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Discrete Band-Limited Signal Reconstruction From
Irregular Samples

David G. Long , Fellow, IEEE

Abstract— Image reconstruction from discrete samples is
fundamental in remote sensing. The reconstruction problem is
more complicated when the sample locations are irregularly
spaced and employ different aperture functions. Further, not all
2-D sampling configurations permit full image reconstruction of
band-limited signals. In this article, 2-D signal reconstruction
from irregular samples with variable apertures is considered
using theory and examples. Exact reconstruction requires that
the signal be band-limited and the sampling matrix be invertable.
The results are sensitive to the sample locations and noise
in the measurements. Illustrative examples are provided using
simulation and actual data from the L-band Soil Moisture
Active Passive (SMAP) radiometer. The general approach can
be employed with other sensors.

Index Terms— Aperture function, irregular samples, point-
spread function (PSF), radiometer, reconstruction, sampling,
variable aperture.

I. INTRODUCTION

AKEY challenge of satellite sensors is that they are often
unable to collect measurements of the surface properties

(the 2-D signal of interest) over a regular sampling grid.
Instead, the measurements are irregularly spaced. A particular
measurement can be expressed as the value of the convolution
between the signal and the sensor’s spatial measurement
response function (MRF)1 at the particular measurement loca-
tion. The MRF is known but can vary from measurement
to measurement due to changes in the observation geometry
over the observation swath and the antenna pattern. Given the
irregularly spaced measurements and varying MRF, the goal
is to reconstruct the 2-D signal on a uniform grid at the
finest possible resolution. Recently, a discrete reconstruction
approach for the problem of irregular samples and variable
aperture function was developed [1]. In this article, we general-
ize the method and apply it to additional sensors. We consider
a wide range of parameters and address the limitations of
the method, including computational issues and the effects of
noise on the signal reconstruction.
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1Sometimes termed the measurement impulse response function, the point

spread function (PSF), or the measurement aperture function.

This article is organized as follows: after a background
section, we extend the discrete approach developed in [1]
and consider the constraints on the locations of the irregular
samples to ensure full reconstruction of 2-D signals. We then
consider what band-limits are required for a given sampling
scheme and the effects of the variable aperture function. The
effects of noise are considered. An illustrative example is pro-
vided demonstrating the utility of the technique in remote sens-
ing based on reconstruction of surface brightness temperature
(Tb) images from spaceborne radiomometer measurements;
however, the reconstruction approach can be applied to other
classes of instruments.

A. Background

A traditional approach to reconstruction from irregular
samples has been to interpolate the measurements to a regular
grid. The variable aperture is ignored. Once the measurements
are resampled (interpolated) to a regular grid, the 2-D signal
is estimated using the theory of band-limited (i.e., lowpass)
signal reconstruction from uniformly spaced samples (i.e.,
“regular sampling”). This is a classic signal processing tech-
nique found in signal processing textbooks (e.g., [2]) that is
based on the well-known Nyquist criterion that states that a
signal can be reconstructed from uniform samples collected at
twice the highest frequency present in the signal [3].

While relatively simple, this traditional interpolation
approach introduces artifacts into the signal, has limited
resolution, and ignores information about the MRF. Instead,
we consider direct reconstruction from the irregular samples.
In the general case of irregular sampling with an ideal
delta function MRF with infinite samples, Gröchenig’s lemma
ensures that a band-limited signal can be exactly reconstructed
from samples that are “delta dense,” that is, expressed in
one dimension, the Gröchenig criteria requires that the largest
space between samples be less than ln(2)/2ω0 where ω0 is the
highest frequency [4], [5]. This is about 1/ ln(2) ≈ 1.44 times
the Nyquist rate for uniform sampling [6].

In practice, only a finite number of samples are available.
Without an analytic form for the signal, an arbitrary signal
cannot generally be fully reconstructed from only a finite
number of samples. However, the implicit assumption made
when sampling a signal is that it can be accurately represented
by a finite number of discrete samples. The only class of
signals that can be fully represented from a finite number of
samples are periodic, band-limited signals [1], [2]. Thus, even
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if the underlying signal is not periodic, the act of sampling
and reconstruction implicitly requires that the sampled signal
be treated as both periodic and band-limited in order for the
sampling and reconstruction to be consistent [1]. With this
in mind, the problem of reconstruction of continuous band-
limited signals from samples can be reduced to reconstruction
of discrete periodic signals from discrete samples.

In the 1-D case, Long and Franz [1] showed that perfect
band-limited reconstruction can be obtained from a minimum
number of disjoint samples arbitrarily located even when the
sampling aperture function varies from sample to sample.
However, they also showed that for 2-D signals some sampling
configurations are incapable of full signal reconstruction.
In the following, their approach is generalized and explored
in more detail.

II. REGULAR 1-D SAMPLING AND RECONSTRUCTION

A continuous, bounded, band-limited, periodic signal f (t)
with period NT (N integer) can be exactly represented by the
discrete-time signal f [n] = f (nT ) where T is the uniform
discrete sampling interval so long as the maximum frequency
is less than 2/T . Reconstruction of such signals from their
samples is a classic problem in signal processing [2], [3] and
trigonometric polynomial interpolation in numerical analysis
[7]–[11].

