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A Reconstruction Approach to Scatterometer
Wind Vector Field Retrieval
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Abstract—This paper approaches wind field estimation from
scatterometer measurements as the inversion of a noisy nonlinear
sampling operation. The forward sampling model is presented and
made discrete for practical purposes. Generally, the wind estima-
tion problem is ill-posed at high resolution, which means that there
are more parameters to estimate than measurements. A Bayesian
approach based on maximum a posteriori (MAP) estimation is
proposed to regularize the problem. This allows the simultaneous
estimation of the regular samples of the high-resolution wind
vector field directly from the noisy aperture-filtered backscatter
σ0 measurements. The MAP reconstruction approach is applied
to the SeaWinds scatterometer, the examples are presented, and
the results are compared to standard products. The MAP re-
construction method produces results that are consistent with
standard products while preserving the higher spatial resolution
information. The MAP estimates result in a similar resolution to
the standard ultrahigh-resolution processing method but with a
lower bias and a lower variability in the estimates.

Index Terms—Irregular sampling, maximum a posteriori
(MAP) estimation, reconstruction, scatterometry, wind estimation.

I. INTRODUCTION

A SCATTEROMETER is a radar that measures the nor-
malized radar cross section (σ0) of the Earth’s surface.

Over the ocean, the backscattered signal is related to the wind
through a geophysical model function (GMF). Each σ0 mea-
surement contains information about the wind, averaged over
an area. Scatterometers make several measurements over the
same spatial region with different geometries, polarizations,
and, possibly, frequencies. These different “flavors” of mea-
surements can be combined to estimate the wind vector field
over the ocean. Several methods of estimating the wind field
from the σ0 measurements have been proposed, each having
their limitations and imposing different assumptions.

Conventionally, the wind field is estimated on a pointwise or
wind vector cell (WVC) basis [1]–[4], i.e., the scatterometer
swath is partitioned into discrete wind WVCs, and a single
wind vector (or a set of ambiguous wind vectors) is separately
estimated for each WVC. A separate ambiguity removal step is
then applied to the entire swath to resolve a unique wind field
[5], [6]. The scatterometer data may be assimilated directly into
the numerical weather predictions using a variational analysis
approach [7]–[12]. The standard scatterometer processing em-
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ploys a drop-in-the-bucket gridding technique using only the
measurements whose centers fall into a particular WVC to esti-
mate the wind for that WVC. This approach essentially assumes
a uniform wind vector field over the WVC, although more
sophisticated wind estimation methods exist, which can account
for subcell variability [13]. Ultrahigh-resolution (UHR) prod-
ucts have been obtained by reconstructing the σ0 fields of each
flavor separately and then performing pointwise wind retrieval
on a high-resolution grid [14], [15]. Both the standard and UHR
pointwise methods impose implicit assumptions and neglect the
spatial correlation between WVCs in the wind retrieval step. Al-
though the ambiguity selection methods can impose a fieldwise
structure and can account for some signal correlation after wind
retrieval, the noise correlation between WVCs (or covariance)
is often neglected in the implicit assumptions of both wind
retrieval and ambiguity selection. Since the spatial response
functions of the scatterometer measurements generally extend
into multiple WVCs, the covariance of the estimates may not
be diagonal across the WVCs with a more general inversion
procedure. An alternative approach which relies neither on
binning nor on σ0 reconstruction and which incorporates the
spatial relationship between the measurements (both the signal
correlation and noise covariance) is to reconstruct the entire
wind field directly from the σ0 measurements, i.e., fieldwise
wind estimation.

Fieldwise wind estimation has been explored in the past
with model-based methods [8], [16]–[18]. In this approach,
the wind field model parameters are estimated from the σ0

measurements, and the wind field estimate is then computed
from the model parameter estimates. Fieldwise approaches also
result in ambiguous wind field estimates that require ambiguity
removal. Note that, if the wind field is not in the span of the
model, the estimated wind may not be the closest wind field
in the space to the true wind field. Furthermore, model-based
methods impose structure (i.e., the model) on the wind fields,
which often results in smoothed wind estimates and which may
be inappropriate for a particular application.

Another fieldwise approach that does not impose a re-
strictive fieldwise model is based on the inversion of the
sampling operation. This is the basis of several σ0 image
reconstruction methods [19], [20]. The conventional scatterom-
eter image reconstruction approaches are designed to produce
high-resolution σ0 images. However, they can be adapted for
the wind field reconstruction problem to deal appropriately
with the scatterometer noise and the nonlinear relationship
between the wind and σ0. For example, [21] and [22] developed
an approach to simultaneously estimate the regularly spaced
samples of the σ0 field from the scatterometer measurements,
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which deals directly with the scatterometer noise model, and
this approach can be extended to deal with the nonlinear GMF.

This paper considers the alternate fieldwise approach to
reconstruct the wind vector field directly from the σ0 measure-
ments. This paper approaches the scatterometer wind estima-
tion problem as the inversion of a noisy nonlinear sampling
operation, i.e., as a noisy inverse problem. A more general
scatterometer sampling model is presented. A Bayesian max-
imum a posteriori (MAP) estimation method is proposed to
reconstruct the wind vector field at a high resolution directly
from the noisy σ0 measurements. The focus of this paper is on
developing the theory and a practical implementation for the
wind inversion step, leaving the issues of ambiguity removal
and noise versus resolution tradeoffs within the new theoretical
framework for future investigation. The new approach gener-
alizes and unifies the other wind estimation approaches. The
conventional drop-in-the-bucket, UHR, and model-based ap-
proaches can be expressed as simplified special cases of the new
method. The reconstruction approach is applied to retrieve the
high-resolution wind fields from the SeaWinds scatterometer.
The new results are compared to the conventional products.

This paper is organized as follows. Section II presents the
forward scatterometer sampling operation and shows that it can
be made discrete under reasonable assumptions. Section III
presents a method for wind field estimation from noisy scat-
terometer measurements. Section IV considers the relation-
ship between conventional approaches and the new method.
Section V applies the new approach to the SeaWinds scatterom-
eter. Finally, Section VI summarizes the results and concludes
this paper.

II. FORWARD MODEL

The forward model or sampling operation describes the
relationship between the wind field and the scatterometer
measurements. This relationship is required in estimating the
wind field from the scatterometer measurements. This section
presents the scatterometer sampling model. The background
on sampling and aperture-filtered sampling is presented, the
scatterometer sampling operation is stated, the forward operator
is made discrete, and the sample spacing or pixel resolution is
considered.

