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Band-Limited Signal Reconstruction From Irregular
Samples With Variable Apertures

David G. Long, Fellow, IEEE, and Reinhard O. W. Franz

Abstract—Sampling plays a critical role in remote sensing and
signal analysis. In conventional sampling theory, the signal is sam-
pled at a uniform rate at a minimum of twice the signal bandwidth.
Sampling with an aperture function requires a fixed-aperture
function, which can be removed by deconvolution after signal
reconstruction. However, in some cases, the signal samples are
available only at irregular positions, and different samples use dif-
ferent aperture functions. In this paper, the theory of finite-length
signal reconstruction with irregular samples and variable aper-
tures in one and two dimensions is considered. In the 1-D case,
a band-limited discrete signal can be exactly reconstructed from
a finite number of arbitrarily spaced samples with few restric-
tions on the aperture functions. Exact reconstruction in the 2-D
case requires the sampling matrix be invertable, and is not al-
ways possible. Variable aperture functions, while complicating the
process, can enable reconstruction for a broader range of sample
locations. Practical issues are discussed, and numerical examples
are provided. Variable aperture reconstruction has application in
a variety of remote sensing problems. In this paper, reconstruction
from 2-D irregular sampling with variable apertures is illustrated
using Special Sensor Microwave/Imager radiometer observations.

Index Terms—Aperture function, irregular samples, point-
spread function, reconstruction, sampling, variable aperture.

I. INTRODUCTION

R ECONSTRUCTION of sampled signals is a common
activity in remote sensing. In a typical remote sens-

ing application, observations (measurements) are samples of
an aperture-filtered signal. The aperture results from spatial
filtering characteristics of the antenna, optics, and/or signal
processing used in the signal sampling. Signal sampling may
involve a combination of platform movement, scanning, and
pulsed operation, among others. The signal and sampling are
frequently two dimensional. From the set of samples, we desire
to reconstruct the original signal over the sampling area.

Reconstruction of a band-limited signal from uniformly
spaced samples is a well-understood problem treated in stan-
dard signal processing textbooks (e.g., [1]): given uniformly
spaced samples of the signal, the original band-limited signal
can be exactly reconstructed from the samples by sinc inter-
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polation1 so long as the signal is sampled at twice the highest
frequency of the signal, i.e., as long as the sampling meets the
Nyquist criterion. Uniform spacing of the samples is also known
as “regular sampling.” We note that this traditional band-limited
reconstruction relies on infinite samples, which cannot be prac-
tically collected, thus more general reconstruction techniques
should be used [2]. Approximate solutions based on oversam-
pling and filtering or interpolation are commonly used.2

When the signal is sampled with a fixed aperture function,3

the original signal can be recovered from the samples by de-
convolution of the aperture function and an intermediate signal
resulting from reconstruction from the samples assuming no
aperture function.4 So long as the spectrum of the aperture
function has no nulls in the signal bandwidth, the original signal
can be completely recovered. Otherwise, there may some loss
of information.

In some remote sensing applications, only a finite number
of measurements are available, and the observations (sam-
ples) are not uniformly spaced due to the sensor measurement
geometry or platform motion, resulting in irregular (nonuni-
formly spaced) sampling. Furthermore, the effective aperture
may be different for each of the observations, a condition
called “variable aperture” sampling. A number of techniques
have been published for signal reconstruction from irregular
arbitrarily spaced samples, e.g., [2] and [5]–[9] and the ref-
erences therein; however, the general solution to the problem
of signal reconstruction from irregular sampling with variable
aperture functions has been only recently developed [10], and
the limitations of reconstructability for two dimensions have not
been fully addressed.

To make this earlier work more accessible in this paper, we
use a tutorial approach to discuss the problem of band-limited
signal reconstruction from irregular samples for variable and
fixed apertures and present a general discrete signal solution in
one and two dimensions. The discrete signal method is chosen
since, in practice, the signals of interest are defined only over
a bounded domain and only a limited number of samples are
available. Novel contributions of this paper include a discussion
of practical considerations, a presentation of the sampling lim-
itations in 2-D reconstruction from the irregular sampling, an

1Sinc interpolation is equivalent to low-pass filtering of a zeroth-order-hold
signal.

2An example is interferometric synthetic aperture radar data analysis for
which window-based interpolation schemes have been developed [3], [4].

3An aperture function is also called a point-spread function, a spatial
response function, or an impulse response function.

4This is equivalent to assuming an ideal delta function aperture function.
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empirical analysis of the ratio of sample density and bandwidth,
and a derivation of the general matrix formulation for irregular
sampling with variable apertures. To illustrate the technique,
simulation results are presented for a realistic sensor.

This paper is organized as follows: after background and
discussion, using a matrix approach, we show that a band-
limited 1-D signal can be reconstructed from arbitrarily located
samples. We then extend the derivation to the case of vari-
able apertures. We then consider 2-D signals, which require
some constraints on the locations of the irregular samples to
ensure full reconstruction. An illustrative example is provided
demonstrating the utility of the technique in remote sensing
based on reconstruction of brightness temperature images from
spaceborne radiometer data.

A. Background

Here, we discuss classic reconstruction theory for continuous-
time signals, the connection between continuous-time and
discrete-time signals, and the reconstruction of discrete-time sig-
nals from ideal and aperture-filtered uniformly spaced samples.

Consider two fundamental ideas in signal analysis: the pe-
riodicity assumption implied by discrete sampling of a band-
limited finite-length signal and discrete subsampling. We note
that all practical signals are bounded.

When teaching introductory signal processing, it is common
to assume infinite-length continuous signals (e.g., f(t) = sin t).
In analyzing ideal 1-D signal reconstruction from samples,
a continuous band-limited signal f(t) is uniformly sampled
at an interval of T with an infinite number of samples. The
ideally sampled signal is written as f [n] = f(nT ), where
f [n] is a discrete-time signal, with n being an integer. As-
suming that 1/T is greater than twice the highest frequency
present in f(t) (often called the “Nyquist sample rate”), the
Shannon–Wittaker–Kotelnikov sampling theorem (see [1]) as-
sures us that f(t) can be reconstructed from f [n] using

f(t) =

∞∑
n=−∞

f [n]sinc

(
(t− nT )

T

)
(1)

where sinc(x) = sin(πx)/πx.
In practice, however, we can only observe a signal over a

finite domain with a finite number of samples. Unless the form
of the underlying signal is known analytically, an arbitrary
signal cannot generally be fully reconstructed from only a finite
number of samples. We recall that, when sampling a signal,
there is an implicit assumption that the signal is band limited;
otherwise, aliasing and loss of signal information occur in
representing the signal from its samples [1].

Recalling that a finite-length signal can be made periodic by
extension, we note that, in order for a signal to be consistently
represented by a finite number of samples and be simultane-
ously band limited, we must assume the signal to be periodic. In
effect, finite sampling and reconstruction implicitly require that
we treat the signal as both periodic and band limited in order
to consistently interpret sampling and reconstruction. We note
that a bounded continuous band-limited periodic signal can be
always exactly represented by a discrete-time signal [1], [10].