The discrete Fourier transform (DFT) F[k] of the periodic
f [n] can be written as

F[k] =
N−1�
n=0

f [n]e− j2πkn/N (1)

where j = √−1. For f (t) band-limited to frequencies less
than B = 2T M/N , it follows that F[k] = 0 for all |k| > M .
The signal f [n] can be fully represented by the subset of its
Fourier coefficients {F[k]} for |k| ≤ M

f [n] = 1

N

2M�
k=0

F[k − M]e j2π(k−M)n/N (2)

where M is the discrete band-limit. Then,

f [n] = da

2M�
k=0

fk DM,N (n − kda) (3)

where da = N/(2M + 1), fk = f (kdaT ), and DM,N (·) is the
Dirichlet kernel

DM,N (ρ ) =
⎧⎨
⎩

sin(πρ(2M + 1)/N)

sin(πρ/N)
, ρ �= 0

2M + 1, else
(4)

which is N-periodic in ρ and M-band-limited [1]. The signal
values fk = f (kdaT ) at discrete sample times kdaT , are here
termed the “maximally spaced equivalent uniform” (MSEU)
samples. When da is an integer, then fk = f [kda], which
is evaluated modulo N ; however, da is not required to be an
integer.

We define the integer d (d ≤ da) such that N = d(2M +1+
E) where E is also a non-negative integer, typically chosen
to be the smallest possible value. E provides flexibility in

defining the relationship between N and M and d . This rep-
resentation is termed the “uniform sampling interval” (USI).
The integer-valued USI (d) and the MSEU (da), which need
not be an integer, sampling intervals are related by

da = N/(2M + 1)

= d(2M + 1 + E)/(2M + 1) (5)

d = N/(2M + 1 + E)

= da(2M + 1)/(2M + 1 + E). (6)

When da is also an integer, then E can be set to zero and
d = da .

The original band-limited, periodic continuous signal f (t)
can be computed from the MSEU of USI samples using

f (t) = da

2M�
k=0

f (kdaT )DM,N (t/T − kda) (7)

f (t) = d
2M+E�

k=0

f [kd]DM,N (t/T − kd). (8)

It is noted that the MSEU representation requires NMSEU =
2M +1 samples while the USI representation requires NUSI =
N/d = 2M + 1 + E samples and that NUSI ≥ NMSEU with
equality only when E = 0. MSEU is thus more efficient (i.e.,
requires fewer sample values), but USI has the advantage of
using only canonical (t = nT ) signal values.

Our primary interest is in the discrete signal f [n] = f (nT ).
Then,

f [n] = da

2M�
k=0

f (kdaT )DM,N (n − kda) (9)

f [n] = d
2M+E�

k=0

f [kd]DM,N (n − kd). (10)

These equations can be written in matrix form as

f = Da (11)

f = Cb (12)

where the N element signal vector f has elements (f)n = f [n],
the vector a has 2M + 1 elements ak = f (kdaT ), the N ×
(2M + 1) matrix D has elements

(D)l,k = da DM,N (l − kda) (13)

the discrete sampled signal b has 2M + 1 + E elements bk =
f [kd], and the N × (2M + 1 + E) matrix C has elements

(C)l,k = d DM,N (l − kd). (14)

Both D and C have rank 2M + 1. When E = 0, da = d ,
C = D, and b = a. The vector b is related to a by [1]

b = Doa (15)

where the (2M + 1 + E) × (2M + 1) element matrix Do is
composed of a scaled subset of rows of D, that is,

(Do)l,k = d DM,N (ld−kda). (16)
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The vector a is related to b by the (2M + 1) × (2M + 1 + E)
element matrix D1

a = D1b (17)

where D1 = (da/d)DT
o has elements

(D1)k,l = da DM,N (ld − kda). (18)

Note that D1 is the Moore-Penrose pseudo inverse of Do!

A. Irregular 1-D Sampling and Reconstruction

Suppose that Ns ≥ 2M + 1 samples of one period of
f [n] are available at an arbitrary but unique set of locations
nm ∈ {n1, . . . , nNs }. The samples can be at irregular sample
spacings. Long and Franz [1] showed that f [n] can be
perfectly reconstructed from these samples. Here we extend
the analysis.

Let fs be the Ns element vector of the samples, that is,

(fs)m = f [nm]. (19)

It is noted that fs can be written in terms of b or a using

fs = C�b (20)

fs = D�a (21)

where C� and D� are composed of a subset of rows of C or
D, respectively, that is,

(C�)m,k = d DM,N (nmd − kd) (22)

(D�)m,k = da DM,N (nmd − kda). (23)

Then, a and b can be computed by solving the linear system
in (20) and (21), respectively. Once b or a is computed, f can
be computed using (11) or (12). In combined form

fs = Cδf (24)

fs = Dδf (25)

where Cδ = CδC−1 and Dδ = DδD−1. It is noted that C−1 =
CT and D−1 = DT .

If the sample locations nm correspond to nm = md , that is,
regular sampling, then fs = a = b. In this case, the signal can
be directly reconstructed using (11) with C = C�.

The solution to the linear systems in (20) and (21) can be
written as

a = D†
�fs (26)

b = C�
†fs = DoD†

�fs (27)

where † denotes the Moore-Penrose pseudo inverse. In irregu-
lar sampling configurations the pseudoinverse of C� must be
computed numerically.

In the 1-D case, a band-limited, periodic f [n] can be
perfectly reconstructed from a set of Ns ≥ 2M + 1 irregular
samples f [ni ] for arbitrary nk , so long as the samples are
distinct nk mod N [1], [5]. This means that the samples can
be anywhere within the signal period without any requirements
for spacing. In minimum samples case, when Ns = 2M + 1,
D� is square and invertable, that is, D†

� = D−1
� and C�

† =
DoD−1

� . When “extra” samples are available, that is, Ns >
2M +1, they contribute to noise reduction in the reconstructed
signal [1].