A. Sampling

Sampling is the process of converting a continuous signal
into a sequence. Sampling in a Hilbert space can be represented
as a sequence of inner products of a signal with sampling
functions (i.e., aperture functions). Conventional sampling can
be represented as a vector of inner products with Dirac delta
functions. In a bandlimited space, this is equivalent to sam-
pling with sinc function apertures [23]. More generally, sam-
pling can be done with irregularly spaced aperture functions
with different shapes. Such samples are called aperture-filtered
samples [22], [24]. In scatterometry, the aperture function is
the measurement spatial response function due to the antenna
pattern and processing, and sampling is the process of making
σ0 measurements.

Wind scatterometry is an application of aperture-filtered
sampling in the sense that each σ0 measurement represents an
aperture-filtered sample of a continuous σ0 field. However, each
measurement samples a different σ0 field (i.e., measurements
are made with different geometries). Over the ocean, the σ0

fields sampled by a scatterometer are related nonlinearly to the
underlying wind field through the GMF, which also depends on
incidence angle, azimuth angle, polarization, and frequency.

B. Scatterometer Sampling Model

Scatterometers measure the backscattered power from the
Earth’s surface, averaged over the antenna gain pattern. This
power measurement is scaled to produce the normalized radar
cross section [25]. The measurement of a given scatterometer
pulse is partitioned into several “slice” measurements using
range/Doppler processing or pulse compression [1], [2], [26].
The spatial response functions (i.e., aperture functions) of the
slice measurements vary in shape and location. Neglecting
noise, the power in the return echo for a particular slice mea-
surement Pr,i can be represented by the area-extensive form of
the radar equation [27]

Pr,i =
λ2

(4π)3

∫
Pt,i(x)G

2
i (x)σ

0
t,i(x)

R4
i (x)

dx

where λ is the wavelength, x is a 2-D spatial variable, σ0
t,i(x) is

the “true” or noise-free spatially distributed σ0 field associated
with the ith measurement, Pt,i(x) is the transmitted power,
Gi(x) is the gain pattern of the slice point target response
function, and Ri(x) is the slant range to the scattering surface.
The σ0 measurement for a particular slice i is obtained by
normalizing the measurement of Pr by the so called X factor

Xi =
λ2

(4π)3

∫
Pt,i(x)G

2
i (x)

R4
i (x)

dx

which allows the ith noise-free σ0 measurement σ0
t,i to be

expressed as

σ0
t,i =

Pr,i

Xi
=

∫
Pt,i(x)G

2
i (x)σ

0
t,i(x)

R4
i (x)

∫ Pt,i(y)G2
i
(y)

R4
i
(y)

dy
dx

=

∫
Ai(x)σ

0
t,i(x)dx

where Ai(x) represents the slice spatial response function (i.e.,
aperture function) for slice measurement i. Note that we use the
notation σ0

t,i to represent a scalar measurement and append (x)
to denote a continuous field associated with the measurement
(e.g., σ0

t,i(x)).
Over the ocean, the σ0

t,i(x) fields are related to the wind

vector field �U(x) through the GMF

σ0
t,i(x) = gmf

(
�U(x), θi(x), ψi(x), poli, fi

)
= gmfi

(
�U(x)

)
where θi(x), ψi(x), poli, and fi are the incidence angle field,
azimuth angle field, polarization, and frequency corresponding
to the ith slice measurement, respectively. For convenience,
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these arguments of the GMF are dropped in the rest of this
paper, resulting in the more compact notation gmfi(�U(x)).
Scatterometers make several measurements with different look
geometries over the same spatial region. Stacking the multiple
measurements into a vector, the scatterometer sampling model
is expressed as

�σ0
t =

⎡
⎢⎣
σ0
t,1

...
σ0
t,N

⎤
⎥⎦ =

⎡
⎢⎢⎣

∫
A1(x)gmf1

(
�U(x)

)
dx

...∫
AN (x)gmfN

(
�U(x)

)
dx

⎤
⎥⎥⎦

= T
(
�U(x)

)
(1)

where T is a nonlinear sampling operator that maps the wind
field to the noise-free slice measurements.

Equation (1) states the forward model (i.e., projecting
the wind to the σ0 measurements). Wind field reconstruc-
tion involves solving the inverse problem (i.e., estimating
the wind from the σ0 measurements). In theory, the sam-
pling operation can be inverted using constrained optimization
(see Appendix A). However, in order to simplify the problem
and to deal with noise appropriately, the problem is discretely
solved.

C. Discrete Model

Here, the sampling operation is transformed into a discrete
operation on conventional samples of the wind field (i.e., the
forward operation is made discrete). The wind field can be made
discrete by assuming that it is bandlimited. However, in order
to make the sampling operation discrete, the integrals in (1)
must be expressible as summations. Furthermore, not only the
wind field but also the σ0 fields σ0

t,i(x) corresponding to each
measurement i must be bandlimited.

For a general nonlinear function, assuming that the wind field
is bandlimited does not necessarily force the corresponding
σ0 fields to be bandlimited. Nevertheless, the GMF can be
expressed in such a way that the σ0 fields are guaranteed to
be bandlimited but with a potentially different bandlimit than
the wind.

The GMF is an empirical function that can be approximated
by a finite power series. In Appendix B, it is shown that, if the
wind field has bandlimited components and the nonlinear GMF
can be represented by a finite power series, then the relationship
between the bandlimit of the σ0 fields ωσ and the bandlimit of
the wind field components ωU1

and ωU2
is (see Appendix B)

ωσ ≤ N1ωU1
+N2ωU2

+ ωa (2)

where N1 and N2 correspond to the order of the power series
for the wind vector components and ωa is the bandlimit of the
power series coefficients.

The inequality in (2) states that the σ0 fields are bounded
above by a weighted sum of the wind field component band-
limits, which also implies that the σ0 fields may have higher
frequency content than either of the individual wind field com-
ponents. For example, if N1 = N2 = 2, ωa = 0, and ωU1

=
ωU2

≡ ωU , then ωσ ≤ 4ωU , and the bandlimit of the σ0 field

may be up to four times the bandlimit of the individual wind
field components. This relationship suggests that the regular
sample spacing required to represent the σ0 fields may be finer
than the regular sample spacing required to represent the wind
field components. Thus, an oversampled version of the wind
field with the assumed bandlimit should be projected through
the discrete version of T when numerically calculating the
forward projection. However, relatively small errors may result
from expressing the σ0 fields on the same wind field grid (see
Appendix B).

