multilateration approach from [17], using the
optimal weighting as given in equations (11) through (14a).
This is compared to the single-pass method as given in Eq. 27.
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Fig. 9. Comparison of the differential multilateration algorithm
with traditional multilateration with receivers randomly located in a
30 km × 30 km × 500 m box, centered 1 km below the estimated target
position a. The new algorithm performed significantly better whenever the
planar error was not the dominant source of measurement variance.

We apply these methods to three different scenarios, each
using five receivers, showing horizontal and vertical errors on
separate graphs. The scenarios are:

• spherically uniform, with receivers spread equally around
a sphere [23] centered on the transmitter, shown in Fig. 7,

• circular, with receivers spread evenly in a circle around
the transmitter, which is above the center of the cir-
cle, with some random vertical perturbation to prevent
both algorithms from having singular matrices, shown in
Fig. 8, and

• random, with receivers randomly distributed in a box of
size 30 km × 30 km × 500 m, shown in Fig. 9.

The specific receiver locations are given in Table I. The
transmitter is located at a = [0, 0, 0]

T in the spherically
uniform scenario and at a = [0, 0, 1000]

T meters in the other
two scenarios.

In every scenario, when the measurement noise variance
was greater than the variance of the planar error the proposed
algorithm performed better than traditional linear multilatera-
tion. The performance difference was especially pronounced in
the circular scenario where the receivers are nearly coplanar
and traditional linear multilateration has very poor accuracy
vertically [24], [25].

TABLE I
RECEIVER LOCATIONS FOR PERFORMANCE VERIFICATION SCENARIOS.

ALL FIGURES ARE GIVEN IN METERS

V. CONCLUSION

This algorithm improves on traditional mutlilateration algo-
rithms at obtaining an accurate 3-dimensional position in
typical wide area multilateration scenarios. This comes at
the cost of requiring an initial measurement and a target
tracking algorithm to maintain the quality of the estimate. It is
more numerically stable in typical wide area multilateration
scenarios than traditional multilateration. This method reduces
the number of measurements required by one, allowing for
3-dimensional localization with only four measurements
instead of at least five for linear TDOA multilateration.

The key benefit of this algorithm is that it is well-suited for
incorporation into a tracking algorithm. At any point in time
the calculation of the estimate is linear, allowing for tracking
with a simple Kalman filter rather than one of the non-linear
extensions. It can also be employed for tracking swarms of
objects where a central point within the swarm can act as an
estimate for the position of an individual transmitter, and each
calculated transmitter location contributes to the estimate of
the swarm position.

This algorithm is based on having an a priori estimate for
the location of a target. As such it requires that an initial
position be available. This can be acquired with a different
multilateration algorithm or by using some other sensor such
as a radar. The accuracy of the algorithm is limited when the
estimate is not accurate enough. The statistics, in Eq. 17, and
simulations, in Fig. 6, show that in a wide area multilateration
scenario the variance of the estimate error can be quite
large without irreparably degrading the performance of the
algorithm.

This algorithm is naturally suited for a tracking algorithm.
It uses an estimate of the current position of an object to
calculate an updated position, and all the calculations are linear
functions. A Kalman filter should be able to both track the
target and provide quality estimates of updated positions for
use with future samples.
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This algorithm could be used to measure and possibly track
individual objects in a swarm. A traditional radar may not be
able to distinguish individual objects in a swarm, but by using
the radar’s position as the estimate for the swarm as a whole,
and then applying this algorithm to signals sent between
members of the swarm, it may be possible to determine the
positions of individual objects.
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