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Scatterometer Backscatter Imaging Using
Backus–Gilbert Inversion

David G. Long , Fellow, IEEE

Abstract— Wind scatterometer measurements are collected
over an irregular grid, and processing is required to gener-
ate backscatter images on an Earth-centered grid. The most
common algorithms used for this are “drop in the bucket”
(DIB) and variations of the scatterometer image reconstruction
(SIR) algorithm. These algorithms are also used for radiome-
ter brightness temperature imaging. The Backus–Gilbert (BG)
algorithm has been used for radiometer imaging but has not
been applied to scatterometer backscatter imaging. In this paper,
the application of BG to scatterometer backscatter imaging is
explored and its performance is compared to DIB and SIR.
Like SIR, optimally tuned BG is capable of producing higher
resolution images than DIB, though its noise performance is
slightly inferior to SIR’s. While BG and SIR produce similar
results for radiometer data, the higher relative noise level of
scatterometer data increases the differences between the SIR and
BG algorithm performance, and limits the performance of BG
relative to SIR in scatterometer imaging. Comparison of the SIR
and BG algorithms in scatterometer imaging offers important
insights into the inversion/reconstruction problem.

Index Terms— Backscatter, Backus–Gilbert (BG), reconstruc-
tion, sampling, scatterometer, scatterometer image reconstruc-
tion (SIR), variable aperture.

I. INTRODUCTION

M ICROWAVE wind scatterometers measure the normal-
ized radar cross section (σ o) of the Earth’s surface

from which the near-surface wind over the ocean can be esti-
mated. Originally designed for ocean wind estimation, wind
scatterometer σ o observations have proven useful in a variety
of studies of land, vegetation, and ice [1]. Algorithms for
creating images of the scatterometer surface backscatter are
characterized by a tradeoff between noise and spatial and
temporal resolution. Conventional gridding techniques such as
“drop-in-the-bucket” (DIB) gridding provide low-noise, low-
resolution products, but higher spatial resolution products are
possible using image reconstruction techniques such as the
scatterometer image reconstruction (SIR) algorithm [2]–[4].
These algorithms are also successfully used for creating
microwave brightness temperature (TB) images from satellite
radiometer data [5], [6].

Another commonly used algorithm for TB image formation
is based on Backus–Gilbert (BG) inversion [5], [7]–[14];
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however, BG has not been applied to scatterometer data.
The purpose of this paper is to explore the application of BG
to scatterometer backscatter imaging. We focus on evaluating
BG as applied to the Ku-band SeaWinds sensor on the
Quick Scatterometer (QuikSCAT) [15] mission, though the
results are applicable to other wind scatterometers, as well
as other types of sensors. The performance of scatterometer
BG is compared to DIB gridding and SIR reconstruction.
Like SIR, BG provides finer resolution backscatter images
than conventional DIB; however, its effective noise perfor-
mance is slightly inferior to that of SIR when applied to
scatterometer data. Given the similarity in performance for
BG and SIR when applied to radiometer data, the differ-
ence between the algorithms’ performance for scatterometer
data is surprising. Using theory, simulation and actual data,
we explore the reasons for this, which we find are related to
the difference in the ratio of the noise variance to the dynamic
range between scatterometer and radiometer measurements.
This result has important implications for applying BG to
resolution enhancement or resolution matching for other active
microwave sensors.

This paper is organized as follows. After some brief back-
ground, a review of SIR is provided. Simulation is then
employed to compare and contrast the performance of the
algorithms. Finally, a summary conclusion is provided.

II. BACKGROUND

The conventional-resolution scatterometer backscatter
images are based on classic DIB methods described in
more detail in Section V. Enhanced-resolution products with
finer spatial resolution are produced using the SIR algor-
ithm [3], [19]. SIR uses signal reconstruction techniques to
estimate σ o on a finer grid than with simple DIB techniques.
The higher resolution is possible using the measurement
spatial response function (MRF) of the individual
measurements. The BG algorithm offers an alternative to the
use of SIR.

In this paper, SeaWinds on QuikSCAT (hereafter,
QuikSCAT) data is used to compare BG and SIR algorithm
performance. QuikSCAT was launched in 1999 and oper-
ated for approximately 10 years in wind observation mode.
Since the failure of its spin bearing in November 2009,
it has continued to collect narrow-swath data to the present.
A detailed description of QuikSCAT is provided in [16].
QuikSCAT collects measurements of the surface normalized
radar cross section (σ o) at Ku-band using a dual-beam scan-
ning pencil-beam antenna. The antenna footprint is a 25 km ×
35 km ellipse on the surface. Transmit signal modulation and
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receiver processing enables “slicing” of the footprint into finer
resolution σ o measurements [15]. Note that the measurement
incidence angle over the antenna pattern 3-dB footprint varies
by less than 1◦. This variation is not considered in this paper.