Thus, if the wind field components are bandlimited, the
σ0 fields are also bandlimited, and the sampling operator can
be made discrete. The discrete sampling operation can be
expressed as

�σ0
t =

⎡
⎢⎢⎣

∑
x A1[x]gmf1

(
�U [x]

)
...∑

x AN [x]gmfN
(
�U [x]

)
⎤
⎥⎥⎦ = T

(
�U [x]

)
(3)

where the square brackets [x] represent the regularly spaced
samples on an up-sampled version of the wind field grid (since
the σ0 bandlimit is higher than the wind field bandlimit) and
T is the discrete version of the nonlinear sampling operator
T . The Nyquist samples of the wind field, denoted as �U [x′],
are related to the samples on the higher resolution grid by
�U [x] = H�U [x′], where H is the up-sampling operator.

D. Wind Field Bandlimit and Sample Spacing

As noted, the sampling operator can be made discrete by
assuming a bandlimited wind field. However, the bandlimit to
assume must be considered. The assumed bandlimit determines
the regular sample spacing required to represent the wind field
with that bandlimit. This sample spacing provides the pixel
resolution on which to reconstruct the wind fields.

Determining the wind bandlimit and the regular sample
spacing is much more complicated than the case of linear
aperture-filtered sampling with bandlimited aperture functions.
In the linear case, the sample spacing is determined directly
from the highest bandlimit of the aperture functions [22]. With
the pointwise nonlinear constraint introduced by the GMF, it
may be possible to recover a higher frequency content than
the bandlimit of the aperture functions (see Appendix A).
Therefore, the bandlimit or signal structure imposed is based
on the knowledge of the wind spectrum.

Fortunately, wind generally has a red spectrum that falls
off approximately as one over the wavenumber squared [28].
This allows for the imposition of a relatively low bandlimit,
without introducing significant aliasing on average. Neverthe-
less, for particular wind features, such as storms or fronts, the
wavenumber spectrum may have a significant high-frequency
energy. In general, a better result may be obtained by assuming
a high bandlimit rather than potentially introducing aliasing
by assuming a bandlimit that is too low. This suggests that
reconstruction must be done on the highest resolution grid
that is practical and that lower resolution estimates must be
obtained by low-pass filtering the estimated wind. However,
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when considering noise and the biased estimators, it may be
beneficial to retrieve at a lower resolution (at least where the
winds are smooth) in order to reduce the systematic errors
that may not average out by low-pass filtering the noisier
high-resolution estimates. Nevertheless, for this paper, a high-
resolution gridding is employed, deferring the noise and bias
versus resolution tradeoff for a future paper.

III. WIND FIELD RECONSTRUCTION FROM

NOISY σ0 MEASUREMENTS

Wind retrieval from scatterometer measurements is a noisy
inverse problem that can be solved using an estimation the-
ory approach. Here, wind field reconstruction from noisy σ0

measurements over the ocean is considered. A scatterometer
noise model is reviewed. A MAP reconstruction estimator is
proposed for wind field reconstruction. An appropriate prior
that is used to regularize the problem is presented. An approach
for practical implementation is also described.

A. Noise Distribution

The noise distribution for a scatterometer measurement is
modeled as a Gaussian random variable with a mean that
is the true or noise-free value and with a variance that is a
quadratic function of the mean [29], [30]. This variance formu-
lation incorporates fading and receiver noise. With this noise
model, the vector of the noisy σ0 measurements �σ0

m can be
expressed as

�σ0
m = �σ0

t + �ν

where �σ0
t = T(H�U [x′]) and �ν is a zero-mean Gaussian random

vector with a diagonal covariance R. The diagonal terms of the
covariance Ri,i can be written as

Ri,i = αi

(
σ0
t,i

)2
+ βiσ

0
t,i + γi

where σ0
t,i is the ith component of �σ0

t and αi, βi, and γi are
the functions of the scatterometer design and the measured
noise power. Note that the aforementioned expression assumes
that the GMF is a deterministic mapping. The uncertainty in
the GMF (or geophysical noise [31]) may be included by
modifying the random vector �ν.

For this paper, we assume that the geophysical noise is
negligible, and we use the Gaussian noise model described
earlier. This results in the likelihood function

f
(
�σ0
m|�σ0

t

)
=

exp
{(

�σ0
m − �σ0

t

)T
R−1

(
�σ0
m − �σ0

t

)}
(2π)N/2|R|1/2 . (4)

Note that f(�σ0
m|�σ0

t ) may also be expressed as f(�σ0
m|�U [x′])

since �σ0
t = T(H�U [x′]).

A common approach in estimating the parameters of a dis-
tribution is maximum-likelihood (ML) estimation. However,
at UHR, the scatterometer wind field estimation problem is
generally ill-posed (i.e., there are more parameters to estimate
than measurements). To regularize the problem, we propose a
Bayesian approach which employs a prior distribution.

B. MAP Reconstruction Estimator

Because of the nonlinearity of the GMF, the shape of the
noise distribution with respect to the wind is generally mul-
timodal [31]. A MAP estimator can deal with the potential
ambiguity caused by this. MAP estimation is Bayesian esti-
mation with a uniform loss function [32] and is similar to ML
estimation, but it also incorporates the prior distribution. The
MAP estimator can be expressed as

�̂UMAP [x
′] = argmax

�U [x′]

f
(
�σ0
m|�σ0

t

)
f
(
�U [x′]

)

where �σ0
m is the noisy measurement vector, f(�σ0

m|�σ0
t ) is the

likelihood function defined in (4), and f(�U [x′]) is a prior
distribution. Note that f(�U [x′]) need not be a direct prior of the
wind vector field. For example, the prior can be a distribution
of some function of the wind field. In practice, the MAP log-
likelihood function

log f
(
�σ0
m|�σ0

t

)
+ log f

(
�U [x′]

)
is used as the MAP objective function.

C. Prior Distributions

Prior distributions can be empirically derived from the data
or can be chosen to apply additional constraints. For wind
scatterometry, prior distributions can both regularize the inverse
problem and aid in ambiguity selection [33], [34]. Prior distri-
butions can also be employed to force the wind estimates to
be consistent with other wind field estimates with potentially
different resolutions.

For the purpose of this paper, we desire to impose a prior that
regularizes the problem, without imposing much structure on
the wind fields and without relying too heavily on the external
data. In order to regularize the problem, we apply a prior
that is independent from pixel to pixel. Although a wind field
prior may be used, we apply the prior in the σ0 field domain
since it is difficult to obtain a useful direction prior without an
external data source. Imposing a prior on the σ0 fields in this
manner can be viewed as estimating the σ0 fields via the wind,
i.e., we reconstruct the σ0 fields that are consistent with an
underlying wind field and simultaneously produce a wind field
estimate.

