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Prior Selection for QuikSCAT Ultra-High
Resolution Wind and Rain Retrieval
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Abstract—QuikSCAT was designed for ocean wind retrieval.
However, its wind estimation performance is limited in rainy
conditions. Several estimation techniques have been proposed:
wind-only (WO), simultaneous wind and rain (SWR), and
rain-only, which are appropriate for different levels of rain con-
tamination. To exploit the strengths of each estimation method at
mitigating rain contamination, a Bayes estimator selection (BES)
technique has been developed for 25-km wind products to select
from among the several estimation techniques for each wind vector
cell. This paper adapts the BES concept [1] to QuikSCAT ultra-
high resolution (UHR) 2.5-km, products and extends BES to in-
clude prior selection and noise reduction. Prior selection and noise
reduction exploit general spatial characteristics of wind and rain
fields to improve the accuracy of estimator selections. Together
these techniques enable improved estimator selection performance
so that the probability of selecting the estimate with minimum
squared error approaches optimal levels. Optimal estimator se-
lection reduces variability of wind estimates during rainy con-
ditions and provides rain estimates when possible without using
additional sources of information. Overall, UHR wind estimation
performance with the new technique has improved bias and root
mean-squared error, −0.16 m/s and 2.15 m/s, respectively, which
are lower than either of the UHR WO and UHR SWR estimates.

Index Terms—Remote sensing, resolution enhancement, scat-
terometry, wind, wind retrieval.

I. INTRODUCTION

THE QuikSCAT scatterometer has proven to be a valu-
able tool for measuring near-surface ocean wind vectors.

QuikSCAT was originally designed to produce wind-only (WO)
estimates at a conventional resolution of 25 km. WO estimates
can be produced at higher resolutions, up to 2.5-km ultra-high
resolution (UHR), using irregular reconstruction and resolution
enhancement techniques [2], [3]. Although UHR wind products
have higher noise levels than conventional resolution products,
UHR wind products can be powerful aids for understanding a
wide variety of ocean wind phenomena, including storms such
as hurricanes, near-coastal winds, and mesoscale wind features
[3], [4].

Many interesting ocean wind phenomena are accompanied
by rain; however, in rainy conditions, QuikSCAT observations
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are contaminated by rain-induced backscatter which may cause
WO estimates to be unreliable [5]. To improve wind and
rain estimation in rainy conditions, a simultaneous wind and
rain (SWR) retrieval algorithm was proposed for conventional
resolution wind products [6] which has been recently adapted
for UHR wind products [7]. Conventional-resolution wind and
rain products have low noise levels. Unfortunately, the 25-km
resolution is coarser than many rain cells, thereby reducing
the utility of the rain estimates. UHR wind and rain products
can be valuable for rain studies since their 2.5-km resolution
approaches that of rain cells. SWR estimation at UHR improves
wind estimates for many raining conditions but has degraded
performance in both extreme rain and rain-free conditions. For
extreme rain conditions, a rain-only (RO) estimation technique
is useful for cases in which rain contamination dominates
the wind signal [8]. In rain-free conditions, WO estimation
provides more accurate wind estimates than SWR estimation.

Although each estimation technique (WO, SWR, and RO) is
optimal for certain conditions, no single estimator is appropri-
ate for all conditions. Bayes estimator selection (BES) selects
the estimate (WO, SWR, or RO) for each resolution cell that is
most appropriate for the underlying conditions [1].

At UHR, BES is complicated by significantly higher noise
levels compared to the conventional 25-km wind resolution
and higher variability of the wind and rain fields resulting
from small-scale wind features only apparent at the increased
resolution. The increased noise and variability in UHR wind
and rain estimates have two main consequences: additional
variability in UHR estimates and higher estimator selection
error. Both of these effects make UHR products more sensitive
to the wind and rain prior distribution used to perform BES.

The sensitivity to the prior distribution for UHR BES can
be reduced by choosing prior distributions appropriate for
each wind situation. Uncommon wind events such as tropical
storms and frontal features are particularly sensitive to the prior
distribution since each type of event is rare and is thus not
well-modeled by the global prior used previously [1]. In this
paper, a new technique is proposed whereby a single prior
distribution is selected from among several candidate priors for
each wind field. This is referred to here as prior selection. This
new technique reduces estimator selection errors substantially.

To further decrease the probability of selecting an inappro-
priate estimator, an estimator selection noise reduction step is
applied. Estimator selection noise reduction corrects certain
types of estimator selection errors by exploiting the spatial
characteristics of wind and rain fields.

This paper adapts the BES developed in [1] for conventional
resolution products to the UHR 2.5-km wind product and
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further extends the technique to include prior selection and
noise reduction, thereby reducing some limitations of BES that
are unique to UHR.

Section II gives some background information on QuikSCAT
and UHR products, after which Section III reviews BES and
introduces some new notation. Prior selection is introduced
in Section IV and is applied to QuikSCAT UHR products
in Section V. Section VI describes estimator selection noise
reduction and Section VII evaluates estimator selection perfor-
mance using BES, prior selection, and noise reduction, after
which Section VIII concludes with a summary.

II. BACKGROUND

The QuikSCAT scatterometer measures the normalized
radar cross section, or backscatter, of the earth’s surface at
13.4 GHz [9], [10]. Over the ocean, scattering from wind-
induced surface waves can be used to infer wind speed and
direction. The wind estimates are widely used to aid weather
monitoring and forecasting, while the historical record is a
valuable tool to evaluate changes in the global environment.

In addition to scattering from wind-induced waves,
QuikSCAT is sensitive to a number of other phenomena, partic-
ularly rain. Atmospheric hydrometeors cause volume scattering
as well as attenuation of the surface backscatter signal. At
the ocean’s surface, falling raindrops cause additional surface
roughness in the form of rings, crowns, and stalks [11]–[13].
QuikSCAT is sensitive to these rain-induced features, which
can attenuate and obscure the wind-induced backscatter [11].
In addition, rain events may by accompanied by downdrafts that
can alter the local wind field [14].