III. ACTIVE VERSUS PASSIVE MEASUREMENTS

In order to understand the differences in the performance
of the BG and SIR algorithms when applied to scatterom-
eter and radiometer measurements, it is helpful to review
the differences between active (radar scatterometer) and pas-
sive (radiometer) microwave measurements. Radiometer TB
measurements are expressed in degrees Kelvin. Over land
and ice, observed TB values typically range from about
220 to 290 K. Unitless scatterometer normalized radar cross
section (σ o) measurements are typically expressed in decibel
and range from −40 to −5 dB at Ku-band. The measurement
noise characteristics of radiometers and scatterometers are
quite different. In particular, while the variability or noise in
radiometer TB measurements can be treated as independent of
the true TB value, scatterometer σ o noise is not independent of
the σ o value [17]. In addition, the MRFs of the measurements
differ. In this section, after considering the MRFs of the
sensors, the different measurement noise characteristics are
discussed.

A. Microwave Sensor MRFs
The effective MRF of a microwave measurement is deter-

mined by a combination of the antenna gain pattern, the obser-
vation geometry, and signal processing [1], [6], [18]. In the
case of an active sensor such as a scatterometer, since the
time traveled during the transmit pulselength is typically short
compared to the footprint, the motion of the spacecraft during
the transmit pulse can be neglected when computing the MRF,
i.e., the “stop-and-hop” approximation can be applied [1]. For
a passive microwave sensor, the MRF of a radiometer mea-
surement includes the effect of antenna gain pattern smearing
during the relatively long integration period [6]. In both cases,
the MRF can differ from pulse to pulse, which can preclude
the use of conventional image deconvolution methods.

The scatterometer-observed backscatter is related to the
antenna pattern and signal processing via the integral form of
the radar equation [1]. For our purposes, the measured radar
echo power Pi for a particular measurement i with a particular
polarization can be written in terms of ground coordinates
(x, y) as

Pi = PTλ

(4π)3

��
Gt(x, y; i)Gr(x, y; i)Gp(x, y; i)σ o(x, y)

R4(x, y)
dx dy

+ noise (1)

where PT is the transmit power, λ is the radar wavelength,
Gt(x, y; i) and Gr(x, y; i) are the effective transmit and
receive antenna gain at the surface for the particular antenna
rotation angle of the i th measurement, Gp(x, y; i) is the
processor gain at (x, y), R(x, y) is the slant range from the
radar to the surface at (x, y), and σ o(x, y) is the normalized
radar cross section. The integration is over the region of the
nonnegligible gain product GtGrGp. In practice, a separate

measurement of the noise-only power is made and subtracted
from the measured receive signal power to estimate the
signal-only power [1], [15]. The reported backscatter measure-
ment si is [16]

si = Pi

X (i)
+ residual noise (2)

where the residual noise is the residual variability after noise
subtraction and where the so-called “X-factor” X [18] is
given by

X (i) = PTλ

(4π)3

��
Gt(x, y; i)Gr(x, y; i)Gp(x, y; i)

R4(x, y)
dx dy.

(3)

The σ o measurement si can thus be modeled as

si =
��

MRFs(x, y; i)σ o(x, y) dx dy + residual noise (4)

where MRFs(x, y; i) is the MRF of the particular σ o mea-
surement given by

MRFs(x, y; i)= PTλ

X (i)(4π)3

Gt(x, y; i)Gr(x, y; i)Gp(x, y; i)

R4(x, y)
.

(5)

Noting that R(x, y) is very large and varies only slightly
over the nonnegligible integrand in (3), the MRF can be
approximated as

MRFs(x, y; i) ≈ C(i)Gt(x, y; i)Gr(x, y; i)Gp(x, y; i) (6)

where C(i) is a measurement-dependent constant, that is,

C(i) = PTλ

X (i)(4π)3 R
4
(i)

(7)

where R(i) is the nominal slant range to the footprint center.
The MRF is thus seen to be a function of the two-way antenna
gain pattern and the processor gain function.

Note that the shape and 3-dB footprint size of the MRF
differs from measurement to measurement. The nominal “res-
olution” of the σ o measurement corresponds to the dimensions
of the 3-dB response pattern of the MRF on the surface. This
is the resolution used for conventional DIB backscatter imag-
ing [2]; however, finer resolution backscatter images can be
produced using reconstruction processing [2], [3], [19], [20].

By comparison, a particular brightness temperature mea-
surement Ti collected by a radiometer can be written as [6]

Ti =
��

MRFr (x, y; i)TB(x, y) dx dy + residual noise (8)

where TB(x, y) is the surface TB and the radiometer MRF is

MRFr (x, y; i) = 1

Gb(i)

�
Gs(x, y; i) dt (9)

where the integral is over the measurement integration period,
Gs(x, y; i) is the one-way antenna gain at a particular azimuth
angle corresponding to the i th measurement, and

Gb(i) =
���

Gs(x, y; i) dx dy dt . (10)

Note that rotation of the antenna during the integration period
in (9) smooths or smears the antenna pattern used in the MRF.



LONG: SCATTEROMETER BACKSCATTER IMAGING USING BG INVERSION 3181

The key differences between the scatterometer and radiome-
ter MRFs are: 1) the two-way antenna gain for the active
sensor versus the smeared one-way gain for the passive sensor
and 2) the processor gain response in the active sensor MRF.
The latter enables radar to use Doppler and range processing
to achieve finer resolution than the antenna pattern alone,
whereas the one-way antenna pattern and the measurement
integration dictate the radiometer measurement resolution.
As a result, scatterometers can have much finer (6 km ×
15 km) spatial resolution (i.e., more localized MRFs) than
radiometers (25 km × 25 km or larger depending on fre-
quency). Another difference is in the selection of the antenna
gain pattern: radiometers choose antenna patterns with very
low sidelobes, whereas radars typically emphasize mini-
mum mainlobe width at the expense of higher sidelobes.
Higher sidelobes enable better resolution enhancement in
reconstruction [3].

