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Temperature Image Products

David G. Long™, Fellow, IEEE, Mary J. Brodzik™, Member, IEEE, and Molly A. Hardman

Abstract—The NASA-sponsored Calibrated Passive Micro-
wave Daily Equal-Area Scalable Earth Grid 2.0 Brightness
Temperature (CETB) Earth System Data Record Project team
has generated a multisensor, multidecadal time series of high-
resolution radiometer products designed to support climate
studies. This project uses image reconstruction techniques to
generate conventional and enhanced-resolution daily brightness
temperature images on a standard set of map projections.
Sensors included in CETB are the Aqua Advanced Microwave
Scanning Radiometer-Earth Observing System (AMSR-E),
Scanning Multichannel Microwave Radiometer, and all Spe-
cial Sensor Microwave/Imager and Special Sensor Microwave
Imager/Sounder radiometers. These span frequencies between
6 and 89 GHz. This paper considers the issues of adding the
L-band (1.6 GHz) Soil Moisture Active Passive (SMAP) radiome-
ter measurements to the CETB climate record, with emphasis
on optimizing the reconstruction to provide the highest possible
spatial resolution at the lowest noise level. SMAP radiometer
reconstruction on SMAP-standard grids is also considered. Sim-
ulation is used to optimize the reconstruction, and the results
confirmed using actual data. A comparison of the performance
of the Backus—Gilbert approach and the radiometer form of
the Scatterometer Image Reconstruction algorithm is provided.
These are compared to the conventional drop-in-the-bucket
gridded imaging.

Index Terms—Brightness temperature, Calibrated Passive
Microwave Daily Equal-Area Scalable Earth Grid 2.0 Brightness
Temperature (CETB), radiometer, reconstruction, Soil Moisture
Active Passive (SMAP).

I. INTRODUCTION

XPLOITING the availability of new fundamental climate

data records for passive microwave observations of Earth,
the NASA Making Earth Science Data Records for Use in
Research Environments Calibrated Passive Microwave Daily
Equal-Area Scalable Earth (EASE)-Grid 2.0 Brightness Tem-
perature ESDR (CETB) Earth System Data Record (ESDR)
Project team has created a single, consistently processed, mul-
tisensor ESDR of Earth-gridded microwave brightness temper-
ature (Tp) images spanning from 1978 to the present [1]. The
CETB ESDR includes data from the Nimbus-7 Scanning Mul-
tichannel Microwave Radiometer (SMMR), the Special Sensor
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Microwave/Imager (SSM/I) and Special Sensor Microwave
Imager/Sounder (SSMIS) series sensors, and the Aqua
Advanced Microwave Scanning Radiometer—Earth Observing
System (AMSR-E). The CETB generates both conventional
and enhanced-resolution 7p images on standard map projec-
tions [2]. Designed to serve the land surface and polar snow/ice
communities, the new products are intended to replace existing
heritage gridded satellite passive microwave products with a
single, consistently processed ESDR [1]. Although there are
variations between sensors, this data record is an invaluable
asset for studies of climate and climate change.

Soil Moisture Active Passive (SMAP) radiometer data offer
an important addition to the CETB data set. To this end,
this paper considers the application of the CETB-developed
enhanced-resolution processing to SMAP radiometer data to
augment the existing CETB ESDR. The processing algo-
rithm parameters are optimized for use with SMAP, and
a performance comparison between reconstruction with the
radiometer form of the Scatterometer Image Reconstruction
algorithm (rSIR) and the Backus—Gilbert (BG) approach is
provided.

A key part of the sensor T processing is the conversion of
the swath-based measurements to the Level 3 Earth-centered
grid. Algorithms to transform radiometer data from swath to
gridded format are characterized by a tradeoff between noise
and spatial and temporal resolution. Conventional drop-in-the-
bucket (DIB), also known as gridding or GRD, techniques
provide low-noise, low-resolution products, but higher reso-
lIution (with potentially higher noise) products are possible
using image reconstruction techniques. By including products
with both processing options in the CETB, users can compare
and choose which option better suits their particular research
application. This paper presents simulation results that are
used to select the nominal pixel size for enhanced-resolution
processing for SMAP, the number of iterations used in rSIR,
and the optimum y parameter employed in BG.

This paper focuses on the production of Earth-center
Tp image products. From these, soil moisture can be
derived. Multiple SMAP radiometer products are planned:
conventional and enhanced-resolution multipass images on
both CETB-compatible 25 km and finer grids, as well as
SMAP-standard 36 km and finer grids.

This paper is organized as follows. After some brief back-
ground in Section II, a review of the theory of radiometer
image reconstruction is provided in Section III. Section IV
employs simulation to select the optimum parameters for
image formation for SMAP radiometer data. The pixel spatial
response function (SRF) is computed in Section V. Actual data
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Fig. 1. Illustration of the SMAP radiometer swath. The antenna and feed
are spun about the vertical axis. The incidence angle is essentially constant
as the antenna scans the surface. (Not to scale.)

results are provided in Section VI, followed by a summary
conclusion in Section VIIL.