We assume that each pixel of each σ0 field has the mean of
the obtained scatterometer measurement and a finite variance.
The Gaussian distribution is the maximum entropy distribu-
tion for a given mean and variance, i.e., it imposes the least
amount of structure of all distributions with a given mean
and variance [35]. Therefore, each pixel of each σ0 field is
assumed to be an independent Gaussian random variable with
a mean corresponding to the aperture-filtered σ0 measure-
ment and a given variance. More precisely, the prior can be
expressed as

f
(
�U [x′]

)
=

∏
i,x′

f
(
σ0
t,i[x

′]
)
=

∏
i,x′

f
(

gmfi
(
�U [x′]

))
(5)
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where each f(gmfi(�U [x′])) is

f
(

gmfi
(
�U [x′]

))
=

1√
2πp

exp

⎧⎪⎨
⎪⎩
(
σ0
m,i−gmfi

(
�U [x′]

))2

−2p2

⎫⎪⎬
⎪⎭
(6)

where p2 is the variance. Note that, for all of the pixels of the
σ0 field for a given measurement i, the mean σ0

m,i of this prior
is constant. Thus, this prior also acts as a smoothing filter on
the σ0 fields and on the wind estimates. The variance p2 is left
as a tuning parameter to trade off the spatial resolution for a
reduced variability of the estimates. For this paper, we set p to
10−7 based on the preliminary empirical observations, leaving
a more detailed noise versus resolution tradeoff analysis for
future investigation.

Note that the form of f(�U [x′]) in (5) and (6) is similar in
form to the measurement noise distribution f(�σ0

m|�σ0
t ) in (4),

assuming a white process across the WVCs as well as across
the different measurements i. Thus, this prior regularizes the ill-
posed problem by adding a diagonal to the Fisher information
matrix of the fieldwise ML estimation problem [36]. This
property justifies the use of this prior as a regularization term
without requiring knowledge of the actual distribution of the
wind fields or their corresponding σ0 fields. This approach
allows the estimation of the fine-scale features (such as storms
and fronts) that are relatively rare and isolated compared to
larger scale structures. Nevertheless, applying a prior corre-
sponding to the actual distribution of the wind fields may be
more appropriate for certain applications.

D. Implementation

Because of the nonlinearity of the GMF and the structure of
the noise, the MAP objective function is multimodal. The local
maxima represent the fieldwise ambiguous winds. Although
it is theoretically possible to find every local maxima and to
report them as wind field ambiguities, this is difficult because of
the high number of parameters in the wind field reconstruction
problem.

For convenience, we employ a gradient search method ini-
tializing with an up-sampled result of the standard resolution
product. This results in a single wind field estimate. The
initialization field effectively acts as an ambiguity selection
step since the new method generally converges to a wind field
ambiguity close to the initialization field. This implementa-
tion can be viewed as a resolution enhancement procedure on
the standard resolution product. Alternative initialization fields
may be obtained from UHR processing, model-based wind field
estimation from the σ0 data, or data from external sources. Note
that the wind field may be estimated in the meridional and
zonal components or in the speed and direction components.
We search along the gradient with respect to the wind speed and
direction components since it is simpler to search numerically
due to the structure of the objective function. The gradient of
the MAP objective function is provided in Appendix C.

IV. CONNECTIONS BETWEEN APPROACHES

The new approach solves the general inverse problem by
regularizing via a prior. The conventional approaches, which
apply assumptions and approximations to solve the problem,
can be expressed as simplified special cases of the new method.
The implicit assumptions made by the drop-in-the-bucket and
UHR methods have the effect of regularizing the wind inversion
problem by enabling pointwise wind field estimation. This
section explores the relationship between the new approach
and the standard drop-in-the-bucket, UHR, and model-based
approaches.

A. Drop-in-the-Bucket Approach

First, consider the drop-in-the-bucket approach. This ap-
proach uses multiple measurements whose aperture function
centers fall into a WVC to independently estimate a wind vector
for that cell [37]. In relation to the sampling model in (1), this
can be viewed as assuming that the wind field is piecewise
constant over the WVCs and that the aperture functions are
delta functions, i.e., under the implicit assumptions, each row
of the sampling model can be expressed as

σ0
d,i =

∫
δ(x− xi)gmfi

(
�U(x)

)
dx = gmfi

(
�U(xi)

)
(7)

where xi is the center of the aperture function for measurement
i and �U(xi) = �U(xj) for all xi, xj in the same WVC. We use
the notation σ0

d,i to represent the ith σ0 measurement for the
drop-in-the-bucket method. The vector of the σ0 measurements
for the drop-in-the-bucket method is expressed as �σ0

d. Note
that, since the true wind field is not piecewise constant and
the aperture functions are not delta functions, the drop-in-the-
bucket technique, in effect, solves a different problem than
the original. The errors introduced by the implicit assumptions
made using the drop-in-the-bucket methods can be evaluated by∥∥�σ0

t − �σ0
d

∥∥
L1

=
∑
i

∣∣σ0
t,i − �σ0

d,i

∣∣

=
∑
i

∣∣∣∣
∫

Ai(x)gmfi
(
�U(x)

)
dx− gmfi

(
�U(xi)

)∣∣∣∣
=

∑
i

∣∣∣∣
∫

Ai(x)
[
gmfi

(
�U(x)

)
− gmfi

(
�U(xi)

)]
dx

∣∣∣∣
≤

∑
i

∫
Ai(x)

∣∣∣gmfi
(
�U(x)

)
− gmfi

(
�U(xi)

)∣∣∣ dx.
If the wind field is relatively smooth, |gmfi(�U(x))−

gmfi(�U(xi))| is generally small for each i, and the L1 normed
difference between the forward projections is small. However,
for wind fields with a significant small-scale structure, the
normed difference may be large, resulting in biases in the wind
estimates.
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While the drop-in-the-bucket sampling operation differs
from the new method, the noise model is the same, i.e., the
same fundamental measurements are used to estimate the wind
field for both cases, but the manner in which the measurements
are combined in wind retrieval differs due to the assumptions
imposed about the wind field itself. The drop-in-the-bucket
method has a similar expression for the likelihood function
f(�σ0

m|�σ0
d), as expressed in (4), but with �σ0

t replaced by �σ0
d.

Note that the GMF is empirically derived from the data obtained
from winds with all scales (i.e., including winds with finer
scale structures than either the WVC size or the width of the
slice response functions). This suggests that there may be a
difference between the GMF that is inside the integral and
outside the integral in (7), which implies that a high-resolution
GMF may be more appropriate for the new approach.