IV. MEASUREMENT NOISE IN SCATTEROMETER

AND RADIOMETER MEASUREMENTS

Radiometric noise due to thermal noise in the receiver
affects both active and passive measurements. Measurement
variability also arises due to signal variability. In radiometers,
the net measurement variability is quantified by its standard
deviation given by �T = √

Var(Ti ), which is inversely
proportional to the square root of the time-bandwidth product.
�T is known as the “radiometric resolution” [1]. The residual
noise in (8) can be modeled as additive white noise with a
standard deviation of �T . For satellite radiometers, �T is
no more than a few Kelvin, and is typically 1 K or less. For
a given mean TB, the “normalized radiometric resolution” is
Kr = �T/TB , and is of order 0.004 for a modern radiometer
observing land. The normalized radiometric resolution Kr for
a radiometer is similar to scatterometer K p .

In addition to radiometric (thermal) noise, scatterometer
measurements also include signal variability (which is also
considered “noise”) due to coherent signal effects, such as
speckle and Raleigh fading or scintillation. These result in
undesired variability in the measurement that is correlated
with the desired signal. The total variability of scatterometer
measurements is quantified by the normalized measurement
standard deviation K p [17], [23], [24]

K p =
√

Var(si )

mean(si )
. (11)

The scatterometer K p gives the normalized radiometric reso-
lution of the sensor. For most scatterometers [1], [17], K 2

p can
be written as a quadratic function of the measurement signal-
to-noise ratio (SNR)

K 2
p(SNR) ≈ 1

Bs TG

�
1 + 2

SNR
+ 1

SNR2

�
(12)

where Bs is the measurement bandwidth and TG is transmit
pulselength. The noise model for a measurement zi of a
particular true si can be written as

zi = si (1 + K pνi ) (13)

where νi is an independent, unit-variance, and zero-mean
Gaussian random variable [2].

For QuikSCAT, K p varies from 0.02 to as high as 3, though
the nominal QuikSCAT K p is of order 0.05. Comparing this
value of scatterometer K p to the normalized radiometric reso-
lution for a typical radiometer, we observe that scatterometer
measurements (K p = 0.05) are proportionally much noisier
than typical radiometer measurements (Kr = 0.004). This dif-
ference is important when comparing the relative performance
of different imaging algorithms when used for different types
of sensors.

Note that due to the relatively high measurement noise
in scatterometer σ o measurements, the reported σ o measure-
ments can occasionally be negative. This can produce negative
pixel values unless the nonphysical negative σ o measurement
values are discarded. Unfortunately, discarding negative σ o

measurements can introduce an estimate bias. Fortunately, neg-
ative σ o measurements only rarely occur over land and ice and
so are discarded for this paper. The possible bias effect is not
considered in this paper. Radiometer measurements are always
positive and there is a large offset from zero in the brightness
temperature measurements so negative measurements do not
occur.

V. IMAGING

To generate σ o or TB images from the sensor measure-
ments, the measurements collected over one or more passes of
the study area may be combined. Combining passes increases
the effective sampling density, which enables finer resolution
reconstruction. Note that while the image is produced on a reg-
ularly spaced earth-centered grid, the individual measurement
locations are on an irregular sampling pattern relative to the
grid. Longer discussions on this are provided in [2] and [6].

A simple σ o or TB image map can be created by merely
gridding the data based on location and averaging all mea-
surements whose centers fall into the same map pixel grid
element, i.e., DIB gridding. DIB has the advantage of not
requiring any information about the MRF. Conventional DIB
should use a grid size compatible to the 3-dB footprint size [2].
To produce finer resolution images, reconstruction techniques,
which employ both the measurement locations and the MRFs
of the measurements, can be employed.

When discretized on the imaging grid and ignoring noise,
the measurement equation [(4) for σ o and (8) for TB] can be
expressed as [2], [6]

zi =
�

j∈image

hi j a j (14)

where hi j is the discretely sampled MRF for the i th measure-
ment evaluated at the j th pixel center and a j is the backscat-
ter or TB value for the j th pixel. Here, for convenience, hi j is
normalized so that

�
j hi j = 1. In practice, the MRF is

negligible some distance from the measurement center, so the
sums need only be computed over a small area around the
pixel. Equation (14) can be written as the matrix equation

�Z = H�a (15)
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where H contains the sampled MRF for each measurement and
�Z and �a are vectors composed of the measurements zi and
the pixel values a j , respectively. Estimation (reconstruction)
of the surface σ o or TB is equivalent to inverting (15).
To minimize the effects of noise, the inversion may be only
partial, i.e., a regularized solution [2], [6].