II. BACKGROUND

The SMAP sensor includes both active and passive chan-
nels; however, due to the early failure of the active channels,
only the passive radiometer channels are considered in this
paper. Operating at L-band (1.41 GHz) with a 24-MHz band-
width, the SMAP radiometer collects measurements of the hor-
izontal (H), vertical (V), and third and fourth Stokes parameter
polarizations with a total radiometric uncertainty of 1.3 K [3].
The SMAP spacecraft was launched in January 2015 and flies
in a 685-km altitude, 98.1° inclination polar orbit.

The SMAP swath and scanning concept are illustrated
in Fig. 1. The antenna spin rate is 14.6 rpm which, when cou-
pled with the along-track motion of the spacecraft, produces a
helical scan pattern on the surface with an along-track spacing
of approximately 31 km between antenna rotations. The V, H,
and third and fourth Stokes parameter brightness temperature
measurements are collected at a nominal incidence angle of
approximately 53°. The polarizations share the same physical
aperture and so their antenna footprints are collocated [3].
A zoomed-in view of the arrangement of the antenna footprints
on the surface for consecutive measurements of two rotations
is shown in Fig. 2.

A. CETB Tp Image Products

All algorithms to transform radiometer data from swath to
gridded format are characterized by a tradeoff between noise
and spatial resolution [2], [9], [10]. In generating gridded
data, when multiple measurements are combined, the resulting
images represent an average of the measurements over the
averaging period. The CETB product includes both low-noise
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Fig. 2. Illustration of the individual 3-dB antenna footprints for several
measurements for two consecutive rotations of the antenna. The rotations are
spaced approximately 31 km apart in the along-track direction, while the
antenna instantaneous effective field of view for individual measurements are
spaced about 11 km apart in the along-scan direction. (Not to scale).

(low-resolution) gridded data and enhanced-resolution data
grids (which can have potentially higher noise), to enable
product users to compare and choose which option better suits
a particular research application. The products are created on
compatible (nested) grids using a standard EASE-Grid 2.0 map
projection [4], [5]. This is the same map projection employed
by the SMAP project [3], although the pixel sizes differ
between the SMAP and CETB products. The CETB provides
Tp Northern Hemisphere (E2N), Southern Hemisphere (E2S),
and Tropical/Temperate (E2T) images using DIB at 25 km and
rSIR at up to 3.125 km on the nested EASE2-grids [1].

In the conventional-resolution CETB product, the individual
radiometer channels are separately gridded to a single coarse-
resolution grid using DIB gridding. For the DIB gridding
algorithm, the key information required is the location of
the measurement. The center of each measurement location
is mapped to an output projected grid cell or pixel. All
measurements within the specified time period whose center
locations fall within the bounds of a particular grid cell
are averaged together. The unweighted average becomes the
reported pixel Tp value for that grid cell.

The effective spatial resolution of the DIB product is defined
by a combination of the pixel size and spatial extent of the
3-dB antenna footprint size [9] and has the advantage of
not requiring any information about the antenna pattern [2].
Since the measurement footprints can extend outside of the
pixel, the effective resolution is coarser than the pixel size.
Although the pixel size can be arbitrarily set, the effective
resolution is, to first order, the sum of the pixel size plus the
larger footprint dimension [2].

Finer spatial resolution CETB products are generated using
reconstruction, primarily with the rSIR algorithm, which pro-
vides results similar to the BG approach and requires less com-
putation [2]. Both BG and rSIR use regularization to tradeoff
noise and resolution. However, BG is based on least squares
and depends on a subjectively chosen tradeoff parameter for
regularization; rSIR employs maximum entropy reconstruction
with regularization accomplished by limiting the number of
iterations and thereby only producing partial reconstruction.
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Fig. 3. Histograms of the measurement ltod for SMAP radiometer measure-
ments falling within a 1° latitude band at (Top) 70°-71° N and (Bottom)
70°=71° S for July 3, 2015. Other days are similar. Note that all the
measurements fall into only one of two narrow ltod time periods centered
at approximately 08:00 and 16:00 h in the Northern Hemisphere (left) and
04:00 and 20:00 h in the Southern Hemisphere (right). Although the center
varies with latitude, any point on Earth is observed at one of two times within
490 min.

B. Local-Time-of-Day

To produce twice-daily images, CETB products combine
data from multiple passes based on the measurements’ local-
time-of-day (Itod). Only measurements with a similar Iltod are
combined. This minimizes the fluctuations in the observed
Tp at high latitudes due to changes in physical temperature
from daily temperature cycling. Two images per day are
produced, separated by 12 h (morning and evening), with
improved temporal resolution, permitting resolution of diurnal
variations [2].

The observed microwave brightness temperature is the prod-
uct of surface physical temperature and surface emissivity.
As a result of the orbit geometry, the Itod of sun-synchronous
radiometer observations at a given location on the earth
falls within two narrow time windows. At the equator, these
correspond to the ascending and descending orbit passes. Near
the poles, the windows widen to several hours but remain
relatively narrow. Since surface temperatures can fluctuate
widely during the day, daily averaging is not generally useful
since it smears diurnal temperature fluctuations in the aver-
aged Tp. However, it is reasonable to split the data into two
distinct Itod images per day [2]. The CETB adopts the Itod
division scheme for the northern and southern hemisphere.
At low latitudes, which typically have few overlapping swaths
at similar Itod in the same day, ltod division is equivalent to
ascending/descending division. An ancillary image is included
for each sensor in the CETB to describe the effective time
average of the measurements combined into the pixel for
a particular day. This enables the investigators to explicitly
account for the ltod temporal variation of the measurements
included in a particular pixel.