Now, it is shown that the MAP reconstruction method for
estimating the wind reduces to the conventional method, as-
suming the drop-in-the-bucket forward model and a particular
prior. First, suppose that we apply the new fieldwise approach
to estimate the wind from the σ0 measurements, assuming the
drop-in-the-bucket forward operation. The assumption that the
wind field is piecewise constant makes the problem discrete,
albeit in a different way than assuming that the wind fields
are bandlimited. To solve this discrete problem using the MAP
reconstruction approach, a gradient search is used. With the
drop-in-the-bucket forward model, the gradient of the likeli-
hood function defined in Appendix C (11) reduces to

∂ log f
(
�σ0
m|�U [x′]

)
∂Uj [x]

=

{∑
i Ki

∂gmf
i(�U [x])

∂Uj [x]
, if x′ = x

0, otherwise

where the square brackets [x] represent the regular sampling of
the piecewise constant wind field (i.e., one sample per WVC).
Note that the partial derivative of the likelihood function with
respect to the wind at a particular WVC is not a function of the
wind in other WVCs. This implies that the wind vector at each
WVC can be independently estimated (i.e., pointwise).

Note that the aforementioned expression is the gradient of
the likelihood function without the prior. As long as some
measurements fall into every WVC, the wind can be estimated
pointwise for each WVC without a prior (i.e., the Fisher
information matrix is diagonal and not singular). Thus, the
implicit assumptions in the modified forward model effectively
regularize the problem. If no prior is imposed (or, equivalently,
if a noninformative prior is used), the MAP reconstruction
approach reduces to conventional processing when assuming
the drop-in-the-bucket forward model. We note, however, that
the new approach provides more control of how the problem
is regularized and allows for higher resolution wind estimates
than what is possible with the conventional drop-in-the-bucket
methods.

B. UHR Approach

The UHR approach assumes a similar forward model as in
(1) but modifies it slightly by making an important assumption.
UHR processing assumes that the measurements of a similar

geometry (and same polarization and frequency) sample the
same wind-dependent σ0 field.

More precisely, each row of the UHR sampling operation is
expressed as

σ0
UHR,i =

∫
Ai(x)gmff

(
�U(x)

)
dx

where gmff (�U(x)) represents the σ0 field of a given flavor
(e.g., consecutive measurements from the same beam). Under
the UHR assumption, each σ0

UHR,i of a particular flavor sam-

ples the same gmff (�U(x)). The multiple measurements of a
given flavor are combined to reconstruct the σ0 field of a given
flavor, and this is done for each different flavor. The wind is
then estimated pointwise from the reconstructed σ0 fields [14].

Although the assumption is that multiple measurements sam-
ple the same σ0 field, each measurement actually samples a
slightly different σ0 field because each measurement views the
surface with a slightly different geometry. The error introduced
by this assumption can be evaluated as∥∥�σ0

t − �σ0
UHR

∥∥
L1

=
∑
i

∣∣σ0
t,i − �σ0

UHR,i

∣∣
=

∑
i

∣∣∣∣
∫

Ai(x)gmfi
(
�U(x)

)
dx

−
∫

Ai(x)gmff
(
�U(x)

)
dx

∣∣∣∣
=

∑
i

∣∣∣∣
∫

Ai(x)
[
gmfi

(
�U(x)

)
− gmff

(
�U(x)

)]
dx

∣∣∣∣
≤

∑
i

∫
Ai(x)

∣∣∣gmfi
(
�U(x)

)
− gmff

(
�U(x)

)∣∣∣ dx
where �σ0

UHR is the vector of measurements assuming the UHR
forward model and gmff (�U(x)) is the σ0 field assuming the
geometry of flavor f . The normed difference between the
forward projections is relatively small if the change in the GMF
with respect to the differences in the geometry between the
actual measurements i and the assumed look geometry is small
over the main lobe of Ai(x). For scatterometer designs with
narrow measurement spatial response functions, this assump-
tion is appropriate, but for scatterometer systems with broad
measurement response functions, this assumption may result in
significant bias errors.

The noise model assumed for UHR processing differs from
the standard noise model. Although the UHR noise model is
derived from the standard noise model, the UHR model as-
sumes that each pixel is statistically independent, resulting in a
diagonal covariance matrix. Also, the mean of the distributions
for each pixel is assumed to be the true σ0 value at the given
pixel (i.e., σ0

t,i[x] = gmfi(�U [x]) for pixel x).
Note that, if the covariance is assumed to be diagonal, it

is generally nonsingular (except possibly if there are WVCs
that happen to be in a null of every aperture function). This
implicit assumption regularizes the problem, making pointwise
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estimation possible without imposing a prior. If no prior is
imposed (or, equivalently, if a noninformative prior is used),
MAP reconstruction reduces to pointwise UHR estimation
when assuming the UHR forward operation and noise model.

The actual noise distribution of the reconstructed σ0 fields
has a correlation among adjacent WVCs due to the measure-
ment overlap, resulting in a nondiagonal covariance matrix.
Although the UHR assumptions simplify the problem and result
in useful estimates, assuming that the covariance is diagonal
may result in artifacts when the actual correlation is significant.

The modifications to the noise model used in UHR pro-
cessing regularize the problem and make pointwise retrieval
possible, but they are somewhat ad hoc. An alternate method
may be to regularize the problem by adding a diagonal to the
singular covariance matrix. In fact, this is equivalent to applying
an independent Gaussian prior to each pixel of the reconstructed
σ0 fields and performing MAP estimation on a fieldwise basis,
which is similar to what is proposed earlier. This suggests that,
for systems where measurements of a similar flavor can be
combined, the prior in (6) may be modified by replacing the
mean σ0

m,i with the reconstructed σ0 value for a given pixel.

C. Model-Based Approach

Model-based estimation assumes that the true wind field is
contained in the span of the wind field model. The model
parameters are estimated from the measurements, and then,
a wind field estimate is computed from the model parameter
estimates. Generally, a model is chosen so that there are fewer
parameters to estimate than measurements, thus regularizing
the problem. The parameters are conventionally estimated using
ML estimation [16]–[18]. Note that assuming that the wind field
is in the span of a wind field model is equivalent to imposing
a uniform prior over the range space of the wind field model.
Thus, the model-based methods can also be expressed as a
special case of the MAP reconstruction approach.