The backscatter effects of rain have been described for
QuikSCAT at both 25- and 2.5-km resolutions [6], [7]. Given
the rain backscatter model and the geophysical model function,
which models the expected backscatter for a wind vector [12],
estimates of the wind and rain can be produced for each
wind vector cell (WVC), or resolution cell, using maximum
likelihood estimation [1], [6]. Wind estimates calculated with-
out incorporating the rain model are termed WO estimates;
wind and rain estimates produced using the geophysical model
function for wind together with the rain model are termed SWR
estimates [6], [7]; and rain estimates produced without using the
wind geophysical model function are termed RO estimates [8].

The phenomenological effects of wind and rain backscatter-
ing can be used to intuitively understand the motivation for each
type of estimator. When there is no rain or when the effects of
rain are insignificant, the WO estimate reliably estimates the
wind vector. When the rain is sufficient to significantly modify
the wind-induced backscatter, the SWR estimator can be used
to recognize the wind and rain effects and reliably estimate
both wind and rain. For high rain rates, the rain backscatter
can be strong enough to obscure the surface signal, or the
atmospheric rain attenuation can be sufficient to reduce the
wind signal to inconsequential levels. When the wind signal is
thus masked, the RO estimator should be used to estimate the
rain rate since the wind cannot be estimated acurately. Choosing
the appropriate estimator optimizes wind and rain measurement
performance.

To validate QuikSCAT wind and rain estimates, this paper
uses numerically modeled wind estimates produced by the
National Center for Environmental Prediction (NCEP) and rain
measurements made by the Tropical Rain Measuring Mission
Precipitation Radar (TRMM PR). The NCEP winds used in this
study are treated as a truth data set but are in reality only an
approximation to the true wind field. Although the NCEP winds
do not model small-scale variations in the wind field, they do
well on a global scale [15], [16]. TRMM PR rain measurements
are very reliable and are well-suited as a comparison data set
for rain validation. There are some differences in the TRMM
PR and QuikSCAT observation geometry and sampling pattern
that must be accounted for in order to compare TRMM PR and
QuikSCAT rains as in [1], [7].

III. BES

As previously noted, for QuikSCAT wind and rain estima-
tion, there are three types of estimators: WO, SWR, and RO. If
the estimators are used under conditions for which they are not
appropriate, the estimates are degraded, sometimes severely.
This effect is described in detail in terms of the overall Cramér-
Rao lower bound (CRB) in [1] where it is demonstrated that
the minimum bound can only be achieved using the estimators
under conditions for which they are appropriate. For UHR
wind products, the observation noise is higher than for 25-km
wind products. The higher noise level increases the estimate
variability and generally increases the CRB for the different
estimators at UHR.

To approach optimal overall wind and rain estimation per-
formance, BES is used to select the most appropriate wind-
rain estimate. BES for QuikSCAT conventional resolution is
introduced and demonstrated in [1] where it is shown that
the estimates selected using BES have overall improved per-
formance, lower bias, and lower mean-squared error than the
estimates from any single estimator.

In BES the Bayes risk r(φj , Fθ) for a decision rule φk and a
prior Fθ is the expected value of the risk function R(ϑ, φj) and
can be written as [1]

r(φj , Fθ) =

∫

θ

R(ϑ, φj)Fθ(ϑ)dϑ

= τEθ|∼X

(
C(ϑ, ϑ̂j)

)
+ κEθ|X

(
C(ϑ, ϑ̂j)

)
(1)

where ϑ is the true wind and rain, τ and κ are weighting
coefficients, C(ϑ, ϑ̂j) is the squared error cost function between
the estimate ϑ̂j and the true conditions ϑ, Eθ|∼X(C(ϑ, ϑ̂j))

represents the expected squared error of not selecting ϑ̂j when
ϑ is true, and Eθ|X(C(ϑ, ϑ̂j)) represents the expected squared

error of selecting ϑ̂j when ϑ is true. In BES, a decision rule is
selected by choosing the rule that minimizes (1). The optimal
selection, denoted φopt, is to choose the estimate that minimizes
C(ϑ, ϑ̂j). Optimal values for τ and κ are selected to maximize
the probability of making the optimal selection, p(φopt), using
Monte-Carlo simulation.
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As BES is dependent on the wind and rain prior distribution
Fθ, it is helpful to explicitly include this dependency. The
selected decision rule is written with this dependence as φ̂(Fθ),
which is a shorthand notation for

φ̂(Fθ) = argmin
j

{r(φj , Fθ)} . (2)

Similarly, the dependence on the prior can be included in the
Bayes risk, or error, for the selected decision rule

e
(
φ̂(Fθ)

)
= min

j
{r(φj , Fθ)} (3)

= r
(
φ̂(Fθ), Fθ

)
(4)

where e(φ̂(Fθ)) is the Bayes risk associated with the decision
rule selected using Fθ.

BES estimator selection performance is indicated by p(φopt),
the probability of choosing the optimal estimator. It is shown in
[1] that at conventional resolution p(φopt) is high for cases in
which the observed wind and rain field is well-represented by
the wind and rain prior distribution Fθ. For most wind fields
(roughly 80% of winds), the global wind and rain prior used
in [1] is appropriate. However, for wind and rain fields that are
misrepresented by the prior, BES has diminished performance,
i.e., p(φopt) is low. This reduced performance is not a break-
down of the BES technique but is instead a consequence of
using a prior that is inconsistent with underlying conditions.

At UHR, sensitivity to the wind and rain prior distribution
is greater due to greater spatial variability in the UHR wind
and rain fields. Wind events such as hurricanes are particularly
sensitive to the wind and rain prior since they are uncommon
on a global scale and are thus not well-represented by a global
prior. However, since these rare cases are often of particular
interest, it is important that BES can address them reliably. To
increase the reliability of BES for wind and rain conditions that
are not well-represented by a global prior, we introduce the
concept of prior selection.

IV. PRIOR SELECTION

Sensitivity to the prior distribution is common to all Bayes
techniques, from Bayes decisions to maximum a posteriori
estimation. When the prior does not reflect the distribution
of observations, accuracy and reliability are diminished. To
ameliorate this limitation, we want to use a prior which is
appropriate for the observed wind and rain field. In this appli-
cation, we consider multiple priors which are chosen to model
a range of wind and rain dynamics. Though not done here, the
multiple priors can model regional characteristics such as trade
winds or topography. In this paper, a set of reasonable candidate
priors is created, from which a suitable prior is selected for each
WVC. As a mechanism to select a best prior distribution from
among multiple candidate priors, we introduce a prior selection
technique based upon a Bayes decision formulation.