This same approach is used for SMAP radiometer obser-
vations. Histograms of the ltod SMAP radiometer mea-
surements falling within two narrow high-latitude bands
(70°=71° N and S) are shown in Fig. 3. Note that a natural
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division in the measurement Itod is at 00:00 and 12:00 h.
Following [1], [2], when processing SMAP radiometer data,
the CETB creates two separate 1tod images per day using these
temporal divisions.

C. Radiometer Spatial Response Function

The effective spatial resolution of the image products
is determined by the spatial measurement response func-
tion (MRF) of the sensor and by the image formation algorithm
used. The MRF is determined by the antenna gain pattern,
the scan geometry (notably the antenna scan angle), and
the measurement integration period. The MRF for a general
microwave radiometer is derived in [2]. This section provides
a brief summary of the derivation of the MRF and the algo-
rithms used for Tp image construction from the measurements.
We note that for Tp image reconstruction, the MRF can be
treated as zero everywhere but in the direction of the surface.

Microwave radiometers measure the thermal emission,
sometimes called the Plank radiation, radiating from natural
objects [11]. In a typical radiometer, an antenna is scanned
over the scene of interest and the output power from the
carefully calibrated receiver is measured as a function of
scan position. The reported signal is a temporal average
of the filtered received signal power. The observed power
is related to receiver gain and noise figure, antenna loss,
physical temperature of the antenna, antenna pattern, and scene
brightness temperature [11].

Because the antenna is rotating during the integration
period, the effective antenna gain pattern G, is a smeared
version of the instantaneous antenna pattern G, that is,

Tp
Gs(9,¢)=Tp_1/0 GO, ¢ + w,t)dt (1)

where T, is the integration period and w, is the antenna
rotation rate. In simplified form, the observed brightness
temperature measurement z can be expressed as

7= / MRF(x, y)Tg(x, y)dxdy + Thon 2)

where Tnhon is the effective brightness temperature contribu-
tion of sources not related to the surface brightness tempera-
ture distribution Tg(x, y). MRF(x, y) is the MRF expressed
in surface coordinates x and y

MRE(x, y) = G, 'Gy(x, y) A3)

where Gy, is the spatially integrated gain over the surface

Gy = / / Gy (x, y)dxdy. @)

Careful calibration and preprocessing estimates and removes
Thon from the measurements. The image formation estimates
the surface brightness temperature map Tp(x,y) from the
calibrated measurements z.

III. GRIDDING AND RECONSTRUCTION

Algorithms that generate 2-D gridded images from raw
measurements are characterized by a tradeoff between noise
and spatial resolution. Our goal is to estimate an image of
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TABLE I
SMAP NESTED GRID RESOLUTIONS

Grid Resolution
36 km*
9 km
6 kmt
3 km
* Base pixel size.
1 Non-standard SMAP grid size.

TABLE 11
CETB NESTED GRID RESOLUTIONS

Grid Scale Factor  Grid Resolution

1=20 25 km*
2=21 12.5 km
4 =22 6.25 km
8§ =23 3.125 km
16 = 24 1.5625 km

* Base pixel size.

the surface Tp(x, y) from the sensor 75 measurements. The
“nominal” resolution of the 7p measurements is typically
considered to be the size of the 3-dB response pattern of
the MRF. Although the effective resolution of DIB imaging
is no finer than the effective resolution of the measurements,
reconstruction techniques can yield higher effective resolution
if spatial sampling requirements are met.

As previously noted, the CETB team generated both low-
noise gridded data and enhanced-resolution data products [1].
The low resolution gridded data use the DIB method described
below. These products are termed “low resolution” or ‘“nonen-
hanced resolution” and denoted as gridded (GRD or DIB)
products. Higher resolution products are generated using one
of two image reconstruction methods: the rSIR algorithm or
the BG image formation method, as described below. The
CETB independently optimizes the resolution for each channel
in the high-resolution products. The product is Earth-located
(in contrast to swath-based) using the EASE-Grid 2.0 [4], [5]
map projection.

In generating CETB gridded data, only the measurements
from a single sensor and channel are processed. Measurements
combined into a single grid element may have different inci-
dence angles (though the incidence angle variation is small)
and azimuth angles relative to north. Measurements from
multiple orbit passes over a narrow local time window may
be combined. When multiple measurements are combined,
the resulting images represent a temporal average of the
measurements over the averaging period. There is an implicit
assumption that the surface characteristics remain constant
over the imaging period and that there is no azimuth varia-
tion in the true surface 7. For both conventional-resolution
(nonenhanced) and enhanced-resolution images, the effective
gridded image resolution depends on the number of measure-
ments and the precise details of their overlap, orientation, and
spatial locations.