With these preliminaries, we observe that the sampling of a
band-limited continuous signal can be viewed as equivalent to
subsampling a discrete-time signal corresponding to the origi-
nal signal. To explore this for a 1-D signal, denote the signal of
interest by f(t). Suppose there are R samples of f(t) available
at the arbitrary sample points t = tj for j = {1 . . . R}. Real-
world considerations suggest that the spacings of the sample
points have a rational relationship. Thus, tj can be written as

tj = njT + T0 (2)

where nj is an integer, T0 is a real constant, and T is some
interval for which (2) holds for all j. In general, there are an
infinite number of possible T values.5 We prefer to choose
the largest T subject to 1/T > 2B, where B is the highest
frequency present in the band-limited f(t). This T is hereafter
referred to as the high-rate sample interval (HSI).

Based on the earlier discussion, since the signal f(t) is
band limited, it can be exactly represented by its discrete-
time counterpart f [n] = f(nT ), where T is the HSI. Thus, for
practical signal reconstruction, we need only reconstruct f [n]
from the samples f [nj]. The signal f(t) can be reconstructed
from f [n] using (1), where the infinite sum in (1) is computed
modulo of the period so that only one period of the values of
f [n] is required.

Thus, the sampling of the continuous signal f(t) is equiv-
alent to the discrete sampling of the discrete signal f [n]. The
available samples extend over the finite domain defined by NT ,
where T is the HSI, and N is the (assumed) signal period. The
period count N may be larger than max(nj)−min(nj), but
if smaller, the indices nj are mapped to n ∈ {0, . . . , N − 1}.
Without information about the signal structure, selection of N
in practice can be arbitrary and requires engineering judgment.

The discrete Fourier transform (DFT) F [k] of f [n] can be
written as

F [k] =

N−1∑
j=0

f [j]W kj
N (3)

where W kj
N = e−i2πkj/N , and i =

√
−1 [1]. Since f [n] is band

limited to B, F [k] = 0 for all |k| > M , where M ≤ NB/2T ,
and the discrete signal f [n] is called M -band-limited. Note that
F (k) approximates the continuous Fourier transform F (ω) of
the underlying continuous f(t) for ω < πM/NT [1].

In the 1-D case, the M -band-limited discrete signal f [n] can
be perfectly reconstructed from the irregular samples f [nj ] for
arbitrarynj , so long as the R ≥ 2M + 1 samples nj modN are
distinct [8]. Additional samples can reduce the effects of noise
in noisy processes [5], [6]. Efficient numerical algorithms for
irregular reconstruction have been developed [6].

As will be discussed later, unlike 1-D reconstruction, 2-D
reconstruction is not always possible for arbitrarily located
samples. Accurate 2-D reconstruction imposes restrictions on
the sample locations.

5This is readily seen by noting that if a particular value of T satisfies (2)
for all j, the value d where T = md for an arbitrary integer m > 0 also
satisfies (2).
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The sampling discussed so far assumes an ideal aperture
function where the observation of the signal f [n] at nj is f [nj ].
Practical aperture functions result in observation values that
are locally averaged and weighted values of the signal. Local
averages smaller than the maximum sample spacing are treated
by [11]; however, as discussed in the following, larger apertures
can be used. In general, the observation values can be modeled
as ideal samples of the aperture-filtered signal. For example,
in one dimension using the discrete signal model with the
aperture function v[n], the observation sample is g[nj ], where
g is the aperture-filtered signal given by g[n] = v[n] ∗ f [n],
where ∗ denotes discrete convolution. For the fixed-aperture
case, the samples can be first used to reconstruct g[n] from the
observations; then, signal deconvolution techniques can be used
to compute f [n] from g[n]. So long as the aperture spectrum
does not have any nulls over the bandwidth of the signal spec-
trum, the signal can be reconstructed perfectly. However, when
different apertures are used for different samples—a common
case in remote sensing—the deconvolution approach cannot be
used. In the following, we show how fixed or variable aperture
functions can be incorporated into the reconstruction process to
directly estimate the original signal.

II. ONE-DIMENSIONAL SAMPLING AND RECONSTRUCTION

This section considers 1-D reconstruction. To simplify the
development, we first consider uniform or regular sample re-
construction and then irregular sampling and reconstruction
without an aperture function. Finally, the general case of irreg-
ular sampling with a variable aperture is considered.

A. Preliminaries

In discrete signal processing with periodic signals, the
Dirichlet kernel plays an analogous role with the sinc function
in continuous signal processing. The discrete Dirichlet kernel
can be written as

DM,N(n) =
M∑

k=−M

W−kn
N (4)

=

⎧⎨
⎩

sin( (2M+1)πn
N )

sin(πn
N )

, n �= 0

2M + 1, else
(5)

which is periodic in n with period N > 0 and is M -band-
limited. An illustrative plot of DM,N(n) for a particular M
and N is shown in Fig. 1.

Since

〈DM,N(n− ni), DM,N (n− nj)〉

=
N−1∑
i=0

N−1∑
j=0

DM,N (n− ni)DM,N(n− nj)

= NDM,N (ni − nj) (6)

it follows that DM,N (n− ni) and DM,N (n− nj) are orthogo-
nal if and only if (ni − nj)(2M + 1) = n′N for some integer

Fig. 1. Examples of (left) 1-D [N = 55, M = 5] and (right) 2-D [N1 =
N2 = 55, M1 = M2 = 5] Dirichlet kernels. One period of each kernel is
shown.

n′ �= 0. The set of vectors generated by DM,N (n− jd); j =
0, 1, . . . , 2M for integer d = N/(2M + 1) forms an orthogonal
basis for the space of all discrete band-limited functions of
period N .6 Thus, any discrete M -band-limited function with
period N can be expressed as

f [n] =
2M∑
j=0

ajDM,N(n− jd) (7)

with f [n+ kN ] = f [n] for all integer k. This is the discrete
equivalent of (1) when aj = (d/N)f [jd] and corresponds to
interpolation by the Dirichlet kernel. Note that, by construction,
f [n] is M -band-limited and periodic with period N .

Equation (7) can be formulated as the matrix equation

f = Da (8)

where the N element signal vector f has elements (f)n = f [n],
a has 2M + 1 elements aj , and the N × (2M + 1) matrix D
has elements

(D)k,l = DM,N (k − ld). (9)

Equation (8) is the matrix formulation of the regular recon-
struction equation. As shown later, this result can be generalized
to deal with irregularly spaced sampling.

B. Reconstruction From Regular Samples

The regular, or uniform, discrete-time sampling and recon-
struction problem can be formulated as follows. Any periodic
M -band-limited discrete signal f with period N can be re-
constructed exactly from R ≥ 2M + 1 samples fs[j], where
fs[j] = f [jd], with d being the integer sample spacing and
jd mod N distinct. Ideally, R = N/d.

The regularly sampled signal fs[n] can be written as

fs = D◦a (10)

where D◦ is the R× (2M + 1) matrix constructed from the
R rows of D corresponding to the values n = jd, j = 0, 1, . . . ,
R− 1, with fs containing 2M + 1 elements (fs)k = f [kd].