Adapting a Bayes decision mechanism for prior selection
implies that the true prior distribution is a random variable
with some distribution. Because small-scale wind and rain
features have unique distributions and are of particular interest

at UHR, we consider a set of simple candidate wind and rain
distributions representing a variety of wind and rain phenomena
at the spatial scales of interest, and select the prior from the set
of candidate distributions that best matches the local conditions.
This set of wind and rain distributions has an associated prior
distribution that can represent the frequency with which each
type of phenomena occurs. To decide which of these wind and
rain distributions is most appropriate for observed conditions
requires a prior selection technique which we now introduce.

Let Fθi denote a candidate prior and let FΘt
denote the true

prior. To form the Bayes risk for prior selection requires the
definition of a loss function L(Φi(φ), FΘt

) where Φi(φ) is the
prior selection decision rule based on observing φ. The Bayes
risk also requires a prior distribution for the candidate priors.
We denote the probability of prior FΘi

being best as fΘ(i).
The Bayes risk also requires a conditional distribution which
represents the probability of prior Fθi being best given that the
“true” prior is FΘj

. This probability mass function is written as
f(i|j). With this notation the risk function can be written

R(Φi,Θt) =Eθj |Θt

[
L
(
Φi

(
φ̂
(
Fθj

))
, FΘt

)]

=
∑
j

L
(
Φi

(
φ̂(Fθj )

)
, FΘt

)
f(i|j). (5)

Forming the Bayes risk requires one final distribution, fΘ,
which represents the distribution of prior distributions. The
Bayes risk for prior selection is the posterior expected loss and
can be written

r(Φi, fΘ) =
∑
t

∑
j

L
(
Φi

(
φ̂
(
Fθj

))
, FΘt

)
f(j|t)fΘ(t).

(6)

A shorthand notation for the rule that selects the prior that
minimizes the Bayes risk is

Φ̂ = argmin
i

r(Φi, FΘ) (7)

where Φ̂ represents the selected prior.

A. Prior Selection Loss Function

The definition of the loss function is fundamental to the
success of the prior selection technique. The loss function defi-
nition must account for several unique aspects of the estimator
selection problem.

For a single WVC, there can be three different estimates:
WO, SWR, and RO. The three data points have sufficient in-
formation to make an informed estimator selection using BES;
however, there may be insufficient information for selecting a
prior. Prior selection must therefore include information from
more than a single WVC. Additional information is available,
particularly at UHR, by changing from a point-wise formu-
lation, where each WVC is considered independently, to a
field-wise formulation, where each WVC is related to the sur-
rounding WVCs. Field-wise techniques have been previously
implemented for wind retrieval [4], [17], [18]. Prior selection
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is unique in that it makes field-wise decisions about point-wise
estimates.

A field-wise formulation for prior selection exploits spatial
consistency in wind and rain fields by incorporating informa-
tion from the surrounding WVCs. This spatial correlation can
be utilized in prior selection by defining a loss function for
the prior selection decision rules that incorporates the spatial
characteristics of the wind field.

Such a loss function can be written

L
(
Φi

(
φ̂
(
Fθj

))
, FΘt

)
(x,y)

= e
(
φ̂
(
Fθj

))
(x,y)

∗W (x, y)δij

(8)

where the subscript (x, y) indicates location, ∗ denotes spatial
convolution, W (x, y) is a weighting function, and δij is a Dirac
delta function. The loss function accounts for spatial consis-
tency using the weighting function W (x, y) which reflects the
expected spatial consistency of the wind and rain field. This
definition for the prior selection loss function ensures that the
loss associated with candidate prior Fθj at pixel (x, y) depends
on the BES Bayes risk associated with the estimator selections
in the surrounding area. The Dirac delta function δij ensures
that the loss for candidate prior Fθj is zero when it is not
selected using decision rule Φi.

Note that this loss function does not depend on the true prior
FΘt

. This is by design for several reasons. First, identifying the
true prior is not the objective; rather, the objective is to choose
the candidate prior that results in the lowest estimation error
over a region. Second, there is no way to determine the true
distribution of wind and rain vectors in a WVC from a single
wind and rain estimate without additional information.

V. BES WITH PRIOR SELECTION

This section discusses the application of both BES and
prior selection to the QuikSCAT UHR product. Previously [1],
BES was applied only to 25-km wind products using a single
universal wind and rain prior.

A. Estimator Likelihood Function

The estimator likelihood function f(i|ϑ) for UHR BES is
independent of the wind and rain prior and depends only on the
performance of the estimators. For performance evaluation, we
use a Monte-Carlo approach. The Monte-Carlo approach we
pursue here is advantageous in that it is simple to implement
and the results can be easily interpreted. This approach is
identical to that pursued for the conventional-resolution estima-
tor likelihood function except that the Monte-Carlo simulation
parameters are those for UHR wind products [2], [7]. At UHR,
the general structure of the estimator likelihood function is
similar to that of conventional resolution; however, the higher
noise level in the UHR estimates causes greater variability
in the optimal estimator selections since UHR wind and rain
retrieval is not as sensitive to low rain events as 25-km wind
and rain estimates are.

B. Candidate Priors

The choice of candidate priors is critical to overall algorithm
performance. One approach to choosing a wind and rain prior
is to estimate the parameters of the wind and rain prior distri-
bution from the data. This approach is complicated for wind
and rain estimation because it is unclear which estimates (WO,
SWR, or RO) should be used to estimate the prior parameters.
Instead, the proposed prior selection is a two-step approach
in which BES is performed with each candidate prior, then
the selected estimates from each candidate prior are used to
select the best prior distribution. While there are a potentially
infinite number of viable candidate wind and rain distributions,
with some additional information about wind and rain fields in
general, a finite set of useful candidate priors may be formed.