Two image grids are considered: SMAP-compatible and
CETB-compatible. Both use the EASE-Grid 2.0 projec-
tion [4], [5], but at different resolutions, see Tables I and II.
In the CETB, radiometer channels are gridded at enhanced
resolution on nested grids at power of 2 relationships to the
base 25-km grid, see Table II and Fig. 4. This embedded
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Fig. 4. Nesting configuration of the (Left) CETB and (Right) SMAP project
grids. The 6-km nested SMAP grid is an extension of the SMAP standard.

gridding simplifies overlaying grids from different resolutions.
For SMAP, a slightly different scheme is employed based on
a base 36-km grid as shown in Table I and Fig. 4.

A. Reconstruction Algorithms

In the reconstruction algorithms, the MRF for each mea-
surement is used in estimating the surface 7p on a fine-
scale grid. As previously noted, the MRF is determined by
the antenna gain pattern, the scan angle geometry, and the
measurement integration period. The MRF describes how
much the emissions from a particular location on the surface
contribute to the observed T value.

For image formation, 7p is computed at each pixel on
the EASE-Grid 2.0 grid. If the measurement sampling pat-
tern were uniform on this grid, classic reconstruction and
deconvolution techniques could be used. However, the sensor
measurements are not aligned with the Earth-centered grid,
which results in an irregular sampling pattern. Thus, signal
reconstruction based on irregular sampling is applied to the
problem. Since the signal measurements are noisy, rather than
do full signal reconstruction, which could produce excessive
noise enhancement, only partial reconstruction is computed.
This is done by regularization, which imposes a smoothing
constraint on the reconstructed image and preventing extreme
values.

The rSIR has proven effective in generating high-resolution
brightness temperature images [2], [9]. The rSIR estimate
approximates a maximum-entropy solution to an underdeter-
mined equation and least-squares to an overdetermined system.
rSIR provides results superior to the Backus—Gilbert method,
and with significantly less computation [2].

Regularization is built into BG and rSIR to enable a tradeoff
between signal reconstruction accuracy and noise enhance-
ment. Both approaches enable estimation of the surface
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brightness on a finer grid than is possible with the conventional
DIB approaches, i.e., the resulting brightness temperature esti-
mate has a finer effective spatial resolution than DIB methods.
As a result, the results are often called “enhanced resolution,”
though, in fact, the reconstruction algorithm merely exploits
the available information to reconstruct the original signal at
higher resolution than DIB gridding, based on the assumption
of a bandlimited signal [10]. The potential resolution enhance-
ment depends on the sampling density and the MRF; however,
improvements of 25%—-1000% in the effective resolution have
been demonstrated in practice for particular applications. For
radiometer enhancement, the effective improvement in reso-
lution tends to be limited, and, in practice, is typically less
than 100%. Nevertheless, the resulting images have improved
spatial resolution and information. Note that in order to meet
Nyquist requirements for the signal processing, the pixel
resolution of the images must be finer than the effective
resolution by at least a factor of 2. When multiple passes over
the area are combined, reconstruction algorithms intrinsically
exploit the resulting oversampling of the surface to improve
the effective spatial resolution in the final image.

For comparison, note that the effective resolution for DIB
gridding is essentially the sum of pixel grid size plus the spatial
dimension of the measurement, which is typically defined by
the half-power or the 3-dB beamwidth. Based on Nyquist
considerations, the highest representable spatial frequency for
DIB gridding is twice the grid spacing.

B. rSIR Reconstruction

Noting that others (e.g., [12]) are pursuing the use of
BG for SMAP processing, our emphasis in this paper is
on the use of rSIR. However, it is useful to compare rSIR
and BG performance, which also provides insight into the
reconstruction performance of both algorithms.

In the reconstruction the surface brightness temperature
distribution Tp(x, y) is treated as a discrete signal sampled
at the map pixel spacing and is estimated from the noisy
measurements z. To summarize the reconstruction approach,
Tp is vectorized over an Ny x N, pixel grid into a single
dimensional variable a; = Tg(xj, y;), where j = [ + Nyk.
A particular calibration-corrected measurement x; can be

expressed as
> hija; (5)
je image

where h;; = MRF(x;, yr) is the discretely sampled MRF
for the ith measurement evaluated at the jth pixel center.
The MRF is typically negligible some distance from the
measurement, so the sum need only be computed over an area
local to the measurement position. The h;; are normalized
so that ) jhij = 1. Written as a matrix equation for the
collection of available measurements, (5) becomes

=

T = Ha (6)

where H contains the sampled MRF for each measurement and
T and a are vectors composed of the measurements z; and
the sampled surface brightness temperature a;, respectively.
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The matrix H is sparse, and may be overdetermined or
underdetermined depending on the sampling density.