B. Variable Apertures

In practice, measurements are collected as the weighted
average of the signal over an interval. The weighting function
is known as the aperture function or PSF. In one dimension for
an aperture function vi [n], the i th observation centered at ni

is modeled as the value gi [ni ] of gi [n] = vi [n] ∗ f [n] where
∗ denotes discrete convolution. When the aperture function
is fixed, that is, vi [n] is the same for all i , the observations
gi [ni ] can be used to first reconstruct a signal g[n], then f [n]
is computed using signal deconvolution techniques to compute
f [n] from g[n]. The signal f [n] can be exactly computed from
g[n] so long as the aperture spectrum does not have any nulls
over the bandwidth of the signal spectrum [1].

When the aperture is variable, that is, is different for dif-
ferent measurements—sometimes termed a shift-variant PSF,
this deconvolution approach to reconstruction cannot be used.
Instead, the variable aperture sampling matrix is created and
inverted to estimate the equivalent uniform samples of fk

directly from the gi [ni ] [1].
Assuming vi [n] is reasonably well-behaved, the observa-

tions (measurements) are

gi [ni ] = (vi [n] ∗ f [n])|ni =
N−1�
m=0

f [m]vi [ni − m]

=
N−1�
m=0

2M+E�
k=0

fk DM,N (m − kd)vi [ni − m] (28)

where again, fk = f (kdT ) = f [kd]. In matrix form with
USI, the aperture-filtered measurements can be expressed as

g = CV b = CV C−1f = Cv f (29)

where (g)i = gi [ni ], CV is the Ns × (2M + 1 + E) sampling
matrix whose i th row is the convolution of the Dirichlet
kernel and the aperture function vi [n] sampled at ni , and
CV = CvC−1 = CvCT . The vector b or the signal f is
computed by inverting (29), assuming the variable aperture
sampling matrix CV is invertable [1]. When CV is not
invertable, an approximate result can be obtained using the
pseudo inverse.

III. 2-D SAMPLING AND RECONSTRUCTION

With an important and subtle distinction, the ideas in
Section II can be extended to two dimensions where a 2-D
signal f (tr , tc) that is periodic with a 2-D period [N1T1, N2T2]
(N1 and N2 integers) and uniform sample spacings T1 and
T2 can be represented by the discrete pixel image f [r, c] =
f (r T1, cT2). The 2-D DFT F[k1, k2] of f [r, c] is

F[k1, k2] =
N1−1�
r=0

N2−1�
c=0

f [r, c]e− j2πk1r/N1 e− j2πk2c/N2 . (30)

The 2-D band-limit is a rectangular region of support in the
frequency domain where F[k1, k2] = 0 for |k1| > M1 or
|k2| > M2. It is noted that there are only Nr , where Nr =
R1 R2 with R1 = 2M1 + 1 and R2 = 2M2 + 1, non-zero
entries in F[k1, k2]. Thus, it is a necessary, but not sufficient,
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condition that at least Nr samples of f are required to fully
reconstruct the [M1, M2]-band-limited f .

We are interest primarily in the USI representation. Fol-
lowing the USI 1-D case, an arbitrary [M1, M2]-band-limited
discrete 2-D signal f [n1, n2] can be written in terms of its
USI samples as

f [n1, n2] =
2M1+E1�

p1=0

2M2+E2�
p2=0

f [n1d1, n2d2]

× DM1,N1(n1 − p1d1)DM2,N2 (n2 − p2d2) (31)

where d1 = N1/(R1+E1) and d2 = N2/(R2+E2) are positive
integers and where E1 and E2 are nonnegative integers. For
later use, da1 = N1/R1 = N1/(2M1 + 1), da2 = N2/R2 =
N2/(2M2 + 1), Nm = (R1 + E1)(R2 + E2), and NN = N1 N2.

In matrix-vector notation,2 the 2-D equivalent to (11) and
(12) are

f = CCCb (32)

f = DDDa (33)

where b is a Nm element vector with (b)p = f [p1d1, p2d2],
p = p2(R1 + E1) + p1, a is a Nr element vector, CCC is an
NN × Nm element matrix, and DDD is an NN × Nr element
matrix of sampled Dirichlet kernels where

(CCC)k,l = DM1,N1(n1 − p1d1)DM2,N2(n2 − p2d2) (34)

(DDD)k,m = DM1,N1(n2 − q1da1)DM2,N2(n2 − q2da2) (35)

with k = n2 N1+n1, l = p2(R1+E1)+p1, and m = q2 R1+q1.
While the values b correspond to canonical locations, that is,
(b)m = f [q1, q2], when either E1 or E2 are non-zero, vector a
does not correspond to values on the canonical grid.

The vectors a and b are related by [see (15)]

b = DDDoa (36)

where DDDo is composed of a subset of rows of D, that is,

(DDDo)k,l = da1 DM1,N1 (n1d − p1da)da2 DM2,N2 (n2d − p2da).

(37)

In matrix form, the 2-D equivalent of the variable aperture
sampling matrix in 29 can be written in similar form

g = CCCV b = CCCv f (38)

where g is the vector of measurements, b is the vectorized
subsampled image, f is the full vectorized image, CCCV is the
subsampled variable aperture sampling matrix, and CCCv is the
full variable aperture sampling matrix where the rows of CCCV

and CCCv contain the vectorized result of convolving the 2-D
aperture functions vk[r, c] with the 2-D Dirichlet function [1].