Wind fields are relatively smooth on small-spatial scales
since wind spectra are dominated by low wavelengths, although
storms and weather fronts can cause higher spatial variability.
Rain fields, on the other hand, are characterized by high spatial
variation, particularly for convective storm systems where rain
cells can be as small as 2.5 km [19]. Although rain events
modify the wind field via downdrafts, the distribution of wind
speeds over the surrounding region remains largely unchanged
since it is dominated by the local mean wind flow. Thus,
for moderate spatial scales, between 25 and 100 km, there is
potentially high variability for rain, but low variability for wind.
For larger spatial scales, wind fields have high variability as
well. The spatial autocorrelation of wind and rain is estimated
using NCEP model winds and TRMM PR-measured rains.

BES with prior selection (BES-PS) reduces the estimator se-
lection errors associated with BES by choosing the appropriate
wind and rain prior distribution. BES has the greatest limita-
tions when the mean wind speed over a region is significantly
different from the global wind prior. Useful candidate priors can
have similar rain distributions with different mean wind speeds.

The candidate priors in this work are selected so that each
has a different mean wind speed. To ensure that these prior dis-
tributions reasonably match observed wind and rain conditions,
they are formed by shifting the mean of the global wind and rain
prior density that is formed the same way as the conventional-
resolution wind and rain prior in [1] but at UHR. Each candidate
prior has a uniform direction distribution, identical marginal
distributions for rain, and Weibull wind speed distributions with
different means.

BES-PS is not particularly sensitive to the number of can-
didate priors considered in this paper. To balance simplicity
with effectiveness, in this paper we use 12 candidate prior
distributions with wind speed means and standard deviations
given in Table I. Fewer priors may leave artifacts in the
estimator selection fields since BES characteristics are prior
dependent. Using more priors can reduce artifacts but signif-
icantly increases the required computation for prior selection.
The prior distributions used here are selected to represent wind
conditions from low to high wind speeds. As low wind speeds
occur far more frequently, the candidate priors have mean wind
speeds that are spaced more densely at low speeds. For high
wind speeds, the candidate priors have slightly greater spacing
to reduce the computation involved in prior selection while
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TABLE I
CANDIDATE PRIOR MEAN WIND SPEEDS (μ) AND

STANDARD DEVIATIONS (σ) IN m/s

Fig. 1. Normalized wind speed 2-D autocorrelation function used as the prior
selection weighting function.

maintaining coverage for higher wind speed conditions. As the
candidate priors only differ in the distributions of wind speed,
each candidate prior can be uniquely identified by the mean
non-raining wind speed (μ in Table I) as is done in the following
sections.

C. Prior Selection Weighting Function

The prior selection weighting function W (x, y), shown in
Fig. 1, is the 2-D autocorrelation function of the wind field
computed from the UHR wind estimates. When the spatially
weighted BES error is minimized by a candidate prior, it
implies that the surrounding area is well-represented by the
candidate prior.

Prior selection is partly motivated by the fact that rain-
free high winds can be easily mistaken for lower speed rain-
contaminated winds. Since rain events typically have small
spatial extent, they can be differentiated from high wind events
using prior selection. To differentiate such events, the size of
the weighting function W (x, y) must be larger than most rain
events. For this paper, the weighting function size is 225 ×
225 km. Prior selection is not particularly sensitive to the size
of the weighting function as long as the size is suitably large. If
the region of support for W (x, y) is too small, prior selection
has diminished performance since the weight function is not

Fig. 2. Optimal values of κ for each of the candidate prior distributions for a
single cross-track location determined by Monte-Carlo simulation.

Fig. 3. Minimum acceptable rain rate (dB km-mm/hr) for the candidate
prior distributions for a single cross-track location determined by Monte-Carlo
simulation.

large enough to reliably detect changes in the wind speed
distribution.

D. Optimal BES for Candidate Priors

To realize optimum estimator selection using each candidate
prior distribution, the optimum value for κ in (1) must be
determined for each candidate prior distribution. The optimum
values of κ as in [1] are obtained for each candidate prior
density using Monte-Carlo simulation for each UHR cross-
track location; these values are shown in Fig. 2.

BES can be improved by choosing a minimum acceptable
value for rain estimates. Based on the estimator likelihood
function, there is a rain rate for each wind speed below which
the SWR and RO estimators rarely have lower squared-error
than the WO estimate, indicating that for low rain rates the WO
estimate should always be selected. By rejecting SWR and RO
estimates for rain rates below this threshold, the probability of
incorrectly selecting the SWR or RO estimator can be reduced
dramatically. The minimum rain threshold for each candidate
prior is determined using the estimator likelihood function as
the rain rate above which the probability of the SWR estimate
being correct is greater than 50%. The minimum rain rate (in
dB km-mm/h) for each candidate prior is shown in Fig. 3.
The minimum acceptable rain rate increases with the mean
speed of the wind and rain prior. For low wind speeds, wind
is very susceptible to rain contamination, so only the lowest
rain estimates can be neglected. For high wind speeds, the wind
is relatively unaffected by rain contamination unless the rain is
very high, so low to moderate rain estimates can be discarded.

The optimum values of κ are dependent on both the candidate
prior and the observation geometry (cross-track swath loca-
tion). As the mean wind speed of the prior increases, κ increases
sharply. When κ is close to one, in effect, BES attempts to min-
imize the error associated with the correct estimator selection.
This implies that the cost of incorrect selections is similar to
that of the correct selection, indicating that the estimates have
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high noise levels. The decreases in κ above a mean speed of
13 m/s can be partly explained by the minimum acceptable rain
threshold.

E. Distribution of Priors

Although the distribution of wind speed can be approximated
with a Weibull distribution, it is not as clear how the distribution
of priors, fΘ, should be represented since we have no a priori
information about the realization of the observed wind field.
Without definitive a priori information, a maximum entropy
argument is a logical approach to forming the distribution. Fol-
lowing this maximum entropy argument for this paper, we adopt
a so-called “non-informative” uniform prior for the density of
priors, i.e., we make no assumptions about the distribution of
priors. Adopting a uniform prior is equivalent to assuming that
no single wind and rain prior is favored or expected more than
any other. While some high wind speeds occur less frequently,
in practice a non-uniform density of priors results in poor
prior selection performance and consequently poor estimator
selection performance as well. Thus, a uniform prior as a
density of priors is appropriate from both a theoretic maximum
entropy perspective and from a practical perspective for most
regions; for hurricanes, more sophisticated priors should be
used [4], [20].