A. SIR

The iterative SIR algorithm [2], [3], [19] was developed
specifically for scatterometer image formation and is a particu-
lar implementation of an iterative solution to (15). SIR approx-
imates a maximum-entropy solution to an underdetermined
equation and a least-squares solution to an overdetermined
system. The first iteration of SIR, termed “AVE” (for weighted
AVErage) [19], is often used in enhanced resolution scat-
terometer wind retrieval [21], [22]. The AVE estimate of the
j th pixel is given by [19]

a j =
�

i hi j zi�
i hi j

(16)

where the sums are over all measurements that have nonnegli-
gible MRF at the pixel. The SIR iteration begins with an initial
image a0

j whose pixels are set to be the AVE value defined
in (16). Thereafter, the SIR algorithm iteratively updates the
backscatter image estimate. At the kth (k > 0) iteration of SIR,
the j th image pixel ak

j is computed using [3]

f k
i =

�
n hinak

n�
n hin

dk
i =

�
zi/ f k

i

uk
i, j =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

�
1

2 f k
i



1 − 1

dk
i

�
+ 1

ak
j d

k
i

�−1

, dk
k ≥ 1�

1

2
f k
i (1 − dk

i ) + ak
j d

k
i

�
, dk

k < 1

ak+1
j =

�
i hi j uk

i, j�
i hi j

.

The iteration continues until convergence. While each iteration
improves the signal reconstruction error, it also increases the
noise [2]. The number of SIR iterations thus plays a noise-
signal tradeoff role similar to the BG γ parameter described
in the following.

For scatterometers, SIR has traditionally been implemented
in decibel; i.e., the computation is done on zi = 10 log1(si )
rather than on the linear-space value1 or zi = si . The resulting
images are in decibel. This approach is used in this paper.
Comparison with linear computation shows that computation
in decibel produces more accurate images by reducing the
effects of noise [2]. For TB imaging, computation is done in
linear space in the radiometer version of the SIR algorithm so
a j and zi are in Kelvin [6].

1Note that σ o is a fundamentally unit-less quantity defined as the ratio of
two areas [1].

B. Backus–Gilbert
The BG inversion method [7], [8] provides an alternate

approach to inverting (4) based on least squares [11]. Suc-
cessfully used for radiometer data, BG has not previously been
applied to scatterometer data. The essential idea is to estimate
the surface backscatter at a given pixel from a weighted linear
sum of the measurements collected “close” to the pixel, that is,

�a j =
�

i∈nearby

wi j zi (17)

where the sum is computed over nearby pixels and with the
weights wi j selected to sum to one, i.e.,

�
i wi j = 1. To derive

the weights wi j for a particular pixel j , the total squared error
is minimized. The reconstruction error e j = �a j − a j for the
j th pixel is then the sum of the signal reconstruction error s j

and noise reconstruction error n j , derived as follows:

e j = �a j − a j =
�

i∈nearby

wi j zi − a j (18)

=
⎛⎝ �

i∈nearby

wi j

�
k

hikak +
�

i∈nearby

wi j noisei

⎞⎠−a j (19)

= s j − n j (20)

where

s j =
�

i∈nearby

wi j

�
k

hik ak − a j (21)

n j =
�

i∈nearby

wi j noisei . (22)

Following the weighted metric approach of [9], we consider
the case of a unit delta function centered at a j = 1, so that
ak = 0 for all k �= j . The signal reconstruction error can then
be written as

s j =
�

i∈nearby

wi j hik − 1. (23)

The squared image reconstruction error QR = s2
j is then

QR =
⎛⎝ �

i∈nearby

wi j hi j − 1

⎞⎠2

(24)

while the squared noise error QN = n2
j is given by

QN =
⎛⎝ �

i∈nearby

�
l∈nearby

wi j wl j ni nl

⎞⎠. (25)

Taking the expectation of the noise product, QN can be
expressed as

QN = �wT E �w (26)

where �w with elements ( �w)i = wi j is the vector of the
weights wi j for the j th pixel and E is the measurement
noise covariance matrix. Typically, the noise is assumed to
be spatially uncorrelated. This assumption is not generally
true for scatterometer measurements [17] but it makes the
analysis and computation simpler. Then, E is a diagonal matrix
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with diagonal entries σ 2
n , where σn is the measurement noise

standard deviation, that is,

E = σ 2
n I. (27)

To provide a tradeoff between noise and resolution in
the BG reconstruction, Backus and Gilbert [8] introduced
the tuning parameter γ to weight the signal reconstruction
error (QR) and the noise error (QN) in the total error Q, that is,

Q = QR cos γ + ωQN sin γ (28)

where ω is a dimensional tuning parameter included to ensure
compatibility of the signal and noise terms [9]. As derived
by Backus and Gilbert [8] and expressed in discrete form,
the total error Q is minimized when the weight vector for the
pixel is selected as2

�w = Z−1
�

�v cos γ + 1 − �uT Z−1�v cos γ

�uT Z−1 �u �u
�

(29)

where

Z = G cos γ + ωE sin γ (30)

with the elements of the vectors and matrices defined as

(�u)i = 1

(�v)i = hi j

Gik =
�

n∈nearby

hinhkn .