V. APPLICATION TO SEAWINDS

This section considers the application of the MAP wind
reconstruction method to the SeaWinds scatterometer. Here,
the background on the sensor is provided, the examples are
presented, and the MAP reconstruction estimates are compared
to conventional products. Simulation is employed to analyze the
quality of the estimates.

A. SeaWinds Background

SeaWinds is a Ku-band scanning pencil-beam scatterometer.
Two beams (v-pol and h-pol) at two different nominal incidence
angles are employed to produce a wide swath with a sufficient
azimuth diversity to infer wind direction. Range/Doppler filter-
ing is employed to obtain several σ0 measurements (“slices”)
for each radar pulse [1]. The aperture function of each slice
σ0 measurement is a function of the antenna pattern and the
range/Doppler processing. In practice, each aperture function is
often approximated by a binary mask (i.e., a mask with ones
within the 6-dB main lobe and zeros outside) [38].

Fig. 1. Wind speed fields (in meters per second) from (a) L2B, (b) UHR, and
(c) MAP reconstruction.

For SeaWinds, the wind is conventionally estimated on
25- (L2B), 12.5- (L2BH), and 2.5-km grids (UHR). For the L2B
product, the slices of a given pulse are first averaged together
into egg measurements, and the eggs whose centers fall into a
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Fig. 2. Wind direction fields (in degrees) relative to north from (a) L2B,
(b) UHR, and (c) MAP reconstruction.

25-km WVC are used to estimate the wind vector for that WVC
[1]. A similar procedure is done for the L2BH product, and
only the measurements are binned on a 12.5-km grid [1]. UHR
processing first reconstructs four σ0 fields [one for each flavor

Fig. 3. Wind speed difference fields (in meters per second) from the
(a) difference between MAP and L2B, (b) difference between MAP and UHR,
and (c) difference between UHR and L2B.

(v-pol, h-pol, and fore- and aft- looking)] onto a 2.5-km grid
using a weighted average of all of the slice σ0 values weighted
by the respective aperture functions [19], [20]. The wind is then
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estimated pointwise from the reconstructed σ0 fields [14]. We
compare the results of these different methods with the new
MAP reconstruction method.

B. Example

Figs. 1 and 2 show an example of wind field reconstruction
from the SeaWinds scatterometer for a wind field with relatively
small scale features. The L2B, UHR, and MAP estimated wind
speed fields are shown in Fig. 1, while the direction fields are
shown in Fig. 2. The new method improves the resolution over
the L2B product, producing a wind field that is similar to the
UHR field but with less noise.

Figs. 3 and 4 show the speed difference fields and direction
difference fields between the various methods, respectively. The
differences between the MAP and L2B fields, the MAP and
UHR fields, and the UHR and L2B fields are all shown. These
images suggest that the MAP estimates are consistent with the
L2B and UHR estimates throughout the swath. The UHR speed
and direction estimates are noisy in the nadir region, while
the MAP direction estimates appear less noisy. Note that the
differences between the UHR and L2B, and the MAP and L2B
wind estimates are also due, in part, to the differing resolutions
of the products.

C. Validation

It is difficult to evaluate the quality of the wind estimates
without an independent set of collocated data of a similar reso-
lution. Lacking such data, we compare the MAP reconstruction
results to the conventional low resolution results and to the
UHR product for 20 SeaWinds passes in the south Atlantic (i.e.,
a 6× 6◦ window around latitude −30 and longitude −130). The
south Atlantic is chosen for convenience to avoid the tropics
where rain contamination is significant. Tables I and II show
the speed and direction mean difference, the standard devia-
tion (STD) of the difference, and the root-mean-squared (rms)
difference between the MAP reconstructed and L2B winds,
between the UHR and L2B winds, and between the MAP
reconstructed and UHR winds. For Table I, the L2B winds are
up-sampled (using nearest neighbor interpolation) to the high-
resolution grid, while for Table II, the MAP and UHR winds are
averaged down (using a vector average) to the L2B resolution.
The results suggest that the MAP reconstruction method is
consistent with the standard SeaWinds product and with the
UHR product. Note that both ML and MAP estimation may
result in biased estimates of the wind, which may be different
for the different retrieval methods. Thus, systematic biases may
occur. Even so, the mean difference (or bias) with respect to
the L2B is low for both UHR and MAP wind estimation. The
STD and rms differences suggest that the MAP estimates are
generally less noisy than the UHR products.

D. Simulation

To further investigate the performance of the new method,
we employ the Monte Carlo simulation. The estimates of the
bias and variance of the estimates of the L2B, UHR, and MAP

Fig. 4. Wind direction difference fields (in degrees) (a) between MAP and
L2B, (b) between MAP and UHR, and (c) between UHR and L2B.

reconstruction wind retrieval methods are also obtained using
the simulation.

Comprehensive simulation and analysis are beyond the scope
of this paper. Here, we analyze the results from a particular
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TABLE I
MEAN DIFFERENCE, STD OF THE DIFFERENCE, AND RMS DIFFERENCE

BETWEEN THE MAP AND L2B AND BETWEEN THE MAP AND UHR
ESTIMATED WIND SPEEDS AND DIRECTIONS AT UHR RESOLUTION

(AVERAGED OVER 20 PASSES IN THE SOUTH ATLANTIC)

TABLE II
MEAN DIFFERENCE, STD OF THE DIFFERENCE, AND RMS DIFFERENCE

BETWEEN THE MAP AND L2B AND BETWEEN THE MAP AND UHR
ESTIMATED WIND SPEEDS AND DIRECTIONS AT L2B RESOLUTION

(AVERAGED OVER 20 PASSES IN THE SOUTH ATLANTIC)

Fig. 5. Simulated (a) wind speed field (in meters per second) and (b) wind
direction field (in degrees).

wind field with 100 independent noise realizations. We generate
a simulated wind field that has a wavenumber spectrum that
falls off as one over the wavenumber squared. Fig. 5 shows the
wind speed and direction field used in the simulation. Although

Fig. 6. Scatter density plots of the wind speed obtained in the simulation for
(a) MAP and (b) UHR.

this wind field may not be realistic, it exhibits the small-scale
structure that is necessary to test the resolution of the estimates.

Figs. 6 and 7 show the scatter density plots of the MAP and
UHR estimates compared to the true wind for the wind speed
and direction, respectively, for a particular noise realization.
The plots suggest that the MAP direction estimates are less
noisy than the UHR estimates. The MAP speed estimates of the
high wind speeds have a slightly lower variability than the UHR
estimates, while the variability at low wind speeds is higher.