6Strictly speaking, d does not need to be an integer; however, when d is not an
integer, aj in (8) correspond to Dirichlet-interpolated values of f [n] rather than
to specific samples of f [n]. Nevertheless, the reconstruction equations [(8),
(10), and (11) for regular sampling and (13) and (15) for irregular sampling]
can be applied for noninteger d.
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Given fs, we want to compute a. In order to compute the
2M + 1 values in a necessary to fully reconstruct the signal, it
is sufficient to show that the inverse of D◦ exists. Then

a = D−1
◦ fs. (11)

a can be then used to reconstruct the signal using the recon-
struction equation, i.e., (8).

For the regular sampling case with R = 2M + 1, the ele-
ments of the matrix D◦ = D can be written explicitly as

(D◦)l,m = DM,N(ld−md) =
M∑

k=−M

W−kld
N W kmd

N . (12)

As demonstrated in the Appendix, the D◦ matrix is always
invertable so that (11) can be used to compute a, which can
be then used to reconstruct the signal using the discrete sam-
pling equation f = Da. We note that, for the regular sampling
reconstruction case with d(2M + 1) = N , D◦ [d integer] is, in
fact, a scaled identity matrix so that a = (d/N)fs.

When the signal is oversampled, i.e., there are more than the
minimum required 2M + 1 signal samples available, the matrix
D◦ is rectangular, but still has full column rank. In this case,
the Moore–Penrose pseudoinverse can be used in place of the
conventional inverse in (11), resulting in a unique estimate of a.
If there is no noise in the problem, the solution for a is precisely
the same for all N ≥ R ≥ (2M + 1). A longer discussion on
oversampling is provided in the next section.

C. Reconstruction From Irregular Samples

The previous derivation can be extended to the case of sam-
pling a signal at irregular intervals. The R = 2M + 1 irregular
samples fis can be represented in matrix form as

fis = DΔa (13)

where DΔ is the R× (2M + 1) matrix constructed from the
R rows of D corresponding to the distinct sample points
nl ∈ {0, . . . , N − 1}, l = 1, 2, . . . , R, with fis having the R
elements (fis)l = f [nl]. The elements of the matrix DΔ can be
written explicitly as

(DΔ)l,m = DM,N (nl −md)

=

M∑
k=−M

W−knl

N W kmd
N . (14)

In order to compute the 2M + 1 values of a necessary to
fully reconstruct the signal [using (8)], D−1

Δ must exist. This is
shown in the Appendix for arbitrary disjoint nj .

While it is possible to write D−1
Δ in closed form, the closed-

form inverse is impractical for numerical computation. Instead,
well-known conventional numerical inverse methods can be
used to compute D−1

Δ or solve the corresponding linear system.
We point out that DΔ and D−1

Δ depend only on the sample
locations and not on the sample values. Thus, if the sample

locations remain the same, multiple reconstructions can be
accomplished with only one matrix inversion. Fast numerical
methods for solving (13) are considered in [6].

Since D−1
Δ exists, it is possible (at least theoretically) to

compute

a = D−1
Δ fis (15)

no matter what the precise values of nj are, so long as they
are distinct. Once a is computed, it can be then used to recon-
struct the signal using the discrete sampling equation, i.e., (8).
Reconstruction from irregular samples can be thus viewed as
a two-step process: first, compute the frequency coefficients
of the signal using (15), and then, reconstruct the full signal
using (8).

We point out that, once a is computed from the locations of
the irregular samples, the reconstruction of f [n] is independent
of the original sample locations. Furthermore, when there is no
sampling noise, a computed from either irregular or regular
sampling is identical. Some computation can be saved if the
reconstructed signal is only needed at particular locations. In
this case, a is first computed from the samples. Then, the
forward reconstruction equation, i.e., (8), can be used with D
containing only the rows corresponding to the desired locations.

In the oversampled case where R > 2M + 1, DΔ is rec-
tangular, but remains full column rank. It is overdetermined
and therefore has a unique pseudoinverse. While the “extra”
samples could be discarded to make DΔ square, retaining all
of the samples improves the performance in the presence of
sampling noise [6]. When R > 2M + 1, the pseudoinverse is
used in (15) to compute a. We note that, in the noise-free
case, the same a results no matter the number (subject to
R ≥ 2M + 1) or the locations of the samples so long as they
are distinct.

D. Variable Apertures

The previous section showed that a 1-D discrete periodic
M -band-limited signal can be reconstructed from 2M + 1 ar-
bitrary irregular samples. There is no restriction on where the
sample points are located—only that they are distinct. This
result has been derived previously [8]. However, the variable-
aperture case has not been previously considered. Here, we
consider the variable-aperture case.

As noted, in practice, the observed signal is frequently
filtered through an aperture or a point-spread function prior
to sampling. Such may arise due to the response function
of an antenna, lens, or other signal processing. In general,
the aperture may be different for each observation. While the
effects of a single fixed aperture function can be removed
by deconvolution, handling variable apertures requires a more
general approach.

Let vj [n] be the aperture corresponding to the jth observa-
tion. Effectively, vj is the impulse response of the aperture.
Typically, the aperture is like a window with a central peak
centered at the sample location and has a finite length. The
aperture is generally much shorter than the signal, and thus has
a wider bandwidth of support. Define the jth aperture-filtered
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signal as fj[n] = vj [n] ∗ f [n]. Note that fj[n] is band limited to
the minimum band limit of the signal f [n] or aperture function
vj [n].7 The jth sampled observation is gj = fj [nj ].

Assuming vj [n] is reasonably well behaved, we can write

fj[n] = vj [n] ∗ f [n] =
N−1∑
k=0

f [k]vj [n− k] (16)

where vj is treated as periodic moduloN so that the observation
samples gj = fj[nj ] are

gj = (vj [n] ∗ f [n])|n=nj
(17)

=
N−1∑
k=0

f [k]vj [nj − k]. (18)

Using (7), the sample gj can be written as

gj =

N−1∑
k=0

2M∑
l=0

alDM,N(k − ld)vj [nj − k] (19)

=

2M∑
l=0

alHj(nj ; l) (20)

where Hj(nj ; l) is defined as the convolution of the Dirichlet
kernel DM,N (n− ld) and the aperture function vj [n] sampled
at nj , i.e.,

Hj(nj ; l) = [vj [n] ∗DM,N (n− ld)]|nj
. (21)

In matrix form, the variable aperture sampling equation is

g = Dva (22)

where (g)j = gj[nj ], and Dv is the R× (2M + 1) sampling
matrix whose rows are Hj(nj ; l) for l = 0, . . . , 2M . Explicitly

(Dv)j,l = Hj(nj ; l)

=

N−1∑
k=0

vj [nj − k]DM,N(k − ld) (23)

=

N−1∑
k=0

vj [nj − k]

M∑
m=−M

W
−m(k−ld)
N (24)

=

N−1∑
k=0

vj [nj − k]

M∑
m=−M

W−mk
N Wmld

N . (25)

Given the sample values g, the vector a can be computed by
inverting (22), if the sampling matrix Dv is invertable.