As noted, the BG approach has two tuning parameters:
the arbitrary dimensional parameter ω and the noise-tuning
parameter γ : ω ensures that QR and QN are on compatible
scales, while γ controls the tradeoff between noise and signal
reconstruction accuracy. Ideally, ω is chosen so that the
variation of the total error falls at a middle value of γ , which
can vary from 0 to π/2 [8]. The γ parameter affects the spatial
resolution of the results. Varying γ alters the solution for the
weights between a (local) pure least-squares solution and a
minimum noise solution. The value of γ must be selected
subjectively to “optimize” the resulting image and depends
on the measurement noise standard deviation [11]. Selection
of γ = γ 	π/2 is discussed in more detail later. Like SIR,
BG can be computed in decibel or normal space, and the
results are similar. Note that while SIR makes no assumptions
about the distribution of the noise, BG requires knowledge of
the noise variance and implicitly treats the noise as Gaussian
distributed. We note that using values in decibel tends to
correlate the signal and noise, and makes the noise distribution
non-Gaussian.

To ensure tractable computation, the weights for each pixel
are computed separately using only “nearby” measurements,
here defined to be the region where the individual measure-
ment MRF evaluated at the pixel center is within 10 dB of the
peak response. Nevertheless, the computation requirements of
the BG method can be very intensive compared to SIR since
each pixel requires a matrix inversion [6].

2A typographical error is present in this expression in [11].

VI. IMAGE FORMATION PERFORMANCE SIMULATION

To analyze the performance of the BG reconstruction, it is
helpful to use simulation where the true image is known. The
results of these simulations inform the tradeoffs in applying
the algorithm and understanding its limitations. The simulation
(described in more detail in [2]) uses the actual locations,
geometry, and MRFs of real QuikSCAT “slice” measurements
extracted and computed from QuikSCAT Level-1B files [16].
A synthetic “truth” image is first created, and simulated noisy
and noise-free measurements are created using the locations
and computed MRFs. From the measurements, BG and SIR
images are created, with error metrics mean and rms deter-
mined for each case. This process is repeated separately for
each QuikSCAT polarization, though only a single polarization
is shown. Monte Carlo noise is included in the measurements
using the noise model (13) with the average system K p

estimated from the actual measurements. The average noise
variance σ 2

n is then

σ 2
n = �s2

i K 2
p

�
. (31)

The reconstructed images are computed on a fine-resolution
2.225-km grid, which well oversamples the 3-dB QuikSCAT
slice footprint size of approximately 6 km × 25 km. For
example, simulation results are shown in Fig. 2. In later
figures, the effects of varying the values of ω and σn are
considered. For comparison with the BG results, SIR, AVE,
and DIB images are also created. Simulated DIB images are
created by collecting and averaging all measurements whose
centers fall within each low-resolution (22.25 km, 10 times the
fine resolution dimension) grid element. When preparing DIB
images for display, the coarse DIB resolution image is pixel
replicated to match the pixels of the fine-resolution images.
Error statistics (mean merr, standard deviation serr, and rms) are
computed from the difference between the truth and estimated
images for each algorithm, that is,

merr = 
estk − truek� (32)

serr =
�


(estk − truek)2� − m2
err (33)

where estk and truek are the kth pixel in the estimated and
true images, respectively.

The arbitrary “truth” image is generated with representative
features including spots of varying sizes, edges, and areas
of constant and gradient backscatter (Fig. 2). We note that
the optimum values of the various algorithms parameters can
depend somewhat on the truth image used [3], [4]; however,
for clarity the results from only a single truth image are
presented in this paper. The overall conclusions apply to other
images. In the simulation, the azimuth and incidence angle
dependence of σ o is ignored.

In doing this analysis, we recall that the value of noise
standard deviation (σn) is determined by the sensor (via the
K p parameters) and the scene σ o, and thus may vary. Thus,
performance for various values of σn is considered. Since the
value of the scaling parameter ω is somewhat arbitrary [12],
the peformance of the algorithm for different ω is also con-
sidered, with performance optimized as a function of the BG
tuning parameter γ . Since the product γω is multiplied by
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Fig. 1. BG simulation mean and standardard deviation results for various σn , γ 	 values, and ω values. (a) ω = 0.01. (b) ω = 0.1. (c) ω = 0.5. (d) ω = 1.
See text. The value of ω effects where the minimum σerr occurs but has little impact on the actual minimum value.

σ 2
n in the BG algorithm, the values of these parameters are

conflated when analyzing the BG performance.
To select the optimum γ , images for different γ values

are computed. The reconstruction error versus γ 	 for these
images is shown in Fig. 1, with the images shown in Fig. 2.
At small γ 	, the image exhibits significant overshoot and
texturing. As γ 	 is increased, the image becomes smoother
and subjectively less sharp. Comparing the image panels
in Fig. 2, it becomes apparent that choosing an optimum
value of γ 	 is important for BG to prevent excessive “ringing”
artifacts or over smoothing. The BG images for γ 	 ≥ 0.5
are visually similar to the SIR result, with progressively more
smoothing as γ 	 is increased. For further insight, Fig. 3 plots
horizontal lines extracted through one of the spot features in
the panes in Fig. 2.