To fully reconstruct the signal from the samples, a minim-
ium of Nr unique3 samples are required. Suppose Ns ≥ Nr

unique samples of f [n1, n2] are available. Are the Ns samples
capable of supporting full reconstruction of the original signal?

2For row-major vectorization the ith element of the vector f is fi = f [r, c]
where i = r + cN1 for an N1 × N2 image f [1].

3Cannonical sample locations f (n1T, n2T ) = f [n1, n2] that are disjoint
modulo the 2-D period.

Fig. 1. Illustration of the relationship of the various 2-D signal sampling
spaces. S is the sampling matrix where S = CCC�, S = DDD�, or S = CCCV
according to the problem, and rank (S) refers to the column rank of S.

If the samples locations are a cubic lattice sampling (either
regular or irregular), the answer is yes. But for more general
irregular samples this may not be the case, for either ideal or
variable aperture functions [1].

If the sampling matrix (DDD, CCC, or CCCV depending on the partic-
ular case) is not invertable, then the image cannot be precisely
reconstructed from the samples, though pseudo inverses can
be used. Section IV focuses on this case.

IV. LIMITS OF 2-D RECONSTRUCTIONS

Unlike 1-D reconstruction, 2-D reconstruction is not always
possible for arbitrarily located samples [1]. Accurate 2-D
reconstruction imposes restrictions on the sample locations to
insure that the sample matrix D is full band-limited (column)
rank [9].

In conventional sampling theory, the samples are uniformly
spaced in two dimensions. This is an example of the more
general “generalized cubic lattice4” sampling scheme that is
defined as the cross product of two 1-D samplings, one along
each dimension [12].

Sample locations on a generalized cubic lattice location
scheme are always full band-limited rank [10], [11], even if the
lattice spacing is nonuniform [1]. Though no simple statement
of the requirements for irregular 2-D sampling for band-
limited reconstruction is available, the reconstructability of a
particular set of sample locations can be tested by evaluating
the rank of the sampling matrix [1], [9]. If DDD has full column
rank or CCC has column rank Nr = R1 R2 (which at a minimum
requires Ns ≥ Nr ), a and b can be uniquely computed
from fs .

While CCC is always full column rank for generalized cubic
lattice sampling, for more general sampling distributions, it is
not guaranteed to be full column rank [1]. It is noted that the
rank of CCC is dependent only on the sample locations and not
on the sample values.

4For R1 distinct sample indexes (n1)i ∈ {0, . . . , N1 − 1} and R2 distinct
sample indexes (n2) j ∈ {0, . . . , N2 − 1}, a cubic lattice consists of Nr =
R1 R2 samples located at ni, j = [(n1)i , (n2) j ]. A regular or “uniform cubic
lattice” has (n1)i = id1 and (n2) j = jd2.
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Fig. 2. Illustration of the relationship of the various 2-D signal sampling
spaces. Discrete sample locations are represented by dots, which have a
corresponding binary representation. In effect, irregular sample reconstruction
converts the irregular binary sampling location vector to a regular binary
sample location vector.

To better understand the conditions for reconstructability,
Fig. 1 illustrates the relationship of various sampling spaces
in 2-D sampling and reconstruction of a band-limited signal.
It is noted that if the column range of the sampling matrix
(S = CCC�, S = DDD�, or S = CCCV as appropriate for the case
of interest) is less than the minimum number of samples Nr ,
the signal cannot be reconstructed. Only if the rank of S is
greater than or equal to Nr , is it possible to fully reconstruct
the signal. When this is true, the Ns samples can be uniquely
mapped to a particular uniform cubic lattice sampling. There
is a set of possible minimum uniform cubic lattice samplings.
For this article, we arbitrarily choose the particular uniform
cubic lattice sampling origin at (n1, n2) = (0, 0). However,
any origin n1, n2 with n1 ∈ [0 . . . d1−1] and n2 ∈ [0 . . . d2−1]
can be used. Signal representation at all other samplings can be
derived from this USI set. Recall that a cubic lattice sampling
of adequate dimension is always full rank, even if irregular [1].

Fig. 2 illustrates the processing flow in the reconstruction
from irregular samples to USI representation from which the
full signal can be reconstructed. The 2-D sampling locations
are shown as dots in one period of the signal. These locations
can be represented as binary vector with 1 for a sample at
the corresponding location and 0 for no sample. The irreg-
ular sample locations are mapped to a uniform cubic lattice
sampling via the reconstruction process, indicated by R = S†

matrices. When the sampling matrix is full band-limited rank
(rank(S) > Nr , RE ), or (rank(S) = Nr , R�), full USI or
MSEU representations can be computed. When the sampling
matrix is not full band-limited rank (rank(S) < Nr ), only a
reduced-rank approximation of the signal can be computed.
This can be represented by a smoothed (RL S) solution or a

Fig. 3. Spatial response function corresponding to an ideal sample at a
particular location (3, 3) within a 2-D M1 = M2 = 1 band-limited N1 =
N2 = 6 periodic signal. The label at top indicates the row, column address
of the sample location.

reduced order, that is, smaller M1 and/or M2, USI representa-
tion (R�R) which could be over sampled at the reduced order.
The latter requires reselection of the reconstruction parameters
and recomputation of the corresponding DDD, CCC, or CCCV matrices.