The matrix Dv is invertable if and only if the columns of Dv

are linearly independent, which depends on the relationship of
the aperture functions as shifted to the sampling location. In
the ideal aperture case, vj [n] = δ[n− nj ], so that Dv = DΔ.

7Here, we assume that none of the apertures has frequency nulls in the signal
bandwidth.

Fortunately, most practical apertures tend to be well behaved.
These include finite-length window-like apertures centered at
the (distinct) sample locations.8 In these cases, the matrix Dv

is invertable. Notably, a fixed aperture (vj [n] = v[n− nj ]),
where v[n] is well behaved, such as a window function, ensures
invertability.

If Dv is full column rank, the value of a computed from the
variable aperture samples is unique and permits reconstruction
of f [n] using (8) for any set of distinct sample locations
(subject to R ≥ 2M + 1) and apertures. When extra samples
are available, the pseudoinverse can be used. In the noise-free
case, the result is precisely the same values for a as when the
minimum number of distinct samples is used.

E. Computational Considerations

In the previous sections, it is shown that, regardless of where
the signal is sampled, the resulting DΔ matrix is invertable,
enabling reconstruction of the periodic band-limited signal f [n]
given any 2M + 1 samples within the period. The samples
could, in fact, be adjacent. However, the sample locations do
affect the computation of the inverse of the DΔ or Dv matrices
as quantified by the condition number of the matrices. The
condition number κ is the ratio of the largest to smallest eigen-
values. A large condition number implies that the inverse is
sensitive to numerical computation errors. Thus, poor condition
numbers can limit the practical implementation of the approach,
although the matrix is known to be invertable. We note that the
condition number is a function only of the sample locations and
aperture function, and not of the signal values.

As we have seen, reconstruction of the sampled signal in-
volves the solution of the linear system given by (13) for the
case of no aperture (which is equivalent to an ideal δ function
aperture) or (22) for the aperture-filtered case. This can be
computationally taxing, particularly for largeR. When using no
aperture, the active weights conjugate gradient Toeplitz method
(ACT algorithm) [6] is a computationally efficient method
for solving the system for 1-D reconstruction from irregular
samples. The ACT method can be extended to a single fixed
aperture by first reconstructing the aperture-filtered signal from
the samples and then deconvolving the aperture function and
signal. However, the ACT algorithm does not support variable
apertures.

For the variable-aperture case, a numerical approach must
be used. Fortunately, numerical methods permit solutions of
very large order even when the condition number is quite large.
Values of R in hundreds or more are practical, and large values
can be used with very high precision computation. While there
are so many variations that it is difficult to generalize the
effects of the variable aperture, we have found that most prac-
tical apertures tend to regularize DΔ, reducing the condition
number relative to an ideal [δ function] aperture. Occasionally,
for particularly poor sampling distributions, the apertures can
degrade the condition number compared with an ideal aperture.
While poorly behaved apertures can produce noninvertable Dv

8An example of a poorly behaved aperture is vj [n] = 1, which results in a
noninvertable Dv .
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matrices, in the authors’ experience, poorly behaved apertures
are rarely encountered in practice.

Iterative approaches to matrix inversion or linear system
solution can be very effective for reconstruction, and iterative
methods are commonly used to refine matrix inverses computed
using QR factorization or other methods. We note that iterative
methods can be also used to compute approximate reconstruc-
tions. These are particularly useful for very large problems with
thousands or millions of samples. Examples of iterative re-
construction methods include algebraic reconstruction methods
(e.g., [12]) and the scatterometer image reconstruction (SIR)
method [13]. Although SIR was not originally explicitly for-
mulated as a discrete reconstruction method, the linear form of
SIR is an iterative approximation of the reconstruction method
described here. Other variations are possible, e.g., [14].

III. TWO-DIMENSIONAL SAMPLING

AND RECONSTRUCTION

Extending the 1-D results to higher dimensions seems
straightforward. However, unlike in the 1-D case where the only
requirements on the sample locations are that they be distinct,
in the 2-D sampling case, there are some sampling distributions
that do not enable 2-D reconstruction. For example, if all the
samples are in a straight line, they are effectively single dimen-
sional, and general 2-D reconstruction is not possible.9 On the
other hand, for 2-D signals band limited to rectangular spectrum
of support, sampling using a generalized “cubic lattice” loca-
tion scheme (defined later) is always fully reconstructable, even
if the lattice spacing is nonuniform. While general 2-D sample
location requirements that enable full reconstruction of band-
limited signals are difficult to simply state, a given sampling
configuration can be tested by evaluating the rank of the 2-D
reconstruction matrix described later.

A. Preliminaries

Following the 1-D case, a discrete 2-D signal f [n1, n2]
with 2-D period [N1, N2] is considered that is [M1,M2]-band-
limited, i.e., the signal has a rectangular region of support in
the frequency domain.10 Thus, its 2-D DFT F [k1, k2] can be
written as [compare (3)]

F [k1, k2] =

N1−1∑
n1=0

N2−1∑
n2=0

f [n1, n2]W
k1n1

N1
W k2n2

N2
. (26)

Since F [k1, k2] is [N1, N2]-periodic, we need only consider a
single period in the following discussion.

For convenience, the 2-D signal is expressed as a row-
major ordered vector, although any consistent ordering could be
used. Over a [N1, N2] period, f [n1, n2] is written in row-major
ordering as the N1N2 length vector f with elements (f)j =
f [n1, n2], where j = n2N1 + n1, with n1 ∈ {0, 1, . . . , N1}

9Other examples of nonreconstructable sample distributions can be generated
(see Fig. 2).

10Other definitions of 2-D band limit exist that couple the coordinates. These
have different sampling requirements [2], [15]. This paper considers only a
rectangular region of support to define the band limit.

and n2 ∈ {0, 1, . . . , N2}. To illustrate the ordering, the 2-D
locations⎡
⎢⎢⎢⎣

(0, 0) (0, 1) · · · (0, N2 − 1)
(1, 0) (1, 1) · · · (1, N2 − 1)

...
...

. . .
...

(N1 − 1, 0) (N1 − 1, 1) · · · (N1 − 1, N2 − 1)

⎤
⎥⎥⎥⎦

become the 1-D vector
⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

(0, 0)
(1, 0)
(2, 0)

...
(N1 − 1, 0)

(0, 1)
(1, 1)

...
(N1 − 1, 1)

(0, 3)
(1, 2)

...
(N1 − 1, N2 − 1)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

Equation (26) defines a rectangular region of support in
the frequency domain where F [k1, k2] = 0 for |k1| > M1 or
|k2| > M2. Note that there are only R, where R = R1R2

with R1 = 2M1 + 1 and R2 = 2M2 + 1, nonzero entries in
F [k1, k2]. Thus, the minimum number of samples required
to fully reconstruct an arbitrary [M1,M2]-band-limited signal
is R.