VII. ANALYSIS

The BG method has proven to work well with radiometer
data [6] where the nominal measurements values range from
160 to 230 K with a standard deviation of order 1.0–0.5 K.
Thus, Kr is a fraction of a percent. The effective image
“SNR” is thus uniformly very high, ∼23–26 dB, while the
dynamic range is small (a few decibel3 at most). In contrast,
QuikSCAT land/ice scatterometer measurements have a much

3dB(x) is defined as 10 log10(x).

wider dynamic range with σ o values from −30 to 0 dB, and
overall lower SNR values, varying from −10 to 20 dB with
nominal K p close to 0.05. Thus, scatterometer measurements
are proportionally much noisier than the radiometer measure-
ments. The higher K p leads to lower performance of BG for
scatterometer data, as well as the need for different tuning of
γ 	 for scatterometer data compared to radiometer data with its
lower Kr .

In this paper, BG is computed in linear space (not in
decibel), with the resulting images converted to decibel for
display. A distinct disadvantage of linear-space BG is that it
can produce negative (in linear-space) σ o image values, which
are nonphysical, whereas SIR results correspond to strictly
positive linear-space σ o values. Computation of BG using
decibel measurements was tested and found not to provide
any performance advantage over linear-space measurements.

A. Performance Versus Noise Level

To evaluate the effects of the scatterometer noise level on
the BG reconstruction performance, a wide range of scat-
terometer noise levels are considered, with lower noise levels
corresponding to smaller σn and K p values. The simulation
results are presented for multiple ω values as a function of γ 	
in Fig. 1. These busy plots are summarized in Figs. 4 and 5.

In Fig. 1, note how the minimum error tends to shift toward
the left as ω is increased. The value of ω affects where the
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Fig. 2. Simulation results for BG with various γ 	 values for ω = 0.5 and
σn = 0.5 and SIR for iteration 20. (Top left) True image. (Bottom left) SIR
comparison image. Other images are BG with the γ 	 value indicated on the
image. Based on rms error minimization the “optimum” (minimum rms) γ 	
is at γ 	 = 0.5.

Fig. 3. Represenatitive comparison of horizontal transects for various cases
through the center-right most spot feature in Fig. 2. A low BG γ the spot is
wider and taller than the true. As γ is lowered, the peak undershoots the true
height and the spot becomes wider. The SIR image slightly undershoots the
peak but is narrower than any of the BG results.

minimum occurs but has little impact on the actual minimum
error statistic. While the value of ω ideally should be chosen
so that minimum error occurs in the middle of the γ 	 range,
this is not possible to achieve for small values of σn . However,
at larger σn , ω = 0.1 or ω = 0.5 are usable, with the latter
best centering the minimum over the range values expected.
From Fig. 4, note that the lowest error at the optimum γ 	 is
roughly a linear function of σn . It is interesting to point out

Fig. 4. Plot of the minimum error standard deviation determined over γ
versus σn for different values of ω. The value of ω affects where the minimum
occurs but has little impact on the actual minimum value for σn > 1.

Fig. 5. Plot of the value of γ 	 corresponding to the location of the minimum
error standard deviation versus ω and σn . The color scale is clipped to the
range shown for visibility. (Top right) Note that γ 	 saturates for ω < 0.1 for
all σn values and that the optimum value of γ 	 is nearly a linear function of
ω and σn .

that the error for σn = 0, which is effectively the signal-only
reconstruction error, is larger than for σn > 0. This confirms
that σn in E acts as a regularization term in the reconstruction
and explains why the smallest total rms error occurs at the
largest σn value.

Since σn is approximately 0.05 for QuikSCAT data, to min-
imize the total error a large ω value should be chosen, but
because the plots at the minimum are very flat, the precise
values of either ω or γ 	 are not critical, and round number
values can be used.

B. SIR Comparison
While simulation enables evaluation of the absolute perfor-

mance of BG using the truth image, the lack of truth data
when using actual data precludes a simular analysis. Instead,
SIR results are used as a reference to compare the BG images
to. To prepare for this comparison, we first use simulated data
to compare BG and SIR results.
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Fig. 6. (Top) mean and (Bottom) standard deviation of the SIR error versus
iteration number for various σn values. For convenience, the iteration is
truncated at a maximum of 37. For low σn , the error continues to decrease
with increasing iterations, while at higher σn (σn > 1), the minimum error
occurs for an iteration less than 37.

Fig. 7. Plot of the total error standard deviation versus iteration number
and noise standard deviation σn for SIR. The iteration has been truncated
to an arbitrary maximum of 37. Dotted line: location of the minimum error,
which occurs at the maximum iterations for σn < 0.5. This suggests that for
σn < 0.5 the reconstruction error can be reduced by further iteration than
shown in this plot.