The rSIR algorithm iteratively solves (6) [9]. It approx-
imates a maximum-entropy solution to an underdetermined
equation and a least-squares solution to an overdetermined
system. The first iteration of rSIR, termed “AVE” (for weighted
AVErage), is a simple estimate of 7p with the jth pixel
given by

0 _ 2uihijzi
T Yihi

At the kth (k > 0) iteration of rSIR, the jth image pixel af
is computed using

fk = M
' Zn hi"

df = \zi/fF

—1
1 1 1
k
[ﬁ(“ﬁ)*ﬁ«] At
f; i a;d;

a

)

{Efik(l - d,k) +a§‘-d{‘} , df <1
k
S Do hij”i,j

! Zi hij

The more general BG inversion method [6], [7] was first
applied to radiometer data by Stogryn [8] and then by oth-
ers [2], [9], [20], [21] to improve the spatial resolution of
surface brightness temperature fields. In a discrete implemen-
tation of BG, the Tp estimate aAj of the jth pixel is written as

>

ie nearby

~

aj = WijZi @)

where the sum is computed over nearby pixels and where
w;j are weights selected so that Zi w;j = 1. To generate
a unique solution for a particular pixel j, the squared signal
error term Qg is expressed as

2

Or = wijhij —1 9)

>

je nearby

and the noise error term Qy written as

On =0"ED (10)

where E is the noise covariance matrix. The total error Q is

Q= Qprcosy +wQpsiny (11

where  is an arbitrary dimensional tuning parameter and
y is a subjectively selected parameter to tradeoff noise and
signal error. For SMAP, the matrix E is a diagonal matrix with
diagonal entries AT /2 where AT is the radiometer channel
noise standard deviation. Varying y alters the solution for the
weights between a least-squares solution and a minimum noise
solution.
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The total error Q is minimized when the weight vector for
the pixel is selected as [7]

1 —u'Z Yicosy
(12)

0 =2""(v; cos — —
v (Dl y+ ul7-'u

where
IZ,‘ = Zhij = 5,'
J
Z = Gjcosy +wEsiny
Gj = hijhkj.

For both rSIR and BG, we follow [2] to define “nearby”
as regions where the MRF is within 8§ dB of the peak
response, which helps minimize computation. Outside this
region, the MRF is treated as zero. TB is separately calculated
for each output pixel and each channel using the particular
measurement geometry antenna pattern at the swath location
and Earth azimuth scan angle. This increases the computa-
tional load but results in the best quality images. Due to
occasional poor matrix condition numbers, the BG method
occasionally produces artifacts. These are eliminated with the
aid of a median-threshold filter [2].

Note that in applying both DIB and reconstruction process-
ing to SMAP, each polarization channel is separately and
independently computed. No power normalization is applied.

IV. PERFORMANCE SIMULATION

To compare the performance of the reconstruction tech-
niques, it is helpful to use simulation. The results of these
simulations inform the tradeoffs needed to select processing
algorithm parameters. A simplified, but still realistic, simu-
lation of the SMAP geometry and SRF is used to generate
simulated measurements of a synthetic Earth-centered image.
From both noisy and noise-free measurements, DIB, AVE,
rSIR, and BG images are created, with error (mean, and root-
mean-square [rms]) determined for each case. This is repeated
separately for each channel. The measurements are assumed
to have a standard deviation of AT = 1 K. The results
are relatively insensitive to the AT value used. The same
simulated measurements are used for both BG and rSIR.

Following [2], two different pass cases are considered: the
single-pass case and the case with two overlapping passes.
The simulation shows that the relative performance of rSIR
and BG are the same for both cases, so we show only one
case in this paper. Since multiple passes are often combined,
the two-pass case is emphasized in the simulations presented.

An arbitrary “truth” image is generated with representative
features including spots of varying sizes, edges, and areas of
constant and gradient Tp, see Fig. 5. Based on the SMAP
measurement geometry, simulated locations of antenna bore-
site at the center of the integration period are plotted in Fig. 6
for both a single pass and two passes.

An analysis of the rSIR reconstruction accuracy relative to
the accuracy of the MRF was conducted by [2]. They found
that because rSIR does only partial reconstruction, it is tolerant
to errors in describing the MRF. Hence, a simplified model
for the MRF can be used. The SMAP MRF is modeled with a
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Fig. 5. Tp images from different methods. (a) True image used in simulation.
The true image has been bandpass filtered to 10-km effective resolution,
which accounts for the Gibbs phenomena at region boundaries. (b) AVE (first
iteration of rSIR). (c) DIB (25 km). (d) rSIR 20 iterations. (¢) BG with
y = 0.4257 . Error statistics are summarized in Table III.
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Fig. 6. [Illustrations of the measurement locations within a small area of the
SMAP coverage swath. (a) Locations for a single orbit pass. (b) Locations
for two passes. In this case, the along-track/cross-track grid shown is for the
first pass only. The second pass has a different alignment.

2-D Gaussian function whose 3-dB (half-power) point matches
the footprint size. The orientation of the ellipse varies over the
swath according to the azimuth antenna angle. To apply the
MREF in the processing, the MRF is positioned at the center
of the nearest neighbor pixel to the measurement location and
oriented with the azimuth antenna angle. The values of the
discrete MRF are computed at the center of each pixel in a
box surrounding the pixel center. The size of the box is defined
to be the smallest enclosing box for which the sampled antenna
pattern is larger than a minimum gain threshold of —30 dB
relative to the peak gain. A second threshold (typically —8 dB)
defines the gain cutoff used in the rSIR and BG processing.
The latter threshold defines the Ngi,e parameter used by
Long and Daum [9] and is the same value used in the CETB
for other satellite radiometers.