In conventional sampling theory, the samples are required to
be located on a regular (uniformly spaced) 2-D grid (known as a
“uniform cubic lattice”), e.g., the ni,j th sample is at [id1, jd2],
where d1 = N1/(2M1 + 1), and d2 = N2/(2M2 + 1) [d1 and
d2 integers].11 Such a sampling is a specific example of the
more general “generalized cubic lattice” sampling scheme de-
fined as the cross product of two 1-D samplings, one along each
dimension [15].

Consider R1 distinct sample indexes (n1)i ∈ {0, . . . , N1 −
1} and R2 distinct indexes (n2)j ∈ {0, . . . , N2 − 1}. The sam-
pling location sets {(n1)i} and {(n2)j} are called the “marginal
samplings.” A gridded cubic lattice sampling consists of R =
R1R2 samples located at ni,j = [(n1)i, (n2)j ].

In contrast to generalized cubic sampling, general 2-D sam-
pling has R distinct samples arbitrarily located within a spatial
period, with no structure required. Fig. 2 illustrates examples of
these different 2-D sampling schemes.

B. Two-Dimensional Reconstruction

Here, it is shown that cubic lattice sampling can be a
sufficient condition for full reconstruction; however, it is

11As in the 1-D case, nonintegers d1 and d2 can be used; however, as in the
1-D case, for simplicity, in this paper, we assume integer values for d1 and d2.
Thus, N1 and N2 are integer multiples 2M1 + 1 and 2M2 + 1, respectively.
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Fig. 2. Examples of 2-D sampling for [N1 = N2 = 45, M1 = M2 = 5].
(Upper left) Uniform cubic lattice. (Upper right) Irregular cubic lattice. (Lower
left) General reconstructable. (Lower right) Nonreconstructable.

not a necessary condition for general [M1,M2]-band-limited
reconstruction—many other general sampling configurations
are possible. A method for evaluating these more general cases
is derived. Unlike the 1-D case, merely having R disjoint
samples is not sufficient to ensure full reconstruction—the
sampling must be full rank.

The condition expressed in (26) means that an arbitrary
[M1,M2]-band-limited discrete 2-D signal f [n,m] can be
written as

f [n1, n2] =

2M1∑
p1=0

2M2∑
p2=0

ap1,p2
DM1,N1

(n1 − p1d1)

×DM2,N2
(n2 − p2d2) (27)

which is the 2-D equivalent of (7), where the 2-D Dirichlet
kernel is formed from the product of two 1-D Dirichlet kernels
(see Fig. 1).

In matrix–vector notation, the row-major ordered 2-D equiv-
alent to (8) is

f = Da (28)

where a is an R = R1R2 vector with (a)l = a[p1, p2], p =
p2R1 + p1, and D is an (N1N2)×R element matrix of sam-
pled Dirichlet kernels, where

(D)k,l = DM1,N1
(n1 − p1d1)DM2,N2

(n2 − p2d2) (29)

with k = n2N1 + n1 and l = p2R1 + p1. Thus, D has a block
form that can be constructed from two D matrices [see (9)]
using the appropriateM andN values, e.g.,D can be expressed
as the Kronecker or direct product of the D matrices along each
axis, i.e.,

D = D(1) ⊗D(2) (30)

where ⊗ is the Kronecker product12; and D(1) and D(2) are D
matrices constructed using M1, N1 and M2, N2, respectively.
Recalling the 1-D development, we note that a corresponds to
an equivalent uniformly spaced regular cubic lattice sampling
of f , i.e., for integers d1 and d2, a = (d1d2/N1N2)fu, where
(fu)l = f [p1d1, p2d2].

Let {Sk} be the set of Rs ≥ R distinct sample locations
where Sk = [(n1)k, (n2)k], with 0 ≤ (n1)k < N1 and 0 ≤
(n2)k < N2 arbitrary. The sampled signal vector fs has ele-
ments (fs)k = f [Sk] = f [(n1)k, (n2)k] and can be written as

fs = DΔa (31)

where the Rs ×R matrix DΔ consists of the appropriate rows
of D, i.e., the kth row of DΔ is the ith row of D, where i =
(n1)kN2 + (n2)k. Explicitly

(DΔ)k,l =(D)i,l

=DM1,N1
((n1)k − p1d1)DM2,N2

((n2)k − p2d2)
(32)

with i = (n2)kN1 + (n1)k and l = p2R1 + p1.
From (31), if DΔ has full column rank (which, at a min-

imum, requires Rs ≥ R), a can be uniquely computed from
fs. We note that, when Rs > R and DΔ is full column rank,
some rows of DΔ are linearly dependent on the other rows,
which implies that excess rows and their corresponding samples
can be eliminated [although extra samples are useful for noise
suppression (see Section III-D)]. We are often most interested
in the case of critical sampling with Rs = R, which has
square DΔ.

For cubic lattice sampling, it can be shown that

DΔ = DΔ(1) ⊗DΔ(2) (33)

where DΔ(1) and DΔ(2) are 1-D forward sampling matrices
defined in (14) for the marginal sampling sets {(n1)i} and
{(n2)j}, respectively. By using the well-known general matrix
identity

rank(A⊗B) = rank(A) rank(B) (34)

where A and B are arbitrary matrices, and noting that DΔ(1)

and DΔ(2) are full column rank in (33), it follows that DΔ

is full rank. Thus, for this case, the marginal sampling sets
enable full reconstruction of arbitrary 2-D [M1,M2]-band-
limited signals. This is true for either uniform or irregular
marginal sampling schemes. For regular cubic lattice sampling
with integers d1 and d2, DΔ is a scaled identity matrix, and
a = (d1d2/N1N2)fs.

While DΔ is always full rank for generalized cubic lattice
sampling for more general sampling distributions, DΔ is not
guaranteed to be full rank, and in fact, exceptions can be found.

12The Kronecker product of a m× n matrix A and a p× q matrix B is a
mp × nq matrix, i.e.,

A⊗B =

⎡
⎢⎣
a1.1B · · · a1,nB

...
. . .

...
am.1B · · · am,nB

⎤
⎥⎦ .
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Despite extensive effort on our part, we have been unable to
come up with simple description of the requirements for general
sampling to ensure full-rank DΔ; however, numerical methods
can be used to test the rank ofDΔ for any particular sampling to
ensure invertability. This is discussed further in Section III-D.
Note that the rank of DΔ is dependent only on the sample
locations and not on the sample values.

As in the 1-D case, reconstruction of the 2-D signal f from
irregular samples can be viewed as a two-step process. First,
the equivalent regular sampling representation a is computed
from the irregular samples by solving (31), which is possible
if DΔ is full rank. The reconstructed signal is then computed
using (28). Note that if the reconstructed signal is only needed
at particular locations, a can be first computed. Then, f can be
computed at the desired locations using the appropriate rows of
D in (28) [see (31)].

C. Variable Apertures

As in the 1-D case, the effects of a single constant aperture
function for 2-D sampling can be removed by deconvolution;
however, a more general approach is required when different
apertures are used with different samples.