As noted previously, the number of iterations controls the
noise/resolution tradeoff in SIR. Fig. 6 presents plots of
the error performance versus iteration number for various
values of the noise standard deviation σn for SIR. As has
been previously demonstrated [2], the signal reconstruction
error decreases with increasing iteration, while the noise error
increases with increasing iteration. Thus, for a given σn , there
is an optimum number of iterations which minimizes the
total error. This is evident in Fig. 6 where the error standard
deviation is minimized at 10 iterations at large σn . The location
of the minimum is a function of the noise level that shifts to
the right as the noise level is decreased, finally increasing
to infinity as the noise level goes to zero. This behavior is
apparent in Figs. 7 and 8 which present the error versus
iteration and noise level in different forms. The optimum

Fig. 8. (Top) Plot of the minimum error over iteration versus the noise
standard deviation σn . The iteration has been truncated to a maximum of 37,
which denoted by the dashed lines and shaded area. The error in the gray
region can be reduced by further iteration. (Bottom) The iteration at which
the minimum error standard deviation is reached. In these plots, the maximum
number of iterations is limited to 37, which is denoted by the dashed lines
and the shaded area.

number of iterations that minimizes the total error for σn =
0.5 is nominally approximately 37. Furthermore, iteration
slowly increases the total error due to increasing noise. For
this reason, the number of iterations in the comparisons is
truncated at 37.

From Fig. 8, the minimum SIR rms error at σn = 0.5 is 1.82,
which is less than the smallest achievable BG value of slightly
over 2.0 from Fig. 4. This leads to the observation that SIR
has less error than optimized BG for QuikSCAT backscatter
imaging, i.e., SIR is more effective in noise suppression even
though the resulting images are visually similar (see Fig. 2),
though are not identical even in the noise-free case.

The mean mdiff and standard deviation σdiff of the differ-
ence of the BG and SIR images are computed for various
γ 	, σn , and ω values and plotted in Figs. 9 and 10. Examining
the difference statistics plots, we can conclude that there is a
fairly wide range of ω and σn values that produce essentially
the same minimum difference value, and that choosing ω =
0.5 enables a wide γ 	 tuning range that supports the expected
true σn of 0.5. This result is confirmed in Fig. 10 which
shows the difference standard deviation versus σn for various
ω values.

VIII. PIXEL SPATIAL RESPONSE FUNCTION

The pixel spatial response function (SRF) describes the SRF
of each pixel and is effectively the impulse response function.
For BG, the image backscatter value reported for each pixel
is computed as the weighted sum of measurements local to
the pixel [see (17)]. Due to the variation in the positions of
the measurements with respect to the pixel the weights vary
from pixel to pixel, i.e., the SRF is spatially varying. This
precludes the use of conventional deconvolution algorithms for
resolution enhancement. The 3 dB width of the SRF defines
the effective resolution of the estimated image. Here, the SRF
of BG is compared with the SRF of SIR.
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Fig. 9. Difference (BG-SIR) statistics versus γ 	 for various assumed noise
standard deviations and γ 	 values for ω = 0.5.

Fig. 10. Plot of the minimum difference BG-SIR standard deviation
determined over γ versus σn for different values of ω. With an expected σn
of 0.3–0.5 for scatterometer measurements, ω values between 0.1 to 1 help
ensure the minimum error can be achieved.

The effective BG SRF can be analytically computed for each
pixel. However, due to the nonlineary in SIR, the SIR SRF has
to be computed numerically using simulation. In this paper,
simulation is used computing the SRFs for both. A single,
arbitrarily selected, pixel is set to a high σ o value with the
remaining pixels set to low, but nonzero σ o values. The SRF
is the resulting normalized image. The BG SRF versus γ 	 is
shown in Fig. 11 where it is compared to the SIR SRF for a
randomly selected pixel. Slices through the SRFs are shown
in Fig. 12. The slices confirm that the SRF is not symmetric
for this pixel. Note that for small γ 	, the SRF is potentially
compact but is offset and confused. As γ 	 increases, the BG
SRF becomes better localized but widens its region of support.
This is the result of the noise regularization which “smooths”
the result in order to reduce the noise. This has the side effect
of degrading the signal SRF. This behavior confirms the noise
and resolution tradeoff observed with the error analysis.

In comparison, the SIR SRF has lower, more compact side
lobes than any of the BG results. A γ 	 value of 0.25–0.3 best
approximate the 3 dB width of the SIR SRF. At the larger γ 	
values suggested by the error analysis, the 3-dB SRF resolution
of the BG result is coarser than the SIR result.

Fig. 11. Plots of the pixel SRF of an arbitrary pixel for various BG γ 	
values for ω = 0.5 and σn = 0.5 compared to optimized SIR. (a) BG γ 	 = 0,
(b) BG γ 	 = 0.25, (c) BG γ 	 = 0.5, (d) BG γ 	 = 0.75, (e) BG γ 	 = 1, and
(f) SIR with 30 iterations.

Fig. 12. Plots of x (red) and y (blue) slices through the optimized
BG (solid lines) and SIR (dashed lines) SRFs. Note that the slices in different
directions are slighty different to the asymmetry of the SRF. Dotted horizontal
lines: at −3, −6, and −10 dB. The mean SRF −3-dB width is approximately
17.8 km for BG and 10.0 km for SIR which is the effective resolution
achievable for this particular pixel.

Fig. 13. Plots of the spectrum of the pixel SRF of an aribitrary pixel.
(a) Optimized BG (γ 	 = 0.5 assuming σn = 0.5. (b) SIR at 37 iterations.
The contour levels are at −3 dB (black), −6 dB (red), and −10 dB (white).