The image pixel size defines how well the MRF can be
represented in the reconstruction processing and the simu-
lation. A representative plot of the MRF sampling for each
channel for each pixel size under consideration is shown
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Fig. 7. Illustration of a particular sampled MRF for different pixel
sizes. (Top left) 6.25-km pixels. (Top right) 3.125-km pixels. (Bottom
left) 1.5625-km pixels. (Bottom right) Perspective view of the 3.125-km case.

TABLE III

ERROR STATISTICS FOR ONE- AND TWO-PASS SIMULATIONS ON A CETB
3.125-km GRID. rSIR USES 30 ITERATIONS. BG USES y = 0.425%

Case Passes Mean STD RMS
DIB 1 -0.19  6.10 6.10
AVE 1 0.00 6.20 6.20
BG 1 -0.48  5.61 5.63
rSIR 1 0.02 5.12 5.12
DIB 2 -0.22  6.13 6.13
AVE 2 -0.02  6.08 6.08
BG 2 -0.27  5.28 5.28
rSIR 2 0.01 5.16 5.16

in Fig. 7. Note that as the pixel size is decreased, the sampled
MRF more closely resembles the continuous MREF, thereby
reducing quantization error; however, reducing the pixel size
increases the computation and size of the output products.
Finer resolution leads to less “chunky” appearing images on a
finer posting grid. Note that the image results need to be posted
at twice the highest frequency to meet Nyquist requirements.

Separate images are created for both noisy and noise-free
measurements. Error statistics (mean, standard deviation, and
rms) are computed from the difference between the “truth”
and estimated images for each algorithm option. The noise-
only rms statistic is created by taking the square root of the
difference of the squared noisy and noise-free rms values.
DIB images are created by collecting and averaging all mea-
surements whose center falls within each base pixel size grid
element. For comparison with high-resolution BG and rSIR
images. in this paper, the DIB image is pixel-replicated to
match the pixels of the rSIR or BG images.

Fig. 5 illustrates a typical simulation result for the dual pass
case. It shows the true image and the noisy image estimates.
The error statistics for this case are given in Table III. For
this example, the image size is 448 x 224 pixels with Py =
3.125-km-sized pixels. For most cases, the error is effectively
zero mean. For all cases, multiple passes have the smallest
error. The rms error is the smallest for the rSIR results,
followed by BG. Visually, DIB and AVE are similar, while
rSIR images better define edges. The spots are much more
visible in the rSIR and BG images than in the DIB images,
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TABLE IV

rSIR SIMULATION ERROR STATISTICS VERSUS PIXEL GRID
SI1ZE FOR TWO PASSES AND 20 ITERATIONS

Grid Size Mean STD RMS
CETB 1526 km 0.04 5.14 5.14
CETB 3.125km 001 516 5.16
CETB 625km 002 512 512
CETB 125km 001 393 393
CETB 25 km 0.03 3.00 3.00
SMAP 1.5 km 00l 512 5.12
SMAP 3 km 002 514 5.14
SMAP* 6 km 001 531 531
SMAP 9 km 0.02 427 427
SMAP* 12 km 003 395 395
SMAP 18 km 001 361 3.61
* Extended
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Fig. 8. (Top) rSIR error versus iteration number. (Top left) Mean error. (Top
right) RMS error. Red line: noisy measurement case. Blue line: noise-free
measurement case. Green is the noise power computed from the difference
between the noisy and noise-free cases. Green line: vertically displaced for
clarity. The large spot is the error for the AVE image. The “optimum”
(minimum error) number of iterations occurs at the minimum of the red curve.
For reference, the vertical dashed line is shown at 20 iterations. The horizontal
dotted line shows the optimum (minimum) BG value, while the solid line is
the DIB value. (Bottom) RMS noise power versus rms signal error for each
iteration, which extends from right to left. Large square: DIB result. Large
black dot: AVE. Red star: rSIR at 20 iterations. Triangle: BG at its optimum y .
Note that rSIR has similar signal error BG but less noise.

though the rSIR and BG images have a higher apparent noise
“texture.” The BG image resembles the rSIR image but is
noisier.

A. Selection of Pixel Size
DIB images are formed at the base pixel size for each
projection (see Tables I and II)). A key question in applying



4158

h

Fig. 9. BG simulation images for various values of y’. (a) y’ = 0, rms
error = 90 K. (b) y’ = 0.15, rms error = 7.26 K. (c) y’ = 0.2, rms error =
6.62 K. (d) y’ = 0.25, rms error = 6.22 K. (e) y’ = 0.325, rms error = 5.84 K.
(f) ' = 0.425, rms error = 5.49 K. (g) y’ = 0.475, rms error = 5.29 K.
(h) ' = 0.495, rms error = 5.53 K. (i) ' = 0.5, rms error = 6.35 K. The
true image is shown in Fig. 5(a).

reconstruction processing is determining the appropriate fine
pixel resolution. The problem is simplified by the small
number of “standard” pixel sizes available for each projection
family (see Tables I and II).