Figs. 8 and 9 show the bias of the wind speed and direction
estimates, respectively, for the MAP and UHR methods. For
both methods, higher wind speeds tend to produce a larger bias,
although the bias of the MAP reconstruction estimates is less
severe than the UHR estimates. In the swath edges, the structure
of the bias seems to be different from the inner swath. The
direction estimates are relatively unbiased, except in the frontal
features.

Figs. 10 and 11 show the STD of the wind speed and direc-
tion estimates, respectively, for the MAP and UHR methods.
As expected, the MAP estimates of the high wind speeds have
a lower STD than the UHR estimates. The STD of the direction
fields is much different for the UHR and MAP estimates. In
the nadir region, the UHR direction estimates have a large
STD, whereas the MAP estimates have a relatively low STD
all throughout the swath.
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Fig. 7. Scatter density plots of the wind direction obtained in the simulation
for (a) MAP and (b) UHR.

VI. CONCLUSION

This paper has approached the scatterometer wind field
estimation problem in a novel way. Wind field estimation is
performed on a fieldwise basis without imposing a low-order
model. MAP estimation is employed to estimate the regularly-
spaced samples of the wind field at UHR. The method is applied
to the SeaWinds scatterometer, and the results are compared
to standard products. The MAP reconstruction method is con-
sistent with low-resolution standard products, but it provides
higher resolution information. For SeaWinds, the MAP recon-
struction estimates are consistent with the UHR estimates, but
they have less noise.

Future research will include a more rigorous validation of the
MAP reconstruction product for the SeaWinds scatterometer.
Also, the approach will be applied to the operational scat-
terometer data, such as the advanced scatterometer, and will
be adapted for a near real-time UHR product. The MAP re-
construction approach will also be extended to simultaneously
reconstruct the wind and rain vector fields from the scatterom-
eter measurements. Near the coastal regions, the MAP wind
reconstruction approach will be combined with the σ0 image
reconstruction approach developed in [22] to simultaneously
reconstruct the wind field over the ocean and the σ0 image over
the land in order to develop an improved coastal product.

Fig. 8. Bias of the wind speed estimates (in meters per second) for (a) MAP
and (b) UHR.

APPENDIX A
INVERSION OF THE CONTINUOUS NOISE-FREE

FORWARD OPERATOR

In theory, the continuous sampling operation can be inverted
using constrained optimization. To do this, we define a metric
d(�U(x), �z(x)) over the wind field domain to optimize, subject
to a consistent forward sampling operation �σ0

t = T (�U(x)). The
metric d(�U(x), �z(x)) is a measure of the distance between the
wind field and some vector field �z(x). For example, the metric
may be a normed error such as the L2-norm, and �z(x) may
be some expected wind field such as a numerical weather pre-
dicted wind field or the zero vector field (e.g., d(�U(x), �z(x)) =

‖�U(x)− �z(x)‖2 =
∑

k

∫
|Uk(x)−zk(x)|2dx).

To find the optima, the Lagrangian

L = d
(
�U(x), �z(x)

)
+ �λT

(
�σ0
t − T

(
�U(x)

))

is used. The gradient with respect to the wind field and �λ are set
to zero to find the critical points. Depending on the metric and
the sampling geometry, a second derivative test may be required
to distinguish the maxima from the minima. For a given set of
noise-free measurements �σ0

t , the solutions to these equations
and inequality constraints represent the wind fields that are
consistent with the forward operator that optimize the metric.
As a function of �σ0

t , the set of equations and inequalities defines
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Fig. 9. Bias of the wind direction estimates (in degrees) for (a) MAP and
(b) UHR.

a finite-dimensional manifold in the wind domain representing
all consistent solutions that optimize the metric. This manifold
defines the class of signals that can be reconstructed under
the metric. A different metric may result in a different class
of reconstructible signals. In principle, the manifold may be
parameterized, producing a wind field model with finitely many
parameters that can be estimated from the σ0 measurements.

Note that, although this approach allows the reconstructible
wind field signals to be represented with a finite number of
parameters because of the nonlinearity, the manifold cannot, in
general, be contained within the span of a finite linear basis.
Since the bandlimited spaces are finite linear subspaces, the
class of reconstructible wind fields is generally not bandlimited.
Even if all of the aperture functions are bandlimited, they may
not impose a bandlimit on the wind fields (nor on the σ0 fields
because they must be consistent with the wind field). Therefore,
it may be possible to obtain wind estimates (and corresponding
σ0 field estimates) with a higher frequency content than the
bandlimit of the aperture functions.

APPENDIX B
RELATIONSHIP BETWEEN SPECTRA

OF THE WIND AND σ0 FIELDS

This section presents the relationship between the wavenum-
ber spectrum (Fourier transform) of the spatially continuous σ0

Fig. 10. STD of the wind speed estimates (in meters per second) for (a) MAP
and (b) UHR.

fields for each measurement and the wavenumber spectrum of
the components of the wind field. First, a theorem and a proof
for the relationship between the spectrum of the σ0 fields and
the spectrum of the components of the wind field are stated.
Then, some practical considerations for the relationship of the
bandlimit of the σ0 fields and the bandlimit of the wind fields
are presented.

Theorem: For the nonlinear operator T defined in (1) with
a GMF that can be represented by a finite power series (where
N1 and N2 are the order of the wind vector components), we
have the following.

1) The Fourier transform of the ith σ0 field σi(x) =

gmf(�U(x), θi(x), ψi(x)) is related to the Fourier trans-
form of the components of wind field U1(x) and U2(x) by

F {σi(x)} =

N1,N2∑
n1,n2=0

F {ai,n1,n2
(x)}

∗
[

2∗
k=1

[
nk∗
j=1

F {Uk(x)} − F{ck}
]]

(8)

where F represents the Fourier transform, ai,n1,n2
(x) is

the power series coefficient corresponding to U1(x) and
U2(x), ck represents a reference wind field component
that is constant in x, and ∗nj=1 represents n nested
convolutions.
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Fig. 11. STD of the wind direction estimates (in degrees) for (a) MAP and
(b) UHR.

2) If the wind field components are bandlimited by ωU1
and

ωU2
and the power series coefficients are bandlimited by

ωa, then the σ0 field components are bandlimited by

ωσ ≤ N1ωU1
+N2ωU2

+ ωa. (9)

Proof: Showing part 1) is straightforward. The power
series expansion of σi = gmf(�U(x), θi(x), ψi(x)) is

σi(x) =

N1,N2∑
n1,n2=0

ai,n1,n2
(x)

2∏
k=1

(Uk(x)− ck)
nk .