A. Illustrative Toy Problem

To help appreciate the issues associated with 2-D recon-
struction, a simple toy problem with M1 = M2 = 1, d1 =
d2 = 1, and E1 = E2 = 0 with an ideal (delta function)5

aperture function is considered. For this case, the USI and
MSEU representation are identical with N1 = N2 = 6 so
that CCC = DDD for this case. The minimum number of samples
required for full reconstruction is Ns = Nr = 9.

For these parameters there are 94 143 280 permutations of
the sample locations (36 possible unique sample locations
taken 9 at a time). Of these possible samplings, 400 are
cubic lattice samples. Of all the sample location permutations,
54 781 216 (58.19%) produce full band-limited rank sample
matrices based on exhaustive numerical computation.

The spatial response function corresponding to a particular
sample is a 2-D Dirichlet function, illustrated for a particular
sample location at 3,3 in Fig. 3. Fig. 4 shows four particular
sampling schemes: Fig. 4(a) shows ideal, regular sampling,
Fig. 4(b) shows a closely space cubic sampling, and Fig. 4(c)
shows an irregular sampling. All of these produce full band-
limited rank sample matrices so that the band-limited signal
can be exactly reconstructed from the samples. However,
moving only a single sample in Fig. 4(c) to produce Fig. 4(d)
results in a sample matrices which is not full rank and therefore
is unable to fully reconstruct the signal.

Fig. 5 shows the full sampling matrices (DDD) associated with
the sampling schemes in Fig. 4. The corresponding spatial
response functions (which correspond to the columns of the
plot of S in Fig. 5) are shown in Fig. 6. It is noted that
these are identical Dirichlet functions shifted to be centered at
each sample location. Fig. 7 illustrates the reduced sampling
matrices (DDD� matrices) associated with the sampling schemes
in Fig. 4. For the ideal uniform sampling, DDD� is an identity
matrix. It is noted that the condition number of the irregular
sampling case Fig. 5(c) is better than the closely spaced cubic
lattice sampling in Fig. 5(b).

5Note that a discrete delta function is equivalent to a Dirichlet function in
the band-limited space.
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Fig. 4. Maps of the locations of four sets of samples for an N1 =
N2 = 6 periodic signal. (a) Ideal regular sampling. (b) Particular cubic
lattice sampling. (c) Particular full-rank irregular sampling. (d) Non-full-rank
irregular sampling resulting from moving one sample location in (c).

Fig. 5. Full sampling matrices for each of the sampling cases in Fig. 4. For
convenience, the image shows the transpose of the sampling matrix.

To illustrate the effects of a varying aperture in this toy
problem, one of two different apertures are randomly assigned
to each sample location, and the reduced variable aperture
sampling matrix is computed. Fig. 8(a) illustrates the two
apertures and which of the samples are assigned to which
aperture. One aperture is wider while the other is narrower, but
both span multiple pixels. The corresponding sample matrix
and the components of the full sample matrix are shown
in Fig. 8(b) and (c), respectively. In practice the aperture
functions do not change the matrix rank, so the original
signal can be fully recovered, but they can modify the matrix
condition number either smaller or larger. In this particular
case, the aperture functions increase the matrix condition
number, which can degrade the numerical accuracy of the

Fig. 6. Individual sample response functions for each sample for each of
the sampling cases in Fig. 4. Compare with Fig. 3. The label at top indicates
the row, column address of the sample location.

Fig. 7. Reduced sampling matrices (DDD�) for each of the sampling cases
in Fig. 4. It is noted that in the non-full rank case, four rows of DDD� matrix
(which correspond to 4 different sample locations) are interdependent. For
this case, for example the fourth row can be written as 1.5 times the fifth row
minus the seventh row pulse one-half of the last row.

reconstruction. Since a large condition number implies the
inverse is sensitive to numerical computation errors, poor con-
dition numbers can limit the practical implementation of the
approach even though the matrix is known to be invertable. We
note that both the rank and condition numbers are functions
only of the sample locations and aperture functions, and not
of the signal values.

To gain insight into how frequently non-full rank sampling
matrices are encountered when Ns = Nr , a simple Monte
Carlo experiment is performed. Square images are employed
with M1 = M2, N1 = N2, and d1 = d2. Two aperture
functions were considered: an ideal aperture (a δ function)
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Fig. 8. Variable aperture result. (a) [Top left) Images of two different
apertures consisting of Fejer (triangle) windows of different sizes. (Bottom
left) Fourier transform of the bandpass filtered aperture functions. (Top right)
Locations of sample centers. Colors of each spot correspond to the aperture
function used at that location. (b) DDD� matrix for this case. Compare to
Fig. 7(c). (c) Individual sample response functions for each sample. Compare
to Fig. 6(c).

and a Fejer (triangle function) aperture. For a given value of
M1 multiple N1 > 2M1 + 1 values are considered, with d1
computed as d1 = N1/(2M1 + 1). For each case, 5000 dif-
ferent random sampling patterns are chosen. Each sampling
realization consists of Ns = (2M1 + 1)2 unique locations
selected with a uniform distribution over the N1 × N2 image
area. The reduced sampling matrix is separately evaluated for
both aperture cases, and the rank for each is computed. When
the matrix is full rank, the matrix condition number is also
computed. The number of full-rank matrices for each case is
determined, as well as the average matrix condition number of
the full rank sampling matrices. The results of the experiment
are shown in Fig. 9. For reference, Fig. 9(a) plots N1 versus
d1 for various M1 values.