Table IV compares the simulation error versus pixel size
for both CETB and SMAP standard grids. Comparing similar
pixel sizes from the different projections suggests that the
projection choice has only a very limited effect—the pixel
size is the most critical factor, and there is a tradeoff between
pixel size and noise level. Since the computation increases
with decreasing pixel size, larger pixel sizes are generally
preferred to minimize the computational load. However, finer
pixels are desired to exploit the finer resolution possible
with the reconstruction. For CETB, another consideration is
compatibility with the grid sizes used by other sensor products.
Thus, for CETB, we adopt the 3.125-km processing grid.
Noting that the error is smaller for 3-km grid elements than
for 6-km elements, we adopt the 3-km grid size for the SMAP
grid product.

B. Selecting the rSIR Number of Iterations

As noted in [2], there is a tradeoff between the recon-
struction accuracy and the noise level. Truncating the rSIR
iteration at an appropriate point minimizes the overall error.
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Fig. 10. (Top) BG error versus y’. (Top left) Mean error. (Top right) RMS
error. The locations of the optimum (i.e., the minimum rms error) values are
indicated with black triangles. Red line: noisy BG. Blue line: median-filtered

case. (Bottom) RMS noise versus rms signal error for different y . These lines
coincide in the plot.

TABLE V

SQUARE ROOT OF MEASURED SRF AREA (IN KILOMETERS)
AT VARIOUS CUTOFF LEVELS

Case -3dB -10dB -20DB
AVE 61.4 106.9 137.5
DIB 51.35 88.7 112.8
BG 443 70.8 81.5

rSIR 46.9 74.7 106.6

To understand the tradeoff between the number of iterations
and signal and noise, Fig. 8 plots the mean, standard deviation,
and rms error versus iteration. Also shown in this figure are the
errors for the DIB and AVE (the first iteration of rSIR) images.
As the number of iterations is increased, the images sharpen
and the details become more evident, which is reflected in the
fact that the signal rms error decreases; however, the noise
level also increases with increasing iteration. Thus, while the
iteration improves the signal, excessive iteration can overly
enhance the noise. Noting that we can stop the rSIR iter-
ation at any point, we somewhat arbitrarily choose a value
of 20 iterations, which provides good signal performance and
only slightly degraded the noise performance. This is the
value used in Table III, where we see that the overall error
performance of the rSIR reconstruction is better than the DIB
and BG results.

To understand the effects of grid size, the simulations were
repeated for different values of Ny and different number of
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Representative estimated MRFs for (Top left) DIB, (Top right) AVE, (Bottom left) rSIR, and (Bottom right) BG. Black contours are at —3 dB,

the red contour are at —6 dB, and the white contours are at —10 dB from the normalized peak at the center. Note that rSIR and BG both have smaller

—3- and —6-dB contours than AVE, with rSIR slightly smaller than BG.

passes. Although the numerical values of the rms error change,
the overall ranking and relative spacing of the DIB, rSIR, and
BG values are the same for all cases. Detailed analysis of each
comparison is not presented, but the results can be summarized
as follows.

1) Within a wide range of the number of iterations
employed, the error and resolution performance of
rSIR is better than DIB. rSIR provides better effective
resolution than DIB.

2) Based on the rms error comparison, the performance of
rSIR is slightly better than BG with the optimum y, and
thus rSIR is preferred over BG.

These observations are consistent with those from other
satellite radiometers considered in the CETB [2].

C. Selecting the Optimum BG vy

As previously noted, the BG approach requires selection of
a subjective tuning parameter y , which controls the regulariza-
tion and relative weighting between signal reconstruction and
noise enhancement. The value of y can range from 0 to = /2.
Note that, for simplicity, in the captions and plots, the symbol
y’ or g are sometimes used, which are related to y by
y = (x/2)y’ and y = mg. Fig. 9 compares the images
resulting from different y’ values. Note that as y is varied
between its extremes, the images vary from smooth but not
very detailed, to having greater detail, but also excessive noise
and artifacts. As seen in Fig. 5, at value of y corresponding

TABLE VI

INVERSE RADIUS OF THE SRF SPECTRUM AREA EXPRESSED
(IN KILOMETERS) AT VARIOUS CUTOFF LEVELS.
SMALLER VALUES CORRESPOND
TO FINER RESOLUTION

Case -3dB -10dB -20DB
AVE 63.1 37.1 26.9
DIB 52.2 30.7 22.0
BG 30.7 22.6 18.8
rSIR 30.0 23.7 20.4

to the minimum total error (y’ = 0.425), the rSIR and BG
results appear similar, though rSIR has slightly better error
performance (see Table III).

Note that due to the occasional poorly conditioned matrix,
some BG-estimated pixels have extreme values. These can be
suppressed by applying a 3 x 3 median filter after the BG
processing. The median filter reduces the rms error in the
image. The median filter is edge preserving and so has minimal
effect on the image quality.

For small values of y’, the noise is the most enhanced but
the features are the sharpest. For larger values of y’, the noise
texturing is reduced but features are smoothed. A plot of the
rms error versus y’ is shown in Fig. 10. We note that BG
requires significantly more computation than does rSIR since
it requires creating and inverting a matrix for each image pixel.
This makes using BG very difficult for large images, and is a
factor in the selection of rSIR for use in the CETB.
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are at —6 dB, and the white contours are at —10 dB from the normalized peak at the center. The green dashed square is at a spatial frequency of 1/50 km
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Note that rSIR and BG have wider frequency responses, and therefore finder resolution than DIB and AVE. rSIR and BG have similar —3-dB responses, but
rSIR has a faster rolloff at higher frequencies and, thus, is less sensitive to noise.