VI. NOISE REDUCTION FOR ESTIMATOR SELECTIONS

BES is driven principally by the optimality of the selection
parameters and decision rules for point-wise wind and rain
estimates. Prior selection is adopted to account for some of
the spatial characteristics of wind and rain, but it does not
ensure spatial consistency of the selected estimates in all cases.
Here, we diverge from strict point-wise estimator selection and
investigate spatial consistency of the estimates as a form of
noise reduction. Although the point-wise estimator selection
uses a statistically optimal criteria, it is a noisy process and
some incorrect decisions occur. Incorrect decisions can be
apparent due to the spatial structure of the wind and rain field
estimates. By exploiting some general features of wind and rain
fields, selection errors can be identified and corrected.

The purpose of noise reduction step for wind and rain esti-
mates with prior selection is twofold. First, the BES is subject
to some uncertainty due to noise even when the correct prior
is used. Noise reduction aims to reduce selection errors due
to high noise levels in the estimates. Second, prior selection
can introduce artifacts into selected estimate fields since the
characteristics of BES change depending on the prior used.
Noise reduction also aims to reduce these artifacts, making the
selected wind and rain fields spatially consistent. To achieve the
objectives of noise reduction, we exploit the spatial consistency
of wind and rain fields to both reduce noise and create spatially
consistent fields of selected estimates.

A. Estimator Selection Noise Reduction

Wind estimates are inherently noisy, and BES-PS error can
increase the noise. Typically estimator selection errors occur for

wind and rain events for which no single estimator (WO, SWR,
or RO) is clearly superior. These types of rain events can be
generally grouped into several populations: low-rain, high-rain,
and high-speed.

Low-rain selection errors typically occur as selection errors
between the WO and SWR estimates. Selection errors with
low rains typically occur because the WO estimator is selected
instead of SWR, when the SWR estimate is superior. High-
speed errors occur when the wind speed is quite high and the
rain is insignificant. For these cases, the WO estimate should
be selected. High-rain errors occur when the WO estimate is
incorrectly selected because the SWR rain rate is high. To
identify areas where these types of estimator selection errors
are likely, a filtered field of wind estimates is formed.

Wiener filtering produces estimates that optimally minimize
the mean-square error given a field of noisy estimates and
the autocorrelation function of the signal [21]. Wiener-filtered
signal estimates can reduce noise and help identify areas where
it is likely that the estimator selections are incorrect.

The optimal filter coefficients for noisy observations are
given by the Wiener–Hopf equations as

[
Rx + σ2

vI
]
w = rx (9)

where Rx is a Hermitian Toeplitz matrix of autocorrelation
values for the desired signal, σ2

v is the variance of the noise,
w is a vector of the optimal filter weights, and rx is a vector
of autocorrelation values [21]. Although Wiener filters are
typically defined for vectors, they can be extended to 2-D
spatial filtering.

Since the autocorrelation can be estimated for both wind
and rain, the optimal filter coefficients, given estimates of the
wind and rain estimation noise power σ2

v , can be determined
using the Wiener–Hopf equations. The noise power for wind
and rain can be approximated as the mean-squared error of the
wind and rain estimates over a large data set. For this study,
the mean-squared wind and rain error is the error between the
ideal estimator selections and NCEP winds and TRMM PR-
measured rains. The mean-squared error is calculated from a
data set of 17 million co-located TRMM PR and QuikSCAT
observations from 1999 and 2000. For this data set the mean-
squared wind error is 7.83 (m/s)2 and the mean-squared rain
error is 73.3 (km-mm/hr)2, indicating that the best-case wind
estimates have a standard deviation of 2.79 m/s and the best-
case rain estimates have a standard deviation of 8.56 km-mm/h.

Equation (9) assumes that the noise is uncorrelated. Strictly
speaking, for UHR QuikSCAT data, the observation noise is
correlated between WVCs due to the resolution enhancement
processing of the σo values. Furthermore, the noise is a function
of the QuikSCAT swath location. The spatial correlation of the
noise is due to the nature of the overlapping slice measure-
ments used in resolution enhancement. Although the resolution
enhancement causes correlation of the noise realizations, the
extent of the correlation is limited by the spatial extent of the
slice spatial response function. The noise is thus only correlated
for a maximum extent of 30 km using UHR. Although the
QuikSCAT observation noise has some correlation, approxi-
mating the noise as uncorrelated is reasonable since the noise
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level of the estimates is quite high compared to the level of
correlation. We thus treat the noise realizations as uncorrelated.

The Wiener filter coefficients give the minimum-squared-
error wind and rain given the observations over a region. The
Wiener filtered wind and rain fields form smoothed wind and
rain fields with reduced noise. The smoothed estimates of the
wind and rain fields are useful in identifying and correcting
missed rain selections. Missed rain selections occur as two
types of errors: WO selections when the SWR estimate should
be selected, and WO selections when the RO estimate should
be selected. Each type of error is sufficiently different that they
must be treated separately.

For WO selections when the SWR estimate is best, the
selection errors are recognizable as holes or gaps in larger rain
events. These errors can be identified by filtering the selected
wind and rain fields. If the Wiener-smoothed rain is greater than
1 km-mm/h and the SWR error is less than the WO error, then
the WVC is reclassified as a missed SWR selection. Typically,
the missed SWR selections occur for low rain rates, for which
the WO and SWR estimates are similar. For these conditions,
selecting the SWR estimate instead of the WO estimate has a
small impact on the overall estimate error. Although the error is
small, without correcting for the selection error, significant rain
events may be classified as non-raining conditions.