As shown in Fig. 9(b), for a given value of M1, the
percentage of full-rank DDD� matrices increases with d1. For
large d1 and/or large M1, the matrix is almost always full
rank for both aperture cases. Unfortunately, as shown in
Fig. 9(c) increasing M1 or d1 tends to increase the condition
number of the sampling matrix, at least until it plateaus. The
non-ideal aperture improves the condition number for small
d1, but has little effect for larger d1. As M1 is increased,
the condition number becomes very large, suggesting that
numerical issues can be expected to be important for larger
problems. Ameliorating this is discussed in Section VIII.

V. SELECTION OF RECONSTRUCTION PARAMETERS

Ideally, the reconstruction parameters (period, sample spac-
ing, and band-limit) of the periodic signal are known from

Fig. 9. Effects of d1 on the image size, reconstruction matrix rank,
and reconstruction matrix condition number. (a) Plot of N1 versus d1 for
different values of M1. (b) Estimated percentage of random samplings that
are full rank versus d1 for different values of M1. (c) Average sampling
matrix condition number versus d1 for different values of M1. For computing
averages, 5000 different uniformly distributed random sampling configurations
were generated for each case.

the problem. When not known, the user must subjectively
select appropriate parameters, and there is no single answer.
The following parameter selection discussion focuses on 2-D
signals. With Ns samples, the Ns × NN sample matrix DDD is
considered full band-limited rank if the rank of DDD, denoted
by r , is greater than or equal to Nr . This indicates that DDD
can be inverted within the (2M1 + 1) × (2M2 + 1) region of
frequency support for the signal.

A. Band-Limit

A fundamental assumption in reconstruction of a signal
or image from its samples is that signal can be accurately
represented by the samples. If this assumption is invalid, then
only an approximation of the original signal can be generated
from the samples. In this latter case, a variety of least-squares
and other metric-based techniques must be used. It is noted
that even if the underlying signal is not periodic, it can be
treated as periodic by extension with proper treatment of the
boundaries [1].

Two key questions then arise: In the general case: 1) what
are the minimum requirements for the discrete sampling to
reconstruct the signal for a given band-limit? 2) what assump-
tions must be made about the signal band-limit to enable full
reconstruction for a given sampling configuration?

The short answer to 1) is that the sampling matrix must
be invertable, that is, for an N1, N2-periodic signal with a
M1, M2-order band-limit, the sampling matrix DDD must have
rank r ≥ NR . We can choose M1 and M2 to ensure that DDD is
full rank.
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Answering question 2) can be more difficult. If only the
sample locations of the finite number of samples are known,
then the reconstruction parameters (N1, N2, M1, and M2) must
be inferred from the sample locations. Unfortunately, this is a
poorly-posed problem since there can be multiple solutions.

B. Known Period

Problem 2) is considerably simplified if the period (N1 and
N2) is known. Then, the upper limits of M1 and M2 can be
inferred from the sample locations. A particular methodology
for determining the maximum M1 and M2 is based on an
iterative search that begins with an initial estimate for M1
and M2 that is used to compute the rank of the resulting
sampling matrix. If the resulting sampling rank is full-rank,
the values of M1 and M2 can be increased and the sampling
matrix rank tested again. Otherwise, the values are decreased.
This is repeated to find the largest M1 and M2 for which the
sampling matrix is full rank. The resulting values are then
the maximum band-limit for a reconstructable signal for the
particular sampling. E1 ≥ 0 and E2 ≥ 0 are selected such
that d1 ≥ 1 and d2 ≥ 1, where all the parameters are integers.
This can require a computationally taxing search algorithm for
large values of the parameters.

C. Unknown Period

What if the signal period is not known? Without prior
knowledge of the reconstruction parameters (i.e., M1, M2,
N1, N2, E1, and E2), the reconstructions values must be
subjectively chosen subject to the constraint that the d1 and
d2 parameters are all integers.

An initial guess for the period can be selected from the
span of the samples, that is, N1 is set to the range of the
column indices and N2 is set to the range of row indices of the
samples. Empirical results suggest that expanding the period
slightly can improve overall results, as well as offer more
potential solutions. Having selected the period, the algorithm
for finding M1 and M2 previously described is then followed.
If a square region of support is assumed, that is, M1 = M2,
then the maximum value of M1 for which the signal can be
reconstructed is M1 = 	(√r − 1)/2
, where 	·
 is the integer-
valued “floor function,” that is, the largest integer less than or
equal to its argument. If an appropriate M cannot be found,
N1 and N2 must be modified and the process repeated until
satisfactory parameters are found.

VI. MEASUREMENT NOISE CONSIDERATIONS

Since measurements contain noise, the effects of the noise
must be considered. The samples can be modeled as noise-
free signal samples plus noise, which is herein treated as
independent of the signal. The noisy signal reconstruction is

g�
s = gs + ηs (39)

where g�
s is the vector of noisy observations of the signal

samples gs and ηs is the vector of noise added to the
signal samples. The noisy reconstruction f̂ consists of the
reconstructed signal plus a noise component

f̂ = CCC†
vgs + CCC†

vηs = CCC†
vgs + ηD (40)

where ηD = CCC−dagger
v ηs is the net effective noise added to the

reconstructed signal. It is noted that ηD = CCC†
vCCCbη where bη is

the noise spectral representation. It is thus apparent that the
original noise properties are modified by the reconstruction
which can amplify some components of the noise depending
on the precise sampling locations and their corresponding
aperture functions. Typically noise components outside of the
signal band-limit defined by CCC are eliminated. As can be
expected, oversampling tends to reduce noise amplification
since the additional noise samples tend to average the noise
effects.