V. PIXEL RESPONSE FUNCTIONS

The MRF describes the spatial characteristics of an indi-
vidual measurement while the pixel SRF describes the spatial
characteristics of the estimated pixel. In effect, the SRF is
the impulse response of the measurement system, including
the reconstruction. Analysis of the SRF validates the effective
resolution of the image reconstruction.

In AVE, DIB, and BG, the pixel value is the weighted
linear sum of measurements included in the pixel value.
Thus, the SRF can be computed as the weighted sum of the
measurement MRFs. Note that the SRF can vary from pixel
to pixel due to the differences in location of the measurement
within the pixel area and variations in the MRFs for the
measurements. (This variation in the MRF precludes the use
of deconvolution algorithms.) To compute the approximate
SRF of rSIR, we use a simulation of a synthetic truth image
consisting of a delta function, i.e., a single large-valued pixel,
with other pixel values set to the background value [13].
The result is normalized to 1. The effective resolution can
be evaluated as the area of the SRF greater than a particular
threshold. These values are tabulated in Table V. Note that
while rSIR and BG are similar, by this metric, BG provides
somewhat finer resolution.

Another measure of the effective resolution of the SRF is
obtained by considering the spectrum of the SRE. For this,
we compute the Fourier transforms of the SRFs in Fig. 11,

shown in Fig. 12. As a measure of the spectral resolution,
the area in spatial frequency units is computed. This is
converted into an equivalent circular radius (the resolution)
by scaling the area by 1/z. The inverse of this value is
shown for each case in Table VI. By this measure, rSIR pro-
vides the finest resolution for the —3-dB contour level, with
BG providing somewhat greater frequency content at the
—20- and —10-dB levels. We note that the faster rolloff of
rSIR helps explain why it has lower noise than BG.

VI. ACTUAL DATA

Having selected the grid size and regularization parame-
ters based on simulation, in this section, we compare the
performance of DIB and rSIR image reconstruction applied
to actual data (see Fig. 13). These evening ltod images
are small (250 km x 250 km) subimages extracted from
the full EASE-Grid 2.0 Northern Hemisphere grid using the
selected grid size and algorithm parameters derived from
simulation. Lacking T ground-truth data, Ty errors cannot be
directly computed. A visual comparison of the images reveals
improved detail in the rSIR and BG images compared to the
DIB images. As expected, the DIB images are blocky, while
the high-resolution images exhibit finer resolution. Subjec-
tively, the rSIR images have the highest contrast and appear
more detailed than the BG images. The BG images exhibit
greater texturing and noise compared to the rSIR images.
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Fig. 13. Northern Hemisphere SMAP Radiometer EASE-Grid 2.0 1.4 GHz, vertically polarized, brightness temperature images, single morning overpasses, day
of year 092, 2015, demonstrating spatial resolution enhancement from (Top row) 25-km DIB to(Center row) 3.125-km rSIR, and(Bottom row) 3.125-km BG.
The left column shows the U.S. Midwest Mississippi Valley, from the Great Lakes to the Gulf of Mexico, with (green) Global Self-Consistent, Hierarchical,
High-Resolution Geography Database coastlines [22]. The right column is magnified area of respective DIB, rSIR, and BG images, with (blue) Global Lakes
and Wetlands Database Level 2 rivers and wetlands [23]. Note colder brightness temperature area evident along Mississippi Valley, with greater detail in rSIR
and BG image reconstructions.

In these images, the cooler (darker) areas generally corre- west of the Mississippi River is the result of intense rain in
spond to regions with greater soil moisture. The dark patch the preceding days before these data are collected. However,
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we note that derived soil moisture estimates include other
factors such as soil type and vegetation cover, which is not
directly evident in the 7p images. In later papers, we use
the derived T images to compare derived soil moisture with
in situ soil moisture measurements.

VII. CONCLUSION

This paper focuses on the production of stand-alone SMAP
Tp image products at enhanced resolution. These can be
directly used in vegetation and land studies or as input to
SMAP soil moisture estimation algorithms to generate high-
resolution soil moisture maps. The SMAP Tp images will be
incorporated into the NASA-sponsored CETB ESDR, which
includes a long time series of consistently calibrated Tp
images from SMMR, SSM/I, SSMIS, and AMSR-E [1], and
will be employed in generating high-resolution soil moisture
maps.

This paper has compared the performance of the rSIR, BG,
and DIB image production methods. The effects of grid size
selection have been considered, and the tradeoffs in selecting
the values of the regularization parameters in BG and rSIR
are considered. The results demonstrate that reconstruction
using rSIR and BG produce a finer resolution, lower rms errors
images than DIB. The rSIR and BG algorithms produce simi-
lar, though not identical, results, with rSIR exhibiting slightly
lower noise based on simulation. rSIR has a finer resolution
by some metrics. Because rSIR requires significantly less
computation, rSIR is adopted for generating SMAP enhanced
resolution for CETB.
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