WO estimator selections that should be RO selections can be
corrected in a second step. RO missed selections often occur
for moderate to high rain rates when the SWR estimator does
not produce a wind and rain estimate. For raining conditions,
this condition implies that the RO estimate is likely the better
solution than the WO estimate. These errors can be identified
as areas where the smoothed rain estimates are high enough
to dominate the wind signal that might be expected from
the smoothed wind speed. Unlike the missed SWR selections
where the effect of using the WO estimate instead of the
SWR estimate is generally small, exchanging WO and RO
estimates can change the overall estimation error drastically.
Thus, the RO estimate should be selected to replace the WO
estimate only when the rain rate is high enough that the wind
backscatter signal is entirely lost. WVCs for which the rain rate
is sufficient to mask the wind signal can be identified using the
Wiener-smoothed wind and rain fields. The rain rates that are
high enough to mask the wind signal are those for which the
estimator likelihood function for the SWR or RO estimator is
greater than 0.5. This indicates that smoothed rain in the WVC
is large enough to obscure the wind signal entirely and the RO
estimate is likely to be a more appropriate estimator than the
WO estimate.

B. Consistency Check

The second objective for estimator selection noise reduction
is to produce spatially consistent wind and rain fields. This is
particularly important for areas with high wind speeds where
incorrect selections of SWR or RO estimates are common. For
these cases, the poor selections can be identified since the esti-
mated rain events do not have a physically consistent structure,
as indicated by the known rain spatial correlation. To correct
this type of spatial inconsistency, the noise-corrected wind

and rain estimates from the previous subsection are smoothed
again using the Wiener filters for wind and rain. Then, the
estimators that have minimum total squared error, as defined in
[1], with the smoothed wind and rain fields are selected as the
correct estimates. This step can change the estimator selections
adversely if the smoothing is performed on too wide a scale. To
minimize over-smoothing while maintaining consistency, the
smoothing filters are limited to an extent of 25 km for this step.

C. Comments

The estimator selection noise reduction process is not in-
tended to change many of the estimator selections made using
BES and prior selection. Rather, the noise reduction steps are
designed to reduce small-scale selection errors, remove artifacts
in the estimator selections due to prior selection, and increase
the spatial consistency of the wind and rain estimate fields.
Using noise reduction after prior selection results in small
changes in the overall probability of correct estimator selection
which can be significant in terms of the overall estimation
error.

Although the steps taken during noise reduction are some-
what ad-hoc in nature, when used in conjunction with prior
selection, they improve the overall estimator selection per-
formance and aid in interpreting the estimator selections as
a rain-impact flag. The improvements in estimator selection
and rain-flagging performance are quantified in the following
section.

VII. RESULTS

To evaluate performance of prior selection and noise re-
duction on QuikSCAT wind and rain estimates, this section
considers both a case study and averages over a large data set.

A. Case Study

To demonstrate the advantages of BES with prior selection
when applied to UHR, we consider a case study of QuikSCAT
rev 10 362 from June 15, 2001. The QuikSCAT wind and rain
estimates, TRMM PR-measured rains, estimator selections, and
prior selections are shown in Fig. 4. The top of the study
area has several rain events that cause rain contamination of
moderate winds. The bottom half of the study area depicts a
front, while the bottom portion of the study area contains high
wind speeds.

The WO wind estimates near the top of the case study are
contaminated by the rain events causing spurious high wind
speed estimates. Near the bottom of the study area, where there
is no rain contamination of the winds, the WO estimates are
very accurate.

The SWR wind speed estimates are lower than the WO esti-
mates for nearly the whole study area. In the raining conditions
at the top of the study area, SWR wind and rain estimates are
accurate. However, in the high wind speeds at the bottom of the
area, the SWR speeds underestimate the wind and the SWR rain
estimates are too high. Selecting the SWR estimate in the high-
speed area of the study area would thus be detrimental to overall
performance. Although the presence of RO rain estimates is
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Fig. 4. Estimator results and Bayes estimator selection for QuikSCAT rev 10 362, Jun. 15, 2001. In each image, the x-axis indicates QuikSCAT along-track
range in 2.5-km resolution cells and the y-axis represents cross-track range, showing a 900-by-1000-km region in the South Atlantic centered at 35.5◦ S
4.6◦ W. The top row shows wind speed estimates (m/s) with overlaid direction vectors. From left to right: WO, SWR, and BES-PS selected wind. The second row
shows rain estimates (dB km-mm/h) with relevant direction vectors overlaid. From left to right: RO, SWR, and BES-PS selected rain. For comparison, the third
row shows the TRMM PR-measured rain (dB km-mm/h) with the model wind vector field overlaid (left), the ideal estimator selections (center) and the Bayes
estimator selections without prior selection (right). The bottom row shows the mean wind speed (m/s) for the selected prior (left), the estimator selections made
with prior selection (center), and the estimator selections made with prior selection and noise reduction (right). For estimator selection fields (lower two images
in the right two columns), 0 corresponds to a WO selection, 1 to a SWR, and 2 to a RO selection. Note that the Bayes selected estimates (upper two images in the
right column) have less noise than the SWR estimates and have smooth wind fields in non-raining cases. Additionally the correspondence between the BES-PS
and noise reduction (lower right image) and the ideal selections (middle of third row) is visually consistent, and is identical 87.1% of the time.

reasonable in the raining portions of the study area, RO rain
estimates should not be used in the rain-free areas. The ideal
estimator selection (shown in Fig. 4) is to use the WO estimates

for the rain-free cases in the top of the image and for the high-
speed cases at the bottom of the image; for the raining areas the
SWR or RO estimates should be used.
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For this case, BES using the global prior with a mean speed
of 7 m/s correctly identifies the raining areas in the moderate
wind speeds near the top of the study area. Unfortunately,
BES with the global prior falsely identifies rain events and
incorrectly selects the SWR and RO estimators in the high wind
areas in the lower part of the study area. This is not surprising
since the global prior does not model the high-speed region
well. BES with the global prior results in correct estimator
selections 66.9% of the time for this case.

BES-PS reduces incorrect selections in the high-speed region
while maintaining correct selection in the rainy portions. Note
that the mean wind speed of the selected priors resemble those
of the wind estimates, albeit biased slight lower. The corre-
sponding BES-PS selections identify the raining regions while
significantly reducing the incorrect estimator selections associ-
ated with the high wind speed area. However, some selection
artifacts attributable to the small number of candidate priors
remain. BES-PS improves the percentage of correct estimator
selections to 85.6%.