Let vk[n1, n2] be the effective aperture corresponding to the
kth observation. The sample value gk is the 2-D convolution of
the original signal and the aperture function, evaluated at the
sample location, i.e.,

gk = (vk[n1, n2] ∗ f [n1, n2])|Sk

=
∑
m1

∑
m2

f [m1,m2]vk [(n1)k −m1, (n2)k −m2] (35)

[compare (17) and (18)] where vk is treated as periodic and the
double sum is over the nonzero region of support for vk, and
Sk = [(n1)k, (n2)k] is the location of the aperture center. Let g
be the Rs element vector of aperture-filtered samples. In matrix
form, (35) is

g = Dgf = DgDa = Dva (36)

where the rows of Dg contain the values of vk to be convolved
with the columns of D. The resulting rows of the Rs ×R
element matrix Dv are aperture-filtered Dirichlet kernels.
Explicitly

(Dv)k,l =
∑
m1

∑
m2

vk [(n1)k −m1, (n2)k −m2]

·DM1,N1
(m1 − p1d1)DM2,N2

(m2 − p2d2) (37)

=
∑
m1

∑
m2

vk [(n1)k −m1, (n2)k −m2]

·
M1∑

μ1=−M1

M2∑
μ2=−M2

Wμ1m1

N1
W p1d1

N1
W−μ2m2

N2
W p2d2

N2

(38)

with l = p2R2 + p1.

By solving (36) with the sample values g, a can be computed
if the variable aperture sampling matrix Dv is invertable. If Dv

is not invertable, then a cannot be precisely computed, and thus,
the signal cannot be exactly reconstructed from the samples.
In this case, approximate solution methods must be used, e.g.,
[9] and [13].

The matrix Dv is invertable if and only if it has full col-
umn rank, which depends on the relationship of the apertures
as shifted to the sampling location. Including the apertures
generally does not change the sampling rank. In numerical
experiments described in the following, we have found that the
apertures often improve the condition number compared with
the ideal aperture matrix, i.e., they tend to regularize the sam-
pling matrix. However, this is not always the case: some aper-
ture functions and samplings do not result in a full-rank Dv.
At present, we do not have a general analytic method for
specifying such cases and must rely on numerical tests. We
hope to complete a more detailed exploration of the relationship
between the variable apertures and the sampling locations in a
future paper.

As in the 1-D case, reconstruction of the 2-D signal f
from irregular variable aperture samples is a two-step process.
Assuming Dv is full rank, the equivalent regular sampling
representation a is first computed from the irregular samples
by solving (36). The reconstructed signal is then computed
using (28).

D. Two-Dimensional Sampling Considerations

As previously noted, while cubic lattice sampling can ensure
a full-sampling matrix in 2-D sampling, there is no guarantee
that an arbitrary 2-D sampling is full rank. To help provide
insight into how often an arbitrary 2-D sampling does not
result in a full-rank sampling matrix, we conduct a Monte
Carlo experiment. For simplicity, we set M = M1 = M2 and
N = N1 = N2. Two cases for the aperture function were con-
sidered: an ideal aperture (a δ function) and a realistic fixed
aperture. The latter is a 2-D Hann window of extent M cen-
tered at the sample location. The experiment also evaluates
the effect of “excess” samples when the number of sam-
ples Rs is greater than the minimum number R required for
reconstruction.

While cases for small M and d can be reasonably exhaus-
tively tested, this is not practical for larger values; thus, to
generate this plot for each case and set of parameters, several
thousand different realizations of sets of Rs distinct sample
locations were randomly generated. The sample locations were
uniformly distributed over the possible locations. For each
realization, the rank of the sampling matrix Dv was numeri-
cally determined, and the percentage of full rank matrices was
computed. The results are summarized in Fig. 3.

In all cases, this plot shows that the percentage of full-rank
2-D samplings for various values of M and d, where N =
d(2M + 1) increases with increasing M . The rate of increase is
a function of d, with larger d producing higher full-rank matrix
percentages. For d > 6, the percentage is almost always 100%
for the M values considered. We observe that including the
realistic aperture function improves the condition number of
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Fig. 3. Numerically computed percentage of random 2-D samplings that pro-
duce full-rank reconstruction matrices versus d1 = d2 = d for different values
of M1 = M2 = M . Ri indicates the number of additional samples above the
minimum R required. In this figure, the line/symbol color is associated with M ,
whereas the different symbols indicate different Ri values. Lines and a small
horizontal offset are added to the symbol locations to improve clarity.

the sampling matrix, but did not affect the number of full-rank
cases for the conditions considered.

When extra samples are available (i.e.,Rs > R), in principle,
they are redundant and are not required for reconstruction
if the sampling matrix is already full rank; however, since
most measurements have noise or intrinsic variability, the extra
samples can be exploited to reduce the effects of noise by
including them in the linear system solution when computing
a. This is equivalent to using a pseudoinverse.

In the full-rank case, the extra samples do not affect the signal
reconstruction but tend to reduce the effects of sampling noise
and improve the system condition number. However, when
the sampling matrix is not full rank when Rs = R, including
extra samples (i.e., Rs > R) can result in a full-rank matrix.
This is evident in Fig. 3, which compares different values
of Ri = Rs −R. Note that the percentage of full-rank cases
increases with increasing Ri.

E. Sampling Noise

We briefly consider the effects of noise. From a reconstruc-
tion point of view, noise within the signal bandwidth included
in the signal prior to sampling is treated as part of the signal.
For such band-limited noise, the reconstruction does not affect
the signal-to-noise ratio.

Noise (called “sampling noise”) added to the sample values
as part of the sampling process or after sampling can affect the
signal-to-noise ratio of the reconstructed signal. An example of
sampling noise is the quantization error resulting from analog-
to-digital conversion of the signal being sampled. Such quan-
tization error is often modeled as independent additive noise
with a white spectrum [16]. Another example of sampling noise
arises in microwave remote sensing, where the signal is a spa-
tially dependent variable such as the surface brightness temper-
ature or the normalized radar cross section. When observed by a
satellite sensor, the measurements are contaminated by thermal
noise from the receiver [17], which has the effect of adding
white noise to the measured value after spatial sampling by

the antenna pattern and scanning geometry. Microwave sensors
often use square-law detectors, which have the effect partially
correlating the signal and noise and altering the noise proba-
bility distribution. For example, radiometer measurements have
gamma—or chi-squared-like—distributions [17].

For simplicity, in this paper, we consider only additive noise
that is independent of the signal. The measurement noise equa-
tion is [see (13) and (22)]

f ′s = fs + ηs = Dva+ ηs (39)

where f ′s is the vector of noisy observations of the signal
samples fs, and ηs is the vector of noise added to the signal sam-
ples. Typically, the elements of ηs are independent identically
distributed (i.i.d.), although this is not required in the analysis
that follows.

Given the noisy observations, the estimated sample vector
â is

â = D1
Δ (f ′s + ηs) = a+D−1

Δ ηs = a+ aη (40)

where aη = D−1
Δ ηs is the noise with the inverse sampling filter

applied. The reconstructed signal thus includes an additive term
consisting of the noise filtered by the reconstruction matrix, i.e.,

f̂ = Da′ +Daη = f + ηD (41)

where ηD = DDΔ
−1ηs. Due to the filtering, the noise has

different spectral and correlation properties in the reconstructed
signal than it started with. The precise details depend on the
sample locations and the aperture functions, as well as the noise
properties. Some insight can be gained by examining the case
of uniform sampling. For this case, the D reconstruction matrix
corresponds to an ideal low-pass filter, and the added noise ηD
term is the low-pass-filtered noise values, i.e., the reconstruc-
tion matrix D filters out frequency components of D−1

Δ ηs that
extend beyond the signal band limit. In the irregular sampling
case, DD−1

Δ is a more complicated filter that amplifies some
components of the noise depending on the precise sampling and
aperture functions.