VII. APPLICATION EXAMPLE

To illustrate how reconstruction can be applied to a real
sensor, radiometer brightness temperature (Tb) measurements
[13] from the Soil Moisture Active Passive (SMAP) radiometer
are considered. The L-band (1.41 GHz), 24-MHz bandwidth
SMAP radiometer collects Tb measurements at multiple polar-
izations with a total radiometric uncertainty of 1.3 K [14]. The
nominal 3-dB footprint size on the surface is 39 km × 47 km,
an area of approximately 1833 km2. The spacecraft movement,
rotating antenna and measurement timing results in an irreg-
ular sampling of the surface with overlapping measurements
spaced approximately 11 km apart in the rotation direction,
with nominally 31 km between rotations [15].

A SMAP Tb measurement is the average over the mea-
surement period of the integral of the product of the surface
brightness response Tb(x, y) and the antenna pattern, which
can be expressed as

zn = 1

Gn

��
Tb(x, y)Gn(x, y)dxdy (41)

with

Gn =
��

Gn(x, y)dxdy, (42)

where Gn(x, y) is the time-averaged antenna pattern for the
i th measurement, that is, the MRF. The SMAP MRF can
be modeled with an elliptical Gaussian function whose 3-dB
(half-power) point matches the footprint size [15]. The ori-
entation of the ellipse varies over the swath according to
the azimuth antenna angle when the measurement was col-
lected, and so varies with measurement location. The Gaussian
response is clipped when it falls below −30 dB of the peak.

Given a set of measurements zn we desire to estimate the
surface brightness temperature Tb over a discrete, uniformly
spaced, fine resolution grid with spacing T = 8.9 km. The
measurement center locations (at x = ni d1T, y = nld2T )
and corresponding MRF are discretized to this grid for i ∈
[1 . . . N1] and l ∈ [1 . . . N2]. Following the earlier discussion,
Tb is treated as band-limited and periodic over the region. The
measurement model is

zn =
�

i

�
l

(Gn)i, j Tb(id1, ld2) + noise (43)

where (Gn)i,l is the discretized MRF for the nth measurement.
Some error is introduced in quantization of the MRFs, but so
long as T is small compared to the footprint, this error is
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Fig. 10. (a) Measurement center locations. (b) Single day horizontally
polarized Tb in K from SMAP data, day 152, 2015 computed using the
radiometer form of the Scatterometer Image Reconstruction algorithm [15]
on an 8.9-km pixel Lambert Equal Area map projection grid. The ocean is
very cool (∼70 K) while the glacier covered island appears much warmer
(∼180 K); 40-km diameter circles are shown for comparison.

small. Noise is treated as independent of the signal and arises
in radiometer measurements from brightness temperature vari-
ability and contributions due to the receiver noise figure.

The study target is the island of South Georgia in the South
Atlantic at 36.8W 54.4S. Using a Lambert Equal Area map
projection centered at the target location, we arbitrarily choose
the pixel spacing T = 8.9 km because this value is commonly
used in Scatterometer Climate Record Pathfinder (SCP) prod-
ucts [16]. The 39 km × 47 km SMAP 3-dB footprint is thus
approximately 4.4 × 5.3 pixels. Fig. 10(b) illustrates a Tb

image of the study area created from a single day (day 150,
2017) of SMAP data while Fig. 10(b) shows the locations of
the Ns = 1079 measurement MRF centers within the study
area. To treat the MRFs as periodic, the SMAP measurement
MRFs that overlap an edge of the study area are artificially
“wrapped” to extend from the opposite side. Since the ocean
is of a nearly uniform temperature, the resulting edge effects
from this operation are minimal. For this study area, N1 = 44
and N2 = 62 (approximately 392 km × 552 km), with
NN = 2728. Using d1 = d2 = 2, M1 = 10, and M2 = 15
(Nr = 651) with E1 = 1 and E2 = 0. Fig. 11 shows the
corresponding Dirichlet kernel.

Using the sampling locations and the associated
measurement-specific MRFs, the CCCv matrix is numerically
computed. Two versions are used: the variable aperture case
and one where the apertures are assumed to be ideal delta
functions. In this simulation, both matrices have full rank
(651, the same as Nr ) in the band-limited space, but are
poorly conditioned with condition numbers of 1.9 × 1017 and
3 × 1016, respectively. While a good linear algebra solver,
e.g., MATLAB, can deal with condition numbers this large,
the noise amplification effect can be significant, and so for
practical use, regularization is needed when computing the
reconstruction. For this study, the regularized pseudo inverse
CCC†

v of CCCv is computed as [17]

CCC†
v = �CCC t

vCCCv + αI
�−1CCCt

v (44)

Fig. 11. 2-D Dirichlet function for N1 = 44, N2 = 62, d1 = d2 = 2,
M1 = 10, M2 = 15, E1 = 1, E2 = 0.

Fig. 12. Diagram of the information flow for the simulation and actual data
processing with the figures illustrating information at each point indicated.

where CCCt
v is the transpose of CCCv and α is the regularization

parameter discussed later. Using the pseudo inverse also
ameliorates inadequate undersampling should it occur (which
does not occur in this case). While the signal component
of the reconstruction can be exact when α = 0, the noise
component of the reconstructed image can be very sensitive
to noise. Increasing α reduces the noise, but adds distortion
to the signal.