The spectrum of the SRF reveals information about the
image resolution. Spectra of the BG and SIR SRFs are shown
in Fig. 13. Note that BG SRF is compact, but the 6-dB contour
is limited to spatial frequencies less than approximately 1/50.
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Fig. 14. Map of the location of the data study area over Antarctica.

The SIR SRF extends over a much larger area of the spectrum,
which confirms its finer resolution capability even in the noise-
free case. Note that while the BG SRF spectrum is roughly
circular symmetric, the SIR SRF spectrum is not. This is the
result of the spatial distribution of the σ o measurements sur-
rounding this particular pixel. The assymmetry suggests that
the frequency content of the SIR image may be directionally
dependent, i.e., the image spectra may also be assymmetric,
whereas the BG spectrum is more symmetric.

IX. ACTUAL DATA

While the previous results are based on simulation, in this
section, we compare BG and other methods using actual data.
To enable detailed comparison of the algorithms for a four-
day integration period, a small 580 km × 1400 km study area
extending from the Antarctic coast into the interior along the
prime meridian is arbitrarily selected. A location map of the
study area is shown in Fig. 14. The results from applying BG
with different γ 	 values is shown along with a SIR comparison
image in Fig. 15. Because the true σ o values are not known,
error statistics cannot be computed. Instead, the mean mdiff and
standard deviation σdiff of the difference of the BG and SIR
images are computed for various γ 	, σn , and ω values and
plotted in Figs. 16–18. This is the same study regions used
in [2], and a longer, more detailed analysis of the SIR result
is provided there. Here, we emphasize the BG comparison.

As in the simulation, visual comparison of the BG images
reveals significant changes in the dynamic range and sharpness
of the BG image as a function of γ 	. At high γ 	 values,
the image is very smooth, while at low γ 	 values the image
is sharper, but can also exhibit negative σ o values. The SIR
image reveals subjectively somewhat finer detail than in any of
the BG cases, and so is used as the reference for the remaining
analysis.

To better understand the effects of the choice of ω and the
assumed σn value on the results using real data, Fig. 16 plots
the difference statistics versus γ 	 for various ω and assumed σn

values. Subjectively, the images corresponding to these values
are indistinguishable. As in the simulated data case, there is
a fairly wide range of ω and σn values that enable finding
the same minimum difference value. However, the differences
using the actual data are smaller than in the simulation. This
may be due to the longer integration period used with the

Fig. 15. QuikSCAT egg V-pol study area σ o images created from four
days (254–257, 1999) of actual data. (Top left) SIR (30 iterations) comparison
image. The remaining panels are BG for different values of γ 	 as indicated
on the image computed with ω = 0.5 and σn = 0.5. The artifacts are extreme
at low γ 	, with a reduction in dynamic range and increased smoothing as γ 	
is increased.

Fig. 16. Difference (BG-SIR) statistics versus γ 	 for various assumed noise
standard deviations σn and γ 	 values for ω = 0.5.

actual data. In any case, we conclude that choosing ω = 0.5
enables a wide γ 	 tuning range that supports the expected
true σn of 0.5, though other values can be used. This result
is confirmed in Fig. 17, which shows the difference standard
deviation versus σn for various ω values. While this plot is a
little noisy, several values of ω yield near-minimum difference
statistics at the expected σn = 0.5.

Finally, we note from Fig. 18 that the optimum γ 	 is roughly
a linear function of ω and σn . At the expected σn = 0.5 and
using ω = 0.5, the optimum γ 	 occurs at 0.5. These choices
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Fig. 17. Plot of the minimum difference BG-SIR standard deviation
determined over γ versus σn for different values of ω.

Fig. 18. Plot of the value of γ 	 corresponding to the location of the minimum
BG-SIR difference standard deviation versus ω and σn . The color scale is
clipped to the range shown for visibility. Note that the optimum γ 	 is roughly
a linear function of ω and σn .

for σn and ω offer a wide tuning range for γ 	 to optimize
image construction and provide subjectively the best quality
images.

X. CONCLUSION

This paper has explored the application of BG to scat-
terometer backscatter imaging and compared the results with
conventional DIB gridding and SIR imaging for SeaWinds-
class scatterometers using both simulation and actual data.
BG has the advantage of being linear (in the measurements)
and computation of the BG weights can be done independent
of the actual measurements, whereas SIR is a data-driven,
nonlinear algorithm.

BG has proven very successful for radiometer data process-
ing. In this paper, we have optimized BG for application to
QuikSCAT measurements. We find it less useful for scatterom-
eter image formation due to the effects of the lower effective
Kr of scatterometer data compared to that of radiometer
data. While the signal resolution enhancement for BG can

be visually similar to SIR, the minimum total error standard
deivation for BG is found to be somewhat inferior to SIR,
which suggests that SIR is more effective at noise suppression
at low SNRs. With BG optimized to minimize the error,
a comparison of the resulting pixel SRF suggests that the
effective resolution of BG is coarser than SIR, i.e., SIR
can provide finer resolution for the same total error level.
Furthermore, the intense computational requirements for BG
are a limiting factor in applying it to large data sets. For these
reasons, BG is not recommended for scatterometer backscatter
image construction and alternate algorithms such as SIR are
recommended instead.
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