Noise reduction of the BES-PS selections further reduces the
noise due to incorrect selections while improving the spatial
consistency of the selected wind and rain fields. Although
there are still some incorrect estimator selections in the region,
noise reduction increases the percentage of correct estimator
selections to 87.1%. By design, noise reduction only makes
small changes that increase overall spatial consistency. These
changes are most important and most effective in very high-
speed and high-rain cases, which occur rarely.

For this case study, we conclude that prior selection and
noise reduction increase the probability of optimal estimator
selection substantially compared to conventional BES. This
reduces the frequency of both false and missed rain selections
while simultaneously improving the selected wind and rain
fields substantially. Although this case study was selected to
highlight the improvements that are possible when using prior
selection and noise reduction, the performance increase can
be also observed over much larger data sets that have a wide
variety of wind conditions.

B. Overall Performance

To evaluate the overall performance of the prior selection
technique, two separate comparisons are made: 1) How well
do prior selection and noise reduction approach the optimal
estimator selection? and 2) How do the selections affect the
accuracy of the selected wind and rain estimates? The first
question can be answered by evaluating the estimator selections
and the second by evaluating the selected estimates. These eval-
uations are performed on a 2-year-long data set of QuikSCAT
and TRMM PR co-located observations where TRMM PR-
observed rain from September 1999 through August 2001,
a data set of 11.2 million 2.5-km WVCs.

1) Estimator Selection Accuracy: The performance of es-
timator selection varies as a function of the true conditions
whether prior selection and noise reduction are incorporated or
not. Fig. 5 shows the probability of optimal estimator selection
as defined in [1] for BES and BES-PS with noise reduction as a
function of NCEP wind speeds and TRMM PR-measured rain

Fig. 5. Probability of optimal estimator selection for UHR wind estimates as
a function of NCEP wind speed and TRMM PR-measured rain rate. Top: Bayes
estimator selection using a single wind-rain prior. Bottom: Results using prior
selection and noise reduction. Although using prior selection slightly reduces
the probability of optimal estimator selection for low speeds and moderate to
high rain rates, it increases the probability of optimal selection for moderate to
high winds for all rain rates and results in lower overall error.

rates. Optimal estimator selections are those which have min-
imum total squared-error [1] where NCEP winds and TRMM
PR rains are used as the comparison truth data. When prior
selection is not used, the probability of optimal estimator selec-
tion is high for wind speeds close to 5 m/s. For moderate and
high wind speeds, however, the estimator selection performance
is low when prior selection is not used. Although the addition
of prior selection and noise reduction reduces the probability
of optimal selection for some low to moderate speed cases, the
majority of the time, it significantly increases the probability
of optimal estimator selection. For moderate and high wind
speeds, the increase in the probability of optimal estimator
selection due to prior selection and noise reduction can be as
much as 90%.

The improvements in the probability of optimal estimator
selection incurred by adopting prior selection and noise reduc-
tion are summarized in Table II for the data set. Without prior
selection, the probability of a wind and rain vector occurring
for which the probability of optimal selection is below 75%
is 39.4%; with prior selection, it is reduced to 9.2%; and with
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TABLE II
PROBABILITY OF WIND AND RAIN VECTORS THAT HAVE ESTIMATOR SELECTION PERFORMANCE IN THE INDICATED RANGES

TABLE III
OVERALL PROBABILITY OF OPTIMAL ESTIMATOR SELECTION

FOR 1 YEAR OF CO-LOCATED DATA

noise reduction, it is reduced to 8.3%. Additionally, although
Table II indicates that there are wind and rain vectors for which
the probability of optimal estimator selection is below 25%,
these wind and rain vectors only occur 0.2% of the time when
prior selection and noise reduction are used.

The overall improvements in the probability of optimal
estimator selection are shown in Table III. Adopting prior
selection increases the probability of correct estimator selection
by 23.3% and using noise reduction increases the probability
by an additional 2%. Thus, while BES alone makes the correct
selection 77.2% of the time, BES with prior selection and
noise reduction makes the correct estimator selection 92.5% of
the time.

2) Accuracy of Selected Estimates: To evaluate how estima-
tor selection affects the overall estimation accuracy, we first
define the concept of rain impact. For estimator selection, we
define rain impact to indicate when a rain event causes sufficient
contamination to cause the SWR or RO estimate to have lower
squared-error than the WO estimate. Thus, for conditions with
rain impact, the SWR or RO estimate is the optimal selection;
when there is no rain impact, the WO estimate is the optimal
selection. BES-PS with noise reduction results are evaluated in
the following.

Without BES or BES-PS, there are essentially two alter-
natives for wind and rain estimation: choose to use the WO
estimates and discard winds with rain impact, or reduce the
effects of rain impact by choosing the SWR estimates and live
with degraded wind performance in non-raining cases. BES-
PS attempts to make the optimal selections, i.e., it chooses the
SWR estimates when there is rain impact and chooses the WO
estimates for cases without rain impact.

The effects of non-optimal estimator selections can be il-
lustrated by analyzing the wind estimates in cases with and
without rain impact. Fig. 6 shows the scatter density of the wind
estimates as a function of the co-located NCEP model wind
speed. The mean estimated wind speed and standard deviation
are also plotted for reference in each image. For the cases with
rain impact, BES-PS has the same performance as the SWR
estimates, which have optimal performance for rain impact.
For cases without rain impact, BES-PS ideally has the same
performance as the WO estimates. For the optimal estimates,
with and without rain impact, the bias between the NCEP and
QuikSCAT speeds is quite low and the standard deviations are
relatively small.

For rain impact conditions, although the bias and standard
deviations are not as low as the optimal SWR estimates, the
wind estimates from BES and prior selection have reduced bias
and variability when compared with the corresponding WO
estimates. Similarly, for conditions without rain impact, the
BES-PS wind estimates have nearly identical performance to
the WO estimates, which is much improved over the corre-
sponding SWR estimates.