To inform the level of regularization required for reconstruc-
tion using noisy measurements, simulation is employed. The
simulation uses actual MRFs and locations from SMAP L1B
files from one day. Fig. 12 ilustrates the simulation data flow.
The various sampling and reconstruction matrices are numer-
ically computed. The binary-valued synthetic “truth” image is
shown in Fig. 13(a). The truth image is ideally lowpass filtered
to M1, M2-band-limit it. The true a is computed using a 2-D
fast Fourier transform (FFT). Simulated noise-free measure-
ments are created using 43. Noisy measurements are simulated
by adding zero mean, 1.3 K standard deviation Gaussian noise
to the simulated noise-free measurements. Results for only a
single noise realization are shown. This noise level matches
the expected noise level of the SMAP Tb measurements.
Because CCCv is full band-limited rank, the reconstruction from
the noise-free synthetic measurements for α = 0 is exact to
within numerical precision, but noisy measurements degrade
the reconstruction.

Regularization reduces the effects of noise as illustrated
in Fig. 14. Table I summarizes the root mean square (rms)
reconstruction error for various choices of the regularization
parameter α for the band-limited simulation. (The nonband-
limited case in this table is discussed later.) The table reveals
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Fig. 13. (a) Binary-valued synthetic truth image created by filling ocean
pixels with 70 and land pixels with 180 before and (b) after applying an ideal
bandpass filter. The band-limit filter has the negative side effect of introducing
Gibb’s phenomena “ringing” in the ocean due to the large land/ocean step.

Fig. 14. (a)–(c) Reconstructed Tb images for different values of the
regularization parameter α from simulated noisy measurements of the band-
limited truth images. (a) α = 0.001. (b) α = 0.01. (c) α = 0.1. (d) Result for
noisy measurements for the nonband-limited true image with α = 0.01.

that the SMAP noise-level is too high to use nonregularized
reconstruction. Based on this table, α = 0.01 is chosen for
SMAP reconstruction from noisy measurements.

What happens if the true image is not explicitly band-
limited? To study this case, the simulation is repeated but
using truth image prior to band-limit filtering [Fig. 13(a)]. The
resulting reconstructed image, shown in Fig. 15(d), created
with α = 0.01 from noisy measurements, is nearly identical

TABLE I

RMS DIFFERENCE IN K BETWEEN THE TRUE SYNTHETIC IMAGE, BEFORE
AND AFTER BAND-LIMITING, AND THE RECONSTRUCTED IMAGE

FROM NOISY AND NOISE-FREE MEASUREMENTS FOR

VARIOUS α VALUES

Fig. 15. Tb images from actual data. (a) Reconstructed Tb image for α = 0.01
from actual SMAP measurements. (b) Image created by drop-in-the-bucket
gridding on a 44.5-km pixel grid. A 40-km diameter circle is shown for
comparison. Compare Fig. 10.

to the band-limited true simulation case in Fig. 15(b). This
is due in part to the implicit low pass filtering imposed by
the aperture function. Table I compares the errors associated
with regularization, both band-limited and nonband-limited
true images, which have similar errors. We thus find that the
restriction imposed by requiring the signal to be band-limited
does not significantly impact the actual results.

Turning to actual measurements, Fig. 15(a) shows the recon-
structed image using α = 0.01 regularization. For comparison
a conventionally processed image is shown in Fig. 15(b). This
image is created by averaging all the measurements whose
center fall within a given 44.5 km pixel, a technique known
as drop-in-the-bucket gridding. The averaging in this approach
reduces the noise level in the pixel values at the expense of
spatial resolution [15], [18]. The reconstructed image clearly
better represents the island target compared to the gridded
image and exhibits finer resolution compared to the land
outline. However, the ocean area in the reconstructed image
has more variability than the gridded image. These closely
resemble the ocean artifacts observed in the noisy simulation
and thus are judged to be an artifact of the reconstruction.

VIII. CONCLUSION

This article has discussed the theory of signal reconstruction
from irregularly sampled data with variable apertures where
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different measurements may have different aperture functions.
This situation is common in microwave sensors where the
observations have irregular spacing and different antenna gain
patterns resulting in different measurement functions for dif-
ferent measurements.

The reconstruction methods presented in this article enable
exact reconstruction of a periodic band-limited signals [1].
For the 1-D case, so long as there is a sufficient number
of distinct samples and the aperture function is reasonably
well-behaved, a band-limited periodic signal can be exactly
reconstructed. In the 2-D case, the situation is more compli-
cated since not all sampling configurations can support full
signal reconstruction, even in ideal, noise-free cases. However,
so long as the variable aperture function sampling matrix
(Cv or CCCv , depending on dimension) is full rank within the
signal bandwidth, the signal can be exactly reconstructed
within the limits of numerical precision by inverting a linear
system.

Irregular 2-D sampling with an aperture function is explored
with a simple toy problem. Then, irregular sampling and
reconstruction is illustrated with simulation and actual data
using measurements from the SMAP radiometer over a small
study area. In simulation, the signal can be exactly recovered
from the irregular samples and variable aperture functions,
though noise can have an adverse effect. Real data results
are consistent with simulation. The results demonstrate that
the reconstructed image can provide finer resolution than a
conventionally-processed gridded image. The reconstructed
signal is sensitive to noise, and in practice some sort of
regularization is required. This results in a tradeoff between
noise and inaccurate signal reconstruction, and highlights the
need for approximate reconstruction methods.

Though most are not designed with variable aperture
functions in mind, a variety of reconstruction methods
have been developed for the case when only approx-
imate or partially reconstructed results are needed [see
[6], [15], [18]–[26] [27]–[29]].
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