For a particular sampling and set of aperture functions,
the postreconstruction noise spectrum can be computed us-
ing standard spectral decomposition techniques via singular
value decomposition of DΔ [22]. Noise spectral components
(eigenvectors) associated with small singular values of DΔ are
amplified, but any noise components outside of the signal band
limit defined by D are eliminated. As can be expected, we have
found that oversampling tends to reduce noise amplification by
reducing the span of the singular values.

IV. APPLICATION EXAMPLE

We now illustrate the application of the irregular reconstruc-
tion theory for a particular microwave sensor, considering both
ideal and variable apertures. While the technique can be used
for a variety of sensors, for this example, we consider the
passive microwave radiometer known as the Special Sensor
Microwave/Imager (SSM/I) [18].
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Capable of measuring up to seven different channels at dif-
ferent combinations of frequencies and polarizations, SSM/I is
designed to measure radiometric emissions from the Earth [17].
Using a rotating antenna reflector and an integrate-and-dump
filter, it collects a series of measurements over a wide swath. At
the surface, the 3-dB antenna footprints range from about 15 to
70 km in the cross-scan direction and from 13 to 43 km in the
along-scan direction, depending on the beam and the channel.
We consider only a single beam. The measurement footprints
have an elliptical shape whose size and aspect angle vary with
measurement location in the swath [19].

Ignoring the effects of the atmosphere, an SSM/I measure-
ment can be modeled as the integrated product of the surface
brightness and the antenna pattern where the ith measurement
zi of the brightness temperatures is the time average of the inte-
gral of the product of the surface brightness response Tb(x, y)
and the spatial response function (the temporally integrated
antenna gain pattern) Gi(x, y) at the surface for the ith mea-
surement [18], i.e.,

zi =
1

Gi

∫∫
Tb(x, y)Gi(x, y) dx dy (42)

with

Gi =

∫∫
Gi(x, iy) dx dy. (43)

The spatial response function is thus the measurement aperture
function.

Given the measurements zi, we want to estimate the surface
brightness temperature Tb. To do this, following the discussion
in Section I, we assume that Tb is band limited, replace the
integrals with summations of the sampled signals and aperture
functions, and use reconstruction techniques to recover the
band-limited Tb.

To illustrate the application of reconstruction theory, a simu-
lation of the sampling and response function for the 37-GHz
H-polarization SSM/I channel is conducted. An HSI pixel
spacing13 of 6.25 km is selected with the fine processing grid
size set at N1 = N2 = 100, which corresponds to a 625 km ×
625 km area. This is approximately one half the nominal swath
width, which was chosen for convenience.

Since the average spacing of the samples is approximately
25 km, we cannot expect the effective resolution of the re-
construction to provide much better resolution. Hence, we set
d1 = d2 = 4 so that M1 = M2 = 25, which corresponds to
a 25-km signal resolution. Note that denser sampling (more
samples over the same area) can support finer product image
resolution. This can be achieved by combining multiple satellite
passes over the target area [20].

The measurement response is modeled as an elliptical
Gaussian function with one-half power dimensions of 37.5 km×
25 km. These are the measurement apertures. The ellipse aspect
angle relative to the image grid is determined by the antenna
scan angle, which varies across the swath. Fig. 4(a) illustrates

13The pixel spacing is the same as the “posting resolution” or spacing of the
reconstructed signal.

the measurement locations. Note that the measurements loca-
tions form an irregular sampling grid. Fig. 4(b) shows a few
of the aperture functions, which vary over the swath, resulting
in spatially varying spatial response functions. The major axis
of the aperture is aligned with the grid near the bottom, but is
rotated by 60◦ near the top.

For the simulation, a synthetic “truth” image is constructed
at fine grid resolution, as shown in Fig. 4(d), that contains
various features, including “spots” of varying sizes and image
gradients. The span of Tb values is realistic for land imaging for
the 37H SSM/I channel [19]. The truth image is ideally low-
pass filtered to band limit it to 25-km resolution, as shown in
Fig. 4(e). This image represents the best that can be recovered
from the truth image in a M1 ×M2 band-limited sense. The
mottling and feature smoothing in the image are the result of
the ideal band limiting. The root-mean-square (rms) difference
between the band-limited and non-band-limited truth images
is 4.80 K.

The various sampling and reconstruction matrices are nu-
merically computed. The true a is computed using a 2-D
fast Fourier transform. The D matrix is independent of the
measurement locations and depends only on M1, M2, N1, and
N2. Using the sampling locations in Fig. 4(a), the DΔ matrix is
computed. The Dv matrix is computed using the measurement-
varying aperture function and the measurement location. In this
case, there are R = Rs = 625 measurements. The Dv matrix
is full rank.

Simulated noise-free measurements with ideal apertures
are created along with simulated measurements for realistic
spatially varying apertures using (31) and (36), respectively.
Noisy measurements are simulated by adding unit variance i.i.d.
Gaussian noise to the simulated noise-free measurements.

Because DΔ and Dv are full rank, the reconstruction from
the noise-free measurements is exact to within numerical pre-
cision, i.e., both the ideal and realistic aperture reconstructions
are the same as the true band-limited image in Fig. 4(e). In these
numerical experiments, the condition numbers for the ideal and
realistic aperture cases are 20 and 1982, which results in linear
systems that are readily solvable with standard software.

Referring to (41), the noisy measurements are the sum of a
noise term and the reconstructed signal. The noise terms for the
same particular realization of the noise for the ideal and realistic
apertures are shown in Fig. 4(g) and (h). We observe that the
unit variance additive noise has been significantly enhanced,
particularly for the aperture case, where the reconstruction filter
applied to the noise has created a diagonal ripple. It is thus
apparent that, for this particular problem, while the signal re-
construction is exact, the reconstruction of noisy measurements
is sensitive to the noise level.

In conventional SSM/I data processing, the measurements
are often gridded onto a 25-km grid N ′

1 = N ′
2 = 25 using a

“drop-in-the-bucket” (DIB) technique where, for each DIB grid
element, all of the measurements whose centers fall within
the grid element are averaged into the value reported by that
pixel. The DIB resolution is limited to the sum of the grid
size and the measurement response dimensions, in this case,
about 50 km or about twice as coarse as the reconstruction
grid. The number of measurements falling within each DIB
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Fig. 4. Illustrative results from an SSM/I measurement and reconstruction simulation. (a) Measurement locations. Underlying pixel spacing is 6.25 km.
(b) Examples of the spatial measurement response function (aperture) at several locations. (c) Count of the number of measurements in each 25-km grid
element. (d) Synthetic “truth” image (not band limited). (e) Band-limited “truth” image. Band limit is at 25 km. (f) DIB image. (g) Reconstructed noise without
aperture. (h) Reconstructed noise with aperture. (i) DIB noise example. Horizontal bands in lower portion of (c), (f), and (i) are DIB grid pixels containing no
measurements—see text.