The advantages of BES-PS are also apparent by evaluating
the wind speed root mean-squared (RMS) error as a function of
NCEP model wind speed and TRMM PR-measured rain rate.
As indicated in Fig. 7, the BES-PS wind speed RMS error is
related to the minimum of the WO RMS error and the SWR
RMS error. For wind-dominated conditions the BES-PS RMS
error corresponds to the WO RMS error, and for substantial
rain events, the BES-PS wind speed RMS error matches the
SWR performance. For rain-dominated conditions in which
wind speeds are low and rain rates are high, BES-PS has little
effect on the wind speed RMS error as observations are dom-
inated by rain contamination. It is interesting to note that for
moderate winds and moderate rains, the wind speed RMS error
for BES-PS is lower than either the WO or SWR estimates,
indicating that BES-PS is more effective than either estimator
individually.

The overall wind speed RMS error and bias is shown in
Tables IV and V for the WO, SWR, and BES-PS, for cases
with and without rain impact. For cases free of rain impact,
the BES-PS have lower RMS error than the WO or SWR
estimates but the estimates are slightly more biased than the
WO speed estimates. For cases with rain impact, the BES-
PS RMS error is substantially lower than the WO estimates
and somewhat greater than the SWR estimates. The BES-PS
wind speed bias for rain-impact cases is somewhat greater
than the SWR estimates but substantially lower than the WO
estimates.

An advantage of BES-PS is that it does not need a separate
rain impact indicator. In fact, the advantages of BES-PS are
clear without differentiating between cases with and without
rain impact. The overall RMS error and bias for the entire data
set are also shown in Tables IV and V for the WO, SWR,
and BES-PS wind speed estimates. The overall RMS error and
bias for BES-PS are smaller than both those of WO and SWR,
indicating that the BES-PS has performance which surpasses
the individual estimators. The fact that the BES-PS RMS error
and bias are lower overall than both the WO and SWR estimates
indicates that BES-PS yields improved overall wind and rain
estimates in both raining and rain-free conditions.

The overall performance for wind direction estimation is also
shown in Tables VI and VII. The wind direction performance
indicates that BES-PS has lower bias overall compared to the
SWR and WO estimators individually. While the BES-PS bias
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Fig. 6. Scatter densities (in dB) for NCEP and QuikSCAT wind estimates for the 2-year data set separated into during rain (top row), and rain-free (bottom row)
conditions. From left to right, the columns show the WO estimates, the Bayes selected estimates, and the SWR estimates. The BES-PS selected estimates (middle
column) have significantly reduced the wind bias compared to the WO estimates in rain cases for all but the lowest wind speeds, and have little bias in cases
without rain impact. Ideally, the Bayes estimates (center column) have the same performance as the WO estimator in rain-free conditions (bottom-left), and the
same performance as SWR in conditions with rain (top-right). Discrepancies between the BES-PS performance and the ideal performance are due to non-optimal
estimator selection.

Fig. 7. Wind speed RMS error (m/s) for WO (left), SWR (right), and BES-PS (center) wind estimates as a function of NCEP estimated wind speed (m/s) and
TRMM PR-measured rain rate (dB km-mm/hr). Rain-free cases are included as rain rates below 0 dB km-mm/hr. Note that the BES-PS wind estimates often have
lower RMS error than either the WO or SWR estimates.

TABLE IV
WIND SPEED RMS ERROR FOR 1-YEAR DATA SET

has slightly larger bias than the SWR estimator during raining
conditions, the BES-PS estimator has lower RMS error than
the SWR estimator for all conditions. The wind direction RMS
error for BES-PS is higher overall than the WO estimator;

TABLE V
WIND SPEED BIAS FOR 1-YEAR DATA SET

however, wind direction was not the primary focus of this paper,
and it may be possible to improve wind direction estimation by
utilizing techniques aimed at improving directional consistency
which were developed for lower resolution wind products.
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TABLE VI
WIND DIRECTION BIAS FOR 1-YEAR DATA SET

TABLE VII
WIND DIRECTION RMS ERROR FOR 1-YEAR DATA SET

TABLE VIII
RAIN ESTIMATE BIAS FOR 1-YEAR DATA SET (km-mm/h)

TABLE IX
RAIN ESTIMATE RMS ERROR FOR 1-YEAR DATA SET (km-mm/h)

Rain estimation performance of BES-PS can be evaluated
similarly by comparing the RO, SWR and BES-PS perfor-
mance as indicated in Tables VIII and IX. In both tables, rain
estimation performance is separated into rain-dominated and
non-zero-rain regimes. Rain dominated observations refer to
cases where the RO estimator is the optimal choice. While
the BES-PS selected rain estimates have a slightly greater bias
overall, the RMS error is preferable to the RO estimator overall
and the SWR during rain-dominated cases without large degra-
dation compared to the SWR estimator overall. In the context
of the WO estimator, BES-PS makes rain estimation possible
while improving wind performance during all conditions.

In addition to providing wind and rain estimates with in-
creased overall accuracy, the BES-PS estimator selections can
be used as a rain-impact flag. By definition, when a SWR or
RO estimate is selected, it indicates that the WO estimate has
greater error due to rain contamination. Thus, for applications
where rain-induced wind error levels are intolerable, the BES-
PS selections can be used to identify and discard WVCs that
may have degraded wind performance.

As previously noted, while large-scale motion dominates the
wind field, rain-induced downdrafts can modify the local wind
field, and thus the radar-observed backscatter. Our method does
not specifically address this issue since we rely on the standard
wind GMF which assumes neutral stability wind and fully
developed wave fields. Such conditions introduce variability
into the wind and rain estimates and thus the estimator selec-
tion. While it appears that at the effective resolution of the
scatterometer estimates the selection errors are relatively small,
their precise impact is not well understood and is a topic of
future work.

VIII. SUMMARY

For UHR, BES increases the overall accuracy of the wind
estimates in addition to providing estimates of the rain during
significant rain events. The addition of prior selection to BES
generalizes the technique to a much wider variety of wind
conditions and substantially improves the estimator selection
performance. The improved estimator selection performance
indicates that BES-PS approaches optimal estimator selection
for many wind conditions. The results indicate that QuikSCAT
is capable of estimating the wind vector, the wind vector and
rain, or the rain without additional sources of information. The
resulting global wind and rain data set can be used in a wide
variety of applications that range from small-scale studies of
tropical cyclones and other storms to global climate studies.
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