Taking the Fourier transform produces

F {σi(x)} =F
{

N1,N2∑
n1,n2=0

ai,n1,n2
(x)

2∏
k=1

(Uk(x)− ck)
nk

}

=

N1,N2∑
n1,n2=0

F {ai,n1,n2
(x)}

∗ F

⎧⎨
⎩

2∏
k=1

nk∏
j=1

(Uk(x)− ck)

⎫⎬
⎭

=

N1,N2∑
n1,n2=0

F {ai,n1,n2
(x)}

∗
[

2∗
k=1

[
nk∗
j=1

(F {Uk(x)} − F{ck})
]]

which is (8).
To show part 2), we start with the bandlimited wind field

components with bandlimits ωUk
for each component k. Note

that, since ck is a constant for each k, F{ck} is a delta function
centered at zero. The term

[
nk∗
j=1

(F {Uk(x)} − F{ck})
]

represents the convolution of the kth wind field component with
itself nk times, with the dc term modified. Each autoconvo-
lution expands the spectrum by ωUk

, so the term above has
a bandlimit of n1ωU1

for k = 1. This term is then convolved
with the autoconvolution of the other wind field component
(i.e., k = 2), which has a bandlimit of n2ωU2

, producing a ban-
dlimit of n1ωU1

+ n2ωU2
. This quantity is then convolved with

F{ai,n1,n2
(x)}, resulting in a bandlimit of n1ωU1

+ n2ωU2
+

ωa. Then, each combination of n1 and n2 is added together. The
resulting bandlimit is the highest bandlimit of any of the terms
in the sum, which corresponds to the term where n1 = N1 and
n2 = N2, resulting in the bandlimit N1ωU1

+N2ωU2
+ ωa. In

case some high-frequency contents of the different terms in the
sum cancel out portions of the spectrum, an inequality relation
is obtained. Thus

ωσ ≤ N1ωU1
+N2ωU2

+ ωa.

�
Note that ai,n1,n2

(x) is a function of x because the look
geometry changes in x. If the aperture functions are sufficiently
narrow such that a variation of the look geometry is negligible
over the main lobe, then ai,n1,n2

(x) can be approximated as
constant in x, and the result in part 2) of the theorem reduces to

ωσ ≤ N1ωU2
+N2ωU2

.

The relationship between the bandlimit of the σ0 fields and
the bandlimit of the wind field components suggests that an up-
sampled version of the wind field should be projected through
the sampling operator when calculating the forward projection.
Although the actual bandlimit of the σ0 fields can be as high
as the result in part 2) of the theorem, it may be possible to
assume that the σ0 bandlimit is similar to the bandlimit of the
wind components without introducing significant errors. This
is because the autoconvolutions in (8) tend to produce spectra
with relatively low energy at high frequencies. To illustrate this,
consider the 1-D case. The magnitude of the autoconvolution
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of a bandlimited signal is less than the autoconvolution of the
magnitude, i.e.,

|X(ω) ∗X(ω)| =
∣∣∣∣
∫

X(τ)X(τ − ω)dτ

∣∣∣∣
≤

∫
|X(τ)| |X(τ − ω)| dτ

= |X(ω)| ∗ |X(ω)| .
Also, note that |X(ω)| ≤ αB(ω) for some α and for every

ω, where B(ω) is a boxcar function centered at zero. Thus

|X(ω) ∗X(ω)| ≤ (αB(ω)) ∗ |X(ω)|
≤ (αB(ω)) ∗ (αB(ω))=α2 (B(ω) ∗B(ω)) .

Extending this to multiple nested convolutions, we have∣∣∣∣ n∗
j=1

X(ω)

∣∣∣∣ ≤ αn n∗
j=1

B(ω).

Now, consider the autoconvolution of the boxcar function.
Each increasing n extends the tail into the higher frequencies,
but the higher frequencies have lower values than the lower
frequencies.

APPENDIX C
GRADIENT OF THE MAP OBJECTIVE FUNCTION

The gradient of the MAP objective function is required for
the practical implementation of the MAP wind reconstruction
method. Here, the gradient of the MAP objective function is
derived.

The MAP objective function is the sum of the log-likelihood

function log f( �σ0
m| �σ0

t ) (or equivalently log f( �σ0
m|�U [x])) and

the log of the prior log f(�U [x]). For the scatterometer noise
model used in this paper, the partial of the log-likelihood
function with respect to the ith wind vector component at
location x is

∂ log f
(
�σ0
m|�U [x′]

)
∂Ui[x]

= −
∑
n

∂

∂Ui[x]

⎡
⎢⎣
(
σ0
m,n − Tn

(
H�U [x′]

))2

2Rn,n

+
1

2
(log{2π}+ log{Rn,n})

⎤
⎥⎦. (10)

The first term in the sum is

∂

∂Ui[x]

⎡
⎢⎣
(
σ0
m,n − Tn

(
H�U [x′]

))2

2Rn,n

⎤
⎥⎦

= −

(
σ0
m,n − Tn

(
H�U [x′]

)
An[x]

∂gmf
n(�U [x])

∂Ui[x]

)
Rn,n

−

(
σ0
m,n − Tn

(
H�U [x′]

))2

2R2
n,n

∂Rn,n

∂Ui[x]

where Tn =
∑

y An[y]gmfn(H�U [x′]). The second term in the
sum in (10) is

∂

∂Ui[x]

1

2
[log{2π}+ log{Rn,n}] =

1

2Rn,n

∂Rn,n

∂Ui[x]
.

Note that the partial derivative of Rn,n is

∂Rn,n

∂Ui[x]
=

(
2αnTn

(
H�U [x′]

)
+ βn

)
An[x]

∂gmfn
(
�U [x]

)
∂Ui[x]

.

Thus

∂ log f
(
�σ0
m|�U [x′]

)
∂Ui[x]

=
∑
n

−KnAn[x]
∂gmfn

(
�U [x]

)
∂Ui[x]

(11)

where

Kn=

⎡
⎢⎣
(
σ0
m,n−Tn

(
H�U [x′]

)
−
(
αnTn

(
H�U [x′]

)
+βn/2

)
Rn,n

+

(
σ0
m,n−Tn

(
H�U [x′]

)2 (
αnTn

(
H�U [x′]

)
+βn/2

)
R2

n,n

⎤
⎥⎦.

The gradient of the log of the prior expressed in (5)
and (6) is

∂ log f
(
�U [x′]

)
∂Ui[x]

=
∑
n

−1

p

(
σ0
n − gmfn

(
�U [x]

)) ∂gmfn
(
�U [x]

)
∂Ui[x]

.

Adding this expression to (11) results in the gradient of the
MAP objective function.
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