TABLE I
SUMMARY OF SSM/I SIMULATION RMS DIFFERENCE STATISTICS.

THE RMS DIFFERENCE BETWEEN THE BAND-LIMITED AND

NON-BAND-LIMITED TRUTH IMAGES IS 4.80 K

grid element is shown in Fig. 4(c). Note that the number of
measurements falling within a DIB grid element varies over the
area and that some grid elements contain no measurements at
all, resulting in gaps in the image, which are rows in this case.
These gaps can be eliminated by increasing the grid size, which
further lowers the image resolution. The DIB image estimate is
shown in Fig. 4(f). Note the reduced effective resolution of the
DIB image compared with the reconstructed image, as well as
the coarser features. Grid elements with no measurements are
shown in dark blue. The DIB noise term is shown in Fig. 4(i).

A comparison of the rms errors for each image formation
case is given in Table I. Comparing the DIB, the reconstructed
images, and the rms difference statistics, the improved accuracy
and resolution of the reconstruction are apparent. However,
the DIB noise level is also much smaller than the recon-
structed case; thus, there is a tradeoff between resolution and
noise level. This tradeoff can be exploited more finely using

partial reconstruction techniques such as discussed in [13]
and [20]. Whether a particular application can tolerate the
higher noise level in exchange for finer effective resolution is
application specific.

V. CONCLUSION

This paper has discussed the theory of signal reconstruction
from irregularly sampled data with variable apertures where
different measurements may have different aperture functions.
This situation is common in microwave sensors where the
observations have irregular spacing and different antenna gain
patterns resulting in different measurement functions for differ-
ent measurements.

The reconstruction methods presented in this paper can be
used for both real and complex signals. In either case, the
various D and D matrices are real.

We have focused on exact band-limited reconstruction of a
band-limited discrete signal. For the 1-D case, so long as there
are a sufficient number of distinct samples and the aperture
function is reasonably well behaved, a band-limited periodic
signal can be exactly reconstructed. In the 2-D case, the situa-
tion is more complicated, since not all sampling configurations
can support full signal reconstruction. However, so long as the
variable aperture function sampling matrix [Dv or Dv] is full
column rank, a band-limited periodic function can be exactly
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reconstructed, within the limits of numerical precision, by
inverting a linear system. When the samples have added noise,
the sampling noise is filtered by the reconstruction matrix,
which can enhance the impact of the noise. Example results are
provided using a simulation-based realistic satellite sensor, i.e.,
the SSM/I microwave radiometer.

A number of illustrative numerical examples that demon-
strate 1-D and 2-D irregular and variable aperture recon-
struction are provided at www.mers.byu.edu/reconstruction.
MATLAB source code is included to illustrate the various
reconstruction algorithms discussed. Links to other software
cited in this paper are provided on this same site.

We note that alternative reconstruction methods have been
developed for the case when the signal is not band limited
or when only approximate or partially reconstructed results
are needed, e.g., [2]–[4], [12] and [13], and [20] and [21].
These may be numerically more efficient than the exact method
considered here. Inexact methods that incorporate the noise
statistics using Wiener–Kolmogorov smoothing to minimize
the total error are also available, e.g., [22].

APPENDIX

A. Invertability of D◦

For the regular sampling case with R = 2M + 1, the matrix
D◦ defined in (12) can be written as the product of two matrices,
i.e., D◦ = BC, where

B =

⎡
⎢⎣

W−Mn0

N · · · WMn0

N
...

. . .
...

W−Mn2M

N · · · WMn2M

N

⎤
⎥⎦ (44)

C =

⎡
⎢⎣
1 WMd

N · · · WM2Md
N

...
...

. . .
...

1 W−Md
N · · · W−M2Md

N

⎤
⎥⎦ . (45)

Letting W
nj

N = bj , j = 0, 1, . . . , 2M , then W
nj l
N = blj and the

matrix B can be written as

B=

⎡
⎢⎣
b−M
0 · · · b−1

0 1 b0 · · · bM0
...

...
...

...
...

...
b−M
2M · · · b−1

2M 1 b2M · · · bM2M

⎤
⎥⎦. (46)

We note that B is a Vandermonde matrix with complex entries
bi, where bi �= bj ∀ i �= j, j = 0, 1, . . . , 2M . It is well known
that the inverse of a Vandermode matrix exists14; therefore,
B−1 exists.

14In fact, a closed-form analytic inverse of a general Vandermode matrix has
been developed [23].

Similarly, letting W
−(−M+k)d
N = ck, k = 0, 1, . . . , 2M , then

W
−(−M+k)pd
N = cjk, and matrix C is

C =

⎡
⎢⎣
1 c0 c20 · · · c2M0
...

...
...

...
1 c2M c22M · · · c2M2M

⎤
⎥⎦ (47)

which is also a Vandermonde matrix with ci �= cj for i �= j;
therefore, C−1 always exists. Since B−1 and C−1 exist, and re-
calling that D◦ = BC, it follows that D−1

◦ = C−1B−1 exists.

B. Invertability of DΔ

The matrixDΔ defined in (14) can be factored as the product
of two matrices, i.e., DΔ = BC, where

B =

⎡
⎢⎣
W−Mn1

N · · · WMn1

N
...

. . .
...

W−MnR

N · · · WMnR

N

⎤
⎥⎦ (48)

and C is precisely the same matrix as in the regular case
[see (47)]. Note that C is not dependent on the nj values. Using
bj = W

nj−1

N , B can be written as

B=

⎡
⎢⎣
b−M
0 · · · b−1

0 1 b0 · · · bM0
...

...
...

...
...

...
b−M
2M · · · b−1

2M 1 b2M · · · bM2M

⎤
⎥⎦. (49)

To see that B is invertable for any disjoint set of nj values,
note that the matrix B can be factored into the product of two
matrices, i.e., B = AV, where

A =

⎡
⎢⎣
W−Mn0

N 0 0
...

. . .
...

0 0 WMn0

N

⎤
⎥⎦ (50)

V =

⎡
⎢⎣
1 Wn0

N · · · W 2Mn0

N
...

...
. . .

...
1 Wn2M

N · · · W 2Mn2M

N

⎤
⎥⎦ . (51)

A is a diagonal matrix with nonzero diagonal elements; there-
fore, A−1 exists. Letting vk = W

nk−1

N , V can be written as

V =

⎡
⎢⎣
1 v0 v20 · · · v2M0
...

...
...

...
1 v2M v22M · · · v2M2M

⎤
⎥⎦ (52)

which is a Vandermonde matrix with vi �= vj ∀ i �= j; therefore,
V−1 exists. Given that A−1, V−1, and C−1 exist and DΔ =
BC = AVC, it follows that D−1

Δ = C−1V−1A−1 exists for
any disjoint set of nj .
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